УПРАВЛЕНИЕ БОЛЬШИМИ СИСТЕМАМИ
на главную написать письмо карта сайта


јвтор:  „аплинска€ Ќ.¬.
Ќазвание:  »сследование эргодических неоднородных ресурсных сетей с Ђжаднымиї вершинами
¬ыпуск:  93
–убрика:  —етевые модели в управлении
√од:  2021
Ѕиблиографи€:  „аплинска€ Ќ.¬. »сследование эргодических неоднородных ресурсных сетей с Ђжаднымиї вершинами // ”правление большими системами. ¬ыпуск 93. ћ.: »ѕ” –јЌ, 2021. —.5-50. DOI: https://doi.org/10.25728/ubs.2021.93.1
 лючевые слова:  графова€ динамическа€ порогова€ модель, ресурсна€ сеть, модель "жадных" вершин, топологи€ эргодических неоднородных сетей
 лючевые слова (англ.):  graph dynamic threshold model, resource net, "greedy-vertices" model, topology of ergodic heterogeneous networks
јннотаци€:  –ассмотрена модификаци€ графовой пороговой динамической модели "ресурсна€ сеть" -- "ресурсна€ сеть с жадными вершинами". Ќа каждом такте дискретного времени вершины графа передают друг другу ресурс по ребрам с~ограниченными пропускными способност€ми, причем сначала передают имеющийс€ ресурс в собственные петли, а затем остаток ресурса распредел€ют в исход€щие ребра по правилам стандартной ресурсной сети (пропорционально пропускным способност€м с учетом их ограничени€). –ассмотрена топологи€ эргодической неоднородной ресурсной сети с "жадными" вершинами -- сеть описываетс€ сильно св€зным ориентированным графом. ѕоказано, что при значени€х суммарного ресурса, не превосход€щих суммы пропускных способностей всех петель, сеть с "жадными" вершинами останавливаетс€, что невозможно дл€ стандартной эргодической ресурсной сети и обуславливаетс€ наличием модифицированных петель; исследуетс€ характер остановки сети. ƒл€ значений суммарного ресурса, превышающих суммы пропускных способностей всех петель, доказываетс€, что с определенного момента времени сеть будет функционировать эквивалентно соответствующей стандартной ресурсной сети.
јннотаци€ (англ.):  A modification of the graph threshold dynamic model "resource network" -- "resource network with greedy vertices" is considered. At each discrete-time moment, the vertices of the graph transfer the resource to each other through the edges with limited throughputs. First they transfer the available resource to their own loops, and then the rest of the resource is distributed to the outgoing edges according to the rules of the standard resource network (in proportion to the throughputs taking into account their limitations). The topology of an ergodic heterogeneous resource network with "greedy" vertices is considered -- the network is described by a strongly connected directed graph. It is shown that when the values of the total resource are not larger than the sum of the throughputs of all loops, the network with "greedy" vertices stops, which is impossible for a standard ergodic resource network and is caused by the existence of modified loops; the nature of the network stop is investigated. For the values of the total resource that are larger than the sum of the throughputs of all loops, it is proved that from a certain time moment the network will function equivalently to the corresponding standard resource network.

в формате PDF

ѕросмотров: 717, загрузок: 152, за мес€ц: 1.

Ќазад

»ѕ” –јЌ © 2007. ¬се права защищены