“FAIR PLAY” IN CONTROL OF ACTIVE SYSTEMS

V.N.BURKOV and A.Ya.LERNER *

Large-scale manmachine systems incorporate subsystems whose goals do not generally
coincide with those of the system. A single man or a group of people make a sub-
system actively maximize its objective function by reporting the information on
its model (in other words on its potential) to an external control unit. Besides the
subsystem has certain information on the strategy applied by the external control
unit and by other subsystems and uses this information in itw own interests. This
lecture is concerned with control of such active systems that incorporate men and
groups of people that are after their own goals. The control problem is to find an
optimal plan for the system so that the subsystems plans be also optimal. A solu-
tion of the control problem based on the “fair play” principle is proposed. This
principle largely recognizes the active nature of the subsystems.

1. Active Systems

A multi-level system is defined if,

(a) The system structure is defined, i.e. for each subsystem (SS) the con-
trolling (master) subsystem and a set of controlled (slave) subsystems are
known;

(b) the model of each subsystem is known, i.e., the way to represent a set
of possible plans is defined and the objective function for each subsystem is
Siven which depends on the plan for the given subsystem, on the plans for its
“slave™ subsystems, a control generated by the controlling subsystem and a
control generated by the given subsystem for the controlled sub-subsystems;

(¢) the relations of plans for the lower and upper level subsystems are deter-
Mined; i.e. a certain plan Z! (W) for the subsystem i is associated with each set
Wi = (Wil, wi2, Wis) of feasible plans for the “slave” subsystems. The number
of parameters which describe the plan Z! is less than the number describing
the set of plans W7, so the information aggregation takes place. The controlling
Subsystem of the first hierarchical level is hereafter termed the central unit
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(CU) while subsystems which have no slave subsystems are called elements

().

Example 1. Fig. 1 shows a structure of a three-level system of nine elements.
Assume that the set A7 of feasible plans for each element is described by
the inequality

n
(1) 2 wibi<T
k=1
where bz and T are positive numbers, W,';j are non-negative numbers. Such a
model can describe a factory which manufactures » kinds of products for a
period T. Then b,’c’ is the time spent on manufacturing a unit of the k-th pro-
duct W}/ is a plan for this type of product.
The objective function of an element may have the form

n
iy =21 Nwil
k=1

where N is the control generated by the i-th subsystem (the vector of product
prices). In this case the set of feasible plans is determined by setting n param-
eters b,’c] . The i-th subsystem (a particular industry) plan is

s
Zi=2 Wi,
7=1
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(total of all kinds of products made by all manufacturers of the industry). In
this case a set of possible plans is formed as (see fig. 2)

s
VLA
j=1

Let the set A’ of feasible plans for the i-th industry be described by the
following inequality

n
) kf__‘{ Zivi <T,
which is similar to (1).

In other words, the industry acts as a single large manufacturer. Since the
set ¥
2 47
P

cannot be accurately described in terms of (2), a set of feasible plans has to be
represented approximately. For instance if each plan of the set A’ is to be
feasible, that is

§
Aic 247,
j=1
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then,
s

B=2b, k=1,2,..n,
j=1

(the number of manufacturers in the industry) is the most reasonable repre-
sentation.

Note that if sets of feasible plans of elements E and the operators trans-
forming a set of plans obtdined by each master subsystem from its slave sub-
systems into a set of feasible plans for each subsystem were determined single:
meaningly over the period under consideration, then the problem of a multi-
level system control would on the principle be very easy to solve. Indeed,
three stages of system operation can be specified:

a) information reporting;

b) planning;

c) plan execution. )’

At the first stage each E reports to its master (SS) a set of possible plans.
Having obtained a set of feasible plans from the slave subsystems, each sub-
system finds a set of its own feasible plans and passes them over to the corre-
sponding master subsystem. With all the information received the CU solves
the planning problem (the stage of planning) finds the control X and the 2nd
level subsystems plans maximizing (or minimizing) the objective function ‘
of the system. Having received the plan Z' the i-th subsystem finds in its turn
the control A and the plans W for the slave subsystems so as to maximize
its own objective function, etc. Finally, at the stage of plan execution eachE
fulfills the given plan. Knowing the states of plan-fulfillment for the elements
we can exactly determine the states of plan-fulfilment for the subsystems and
for the system. 4

Note that in the model described above each SS is passive at the stage of
information reporting. It only transforms and reports information to other
SS. However this assumption is invalid for man-machine systems. It would
be more realistic to assume that while reporting the information on the set
of its feasible plans each subsystem acts in its own interests (of course, within
the established forms of information presentation and constraints). Then each
SS will naturally report only “favorable” plans. b

Therefore plans that cannot be optimal under any feasible control are
never reported. The situation is more complicated for plans that can be opti
for a subsystem under some controls. The point is that in the described model
no subsystem takes into account the objective functions of its slave SS while
solving the planning problem. This causes a certain instability in the system

%
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functioning. Assume, for instance, that the i-th subsystem has information on
the control A that will be given at the stage of planning. Quite naturally the
subsystem is eager to have a favorable plan and will not report those plans
that are not optimal under the expected controls. This situation can well arise
in economic systems where prices are used as control actions because the varia-
tions in prices are known to be of inertial nature. This leads to a substantial
reduction of the set of feasible plans in the CUj; as a result, the obtainable plan
is generally not optimal. Therefore to provide stable functioning of the system
each subsystem should recognize the objective functions of the slave sub-
systems during the planning stage. In other words, the plan found by the sub-
system should be mutually profitable for the subsystem and the slave SS. Thus,
a salient feature of man-machine systems is the use of the SS reports on the
set of its feasible plans for the maximization of its objective function and also
the sue of the available information on the control actions of the master SS
the CU including. Subsystems with such a property will be further referred to
as active subsystems (ASS) and a system with at least one ASS (apart from
the CU) — an active system (AS). It has already been stated that a necessary
condition for the stability of AS’s is the mutual profitability of plans.

2. Problem Statement

In further discussion we will deal with two-level systems consisting of a CU
and a finite number of active elements (AE). The results, however, can be
easily extended to multi-level systems. Let us introduce the following notation.
A" isa set of feasible plans for the i-th AE.

V4 I is the plan for the i-th AE obtained from the CU at the planning stage.
Z=(2\,22,..,2m)
is a plan for an AS (a set of AE’s plan;
A is the control vector;
/4 is the set of feasible controls;
& isaset of feasible plans for the AS.
=N
is the objective function of the i-th AE.
®(Z, ) is the objective function of the AS. d,

Each AE knows a set A’ and its own objective function n'(Z’, N).

The CU in its turn knows the obijective function of the system, a set of
feasible controls L and the constraints Z on the plans of various AE’s. Note
that this information may also be known to each AE.
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Problem formulation. Find the plan Z€ Z,Z'€ 4',i=1, 2, ...,m and the
control X € L so as to satisfy the constraints .
B
3) ni(éi, A) = max ni(Zi, N, i=1,2,...m

Zieq?

and obtain the maximal value of the system objective function ®(Z, 7). Con-
ditions (3) + ®(Z, A) - max are the conditions for mutual profitability of the
plan Z.

Since the conditions for mutual profitability of the plan put additional
constraints on the set of feasible plans, the value of the objective function
given by the mutually favorable plan will generally be below the one given by
the optimal plan without the requirement for the mutual profitability.

Denote:
®, is the maximal value of the AS objective function without the require-

ment for the mutual profitability;
®, isthe value of the AS objective function given by the optimal mutually
profitable plan. (Without loosing the generality assume that &, ¢, >0.)

The relation

is termed the AS matching coefficient. It shows the degree of matching be-
tween the objectives of the AS and the objective of the entire system. If p=1
then the AS is completely matched.

Let Z(A) denote the optimal solution to the planning problem under the
control A € L. The problem reduces to finding the control A € L under which
$[Z(N), A] takes the maximal value.

Example 2. Consider the problem of planning for two manufacturers who can
make two types of products. Assume that the period T is equal to 1. Let one
manufacturer have the production rate of any type of product equal to 1,
while the other one have the production rate of the first type product equal
to 1, and of the second equal to %. Let Z! be the time spent by the i-th manu-
facturer on the production of the j-th product type (5, j= 1, 2) A, the relative
profit secured by the production of first product type, ,- of second product
type, )\1 + )\2 =1.

We have a set of feasible plans for the first manufacturer

1. 51 1 1 51
al:zlszl<1,  z),Z)>0,

-

N
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the objective function (the profit defined within the accuracy to a constant
multiplier) is equal to

NARNERWARDW S
a set of feasible plans for the second manufacturer
abiglwghdt el oy
the second manufacturer objective function
2@ N =\ 22 #4023
the setcof feasible controls
L:a+20=15 A0, 20.
Suppose the AS objective function has the form:
oz N=4z +22) +22+222.
Determine the function ®[Z(\), A]
() 0<h, <}%.
The optimal mutually profitable plan is
zZi=1, z}=0, Z2=1, Z3=0; @[ZQ)A]=5.
(b) 3 <A, <3%.
The mutually profitable plan is
zl=0, z}=1, Z2=1, ZJ=0; @[Z),\]=3.
(©3< A, <1. ‘
The mutually optimal plan is

zl=0, Z}=1, z3=0, Z3=1; @®[Z).\] =4.
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Note that the function ®{Z(A), A] is a muiti-extremum function ot A,
The optimal plan without the mutual profitability requirement

1. 1_ 2 _ 2_1. = =
zl=1, zZ}=0, z2=0, Z3=1; ®,=6, ¢, =5.

The matching coefficient of the system is p = .

Example 3. The data are the same as in Example 1, but the objective function
of the system is

&z, N =min(4z}+ 22,22} +222).
() 0<A, <.
The optimal mutually profitable plan is
zi=1, z}=0, z}=1; Z3=0; @[ZQ),\] =0.
N, =%, A =%.
The optimal mutually profitable plan is
zl=%, z}=%, z1=1, Z3=0, ®[ZQ) N =13.
(©) 3 <A\, <%,
The optimal mutually profitable plan is
z1=0, zZ}=1, Z3=1, Z2=0; @[ZQ) N =1.
(d) i< A<
The optimal mutually profitable plan is
zl=0, Z)=1, Z2=0, Z2=1; @[ZMW),\ =0.
In this example the optimal value &, = 13 is achieved at the point A =NE
3 where the function ®[Z()), A] has no derivative.
The optimal plan without the mutual profitability requirement is then
z1=%, z}=%, Z}=0, Z3=1; ®,=%.

The matching coefficient in this example is p = 3.
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The basic difficulty in solving the planning problem is as alieady noted in
that the CU either does not know the sets A' and theobjective functions
ni(Zi , \) of the active elements or know them only approximately. There-
fore a certain procedure must be devised whereby the CU will receive the
information on the sets of AE’s mutually profitable plans.

One approach developed by several authors which is currently used to solve
the planning problem is the principle of decomposition. The basic idea is to
arrange an iterative procedure. At each iteration the CU reports to the active
elements the control kahlle each AE reports the plan Z;‘T under this control
(k is the number of iteration). The control A, ; at the (k + 1)-th iteration is
determined by a certain law N1 = W;41(Zg, Ag) in terms of the control A,
and the plan Z; at the preceding iteration.

The CU should evidently find the conditions at which the procedure ends
(conditions of stoppage).

If the procedure ends at the s-th iteration, then A = A, Z = Z is taken as
the solution to the planning problem.

In the model under consideration the information reporting and planning
stages are integrated. Now, since they are active, AS’s may know the stoppage
condition and thus predict the last iteration.

To continue the discussion we need to assume that each AE has a slight
effect on the stoppage conditions. This assumption can be formulated as fol-
lows: for any Z’kGA there is a probablhty not equal zero that the k-th iteration
is the last one for the i-th AE, (i=1, 2, ...,m, k=1,2,...). If to assume now
that each AE maximizes the guaranteed value of the objective function, then
with the above assumption valid the E will report at each iteration one of the
Z’ that maximize n’(Z’ A.)- A number of papers [1-5] prove the conver-
gence of the sequence { Z } to an optimal solution when there are certain
constraints on the propertles of the sets A',Z, L and the functions 7'(Z’, \)
and ®[Z, A\]. The approach considered can easily be extended to multi-level
systems. Sometimes more complicated models are used where at each itera-
tion each AE reports to the master SS several close plans with the appropriate
controls.[6] . Without going into details of these methods which use the de-
composition principle, note that they do not give the optimal solution since
the problem is multi-extremal. (See Examples 1 and 2.) Besides, there can also
be several optimal AE’s plans at the control selected and it is not clear which
one will be reported to the CU. This fact has already been demonstrated for
linear models [7]:

“Even for simple economic systems represented in terms of linear program-

ming it is impossible to construet a local function (even using the estimates

of the global problem optimal plan) so as to make a solution to the local
problem optimal to the global problem”.
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A new approach to the solution of AS control problem based on the “fair
play”’ principle will be discussed below.

3. The Principle of Fair Play in Control

According to the principle of fair play each AE reports a set of feasible
plans B’ and the preference function §%(Z’, A) defined on that set to the CU
which solves the planning problem on the knowledge of this information
using the preference function as the objective function. Assume S(Z', \) =
for Z, ¢& B'. Each AE can now be considered to have reported only the pref-
erence function on the given set A

Condition (3) for mutually profitable planning will in this case take the
form

(4 Si(ZL, N = max  Si(ZI,N)
zieq!

Condition (4) will be termed the condition for matched planning and the
plans that meet these conditions will be referred to as' matched plans. Note
that the matched plans are generally not mutually profitable. Suppose that
the procedure to represent the preference function has been set in the system
(e.g. the function can be defined by setting a finite number of parameters).
Thus a certain class H of feasible preference function has been identified.
This class will not necessarily contain the objective function n (Z’ A). Assume
first that n'(Z), D EH',i=1,2,.

Denote as A/()) a set of mutually proﬁtable plans and as 4 SO\) a set of
matched plans under the preference function S(Z%, \) € H', X\ € L. We shall
further use the assumption of the slight effect of the information, reported
by each AE, on the future control X € L. This assumption will be written in
the following form: for any S¥(Zi, \) EHi, Zi € A! 5 and AE L, there are
SI(Z, \) EHI, j+1i,such that in the optimal solutlon to the problem of
matched planning, X is the control and the plan for the i-th AE is Z'. The
point of the above assumption is that an AE, no matter what informatipn it
reports can expect any control A from L and any matched plan from 4 SO\)

Thence it follows that the necessary condition for the mutual profitability
of matched plan is AG(\) & C A'(\), (since A’ # 0, then A’ ) #0atany
NEL). A simple suff1c1ent condition for mutual proﬁtabﬂlty of a matched
plan is the equality between the preference function and the objective function
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(with the accuracy to a positive multiplier). For an optimal matched plan to
be an optimal mutually Froﬁtable plan it is sufficient that from the condition
Al s CA'()\) follow AG(A) = A;(). (This requirement is a necessary one in
that if AG(N) C A, tHen there is a problem of matched planning where
optimal matched plan is not an optimal mutually profitable plan.)

Theorem 1. In order that for any n'(Z!, \) € H from the condition A’ sME C
AN follow A s = A’()\) it is necessary and sufficient that for any S’ (Z' N
and S} (Z' N from H: the relation A' ™ ¢ A' , ) would take place.

Necessity. Let AL ) C4g, () and the objective function 'z, N =
§1(Z%, N). Then A0y = A% )'and 4% Q) C A/,

Sufficiency. Let A5 (\) ¢A’ () for any S‘ (Z’ A) and S% (Z' \) from H'.
Then from niZE, A€ M it also follows that A L) ¢4/ at any SI(ZE, N €
EH!.

Theorem 1 imposes certain constraints on the selection of the preference
function form (i.e. on the class H'). Therefore one should specially test the
specific classes H' on their consistency with the conditions of Theorem 1 and
justify the application of the “fair play” principle to solve the problem of
mutually profitable planning.

Consider necessary justification in the case to which the examples that
follow can be reduced. Assume that

A ;Z{z'—r., T, >0 4= 1y 2ysenllhs

n

n"(z",x)- sx,z' s' 0. /512 . /=12 _ o
n
ng)\];l, )\].>0, j=1,2
Assume that the preference function
n
ic7i 3y = i i
SN IZ=%)\I-T}ZI- .

Then each AE reports a preference vector 7 such that 'r]’ =0,i=1,2,..,m;
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j=1,2,..., n. Without limiting the generality we can assume that

n
(5) 2isi=2ri=1, i=1,2,..,m.

Thus, the class H' is defined by a set of T;, satisfying (5).

Theorem 2. To make a matched plan mutually prof‘ table it is necessary and
sufficient to haver' SR 12,5 o, pe 2

Proof. The sufficiency of the condition is evident. Let us prove the necessnty
Assume ‘r’ > S, for some j, . It follows that there is a j, for which 1‘2 <S’
Consider a control A\ which satlsﬁes the conditions

ki-1';.<max()y1,1’}1,)\j2,“"2), ]¢]1’ j2 .

T ? S'2

M Ly

T EN e
Then in a matched plan Z' et 4t Z;: =0, j#J;,while in a mutually profitable :

j1
planZ =0, j#/y Zﬂ-T

Thus in this case the necessary and sufficient condition for the mutual pro-
fitability of a plan is the preference function equal to the objective function.

Note. The assumption that the objective function belongs to the class H will
not generally be true because the objective function of an AE may be compli-
cated enough and be dependent on quite a great number of parameters, human
and social factors included. However, since it can select the preferences from
the class H' alone, an AE has to ddapt to the conditions of the system func-
tioning. Therefore an AE selects from the class H* a preference function which
best represents its actual interests and use it as the objective function under ‘
the given conditions. '

This assumption is of course realistic if the class H* does include a preference
function which represents the aims of the AE sufficiently. Otherwise contra-
dictions may occur in the system and as a result the system operation can be-
come unstable. In that case the class H* should be changed.
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4. Probabilistic models

Let the execution of each plan Z be specified by the values of the param-
eter vector x! which is a random quantity with the distribution F i(xi). In this
case the set 4% will be represented by a set of plans which correspond to cer-
tain estimates of random parameters. These are generally either the mean
values of parameters or the values with a given probability to exceed them.
Assume that an AE is aware of the required estimates of random parameters
while the CU is not or knows them just approximately. Denote by & the
vector of random parameter estimates reported to the CU by the i-th AE. To
verify the truthfulness of the reported estimates certain assumptions on the
AE objective functions should be made to assume that the objective functions
w,ai(xi, a7, A) depend in a known way on the parameter vector x' under the
observation, vector of estimates &', the plan Z’ and the contrql )\ T.his‘case
represents the control problem in economic systems where ¢'(x’, &', Z', \)
determines, for instance, the profit. At the information reporting stage the
mean value of ¢ is taken as the objective function of an AE

M@, ZE N =1 .. fJ(E d ZE N dFiGY) .
If the maximal guaranteed value of M' is used as an objective function the
estimates ' of the parameters reported by an AE to the CU are found from

the condition of the maximum

Ei(ai) = min max Mi(ai, Zi N .
AEL ZIEA!

Let us take up two specific cases that are important to further applications.
n

6 ol 2L N = 20, [ — ol - d)?] ZE

© @ e A 2 0=2 - o4 2,

where of >0 (i=1,2,..,m; j=1,2,..,n) are constant numbers. By maximiz-
ing the mean value of ¢’ over aj’. we easily obtain

a;=f...fx;i dFix"y, j=1,2,..,n,

which means that each AE reports the mean values of the parameters to the
CU. Then
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M@, 2 =200 - D)7
where
M o O i g
D} =[S aj’.) dF(x") .

Denote S% = a; - a':D;: . Then by Theorem 2 the preference function reported
by the Aé to'the éU is equal (with the accuracy to the positive multiplier) to
n

iy iy bl
Q) LR IZ=:/>\J.SI.Z/..

n
o S p D P I O R N
b) e ZL N jz‘;{xj[x]. -2, if xi<d,

n

where oé ﬁ]': are positive numbers. . :
Maximizing the mean value of ¢' over & we find that the estimate a]’.
reported to the CU satisfies the equation:

cas tisale
) Fidy=—"1—; i=1,2,..,m; j=1,2,..,n.
1354 o+ Bz
‘AL
where F' f'(x]’:) is the x! distribution function. The preference function reported
to the CU will also have the form of eq. (7) where
d .
i Lo b AL i L) T 1. sphblio L il
S]- / [xj a}(aj X]-)] dFj(x,') +fi [x] 3;'(3‘7]' a]')] dFj(x]) 3
a.

]

These two kinds of the objective functions of AE will be considered in further
application examples. In the models discussed below the problem of matched
planning is considered. By Theorem 2, however, a solution to this problem
determines the optimal mutually profitable plan.




“FAIR PLAY” IN CONTROL OF ACTIVE SYSTEMS
5. Models of Matched planning

Consider some simple models of economic systems. The AE’s will be
either elements of a system that manufacture (consume) certain types of
products or elements capable of performing certain jobs. The models of AE’s
are presumed given with the accuracy to a finite number of unknown param-
eters. Plans are developed for a specified period. In different models the un-
known parameters are the productivities of elements in terms of either dif-
ferent products or different kinds of job, the amount of crops to be received
from a unit area, etc. The profit of an AE is assumed to be determined by
egs. (6) or (8) and therefore each AE reports to the CU the appropriate esti-
mates of the parameters ar; and the coefficients S]’. of the preference function.

5.1. Production planning

Let us consider a system which consists of m manufacturers that are capable
of making n types of products.

Denote by 7, the operational time of the i-th manufacturer over the period
covered by the plan. Let &} correspond to the estimate of the productivity of
the ith AE by the jth kindj of product, Z]'. is the operational time spent by the
ith manufacturer to make the jth type of product. Denote by C; the value of
the jth product unit (e.g. its price at the world marked) by b}k the amount of
the k-th product type required to produce a unit of the j-th product type by
the i-th manufacturer. To simplify the model assume that any amount of the
product of any type can be purchased by the unit price C] (Gj=1,2,...,n). The
problem is to find a matched plan Z and control A that ensure the maximal
profit for the system. The profit can be expressed as:

n

n m n m
&2, N =20 Ezja;ﬁ(cj L2 py=2520cz,
k=1 %7 /

j=1i=1 i=1j=1 17

n
. a
¢ =ai(G;~ 21 G-

under the constraints

n
) 2izi<r, i-12,..m,
]=

(m:x)\kS};—kj-Sl’:)Z;=O, (n1.2, . ii®lo2, ..t .
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Note that the optimal solution to the problem without the matching require- -
ment is determined very easily: let C‘ = max C' then
J
iy (origizpec o
Zl=
" Lo, i gy s
(if there are several maximal ¢t any one is taken).

Denote by Q. a set of AE’s manufacturing the j-th type of product under
the optimal plan. To make the problem more specific assume that there is a
single optimal plan. Calculate

€ =maxs—;c (if ;=0 then €,.=0)
kj i€g; St ] kj "

and define a complete graph G where the arc gain is equal to €, ;. The
cycle gain then is a product of gains of arches which make the cycle.

Theorem 3. For complete matching it is necessary and sufficient to have no
cycles with the gain in excess of 1 in the graph.

Proof. The matching conditions for an optimal plan have the form

)‘/'})‘kekj’ ej].=1, kj=1,2,..,n.

Denote

ul.=ln7\]. 3 Ekj =lnek]..
Then the conditions transform to

H; = My t Ekj "

These are the conditions closely reminding a problem of the graph vertices
potentials when the arch lengths are equal to &, ..

This problem is known to be solvable if there are no cycles of positive
length in the graph. Consequently, no cycles with gain above 1 should be
present in the initial graph.
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Example. Let the matrices C; and S; have the form

Entdnngng N1 23
yididng oq Pnplyibiyol
: e s ey . b B
ch= §i) =
@ 3shiin s 4 ) i bk 2
41015 4 (061

The optimal solution without the matching requirement is Z, bis =73 2= Z3 =1,
otherwise Z; = ! =0, @, = 16. Calculate

1 2 3
i ‘s—i oY 523'%= o0 S ‘ii": ;
S 53 S4
s) 53 3
542':%‘0’ €43 ‘%"6’ 634‘S_2‘

The cycle (3, 2, 4, 3) has the gain equal to 72. The condition of complete
matching is not thus met.

The optimal matched solution is: Z2 =1, Z3 =1,Z; 1= 1, otherwise
zZi= i=0, ®, = 14. The matching coefﬁcwnt isp=3%.

5.2. Distribution of arable areas

Let a system consist of m state farms. Denote by 7| the arable area of the
i-th farm, by a) the estimate of the productivity of the j-th type of the crop in
the i-th farm, éy A the relative need in the j-th kind of crops by Z} the area
alloted for the j- th crop by the ith farm.

The problem is to find A and Z that would maximize the production yield
under the given proportions of product types. The minimal relation of the
amount produced to the relative need will be denoted as §. The problem is
formulated as follows:

Maximize 8 at the constraints

n B
Ez’ Ry

=17 Ty
(m;:x)\ks;; —xl.s]i)zlf':o, i=1,2,.m, j=1,2,...n.

m

oy, Elajzij}.; i=1,2,.n
l=
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Note that the matching conditions in this case coincide with the conditions
used in the preceding problem. If in the optimal solution without the matching
requirement to denote the set of farms that intend to seed the crop j as Q
(QI = {i: Z’ > 0}) the conditions of Theorem 3 will be the necessary and suf-
ficient condmons of complete matching for the problem at hand. The simple
sufficiency conditions for complete matching is the equivalence (with the
accuracy to the positive multiplier) of the estimates a]f and the preferences
St [8].

]

5.3. The problem of supply

Let us consider a system which consists of m suppliers and g customers Th
customer k orders BX units of products and informs on his preferences % with
regard to each type of product. The types of products for which 7% > 0are
assumed interchangeable for the customer if supplied in equal amounts, in
other words, the total amount of different kinds of products is B*. Denote as
we did before by 4} the estimate of the i-th supplier productivity in terms of
the j-th kind of product, by S’ his preferences, by Z! operational time when
engaged in the manufacture of the j-th kind of product. Further Uk will de-
note the amount of product of the j-th kind delivered to the customer &,
A= (A1, A, ... Ay) the control vector for the suppliers, 7 = (7, 7,, ..., 7rq)
the same for the customers. Finally, C; will denote the unit price of the j-th
product at the market outside the system.

The problen is stated as follows: determine A, 7, Z, U that minimize

n
C=2JC.A.

j=1 J7i?

at the constraints

n
(11) 2(/].’%3", k=1,2,..,q.
]=
m q n
(12) Ea’ > Uk, 2 Zi<T., i=1,2, ,m
i=1 ] 1 k=1 ] /=1 ] 1
st 2§y Zi=
(13) (m;x)\p Sp )‘j Sj)Z].
k Kk _
14 (m;xnprp—nj'r]].‘)Uj 0.
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wherei=1,2,...,m; j=1,2,..,n; k=1,2,..,q.If in the optimal solution
=0, the demand can be met by the system’s own potential alone. In this
case A, will denote the surplus of the j-th kind of products and C] the profit
gainedj by marketing a unit of the j-th product. The problem is then to maxi-
mize

n
c=2Jc,a,

j=1]!

at constraints (11), (13), (14) and
m q
A=27dZi -2 UF>0.
A 7 el R Ly o\

Note that the necessary and sufficient conditions for complete matching are
also determined by Theorem 3 and should be met for both the preferences of
customers and suppliers.

The simple sufficiency conditions are:

*>0
]
a;: =5 S;' (6 is a positive multiplier)

foralli=1,2,....,m; j=1,2;n65 1,2 ...,q.

6. Conclusions

The concept of active systems permits to represent the salient features of
man-machine systems such as their “own” objective functions, reporting in-
formation on potential available turning objective functions to account, the
use of information on controlling subsystems, etc.

The basic difficulty in solving the control problem has been the insuffi-
cient information on the potential and intentions of controlled subsystems.
The principle of fair play surmounts this difficulty to a certain extent. The
problems arising then such as the selection of the classes H' and the effect of
this selection on the functioning of an AS. Application of the fair play prin-
ciple to various models of AS’s optimal synthesis of multi-level AS’s opens
an new challenging fields for research.
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