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The optimum distribution of a limited quantity of resources, is one of the most
important trend in the theory of network planning and of control. Problems of an
optimum distribution of resources, are in principle extremal problems of combinational
type. At present there are no effective and accurate methods for the solution of such
problems. A satisfactory developed theory exists only for the problems where ordering
of the network events is assumed. The paper considers basic resuits and methods
of optimum distribution of resources, when the network events are ordered.
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1. Basic notions ' R =y

Operation-process described by an equation of the planning type : e

Lo dx(@) L e
h(n)= P =fla@), N

where: 4 (t) — operation rate at a moment ¢; x () — operation state at a moment ¢;
ﬁ(t)=(u1 (1), uy (1), ..., 4y (1)) — distribution of resources for an operation, at
a moment ¢ (m — number of kinds of resources); f (i) — dependence of opera-
tion rate upon the quantity of resources (rightside continuous, no decreasing
function of #, with £(0)=0).

The operation is completed at the moment ¢, if x (#)=w>0. W is called the
operation volume. Let’s assume an initial moment t=0. The moment of comple-
tion is determined in accordance with (1) as the minimum ¢ which satisfies the
equation - - T

[Fla@)de=w. =+ .2 @

Usually it is assumed that resources of different kinds are taking part in the
operation with given proportions, i.e. u; ()=« v (¢), where o; >0 — given numbers.
The distribution 7 (¢) = av (¢) is called the allocation of resources; «—is called the vec-
tor of the allocation parameters; v (1) — the intensity of allocation at the moment ¢,
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operation volume. By means of a direct substitution to (7) it can be shown that
conditions
fi)=vl",a>1, i=1,2,..,n

are the necessary and sufficient conditions for an optimum solution existence,
when the rate of performing each operation in the optimum solution is constant
for arbitrary operations volumes, and an arbitrary network.

The case of power relations is in a certain way unique. If all the operations
are worked out by means of resources of one kind, it is possible to determine a certain
value w,, called the equivalent volume of the complex, so that T,,;, is determined
from the equation:

Tmin
f N () dr=w,.
0

Besides, if the time of operation duration 7; depends on the losses s;, suffered

from its performance in the following way:

wd

1

==, i=1,2,.,ma>1,
i

T

then the minimum time of complex duration for a limited value of losses >’ 5;<S,
is determined by the equation i=1

Tmin = (WZ/S)I/(a_ 1)-

The equivalent volume of the complex depends only on the operations volumes
and the network structure. For a network composed by operations ordered in series

i=1

n n 1fa
w.= D'w;. For a network composed of operations ordered in parallel w,= (2 w‘;‘) .

i=1

5. Fixed intensities

It is said that an operation is performed with a fixed intensity, when the quantity
of resources for that operation can have only one value. Let’s denote by t; the time
of the i*" operation duration; §;; the fixed quantity of resources of the j** kind in
the j* operation. We can attribute to an arbitrary set of independent operations
a vector X=(x,, X, ..., X,), where x;=1, if the i'® operation belongs to this set.
In the contrary case x;=0. Each vector, which satisfies the condition

n

D) X BN, =12, .,m, ®)
i=1
will be called an admissible vector. Let X!, ¥2, ..., X7 be a set of admissible vectors.
We will denote u,=> 0 the time of duration of the interval during which the operations
corresponding to vectors X° are performed.
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Problem 3. Determine u,, s=1,2, ..., q, which satisfies the condition
q
Zifus=r,-, i=1,2,..,n, )
s=1

q
and minimizes T= D' u,.
i=1
It is a problem of linear programming where the matrix of conditions is given

in an implicit form (8). Let X', %2, ..., X", be the basic vectors of a certain preliminary
solution. We will denote by ' a vector (x,, x,, ..., X,), so that x,=1, x;=0, j#1.
We will express 7' by means of the basic vectors %!, %2, ..., x". Let

yi= D oy (10)
j=1

n
and denote a;= > ¢;;.
i=1

Problem 4. Determine x;=0,{which satisfies (8) and maximizes

C=Zai x,. . (11)
i=1

If in the optimum solution of problem 4, ¢< 1, the solution x!, %2, ..., " is
optimum too. In the contrary case the optimum solution of problem 4 is determined
by the vector which must be introduced to the base according to the simplex method.

Note 1. As the admissible vector determines the set of independent operations,
the problems (8), (11) can be solved for each set R, individually.

Note 2. To prevent looping, the vectors ¢liminated from the base must be
kept in mind if #=0 corresponds to them as long as a vector with >0 will not be
eliminated.

The problem (8), (11) is a problem of linear integer programming with variables
0, 1, and in the general case there are no effective methods for its solution. Let us
consider the case when problem (8), (11) takes a simple form.

Let all the operations of the complex be divided into classes in such a way that
operations of the j** class are worked out only by means of the j* kind of resources
in a quantity f; (i=1,2, ..., n).

We will denote by P;, the set of operations of the j'* class, which can be worked
out in the s'® interval. In this case the problem (8), (11) divides into separate problems
for each P;#0, of the following form:

stz Z a; Xi—>maX,
icPjs (12)
2 Bi x;<N;.
icPj;
The problem (12) is known as the problem of packing, and can be solved
effectively enough by means of the method of dimensions and constraints or the
method of dynamic programming.
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1
(ii) > (2 +x3-+x,) — max,

Sx,+4x;+4+4x, <11

1
(iii) > (x3+x4-+x5) — max,

4x3+4x,+Txs < 11.

All the three problems have an optimum value x=1. That is the reason why the
solution {x!, x2, %3, %%, %6} is the optimum one.

The sequence of the vectors in the solution can be nonunique. Because of that,
a problem of determination of such a vector sequence for which the number of
operation interruptions will be minimum, can be stated. A groph G in which the
nodes correspond to the vectors, will be
worked-out. The nodes (i, j) will be con-
nected by means of arcs (i, j) if just one
operation of the vector %! precedes at least
one operation of the vector %/. In the
opposite case the nodes will be connected
by means of edges. The length of the arc
(or edge) will be taken as equal to /;;=

~ 3 irixl
k=1
A fictious node 0 connected with each
node i/ by means of an edge with a length

n
rie 2 10i=k§ x}, will be introduced. Let (0, iy,
' i3, ..., Iy, 0) be such a Hamiltonian circuit,
that, if (i, i;) is an arc, then k <s. It can be shown that the Hamiltonian circuit of
minimum length determines a sequence of vectors, assuring the minimum number
of operation interruptions. At the same time the number of interruptions is equal
+L—n, where L —length of the Hamiltonian circuit. The graph G for the
vectors %!, X2, x3, x4, x% is shown in Fig. 2. One of the circuit, which has a
minimum length is shown by means of a double line. Its length equals L=12.
Therefore the vector sequence X'—x?-%3—-%*->%° determined by this circuit
gives a solution with ¥ L—n=1 interruption during the operations.

6. Optimization when the intervals’ lengths are given

Let it be assumed that the lengths 4, of all the intervals are given. When such an
assumption is made, it is possible to obtain effective algorithms for soluing number
of problems. Some of them will be considered.

Let
fi@)=v, 0<o,;<B;, i=1,2,..,n

i
I
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All the operations are worked out by means of one kind of resources.
Problem 5 (minimization of resources level). Determine the minimum quantity

of resources necessary to work out the complex in a time 7= 2 A,
s=1
We will determine a transportation network with an input x,, output z, and nodes

i,s,i=1,2,..,n, s=1,2,..,r. The node x, will be connected with each of the
nodes [ by means of an arc (x,, i) with a flow capacity w;; each node i will be
connected with each node s by means of an arc (7,s) with flow capacity f; 4.
At last, each node s will be connected with the node z by means of an arc (s, 2)

T
network will be determined applying the Ford-Fulkerson algorithm. If ¢n.,=w,
the flows x;, along the arcs (i, s) determine the optimum solution of the problem.
If gma<w, there exists a set D of nodes s, which were not taken into account at

1 & w
with a flow capacity N, 4,, where N, =T Z w; =—=. The maximum flow in this
i=1

the last step of the algorithm. we M
Let’s compute M= > > x,; and determine N, =-——5 .
seD {eRs T— 2 Ay
seD

The procedure is repeated for the new value of N,. After a finite number of
steps a flow with the value ¢, =w is obtained. It determines the optimum solution
of the problem (if( y As) Bi=w, i=1,2, .., n)

SEQ:
The solution of one more problem for the case f; (v,))=v;, i=1, 2, ..., n, will be

considered.

Problem 6 (problem of an uniform resources utilization). Determine {x;},
ieR,, s=1,2,..,r, which minimize

r 1 2
o= 3 Su).
s=1 i€Rs

Let’s denote A, the total volume of the operations, which should be worked-out
within the intervals from 1 to k; B, — the total volume of the operations which

k
can be worked out within the intervals from 1 to k: Ty,=>' 4, N(0,r)=w/T.
s=1
Theorem 6. If conditions
Ang(O, r) TkéBk, k=1, 2, ey 1y . ) (13)
are satisfied, then
&.:.=N20, r) T=w*T.

Proof. For the case r=1, the theorem is an elementary one. Let’s admit that
the theorem is true for a network with (r—1) events and we will prove it for r. For
that purpose, let’s eliminate from the network all the operations which should be
worked out within the 1** interval, then the operations which should be worked out
within the 2™ one, and can be worked out within the 1%, then the operations which
should be worked out within the third interval and can be worked out within the
1**, etc., in such a way that the total volume of eliminated operations equals



9(2)
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| - oW G)_18 168 192 T
L min— T(G) 2 1 + 2 + 1 it e

i=1

Problem 6 enters as a separate stage to the solution of more complicated problem.
Problem 7. Determine {x,} and 4, which minimize

Z ¢ 2 (Z Xu) , ¢;>0, (19

iePys
under constraints

Z Xis =Wy, i=1,2, weey Hy o (15)

SEQ
Zr: 4,=T. (16)
s=1

In [2] an algorithm for solution of problem 7 is given. It consists in consecutive
performing of two stages. At the first stage 4, which satisfies equation (16) is fixed,
and problem 6 is solved. At the second stage the {x;} obtained in the previous
stage are fixed and the A; which minimizes the following sum is determined:

r BS
.;.A_s’ where B;= E (E ,s)
s=1

i€Pys
under constraints (16). The solution of this problem is obvious

Ty B,
A= ,'/ —, s=12,..,r

e

In [2] an iterative algorithm for the solution of problem 6 is proposed, and in [3]
the application of a quadratic programming method is given.

7. Synthesis problem of the complex

A complex consisting of n operations is considered. The volume w; of each
operation can have several values. Let’s denote by o, (w;) a certain function of the
operation volume. That function can correspond to the costs connected with
carrying out of the operations partly out of a given complex (for example instead
of producing all the component parts of a given machine, some of them can be
bought ready-made and kept in store).

Problem 8. Determine the volumes {w;} of the operations in such a way that
the complex duration time T,,;,() will be the minimum one under constraint

n

< B e 2 o, (w)<o. ‘ an

i=1
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For the case of ordered events and convex (to bottom) functions o, (w;), problem 8
is a problem of convex programming because T, (W) is a convex (to bottom)
function of w. For the case f; (v;)=9v;/% i=1,2,...,n, a>1, and resources of one
kind, the problem is reduced to a problem of minimizing the equivalent volume of
the complex with constraints (17).

Conclusion

A series of problems which seem to be of interest for further development of
the presented considerations is given here.

I. All the operations are worked out by means of resources of one kind. It is
assumed that all the operations are worked out with a constant intensity, and the
resources are a flow in the network.

For the above assumption, estimate the increase of the minimum time of complex
duration as a function of the form of f; (v,), i=1, 2, ..., n, and of the network struc-
ture. As it was proved previously, this increase equals O for f; (v,)=v}/%,i=1,2,..., n,
a>1, independently of the network structure, and also for arbitrary, convex (to top)
functions f; (v;) and networks composed of independent operations.

II. In what cases is T,;, (W) a convex (to bottom) function of W excepting
the case of ordered events?

III. Is the equivalent volume always a convex (to bottom) function of the
operations’ volumes?

IV. Work-out the algorithm for the solution of network synthes’ problems
for the case of ordered events.
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Zagadnienia optymalnego rozdzialu zasobow

Problemy optymalnego rozdzialu ograniczonych zasobdw sa jednym z najwazniejszych kierun-
kow teorii sterowania i planowania sieciowego. Optymalny rozdziatl zasobow jest w zasadzie za-
gadnieniem ekstremalnym typu kombinatorycznego. Obecnie nie ma efektywnych i dokladnych
metod rozwiazywania takich zagadnied. Wystarczajaco opracowana jest jedynie teoria dotyczaca
zagadnien, w ktorych zaklada si¢ uporzadkowanie zdarzen sieci. W pracy niniejszej rozpatrzono
podstawowe wyniki i metody optymalnego rozdziatu zasobow uzyskane przy zalozeniu, ze zdarze-
nia sieci sa uporzadkowane.







