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Abstract: A general complex model is considered for collective dynamical strategic decision-making
with explicitly interconnected factors reflecting both psychic (internal state) and behavioral (external-
action, result of activity) components of agents’ activity under the given environmental and control
factors. This model unifies and generalizes approaches of game theory, social psychology, theories of
multi-agent systems, and control in organizational systems by simultaneous consideration of both
internal and external parameters of the agents. Two special models (of informational control and
informational confrontation) contain formal results on controllability and properties of equilibri-
ums. Interpretations of a general model are conformity (threshold behavior), consensus, cognitive
dissonance, and other effects with applications to production systems, multi-agent systems, crowd
behavior, online social networks, and voting in small and large groups.

Keywords: decision-making; psychic and behavioral components of activity; action; result of activity;
equilibrium stability; consensus; threshold behavior; cognitive dissonance; conformity; informational
control; informational confrontation

1. Introduction

What factors influence the decisions one makes? Each scientific domain gives its own
answer, which is correct in the paradigm of its particular domain. For example, the theory of
individual decision-making says that the main factor is the utility of the decision-maker. Game
theory answers that it’s a set of decisions made by others. Psychology says that it’s a person’s
internal state (including their beliefs, attitudes, etc.). Table 1 contains factors of decision-
making (columns), scientific domains (rows), and the author’s subjective expert judgment
on the degree (conventionally reflected by the number of plus signs in the corresponding
cell) of taking into account the factors by the domains. Since all these domains are immense
(but none of them explores a combination of more than two factors), references are given
on several main books or representative survey papers.

In this paper, a model of strategic collective decision-making, which equally considers
all of the factors listed in the columns of Table 1, is considered. The model includes explicit
interconnected parameters, reflecting both psychic (state) and behavioral (action and activ-
ity result, see [1]) components of an agent’s activity. Following the methodology proposed
in [2], we study the mutually influencing processes of the dynamics of the agent’s internal
states, actions, and activity results and the properties of the corresponding equilibria.

In decision-making, organizational systems control, and collective behavior, the tradi-
tional models of dynamics cover either the behavioral components of activity [1] (externally
manifested, observable), the actions and (or) activity results of different agents [3], or the
psychic components of activity, their “internal states” (opinions, beliefs, attitudes, etc.; see
surveys in [4,5]), which are “internal” variables and are not always completely observable.
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Table 1. Decision-making factors and related scientific domains.

Factor
Scientific Domain Utility Action Actionsof

Others
Environment (and

Results of Activity)
Internal

State History Control

Individual decision-making [6,7] +++ ++ ++ + +
Game theory [8],

theory of collectivebehavior [9–11],
behavioral economics [12]

++ +++ +++ + + + +

Social psychology [13–16],
Psychology of personality [17–19]
Mathematical psychology [20–22]

+ ++ + ++ +++ + +

Multi-agent systems [23,24] +++ + ++ ++ + +
Control theory (of social

and organizational systems) [25,26] ++ ++ ++ +++ + + +++

In the general case, the strategic (goal-oriented) decisions of an agent can be affected by:

• his preferences as reflected by his objective or utility function;
• his actions and the results of activity carried out jointly with other agents;
• the state of an environment (the parameters that are not purposefully chosen by any

of the agents);
• purposeful impacts (controls) from other agents.

The first three groups of sources of informational influence are “passive.” The fourth
source of influence—control—is active, and there may exist several agents affecting a given
agent; see the model of informational confrontation in Section 6 below.

In the following paper, we introduce a general complex model of collective decision-
making and control with explicit interconnected factors, reflecting both the psychic and be-
havioral components of activity. Some practical interpretations are conformity effects [10,11]
as well as applications to production systems [25,27], multi-agent systems [23], crowd be-
havior [28], online social networks [29], and voting in small and large groups [9].

The main results are:

• The general model of decision-making, which embraces all the factors listed above,
influencing the decisions made by a strategic agent (see Figure 1 and Equations (1)–(3));

• Particular cases of the general model, reflecting many effects well known in social
psychology and organizational behavior: consensus, conformity, hindsight, cognitive
dissonance, etc.;

• Two models (of informational control and informational confrontation) and formal
results on controllability and the properties of equilibriums.
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Figure 1. Structure of decision-making process [2]. 

This paper is organized as follows: in Section 2, the general structure of the deci-
sion-making process is considered. In Section 3, the well-known particular models of in-
formational control, conformity behavior, etc., are discussed. In Section 4, the simple ma-
jority voting model is used as an example to present the original results on the mutually 
influencing processes of the dynamics of the agent’s states and actions (the psychic and 
behavioral components of activity) and the properties of the corresponding equilibria. 
Section 5 is devoted to the model of informational confrontation between two agents, 
trying to control—influence on the third one—simultaneously in their own interests. 

2. Decision-Making Model 
Consider a set N = {1, 2,…, n} of interacting agents. Each agent is assigned a number 

(subscript). Discrete time instants (periods) are indicated by superscripts. Assume that 
there is a single control authority (principal) purposefully affecting the activity of differ-
ent agents by control {ui ∈ Ui}. 

We introduce a parameter ri ∈ Ri (internal “state”) of agent i, which reflects all his 
characteristics of interest, including his personality structure [1]. In applications, the 
agent’s state can be interpreted as his opinion, belief, or attitude (e.g., his assessment of 
some object or agent), the effectiveness of his activity, the rate of his learning, the desired 
result of his activity, etc. 

Let agent i choose actions from a set of admissible ones; Ai. His action is denoted by 
yi (yi ∈ Ai). The agent chooses their actions, and the results of their activity are realized 
accordingly, which is denoted by zi ∈ Azi, where Azi is a set of admissible activity results 
of agent i. The agent’s action and the result of his activity may mismatch due to uncer-
tainty factors, including an environment with a state ω ∈ Ω  or the actions of other agents; 
see Figure 1. 

The connection between the agent’s action and the result of his activity may have a 
complex nature described by probability distributions, fuzzy functions, etc. [26]. For the 
sake of simplicity, assume that the activity result zi of agent i is a given real-valued de-
terministic function Ri(yi, y-i, ω) that depends on his action, the vector y−i = (y1, …, yi−1, yi+1, 
…, yn) of actions of all other agents (the so-called opponent’s action profile for agent i), and 
the environment’s state ω. The function Ri(∙) is called the technological function [27,30]. 

Suppose that each agent always knows his state, and his action is completely ob-
servable for him and all other agents. 

Let agent i have preferences on a set Azi of activity results. In other words, agent i has 
the ability to compare different results of his activity. The agent’s preferences are de-
scribed by his utility function (goal function, or payoff function) Φi: Azi × Ri → ℜ1: under a 

Figure 1. Structure of decision-making process [2].
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This paper is organized as follows: in Section 2, the general structure of the decision-
making process is considered. In Section 3, the well-known particular models of informa-
tional control, conformity behavior, etc., are discussed. In Section 4, the simple majority
voting model is used as an example to present the original results on the mutually in-
fluencing processes of the dynamics of the agent’s states and actions (the psychic and
behavioral components of activity) and the properties of the corresponding equilibria.
Section 5 is devoted to the model of informational confrontation between two agents,
trying to control—influence on the third one—simultaneously in their own interests.

2. Decision-Making Model

Consider a set N = {1, 2, . . . , n} of interacting agents. Each agent is assigned a number
(subscript). Discrete time instants (periods) are indicated by superscripts. Assume that
there is a single control authority (principal) purposefully affecting the activity of different
agents by control {ui ∈ Ui}.

We introduce a parameter ri ∈ Ri (internal “state”) of agent i, which reflects all his
characteristics of interest, including his personality structure [1]. In applications, the agent’s
state can be interpreted as his opinion, belief, or attitude (e.g., his assessment of some object
or agent), the effectiveness of his activity, the rate of his learning, the desired result of his
activity, etc.

Let agent i choose actions from a set of admissible ones; Ai. His action is denoted by
yi (yi ∈ Ai). The agent chooses their actions, and the results of their activity are realized
accordingly, which is denoted by zi ∈ Azi, where Azi is a set of admissible activity results of
agent i. The agent’s action and the result of his activity may mismatch due to uncertainty
factors, including an environment with a state ω ∈ Ω or the actions of other agents; see
Figure 1.

The connection between the agent’s action and the result of his activity may have
a complex nature described by probability distributions, fuzzy functions, etc. [26]. For
the sake of simplicity, assume that the activity result zi of agent i is a given real-valued
deterministic function Ri(yi, y-i, ω) that depends on his action, the vector y−i = (y1, . . . , yi−1,
yi+1, . . . , yn) of actions of all other agents (the so-called opponent’s action profile for agent i),
and the environment’s state ω. The function Ri(·) is called the technological function [27,30].

Suppose that each agent always knows his state, and his action is completely observ-
able for him and all other agents.

Let agent i have preferences on a set Azi of activity results. In other words, agent i has
the ability to compare different results of his activity. The agent’s preferences are described
by his utility function (goal function, or payoff function) Φi: Azi × Ri → ◦1: under a fixed
state, of the two activity results, the agent prefers the one with the utility function of greater
value. The agent’s behavior is rational in the sense of maximizing his utility.

When choosing an action, the agent is guided by his preferences and how the chosen
action affects the result of his activity. Given his state, the environment’s state, and the
actions of other agents, agent i chooses an action y∗i maximizing his utility:

y∗i (y
∗
−i, ri, ω) = arg max

yi∈Ai
Φi(Ri(yi, y∗−i, ω),ri), i ∈ N. (1)

The expression (1) defines a Nash equilibrium of the agents’ normal form game [8], in
which they choose their actions once, simultaneously, and independently under common
knowledge about the technological functions, utility functions, the states of different agents,
and the environment’s state [26].

The structure in Figure 1 is very general and covers, as particular cases, the following
processes and phenomena:

• individual (n = 1) decision-making (arrow no. 3);
• self-reflexion (the arrow sequence 2–6, 7, 8–2);
• decision-making under uncertainty (the arrow sequence 8–3–4, 10);
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• game-theoretic interaction of several agents and their collective behavior (the arrow
sequence 4––11, 12);

• models of complex activity (the arrow sequence 1, 8–3–4, 10–5, 12);
• control of a single agent (the arrow sequence 1–3–4–5). Control consists of a purposeful

impact on the set of admissible actions, the technological function, the utility function,
the agent’s state, or a combination of these parameters. Impact’s purposefulness
means that the agent chooses a required action, or a required result of his activity is
realized. Depending on the subject of control, under fixed staff and structure of the
system, there are institutional, motivational, and informational controls;

• control of several agents (the arrow sequence 1–3–4, 11–5);
• social influence [29] (the arrow sequence 1, 8, 9–2, 3); in particular, conformity ef-

fects [24];
• learning during activity [30] (the arrow sequence 2–3–4, 10–7);
• learning [30] (the arrow sequence 1, 2–3–4, 10–5, 7).

(Whenever several factors appear simultaneously in a process or phenomenon, the
corresponding arrows in a sequence are conventionally separated by commas.)

Let us specify the decision-making model.

3. General Model

We introduce a series of assumptions. (Their practical interpretations are discussed below).

Assumption 1. Ai = Azi = Ri = Ui = [0, 1], i ∈ N.

Assumption 2. Ri(yi, y−i, θ) = R(yi, y−i), i ∈ N.

Assumption 3. Under a fixed state ri of agent i, his utility function Φi: [0, 1]2 → < is single-
peaked with the peak point ri, i ∈ N [26].

Assumption 4. The function R(·) is continuous, strictly monotonically increasing in all variables,
and satisfies the unanimity condition: ∀a ∈ [0, 1] R(a, . . . , a) = a.

Assumption 1 is purely “technical”: as seen in the subsequent presentation, many
results remain valid for a more general case of convex and compact admissible sets.

Assumption 2 is more significant, as it declares the following. First, the activity result
(collective decision) z = R(yi, y−i) is the same for all agents. Second, there is no uncertainty
about the environment’s state. The agent’s state determines his preferences—-attitude
towards the results of collective activity. The vector of individual results of the agents’
activity depending, among other factors, on the actions of other agents can be considered
by analogy. This line seems promising for future research. By Assumption 2, there is no
uncertainty. Therefore, the dependence of the activity result (and the equilibrium actions
of different agents) on the parameter ω is omitted.

According to Assumption 3, the agent’s utility function, defined on the set of activity
results, has a unique maximum achieved when the result coincides with the agent’s state.
In other words, the agent’s state parameterizes his utility function, reflecting the goal of
his activity. (Recall that a goal is a desired activity result [3].) Also, the agent’s state can be
interpreted as his assessment, opinion, or attitude [1] towards certain activity results; see the
terminology of personality psychology in [1].

Assumption 4 is meaningfully transparent: if the goals of all agents coincide, then the
corresponding result of their joint activity is achievable.

The expression (1) describes an agent’s single decision (single choice of his action). To
consider repetitive decision-making, we need to introduce additional assumptions. The
decision-making dynamics studied below satisfy the following assumption.

Assumption 5. The agent’s action dynamics are described by the indicator behavior procedure [26]:

yt
i =

(
1− γt

i
)

yt−1
i + γt

i y
∗
i

(
yt−1
−i , rt

i

)
, t = 1, 2, . . . , (2)
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with given initial values
(
y0

i , r0
i
)
, i ∈ N, where γt

i ∈ (0, 1] are known constants. The action

y∗i
(

yt−1
−i , rt

i

)
is called the local (current) position for the goal of agent i. In each period, the agent

makes a “step” (proportional to γt
i ) from his current state to his best response (1) to the action profile

in the previous period.

Assumption 6. The agent’s state dynamics are described by the procedure:

rt
i =

[
1− biBi

(
rt−1

i , ut
i

)
− ciCi

(
rt−1

i , yt−1
i

)
− diDi

(
rt−1

i , zt−1
)
− ei

]
rt−1

i +

biBi

(
rt−1

i , ut
i

)
ut

i + ciCi

(
rt−1

i , yt−1
i

)
yt−1

i + diDi

(
rt−1

i , zt−1
)

zt−1 + eiEi

(
rt−1

i , yt−1
−i

)
t = 1, 2, . . . , i ∈ N.

(3)

Assumption 7. The nonnegative constant degrees of trust (bi, ci, di, ei) satisfy the constraints:

bi + ci + di + ei ≤ 1, i ∈ N. (4)

Assumption 8. The trust functions Bi(·), Ci(·), Di(·), and Ei(·), i ∈ N, have the domains [0, 1]; in
addition, ∀a ∈ [0, 1] Ei(a, . . . , a) = a, i ∈ N.

Assumption 9. The nonnegative constant degrees of trust (bi, ci, di, ei) and the trust functions
Bi(·), Ci(·), and Di(·), i ∈ N , satisfy the condition:

∀ x1, x2, x3, x4 ∈ [0, 1] biBi(x1, x2) + ciCi(x1, x3) + diDi(x1, x4)+ei, i ∈ N. (5)

Assumptions 7–9 guarantee that the state of the dynamic system (2) and (3) stay within
the admissible set.

The constant weights (bi, ci, di, ei) possibly reflect the attitude (trust) of agent i to the corre-
sponding information source, whereas the functions Bi(·), Ci(·), Di(·), and Ei(·) reflect his trust in the
information source. The factor

[
1− biBi

(
rt−1

i , ut
i

)
− ciCi

(
rt−1

i , yt−1
i

)
− diDi

(
rt−1

i , zt−1
)
− ei

]
(see the first term on the right-hand side of the procedure (3)) conditionally reflects the
power of the agent’s beliefs.

Note that, for unitary values of the trust functions, the expression (3) also has a
conditional probabilistic interpretation: with some probability, the agent does not change
his state (opinion); with the probability bi, the state becomes equal to the control and with
the probability ci, to his action, etc.

Let us present and discuss practical interpretations of the five terms on the right-hand
side of the expression (3). According to (3), the state rt

i of agent i in period t is a linear
combination of the following parameters:

I. his state rt−1
i in the previous period (t − 1) (arrow no. 2 in Figure 1);

II. his action yt−1
i in the previous period (t − 1) (arrow no. 6 in Figure 1);

III. the actions yt−1
−i and, generally, the activity results zt−1

−i of other agents in the
previous period (t − 1) (arrows no. 11 and 9 in Figure 1, possibly indirect influence
via the agent’s activity result);

IV. the activity result zt−1 in the previous period (t − 1) (arrow no. 7 in Figure 1);
V. the external impact (control) ut

i applied to him in period t (arrow no. 1 in Figure 1).

Thus, the model (2)–(3) embraces both external (explicit) and internal (implicit) infor-
mational control of decision-making.

An example is the interaction of group members in an online social network. Based on
their beliefs (states), they publicly express their opinions (assessments or actions) regarding
some issue (phenomenon or process). In this case, the collective decision (opinion or
assessment) may be, e.g., the average value of the expressed assessments (opinions). Some
agents can apply informational control (without changing their states and actions); some
honestly reveal their beliefs in assessments; some try to bring the collective assessment
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closer to their beliefs. The beliefs of some agents may “drift,” depending on the current
actions (both their own and other agents), control, and (or) collective assessment.

An equilibrium y∗i (a, . . . , a) = r∗i = a ∈ [0,1], i ∈ N, is called unified: the final decision
and all states and actions of all agents are the same.

Under Assumptions 1–9, we have the following result:

Proposition 1 ([2]). Let Assumptions 1–9 hold, and let all constant degrees of trust and trust
functions be strictly positive. Without any control (bi = 0, i ∈ N), a fixed point of the dynamic
system (2) and (3) is the unified equilibrium.

Really, substituting the unified equilibrium into the expressions (2) and (3), we obtain
identities: the unified equilibrium satisfies (1) due to the properties of the utility function
(see Assumption 3).

The unified equilibrium of the dynamic system (2) and (3) always exists, but its domain
of attraction does not necessarily include all admissible initial states and actions. Moreover,
it may be nonunique. Therefore, the properties of equilibria of the dynamic system (2) and
(3) should be studied in detail, focusing on practically important particular cases.

4. Particular Cases

Several well-studied models represent particular cases of the dynamic model (2) and
(3). Let us consider some of them; also, see the survey in [2].

4.1. Models of Informational Control

Models of informational control [29], in which the agent’s opinions evolve under
purposeful messages, e.g., from the mass media. In these models ci = di = ei = 0, i ∈ N:

rt
i =

(
1− biBi

(
rt−1

i , ut
i)) rt−1

i + bi Bi

(
rt−1

i , ut
i

)
ut

i , t = 1, 2, . . . , i ∈ N.

The agent’s state dynamics model (6) was adopted in the book [29] to pose and solve
informational control problems.

The dynamics of opinions, beliefs, and attitudes of a personality can be described by
analogy; see a survey of the corresponding models of personality psychology in [1,21].

4.2. Models of Consensus

Models of consesus (see [29] and surveys in [23,31]). In this class of models bi = ci =
di = 0, and each agent averages their state with the states or actions of other agents:

Ei

(
rt−1

i , yt−1
−i

)
= ei ∑

j∈N\{i}
eij Êi

(
rt−1

i , yt−1
j

)
yt−1

j .

In other words, the expression (3) takes the form:

rt
i = (1− ei)rt−1

i + ei ∑
j∈N\{i}

eij Êi

(
rt−1

i , yt−1
j

)
yt−1

j , t = 1, 2, . . . , i ∈ N,

where the elements of the matrix
∣∣∣∣eij

∣∣∣∣ (the links between different agents) satisfy the
condition ∑

j∈N\{i}
eij = 1, i ∈ N.

The existence conditions of equilibria can be found in [23,29].
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4.3. Models of Conformity Behavior

Models of conformity behavior (see [9,11] and a survey in [28]). In this class of models,
bi = ci = di = 0, ei = 1 and each agent makes a binary choice between being active or
passive (Ai = {0; 1}). Moreover, his action coincides with his state evolving as follows:

rt
i =


1, ∑

j∈N
eijyt−1

j ≥ ςi,

0, ∑
j∈N

eijyt−1
j < ςi,

, t = 1, 2, . . . , i ∈ N, (6)

where ςi ∈ [0,1] is the agent’s threshold. The agent demonstrates conformity behavior [9,11]:
he begins to act when the weighted share of active agents exceeds his threshold (the weights
are the strengths of links between different agents). Otherwise, the agent remains passive.
The dynamics of conformity behavior (6) were studied in the book [28].

In the models of informational control, consensus, and conformity behavior, the main
emphasis is on the agent’s states: his actions are not considered, or the action is assumed to
coincide with the state.

4.4. Models of Social Influence

Models of social influence (see a meaningful description of social influence effects
and numerous examples in [13,16]). On the one hand, the models of informational control,
consensus, and conformity behavior can undoubtedly be attributed to the models of social
influence. On the other hand, the general model (3) reflects other social influence effects
known in social psychology, including the dependence of beliefs, relationships, and attitudes
on the previous experience of the agent’s activity [20–22].

Similar effects occur under cognitive dissonance: an agent changes his opinions or
beliefs in dissonance with the performed behavior, e.g., with the action he chooses (see
arrow no. 6 in Figure 1). In this case, an adequate model has the form:

rt
i =

(
1− ci Ci

(
rt−1

i , yt−1
i )) rt−1

i + ci Ci

(
rt−1

i , yt−1
i

)
yt−1

i , t = 1, 2, . . . , i ∈ N,

(bi = di = 0, eij = 0). Within this model, the agent changes his state depending on the
actions chosen.

Another example is the hindsight effect (explaining events by the retrospective view, “It
figures”). This effect is the agent’s inclination to perceive events that have already occurred
or facts that have already been established, as obvious and predictable, despite insufficient
initial information to predict them. In this case, an adequate model has the form:

rt
i =

(
1− di Di

(
rt−1

i , zt−1)) rt−1
i + di Di

(
rt−1

i , zt−1
)

zt−1 , t = 1, 2, . . . , i ∈ N,

(bi = ci = 0, eij = 0). Within this model, the agent changes his state depending on the
activity result (see arrow no. 7 in Figure 1).

The two models mentioned were considered in detail in [2].

5. Model of Voting

Consider a decision-making procedure by simple majority voting. Assume that the
agents report their true opinions (actions) yt

i ∈ {0; 1}: they either support a decision (yt
i = 1)

or not (yt
i = 0). (Truth-telling means no strategic behavior.) The decision (the result of

collective activity) is accepted (zt = 1) if at least half of the agents voted for it; otherwise,

the decision is rejected (zt = 0): zt = I

(
∑

j∈N
yt

j ≥
n
2

)
, where I(·) denotes the indicator

function. Examples are: election of some candidate or authority, support of resources or
costs allocation variant, etc.
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Agent i has a type (opinion or belief) rt
i ∈ [0,1] reflecting his inclination to sup-

port the decision. Assume that the agent chooses his action depending on his type:
yt

i = I
(

rt−1
i ≥ 1

2

)
, i ∈ N.

Let the dynamics of the agent’s type be described by the procedure:

rt
i = [1 − bi − ci − di] rt−1

i + bi ut
i + ci yt−1

i + di zt−1, t = 1, 2, . . . , i ∈ N, (7)

where ut
i ∈ [0, 1] is the control (i.e., informational influence via mass media, social media,

or personal communication), and the nonnegative constant degrees of trust (bi, ci, di) satisfy
the constraints:

bi + ci + di ≤ 1, i ∈ N. (8)

(Also, see the expression (3)).
Due to relations (8), the state of the dynamic system (7) stays within the admissible

set [0,1]n.
According to the expression (7), the type rt

i of agent i in period t is a linear combination
of the following parameters:

i. his type (opinion) rt−1
i in the previous period (t − 1) (the value (1 − bi − ci − di)

reflects the strength of the agent’s beliefs);
ii. the external impact (control) ut

i applied to him in period t;
iii. his action yt−1

i in the previous period (t − 1) (a change in the agent’s type due to
mismatch with the action chosen can be treated as the cognitive dissonance effect);

iv. the activity result zt−1 in the previous period (t − 1) (a change in the agent’s type
due to mismatch with the collective decision can be treated as conformity behavior).

Within this model, an active system is controllable if the action of any agent can be
changed to the opposite in finite time using admissible controls according to (7).

Let {r0
i ∈ [0, 1]} be given initial types of all agents. Consider different modifications of

the model (7), as described in Table 2.

Table 2. Modifications of model (7).

Modification Control Cognitive Dissonance Conformity Behavior

1 − − −
2 + − −
3 − + −
4 − − +

5 + + −
6 + − +

7 − + +

8 + + +

Modification 1 corresponds to no influence on the types of any agents. In these
conditions, the types are static: rt

i = r0
i , t = 1, 2, . . . , i ∈ N.

Modification 2. Here the expression (7) takes the form rt
i = [1− bi] rt−1

i + bi ut
i , t = 1,

2, . . . , i ∈ N.

Proposition 2. In modification 2 with bi > 0, i ∈ N, the system (7) is controllable. For ut
i ∈ {0; 1}

and bi > max
{

1/2−r0
i

1−r0
i

; 1− 1
2r0

i

}
, i ∈ N, the action of any agent can be changed to the opposite in

one period.
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Lower bounds for constants {bi} in propositions 2, 4, 5, and 6 characterize minimal
“strength” of informational control or minimal trust in the source of the control information
to provide the system’s controllability.

Modification 3. Here the expression (7) takes the form:

rt
i = [1− ci] rt−1

i + ci yt−1
i , t = 1, 2, . . . , i ∈ N.

In this modification, the types of agents vary, but their actions and activity result are
stationary: yt

i = y0
i , zt = z0, t = 1, 2, . . . , i ∈ N. The agents become increasingly convinced

of the correctness of their beliefs and initial action.
Modification 4. Here the expression (7) takes the form:

rt
i = [1− di] rt−1

i + di zt−1, t = 1, 2, . . . , i ∈ N. (9)

In this modification, the types and actions of agents vary, but the activity result is
stationary: zt = z0, t = 1, 2, . . . , i ∈ N. The prior majority of agents do not change their
actions and, affecting those who prefer another alternative, gradually draw the latter to
their side.

Proposition 3. In modification 4 with di > 0, i ∈ N, for any initial conditions {r0
i ∈ [0, 1]} the

system (9) has the unique equilibrium z0.

Modification 5. Here the expression (7) takes the form:

rt
i = [1− bi − ci] rt−1

i + bi ut
i + ci yt−1

i , t = 1, 2, . . . , i ∈ N. (10)

Writing the monotonicity condition for the agent’s type depending on the control goal,
we easily establish the following result.

Proposition 4. In modification 5 with bi > ci, i ∈ N the system (10) is controllable.

Modification 6. Here the expression (7) takes the form:

rt
i = [1 − bi − di] rt−1

i + bi ut
i + di zt−1, t = 1, 2, . . . , i ∈ N. (11)

Writing the monotonicity condition for the agent’s type depending on the control goal,
we easily establish the following result:

Proposition 5. In modification 6 with bi > di, i ∈ N, the system (11) is controllable.

Modification 7. Here there is no control, and the expression (7) takes the form:

rt
i = [1− ci − di] rt−1

i + ci yt−1
i + di zt−1, t = 1, 2, . . . , i ∈ N.

In this modification, the types of agents and, generally speaking, their actions vary,
but the activity result is stationary: zt = z0, t = 1, 2, . . . , i ∈ N. The prior majority of agents
do not change their actions and, affecting those who prefer another alternative, possibly
gradually draw the latter to their side (depending on the relation between the parameters
ci and di).

Modification 8. Here the type dynamics are described by the general expression (7).
Writing the monotonicity condition for the agent’s type depending on the control goal, we
easily establish the following result:

Proposition 6. In modification 8 with bi > 3 (ci + di), i ∈ N, the system (7) is controllable.
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Concluding this subsection, we also mention an interesting modification of the pro-
cedure (7): no control and anti-conformists (the agents choosing actions to obtain a result
different from the majority’s one):

rt
i = [1− ci − di] rt−1

i + ci yt−1
i + di

(
1− zt−1

)
, t = 1, 2, . . . , i ∈ N.

Example. Consider an illustrative example of three agents with the initial types r0
1 = 0.3,

r0
2 = 0.6, and r0

3 = 0.4 Assume that the cognitive dissonance effect is absent (ci = 0, i = 1, 3).
The first agent does not change his type: d1 = 0. The second and third agents are anti-
conformists: d2 = 0.1 and d3 = 0.1. The dynamics of the agents’ types (second and third
agents) and activity result (unstable!) are shown in Figure 2.
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6. Model of Informational Confrontation

Consider three agents: the first and second agents perform informational control
(choose controls as their actions), affecting (due to the informational influence) the type
(internal state—opinion or belief) of the third agent. The common activity result for all
agents is the state of the third agent by a terminal period T.

Let the opinion rt of the third agent in period t be a linear combination of his opinion and
the opinions of the first and second agents in the previous period: rt = [1 − b1 − b2] rt−1 +
b1rt−1

1 + b2rt−1
2 . (All opinions have the range [0, 1).)

Assume that the goals of the first and second agents are opposite (the first one is
interested in turning rt to state “0”, while the second one—to state “1”) and their states are
invariable: rt

1 ≡ 0, rt
2 ≡ 1. Interpretations of agents states are the same as in Section 4 above.

If, in each period, the agents exchanged their opinions (true states), the opinion
dynamics would be rt = [1 − b1 − b2] rt−1 + b2.

The controls of the first and second agents are to inform the third agent about their
opinions in some periods. Therefore, we have:

rt =
[
1− b1 I

(
yt

1 = 1
)
− b2 I

(
yt

2 = 1)] rt−1 + b1 I
(
yt

1 = 1
)
rt−1

1 + b2 I
(
yt

2 = 1
)
rt−1

2 .

The sets of admissible actions have the form yt
i ∈ {0; 1}, i = 1, 2, (such controls are

called binary). Then yt
i = I

(
yt

i = 1), i = 1, 2 . Substituting rt
1 ≡ 0, rt

2 ≡ 1, we arrive at the
following state dynamics of the third agent:

rt =
[
1− b1yt

1 − b2yt
2
]

rt−1 + b2yt
2, t = 1, 2, . . . (12)

where b1 + b2 ≤ 1 and r0 is a given initial state. (Also, see the expressions (3) and (7) above.)
Let the first agent be interested in minimizing the terminal state rT, whereas the second in
maximizing it. Note that the consumption of resources and other costs are not included in
the goal functions.
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In a practical interpretation, the state of the third agent (his opinion, belief, or attitude
towards some issue or phenomenon) is reduced by the first agent and increased by the
second. There is an informational confrontation between the first and second agents,
described by game theory. In the dynamic case considered below, we have a differential
game; static models of informational confrontation and models of repeated games can be
found in [28,29].

According to (12), the combinations, presented in Table 3, are possible in each period.

Table 3. The combinations of each period.

y1 = 0 y2 = 0 ∆rt = 0 (the state of the third agent is invariable)
y1 = 1 y2 = 0 ∆rt = −b1 rt−1 ≤ 0
y1 = 0 y2 = 1 ∆rt = b2(1− rt−1) ≥ 0
y1 = 1 y2 = 1 ∆rt = b2 − (b1 + b2) rt−1

In the latter case, the state of the third agent has a nonnegative increment if b2 ≥ b1
rt−1

1−rt−1 .
A differential counterpart of the difference Equation (12) has the form:

.
r(t) = −[b1y1(t) + b2y2(t)] r(t) + b2y2(t). (13)

Assume that the actions of the first and second agents are subjected to the integral
resource constraints (i.e., resources for customized publications in mass media or posts in
social media, advertising costs, etc.)

T∫
0

yi(t) dt ≤ Ci, i = 1, 2. (14)

First, let us study several special cases.
Case 1 (control applied by the first agent only). Substituting yt

2 ≡ 0 or (and) b2 ≡ 0
into (13), we obtain the differential equation

.
r(t) = −b1 y1(t) r(t). Due to the constraint

(14), the solution r(t) = r0 exp {−b1

t∫
0

y1(τ)dτ} yields the estimate r(T) = r0 exp {−b1C1}

of the terminal state, which is independent of the trajectory y1(t).
Case 2 (control applied by the second agent only). Substituting yt

1 ≡ 0 or (and)
b1 ≡ 0 into (13), we obtain the differential equation

.
r(t) = b2 y2(t) (1 − r(t)) . Due

to the constraint (14), the solution r(t) = 1 − (1 − r0) exp {−b2

t∫
0

y2(τ)dτ} yields the

estimate r(T) = 1−
(
1− r0) exp {−b2C2} of the terminal state, which is independent of

the trajectory y2(t).
Case 3 (unlimited resources, both agents choose the actions yt

1 ≡ 1,yt
2 ≡ 1 in all

periods). In this case, Equation (13) takes the form:

.
r(t) = −[b1 + b2] r(t) + b2. (15)

The solution is given by:

r(t) =
b2

b1 + b2
−
(

b2

b1 + b2
− r0

)
e−(b1+b2)t. (16)

The characteristic time is τ0 ∼ 3
b1+b2

, and the asymptotic value is r∞ = b2
b1+b2

.

Now, we return to the general case (13). Let ci(t) =
t∫

0
yi(τ)dτ ∈ [0; t], ci(T) ≤ Ci,

i = 1, 2, denote the resource consumption of agent i by a period t, representing a nonde-
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creasing function of time. The choice of these functions by the first and second agents can
be treated as their strategies.

The solution of Equation (13) is given by:

r(c1(·), c2(·), t) =
r0 + b2

t∫
0

y2(τ) exp{b1c1(τ) + b2c2(τ)}dτ

exp{b1c1(t) + b2c2(t)}
. (17)

Consider the differential zero-sum two-person (antagonistic) game in normal
form [32,33] of the first two agents. At the initial time instant of this game, the first and
second agents choose their open-loop strategies y1(t)|Tt=0 and y2(t)|Tt=0, respectively, once,
simultaneously, and independently of one another.

Further analysis will be restricted to the class of strategies with a single switch. In
this class, at the initial time instant, the first and second agents simultaneously and inde-
pendently choose some instants t1 and t2, respectively, when they start consuming their
resource (apply controls) until complete exhaustion. Therefore, the open-loop strategies
have the form:

yi(ti, Ci, t) =


0, t < ti;

1, t ∈ [ti, ti + Ci];
0, t > ti + Ci.

(18)

The functional (17) monotonically decreases in c1(·) and increases in c2(·). Hence,
the first and second agents benefit from consuming the entire resource, and consequently,
t1 ≤ T − C1 and t2 ≤ T − C2.

There are four possible relations among the parameters C1, C2, and T.
The first relation: T ≤ min{C1; C2} (both agents have enough resources).
Here the Nash equilibrium strategies are: ∀t ∈ [0, T] yt

i ≡ 1, i = 1, 2, due to the
monotonicity mentioned above.

The second and third relations: for some i = 1, 2, Ci ≥ Ti and C3−i < Ti.
Here, for agent i, the optimal strategy is: ∀t ∈ [0, T] yt

i ≡ 1. For agent (3 − i), the
optimal switching instant t3−i is the solution of a scalar optimization problem. The case
t3−i = T − C3−i is of practical interest. Note that the binary control is optimal under the
constraints yt

i ∈ [0, 1], i = 1, 2, due to the linearity of (13) in the controls.
The fourth relation: T > max{C1; C2} (both agents lack resources).
Here the agents play a complete game. If τ0 � min{C1; C2}, then the equilibrium of

this game is t∗1 = T− C1, t∗2 = T− C2. Therefore, both agents start spending resources as
late as possible, and the terminal value is r(T) ≈ r∞. The same pair of strategies will be an
equilibrium for T � C1 + C2 (when the quantities of resources are such that the controls
are short-term on the scale of the period T). Practical interpretation is “save all reserves
until the last decisive moment”.

Hence, the results of this section give optimal strategies of the first two agents and
characterize the equilibrium of their informational confrontation.

7. Conclusions

The main result is a general model (1)–(3) of joint dynamics of agents’ actions and
internal states, depending as on previous actions and states, as on the environment and the
results of activity (see Figure 1). It allows combining methods and approaches of various
decision-making paradigms, game theory, and social psychology to external and internal
aspects of collective strategic decision-making.

Many known models and results of the above-mentioned scientific domains—reflecting
the effects of consensus, threshold behavior, cognitive dissonance, informational influence,
control, and confrontation—turn out to be the particular cases of the general model.

Three main directions seem prospective for future researches. First, the analysis
of the general models in order to explore maximally general but analytical conditions
for equilibrium existence, uniqueness, and its comparative statics. Second, generating
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new particular/applied models of collective activity and organizational behavior and
management, taking into account not only “economical” rationality but psychological
aspects as well. The third direction is the field of model identification and verification to
put them closer to reality and practical applications.
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