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Introduction 

 

Iterative learning, as learning in strictly repeating conditions, is one of 

the simplest types of learning, which takes place in a wide class of phe-

nomena: the formation of diverse skills, the assimilation of information by 

humans, the teaching of animals (the development of conditioned reflexes), 

and the training of technical and cybernetic systems. Various aspects of 

iterative learning are studied in pedagogy, psychology and physiology of 

humans and animals, in control theory and in other sciences. 

The present work is devoted to the description of mathematical mod-

els of iterative learning and pursues the following goals: 

- firstly, to give a fairly complete, although certainly not exhaustive, 

analytical review of the currently existing models of iterative learning 

proposed by different authors in different years (more than thirty of such 

models are considered below), including the author of this paper. 

- secondly, on the basis of the analysis of the described models, try to 

identify and explain the most important general laws and mechanisms of 

iterative learning, as well as to determine the possibilities of mathematical 

modeling as a method of studying iterative learning. 
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1. Problems of iterative learning modelling 

 

The present work is devoted to the description and study of mathemat-

ical models of iterative learning. Therefore, first of all, it is necessary to 

determine what is meant by ―model‖ and ―iterative learning‖. 

We will use the term ―model‖ in its broadest sense as ―an analogue of 

a certain fragment of natural or social reality, ... a deputy of the original in 

cognition and practice‖, a mathematical (abstract) model - ―interpretation 

of systems of logical and mathematical positions‖ (M.: Soviet Encyclope-

dia, 1983. p. 382). 

Learning in the general case is ―the process and result of the acquisi-

tion of individual experience‖ (Brief Psychological Dictionary, Moscow: 

1985. p. 201). 

We will consider in detail only one of the types of science, namely it-

erative learning (iterative from lat. Iterativus - repeated) - sequential repe-

tition by the system (living or non-living - technical or cybernetic) of 

actions, tests, attempts, etc. to achieve a fixed goal under constant external 

conditions. Iterative learning (IL) underlies the formation of human skills, 

conditioned reflexes in animals, the training of many technical (material-

ized) and cybernetic (abstract-logical) systems and is the subject of re-

search in educational and engineering psychology, psychophysiology, 

pedagogy, control theory, etc. IL refers to relatively simple types of learn-

ing and its study expands the understanding of the mechanisms of learning 

in general. 

The constancy of external conditions allows for a quantitative descrip-

tion of IL in the form of graphs - learning curves (LC), which are a de-

pendence of the learning level criterion on time or on the number of repeti-

tions (iterations). 

Numerous experimental data indicate that the most important general 

pattern of iterative learning in living systems (humans, groups of people, 

animals) and inanimate systems (pattern recognition systems, probabilistic 

automata with variable structure, neural networks, etc.) is the slow-

asymptotic nature of learning curves: they are monotonous, the rate of 

change of the learning level criterion decreases with time, and the curve 

itself asymptotically tends to a certain limit. In most cases, iterative learn-

ing curves are approximated by exponential curves (see Section 2 for more 

details). 
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We will be interested mainly in the following question - what is the 

reason for the general regularity for iteratively learned systems of the most 

diverse nature, which consists in the slow-asymptotic nature of LC? 

There are various approaches to obtaining an answer to this question: 

the study of experimental data (phenomenological description); analysis of 

the psychophysiological or technical characteristics of the trained systems, 

their structure, the principles of interaction of their constituent elements; 

creation and research of mathematical, simulation, and other models of IL, 

etc. We will try to consider the general laws of IL by examining its models. 

Thus, the object of study in this work is iterative learning, and the sub-

ject of the study are its quantitative laws common to systems of animate 

and inanimate nature, and the main method of research is mathematical 

modeling. The aim of the work is a theoretical justification and explanation 

of the general laws of IL and, accordingly, tasks are: analysis of the known 

and the construction of a number of new mathematical models of iterative 

learning; establishing the adequacy of models to real systems; considera-

tion of the possibility of explaining the known and predicting new proper-

ties of iteratively taught systems and the process of IL through modeling. 

There are two methods of constructing models in general, and, accord-

ingly, they can be used to build models of iterative learning - direct and 

reverse. 

When using the direct method, certain assumptions are made about the 

functions, composition and structure of the learning system and the mecha-

nisms of interaction of its constituent elements. Further, on the basis of the 

assumptions introduced and the laws ―incorporated‖ in the model, the 

model behavior is investigated and the correspondence of the model behav-

ior to the modeled system is analyzed. The explanatory and prognostic 

properties of the model are determined by the generality of the hypotheses 

used in its creation. It is clear that, despite the identical behavior of the 

model and the simulated system, the laws of interaction of their elements, 

and their structure, may have nothing in common. Nevertheless, if the 

hypothesis that the model is "arranged" in the same way as the training 

system is justified, then the analysis of the model allows one to transfer a 

number of results and recommendations on the organization of its more 

expedient functioning to the simulated system itself. For example, some-

times recommendations on the possibilities of increasing the effectiveness 

of learning in the framework of a particular model can be used to select the 

optimal organization of the real educational process (reducing the time 
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spent on training, reducing costs, increasing the productivity of the actions 

of the learning system, etc.). 

The second, inverse method of constructing models is to search for 

those initial assumptions and assumptions that lead to the required proper-

ties of the model. For example, if the trajectory of the motion of a system 

and its structure are known, then sometimes, in accordance with the inverse 

method, one can find the class of laws of interaction of elements of the 

system with each other and with the environment, leading to the observed 

behavior. In this case, the "internal device" of the model can be very differ-

ent from the "device" of the simulated system. For example, if various 

assumptions about the laws of interaction lead to the same result, then, 

without additional information, it is impossible to unequivocally say which 

of the equivalent models correspond to a real system. 

The division into direct and inverse methods for constructing models 

is rather arbitrary - most of the currently known models of IL use to some 

extent both of these approaches. The process of constructing a model 

(mathematical, simulation, etc.) is, as a rule, iterative in nature. First, the 

researcher makes assumptions about the structure of the model and the 

laws of interaction of elements, consistent with the available information 

about the simulated system (using the direct method). Then, the model’s 

behavior is compared with the original’s behavior and, based on this com-

parison, changes are made to the accepted hypotheses and assumptions, 

assumptions are ―minimized‖ (using the inverse method), after which the 

model’s behavior is again examined, etc. Conventionally, we can assume 

that the successful use of the direct method leads to the finding of suffi-

cient conditions (one degree or another of generality) of adequacy. The 

purpose of the inverse method is to search for the necessary conditions of 

adequacy. Therefore, it should be recognized that the inverse method is 

more constructive; since the model constructed using it allows one to draw 

more reasonable conclusions about the internal structure, mechanisms and 

processes in real simulated systems. At the same time, it is clear that in 

doing so the researcher will undoubtedly encounter great difficulties. 

From the above it follows that it is possible to build many direct mod-

els of the same real system or process. However, it is very rarely possible 

to create a model that is adequate to the original not only in behavior, but 

also in structure, functioning mechanisms, etc. Those rare cases in which 

the structure and properties of the model can be unambiguously (necessari-

ly) derived and identified by information about the simulated system 
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should be recognized as successful exceptions to the general pattern. When 

modeling most complex (especially biological and socio-economic) sys-

tems, including when modeling iterative learning, we should talk about a 

harmonious combination of direct and inverse methods. 

Here is one of the current views on the possibility of creating a general 

model of iterative learning (E. Guthrie): ―For many years, researchers have 

been inspired by the hope of opening the learning curve. There is a general 

agreement that the curve changes more quickly after the start of the exer-

cise, as the exercise continues this speed gradually decreases until the 

physiological limit set by the nature of the learner is reached ... . Of course, 

there is no ideal standard learning curve or forgetting curve from previous 

experience in practicing action components and already formed skills ... In 

other words, there is no general learning curve. " [30, p. 179]. 

The above view of E. Guthrie is perhaps too pessimistic. It all depends 

on what is meant by the "generality" of the model. If the ―general‖ model is 

a universal model explaining and generalizing all known models and a 

priori able to explain all the possible effects that are still unknown today 

that are observed during iterative learning, and adequate at any level of 

detail to consider an arbitrary system, then perhaps the possibility of creat-

ing such Models today seem problematic. 

At present, a large number of studies are known that explain, under 

certain assumptions and assumptions, the regularities of IL for specific 

systems (it is interesting to note that over the past few decades there has 

been a decline in the intensity of studies of general models of iterative 

learning; therefore, it is not surprising that most of the works cited below in 

the list of literature relate to 60-70 years - the period of rapid development 

of cybernetics). However, from our point of view, most of the existing 

models do not have sufficient generality. Therefore, it makes sense to talk 

about creating the most general IN model (or a complex of such models), 

using the minimum assumptions and assumptions about the structure of the 

learning system, the properties of its constituent elements and the nature of 

their interaction, as well as highlighting those general assumptions, hy-

potheses, and so on, which are used in the well-known and should be used 

in any mathematical models of IL. 

The wildlife systems of interest to us are large and complex, both in 

terms of the number of elements making up them and in terms of the varie-

ty of connections between them [7, 11, 35, 77, 78]. In technical systems 

and models of living systems, a researcher can artificially limit complexity 
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by making the system amenable to analysis. For example, at the moment, 

the properties of only individual elements of these living systems — neu-

rons, synergies, etc., can be approximately described, their characteristics 

are measured with varying degrees of detail, and the relationships between 

them are described. However, sadly enough, a sufficiently complete answer 

to the question has not yet been received: how the brain functions, and how 

the properties of individual neurons lead to those properties of their groups, 

individual subsystems and the brain as a whole, which we observe. 

The limited modern scientific knowledge in understanding the mecha-

nisms of functioning of biological and social systems complicates the task 

of modeling iterative learning even more - if we do not have a clear idea of 

the properties of a real system, then it is unclear what is meant by the 

adequacy of the model and system at the level of "internal structure". This 

is probably why most of the IL models are phenomenological in nature, 

describing the aggregated dynamics of the effective characteristics of 

learning, but not ―looking inside‖ the simulated system. 

We will try to formulate, in general terms, what kind of conclusion we 

would like to receive in this paper. One can hardly hope that for iteratively 

learned systems it will be possible (someday) to obtain a universal law at 

the level of the basic laws of nature or to prove an appropriate general 

formal result, since for this it is necessary to introduce a system of axi-

oms - postulates, the obviousness of which may turn out to be (and It turns 

out in existing models) far from indisputable. Therefore, it is desirable to 

formulate and justify a pattern that, firstly, explains the experimentally 

observed behavior of iteratively learned systems, and, secondly, would 

have the greatest possible generality (i.e., would be applicable to the widest 

possible class of learned systems and would require the introduction of 

minimal assumptions and assumptions). 

Note that most of the known and used principles and laws of the func-

tioning of biosystems are precisely the nature of laws or hypotheses. To 

illustrate this statement, without pretending to be a complete description, 

we briefly list some well-known principles of the functioning of biological 

systems. 

1. The principle of least action. When some change occurs in nature, 

the amount of action required for this change is the smallest possible [4]. 

2. Law of sustainable imbalance. All living and only living systems 

are never in equilibrium and, due to free energy, perform constant work 
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against the equilibrium required by the laws of physics and chemistry 

under appropriate external conditions [10]. 

3. The principle of the simplest construction. That particular struc-

ture or construction of a living system that we really find in nature is the 

simplest possible structure or structure capable of performing a given 

function or structure of functions [59]. 

4. The principle of feedback [78] (see also the principle of the func-

tional system of P.K. Anokhin [2, 3]). Here it is appropriate to mention the 

principle of anticipatory reflection of reality - a complex adaptive system 

does not respond to external influences as a whole, but according to the 

"first link of a repeated series of external influences many times". A neces-

sary condition for such anticipatory reflection is the consistency and re-

peatability of external phenomena (in the case of iterative learning - the 

constancy of external conditions and learning objectives) [3, 45]. 

5. The principle of least interaction. Nerve centers strive to achieve 

a situation in which afferentation (from the Latin afferentis - bringing, that 

is, information and control flows and signals transmitted in the central 

nervous system) is the smallest. Or, in other words, the system expediently 

works in some external environment, if it seeks to minimize interaction 

with the environment [73]. 

6. The principle of the probabilistic functioning of the brain. Each 

of the neurons does not have an independent function, that is, a priori is not 

responsible for solving a specific problem, the distribution of which occurs 

in a rather random way [4, 36]. 

7. The principle of hierarchical organization, in particular, infor-

mation processing by the brain. Achieving the full goal is tantamount to 

achieving a set of subgoals [1, 6, 12, 76]. "... in each complex system, 

control and working floors can be distinguished" [1, p. 81]. 

8. The principle of adequacy. The complexity of the control system 

(the dynamics of its changes) should be adequate to the complexity (rate of 

change) of the controlled processes. In other words, the ―throughput‖ of the 

regulator sets the absolute control limit, however great the possibilities of 

the controlled system [7]. 

9. The principle of probabilistic forecasting when constructing the 

actions. The world is reflected in the form of two models - the model of the 

required future (probabilistic forecasting based on previous experience) 

and the accomplished-model (unambiguously reflects the observed reality) 

[12, 45]. This approach is fully consistent with the following definition of 
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learning: "Learning a system is that, in accordance with previous successes 

and failures (experience), it improves the internal model of the outside 

world" [66, p. 228]. 

10. The principle of selection of the necessary degrees of freedom. 

At the beginning of training, a greater number of degrees of freedom of the 

learning system is involved than is necessary to achieve the learning objec-

tives [12]. In the learning process, the number of "participating" variables 

decreases - non-essential variables are "disabled". 

11. The principle determinism destruction. In order to achieve a 

qualitatively new state and increase the level of organization of the system, 

it is necessary to destroy (rebuild) the existing, determined in previous 

experience, deterministic structure of the connections of system elements 

[5, 24]. 

12. The principle of necessary diversity. This principle is quite close 

in meaning to the principle of adequacy: to solve the problem facing it, the 

system must have the corresponding diversity (states, functions, capabili-

ties, etc.), that is, the system must be adequate to the task in the sense of 

diversity (complexity) [7]. 

13. The principle of natural selection. In systems that have become 

effective as a result of natural selection, the diversity of mechanisms and 

the throughput of data transmission channels will not significantly exceed 

the minimum value required for this [6]. 

14. The principle of deterministic representation. When modeling 

decisions by an individual, it is assumed that his ideas about reality do not 

contain random variables and uncertain factors (the consequences of deci-

sions depend on strictly defined rules) [37]. 

15. The principle of complementarity (incompatibility) (N. Bohr, 

L. Zadeh). High accuracy of the description of a certain system is incom-

patible with its great complexity. Sometimes this principle is understood 

more simply -- the real complexity of the system and the accuracy of its 

description in the analysis are inversely proportional to a first approxima-

tion. 

16. The principle of monotonicity ("do not miss what has been 

achieved"). In the processes of learning, self-organization, adaptation, etc. 

the system, on average, does not move away from the already achieved 

(current) positive result (equilibrium position, learning goals, etc.) [7]. 

At first glance, the above principles of the functioning of biosystems 

can be conditionally divided by approaches into natural-scientific ap-
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proaches: 1, 2, 5, 8, 15; empirical approaches: 4, 6, 10, 11, 14, 16 and 

intuitive approaches: 3, 7, 9, 12, 13. Physical approaches ("laws") reflect 

the general laws, limitations, and possibilities of biosystems imposed by 

the laws of nature. Empirical principles are usually formulated on the basis 

of the analysis of experimental data, the results of experiments and obser-

vations, and are more local in nature than natural sciences. Finally, intui-

tive laws and principles (which in theory should not contradict the natural 

sciences to be consistent with the empirical ones) are the least formal and 

universal in nature, based on intuitive ideas and common sense. 

In fact, a closer examination reveals that all the above ―natural sci-

ence‖ principles are more empirical and / or intuitive. For example, the 

principle of least action, which would seem to be a classical physical law, 

is formulated for mechanical systems (there are analogues in optics and 

other branches of physics). Its unadapted use in the study of biological 

systems, generally speaking, is not entirely correct and justified. That is, 

the assertion that biosystems satisfy the principle of least action is just a 

hypothesis introduced by researchers and not supported today by correct 

justifications. 

Thus, the well-known principles (and laws) of the functioning of bio-

systems fit into one of the following formulations: regularity - "if the 

system has some (specific) internal structure, then it behaves in an appro-

priate (certain) way" or: hypothesis - "if the system behaves in a certain 

(specific) way, then it most likely has a corresponding (defined) internal 

structure." Addition - ―most likely‖ is essential: the first type of statements 

establishes sufficient conditions for the implementation of the observed 

behavior (see the description of the direct and inverse methods above) and 

can be partially or completely confirmed experimentally; statements of the 

second type are in the nature of hypotheses - ―necessary‖ conditions (in 

most cases hypothetical and unproven and fulfilling an explanatory func-

tion) superimposed on the structure and properties of the system based on 

its observed behavior. 

Therefore, based on an analysis of the iterative learning models stud-

ied in this work, it is desirable to formulate a regularity of the form: "if the 

system being taught has the following properties ... and functions under the 

following conditions ... then the learning curves will be exponential", and, 

in fact, an explanation of the laws IL is a hypothesis of the form: "if the 

learning curves of some iteratively taught system are exponential, then the 
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system most likely has the following properties ... and functions under the 

following conditions ...". 

So, we see that the above principles of the functioning of biosystems 

are either empirical or intuitive. Accordingly, we can distinguish two areas 

of iterative learning research and two ways of formulating and explaining 

its mechanisms. The first method is the analysis of experimental data. A 

review of the work on the experimental results of studying IL (and there 

are thousands of such works!) Is beyond the scope of this study, although it 

can be argued that in most cases the experimental dependences are approx-

imated by delayed asymptotic curves [8, 16, 20, 22, 23, 29, 30, 33, 47, 48, 

67, 68, 69, 70]. The second approach - the creation and analysis of mod-

els - is discussed below. An analysis of well-known models, as well as the 

synthesis and study of new mathematical models of IL, as will be seen 

from the subsequent discussion, will allow us to generalize approaches to 

modeling iterative learning and explain some patterns of not only IN, but 

also control processes, self-organization and adaptation for a very wide 

class of complex systems. 
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2. Learning curves: quantitative description and qualitative analysis 

 

When studying any system, including a biological one, conducting a 

physical experiment, studying a black box, etc., it is possible to establish 

causal and quantitative relationships between input and output variables 

only if the output signal changes (system response) caused by a change in 

one of the input signals. If two or more input variables have changed 

simultaneously, then in the general case it is impossible to distinguish what 

affect each of the inputs had on the observed change in the output variable. 

There are two aspects of learning. The first aspect is the productive 

one - when learning, the system must achieve the desired result - the quali-

ty of the actions with acceptable costs of time, energy, etc. The second 

aspect is the procedural one: adaptation, adaptation of the system being 

taught to a certain type of action during the exercise, etc. Accordingly, 

distinguish the effective characteristics of iterative learning and character-

istics of adaptation [48]. In this work, we are talking about the effective 

characteristics of learning (adaptation characteristics often have completely 

different dynamics). 

In the case of iterative learning, it can be considered that its output 

characteristics are affected by two input variables - information about the 

value of the output variable and environmental parameters - external condi-

tions. If both values of the input variables were changed at some step, then 

the learning results at this step and at the previous one would be simply 

incomparable - it would not be possible to say why this value of the output 

variable was realized: because the learning system behaved accordingly , 

or because the conditions of its functioning have changed. Therefore, the 

constancy of external conditions is an essential characteristic of IL. For 

comparability of the results of learning at different points in time (using a 

quantitative description), even under constant external conditions, the 

constancy of the goal of learning is also important. 

The criterion of the level of learning is usually taken as the main ef-

fective characteristic of IL. When learning real systems, the following 

characteristics can serve as a criterion for the level of learning [47, 48]: 

- temporary (time taken to complete the action, operation, reaction 

time, time taken to correct the error, etc.); 

- high-speed (labor productivity, reaction rate, movement, etc. - the 

reciprocal of time); 
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- accuracy (error value in terms of physical quantities (millimeters, 

angles, etc.), the number of errors, the probability of error, the probability 

of an exact reaction, action, etc.); 

- informational (the amount of memorized material, processed infor-

mation, the amount of perception, etc.). 

Since the models of iterative learning are mainly considered below, 

for the sake of generality of presentation, we will call the productive char-

acterization of learning of interest to us the mismatch. Indeed, in all of the 

cases listed above, we have either a function of error (mismatch) or a 

characteristic of the ―learnedness‖ of the system, which can be reduced to 

some error function. For example, the execution time of an action can be 

interpreted as a mismatch, if by the latter we mean the difference between 

the current value of the time of the execution of the action and the mini-

mum possible. 

As noted above, iterative learning is typically characterized by slow-

asymptotic learning curves approximated by exponential curves. In gen-

eral, the exponential curve is described by equation 

(2.1) x(t) = x

 + (x

0
 – x


) e 

- t
, t > 0, 

or 

xn = x

 + (x

0
 – x


) e

 -  n
 , n = 0, 1, 2, .. , т, 

where t is the time of learning, n is the number of iterations (tests, at-

tempts) from the moment of learning (it is assumed that learning begins at 

time zero), x(t) (xn) is the value of the mismatch at time t (at the n-th itera-

tions), x
0
 is the initial value of the mismatch (corresponding to the moment 

of the beginning of learning), x

 is the "final" value of the mismatch (the 

value to which the SC asymptotically tends; as a rule, in biological systems 

this quantity is considered as the physiological limit of learning),  is some 

non-negative constant, defining speed changes and LC- learning rate (has 

dimension inverse time or number of iterations). Sketches of the graphs of 

the curves (2.1) are shown in Figures 2.1.a and 2.1.b. 

Depending on the ratio of the initial and final values of the mismatch, 

expression (2.1) describes both increasing and decreasing LC: for x

 > x

0
 

the curve will be increasing, and for x
0
 > x


 – decreasing. The quantitative 

characteristics of learning (x
0
, x


, ) depend on many factors: the complexi-

ty and properties of the learning system, the external environment, the 

teaching methods used, etc. 
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We will be interested mainly in the qualitative type of the LC, there-

fore, in most cases, for simplicity, we will use the following more particu-

lar dependencies: 

(2.2) x(t) = e
 –  t

 

(2.3) x(t) = 1 – e
 –  t

 . 

If we are talking about the magnitude of the error, then in accordance with 

(2.2), the error decreases monotonously. If x is interpreted, for example, as 

a ―level of knowledge,‖ then it, in accordance with (2.3), increases monot-

onously. Obviously, (2.2) and (2.3) can be obtained from the general 

dependence (2.1) using the linear transformation: 

x(2.2) = 








xx

xx
0

)1.2(
, x(2.3) = 





xx

xx
0

)1.2(

0

. 

Therefore, speaking of the learning curve, we will mean a family of 

curves equivalent up to a linear transformation. A characteristic of the 

family is a value that is the same for all LC from the equivalence class 

under consideration, in this case the learning rate will be. Sketches of the 

graphs (2.2) and (2.3) are shown in Figures 2.2.a and 2.2.b, respectively. 

It should be noted that to date, a significant number of different ap-

proaches to the approximation of learning curves and exponential LC of 

the form (2.1) are known, although they are the most common, but not the 

only ones. Without pretending to be a complete description, we list some 

known dependences (see reviews of LC in [36, 38, 47, 50, 57, 64, 75, 79]). 

For the first time, the idea of using inductive reasoning in pedagogy 

and psychology was put forward in 1860 by G. Fechner, who proposed, 
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having collected a sufficiently large number of experimental data, to ap-

proximate them with the most suitable analytical function. Since then, both 

psychology and pedagogy in the quantitative description of phenomena and 

processes in most cases follow this path [79]. 
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t 

Fig 2.2а 
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Normalized ILC (increasing – a, decreasing - b) 

 

The approximation of the ―forgetting curves‖ proposed by 

H. Ebbinghaus (1885 — apparently the first quantitative descriptions of 

LC) was based on an exponential function, although quite different from 

(2.1) [20]. The explanation of this difference is quite simple - a person has 

"short-term" and "long-term" memory, characterized by different times of 

memorization and storage of information. 

Using the assumption that there is an analogy between the learning 

process and a monomolecular chemical reaction (see model 5.2 below) 

leads to an exponential dependence: x(t) =  +  e
 -  t

, where ,  are some 

constants. By analogy with a monomolecular autocatalytic reaction or by 

using analogies with the chemical law of the acting masses [22]: 

x(t) =  e
  t

 / ( + e
  t

). 

Thurstone L., on the basis of a generalization of the experimental ma-

terial Lashley K. (training rats to find the path in the maze), proposed to 

approximate the accumulated error (i.e., the total error starting from time 

zero or the first iteration) by the following formula: 

(2.4) x(n) =  n / (b + n), 

where n – number of exercises, ,  are some positive constants [68]. 
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Предложенное H. Gulliksen в [29] the empirical LC equation for ac-

cumulated errors in the passage to the limit (a sufficiently low learning 

speed and reinforcement force) goes over into (2.1), i.e., the LC is approx-

imated by the exponent. 

The averaged LC obtained by R. Atkinson and colleagues [8] in ac-

cordance with the theory of stimulus selection is close to exponential 

function. 

It should be noted that in many works it was pointed out that it is nec-

essary to study the learning curves averaged (over the subjects — their 

group, or over time), since individual SCs have, as a rule, a significant 

spread ("... smooth LCs are the result of the averaging process .. . " 

[22, p. 392]) [30, 34]. 

In [60], to describe the quantitative relationship of factors of rein-

forcement, non-reinforcement, and conditioned reaction in experiments on 

the formation of conditioned reflexes, a formula of the form (2.4) was 

proposed (for the dependence of the level of formation of a conditioned 

reflex on the number of reinforcements of a conditioned stimulus). 

Various researchers used exponential functions, hyperbolas, parabolas, 

etc. [57] to approximate the experimental learning curves by various re-

searchers. LC differed with increasing, decreasing, and constant growth 

[23]. Postponing the discussion of the diversity of approaches, we note that 

when comparing various IL descriptions, it is necessary, first of all, to pay 

attention to whether this learning is iterative, what indicators are analyzed 

as characteristics of the learning's effectiveness and in what scale these 

indicators are measured. 

Since iterative learning is one of the special cases of learning, then, in 

addition to exponential curves corresponding to iterative learning, there are 

other types of LC, including logistic LC. 

Logistic learning curves are approximated by dependency 

(2.5) x(t) = x
0
 x


 / (x

0
+ (x


 – x

0
) e

 -  t
), 

and depending on the ratio of the initial and final values, the mismatches 

can be either increasing or decreasing [67]. A sketch of the graph of a 

normalized increasing logistic curve is shown in Figure 2.3. 
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Fig. 2.3. Logistic LC 

 

With relatively complex types of learning, the LC can have a plateau, 

the presence of which is explained by the hidden search by the learning 

system for new ways to improve the ways of performing actions, preparing 

for the transition to a qualitatively new way of mastering the activity, for a 

new strategy [15, 30]. In figure 2.4. a fairly common type of IL with an 

intermediate plateau is given: two successive exponents correspond to the 

development of two different action strategies. 

 
 x(t) 

1
 

0
 

t 

 
 

Fig. 2.4. LC with plateau 

 

Several initial samples can be spent searching for the most appropriate 

tactics of behavior, which leads to the presence of an initial plateau on the 

logistic curve [48]. In complex learning processes, in accordance with [16], 

three stages can be distinguished. The first stage is characterized by the 

selection of a large number of stimuli "significant" stimuli. This stage can 
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be considered as the formation of the initial field of events. The second 

stage is characterized by the development of the correct behavior, deter-

mined by the selected system of events (the iterative learning itself is 

precisely the second stage). The third stage is characterized by a relatively 

stationary level of training. 

And finally, when using dichotomous scales (when some critical level 

of error is arbitrarily set; if during the course of the action the error is less 

than the critical value, then the action is considered to be performed cor-

rectly) or the learning level is chosen as a criterion for time, accuracy the 

execution of the action and the amount of processed information of the 

quantities, that is, when using the divisor transformation (reaction rate, 

labor productivity, etc. - as quantities inverse to time, etc.), my Logistic 

curves can be found. In this case, their appearance is somewhat unnatural 

and can be eliminated by choosing the appropriate scale and units. It can be 

shown that by constructing the inverse for the exponential curve or by 

discretizing the scale, we can obtain the logistic LC [47, 55, 67]. 

Learning curves corresponding to non-productive characteristics of 

learning, including iterative learning, that is, adaptation characteristics, can 

be combinations of exponential and logistic LC, step-like, or any other, 

including nonmonotonic curves. Such LC that characterize the internal 

structure of actions, including, for example, during the formation of vari-

ous skills in humans and animals, can be observed in complex types of 

learning: with a consistent deep restructuring of the structure of the skill, 

organization of phased development of individual components of actions, 

etc. [48]. In the future, we will consider learning curves that correspond 

only to the productive characteristics of iterative learning. 

The regularity of iterative learning (as the simplest type of learning in 

general), consisting in a slow-asymptotic form of learning curves corre-

sponding to the effective characteristics of IL, indicates the presence of 

common learning mechanisms in living objects - humans, groups of peo-

ple, animals and their artificial analogues - technical and cybernetic sys-

tems. Without giving detailed experimental data - they are contained in the 

cited literature, below we will try, analyzing the mathematical models of 

IN, to find out what lies at the basis of these general laws. 
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3. Classification of iterative learning models 

for men, animals and artificial systems 

 

Most models of iterative learning are based on analogies with phe-

nomena and processes occurring in various systems of animate or inani-

mate nature. Therefore, it is natural to put in the basis of classification the 

type of process or phenomenon, the analogy with which is used. 

Figure 3.1 shows the proposed classification system for iterative learn-

ing models. 

 
 

IL models 

Descriptive models Models – analogues 

of cybernetic systems 

Models – analogues of physical 

phenomena and technical systems 
 

 

Fig. 3.1. Classification of IL models 

 

In descriptive models (axiomatic and intuitive), certain assumptions 

are introduced (postulated) about the relationship of variables and system 

parameters, and these assumptions and the model of the learning system, as 

a rule, are quite abstract and do not appeal to real counterparts (in intuitive 

models they are based on intuition and common sense). This class of 

models is considered in Section 4. 

Section 5 is devoted to the description of IL models using analogies 

with the provisions of physical phenomena and the principles of function-

ing of technical systems. Their subclass - information-theoretic models - is 

placed in a separate section due to its specificity and diversity (section 6). 

Models using analogies of cybernetic systems - section 7 and collec-

tive behavior models - section 8 are interesting in that they are artificial, 

rather abstract models, and those systems, by analogy with which they are 

built, are often, in turn, models of some real systems (models - analogies of 

models). 
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Since the analogies used are quite diverse, we will try to present on 

the most generalized level, specifying the meanings of certain terms only 

when it will be necessary to prevent ambiguity in understanding. We give 

the general structure for describing the mathematical model of iterative 

learning. 

Suppose that a learning system (hereinafter referred to simply as a 

―system‖) consists of n, generally interacting, elements (n > 1), each of 

which is described by some scalar parameter xi(t), which depends on time, 

which we will hereinafter arbitrarily call the mismatch of the i-th element. 

The mismatch of the system x(t) somehow depends on the mismatch of its 

constituent elements: 

x(t) = F(x1(t), x2(t), ..., xn(t)). 

This description is common to most models, which are also assump-

tions about the interaction of elements (functions F()). 

The entire presentation of the models below is constructed according 

to the following scheme (some of the stages can be omitted or differ in 

meaningful interpretations of the terms "system", "element", "parameter", 

"mismatch", etc., but combined with others): 

- model description (D) - description language, subject area, factors 

and variables; 

- hypothesis (H) - assumptions about the relationship of variables, in-

teraction mechanisms, etc.; 

- formal (logical, algebraic, etc.) transformations (T); 

- conclusion (C) (the conclusion from the analysis of most of the 

models given below is ―the mismatch is described by a dependence of the 

following form ...‖, and this dependence is, as a rule, exponential); 

- analysis of the model (A) - discussion of the hypothesis, assump-

tions, their validity, the study of factors affecting the speed of learning, etc. 

The speed of learning, in the general case, depends on all the parame-

ters of the model: the number of elements, relationships and the laws of 

their interaction. Knowledge of the type of this dependence seems quite 

important, since the study of the parameters that determine the speed of 

learning is essential for finding ways to increase the effectiveness of learn-

ing and, in the first place, the speed of learning. Indeed, knowing the 

dependence of the learning rate on the parameters of the model, it is possi-

ble to propose measures leading to a corresponding change in these param-

eters, and, therefore, the required change (most often to increase) in the 

learning speed. 
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A description of models that do not belong to the author of this work 

is accompanied by links to relevant sources (see the list of references). In 

such models, the statement, with the exception of stage A — analysis, 

follows the original — the work of the authors of the models. 

It should be recognized that in order to ensure uniformity and sim-

plicity of presentation, the author had to allow a number of ―liberties‖ that 

could cause fair objections from the mathematician reader. So, for exam-

ple, difference and differential equations are sometimes identified and 

statements about "correspondence" between their solutions are given. In 

the latter case, in models with discrete time, by an exponential ―curve‖ we 

mean a sequence of values of the learning level criterion, the elements of 

which constitute a geometric progression. 

The completion of each model description is indicated by "". 
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4. Descriptive models: axiomatics and intuition 

 

By descriptive we will understand models of iterative learning, in 

which there are no obvious analogies with the principles of the design and 

functioning of various systems, and the exponential form of SC is obtained 

as a result of the introduction of sufficiently abstract and unreasonable 

assumptions regarding the laws and rules of interaction of elements of the 

student systems (in axiomatic models sometimes it is directly postulated 

that the learning curve is described by an exponent - expression (2.1)). In 

most cases, in descriptive models, the assumptions introduced are based on 

intuition and appeal to common sense, and conclusions from an analysis of 

the dynamics of LC often underlie higher-level models [79]. 

 

Model 4.1. 

D. Change in system mismatch over time. 

H(C, T). The rate of change of the mismatch is proportional to its cur-

rent value, and the coefficient of proportionality is independent of time: 

(4.1) 
dt

tdx )(
 = –  x(t). 

The conclusion is obvious - the exponent is the solution to this differ-

ential equation - expression (2.1). 

A. A significant part of axiomatic models in one way or another sug-

gests proportionality between the change in the mismatch per unit time and 

its current value. It is clear that with a constant coefficient of proportionali-

ty, such an assumption immediately leads to an exponential type of SC, and 

to increase the learning speed it is necessary to increase the coefficient , 
which in the future will be interpreted in various models as the amount of 

information processed by the trained system per unit time, the communica-

tion channel bandwidth , objectively existing restriction on the rate of 

change of parameters of elements, etc. 

Similar constructions (although with somewhat more artificial initial 

hypotheses) are given in [23]. In the model with discrete time, if: 

xn – xn-1 = –  xn, 

then 

xn = (1 – )
n
 x0, n = 1, 2, … , 
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and the learning rate decreases with increasing  (  (0; 1)). If xn =  xn –

 1, then xn =  n
 x0, n = 1, 2, … , and the learning rate increases with in-

creasing  (  (0; 1)).  

 

Model 4.2. [16, 22, 34]. 

D. Mismatch is the probability of a correct reaction (for example, in 

the famous experiment "rat in a labyrinth") [8, 16]. The dependence of the 

mismatch on the number of repetitions is investigated. If the probability of 

a correct reaction is p (the probability of a wrong reaction is (1 - p), respec-

tively), then it can increase by no more than (1 - p), become equal to one, 

and decrease by no more than p, and become equal to zero. 

H. At each step, the increase in the mismatch is proportional to the 

possible increment, and the decrease is proportional to the possible de-

crease. The difference equation for the probability of a correct reaction has 

the form: 

(4.2) xn = xn-1 + n (1 – xn) – n xn-1, n = 1, 2, … , 

where n, n > 0. 

T(C). Under initial state x0 and constant coefficients  (n = ), and  

(n = ) obtain 

xn = x0 (1 –  – )
n
 +  




n

k

k

0

)1(  . 

The continuous "analog" of this solution has the form 

x(t) = x

 + (x

0
 – x


) e

 – ( + ) t
, 

where x

 =  / ( + ). 

A. Compared with the previous model, a complication is introduced in 

the model considered here - the possibility of both increasing and decreas-

ing the mismatch (cf. (4.1) and (4.2)), although, in fact, the model under 

consideration is a ―probabilistic‖ modification of the model 4.1. The con-

stancy of the coefficients leads to the exponentiality of the solution, and the 

learning rate  =  + , as before, is determined by the magnitude of the 

coefficients  and . 

A significant number of works, especially foreign authors, are devoted 

to statistical models of learning. In most of them, IN is understood precise-

ly as "... a systematic change in the probability of a reaction" [22, p. 395]. 

Here is one of the sets of requirements for statistical models: 

1. "The dynamics of the averaged learning indicator is described by a 

curve having a negative acceleration in its final phase and tending to some 
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constant asymptote" (note that in this section, slow asymptotic behavior is 

required only in the final phase, that is, for example, the presence of an 

initial plateau is allowed - D.N.). 

2. "A smooth average curve is the result of averaging ... and the as-

ymptote of the observed LC represents only the point of statistical equilib-

rium" [22, p. 397]. 

It should be noted that the obtained solution of equation (4.2) is con-

sistent with the results of experiments with many animals (in most cases, 

with rats) [16], people [28, etc.] and stochastic automata [73, 74]. 

The exponential form of the LC is due to the linearity of dependences 

(4.1) and (4.2) and the constancy (stationarity) of the coefficients  and . 

In the following model, this dependence is already taken nonlinear.  

 

Model 4.3. [16]. 

D. The change in the mismatch (for example, the dependence of the 

probability of the correct reaction on the number of repetitions) of the 

system over time. 

H. At each step, the change in the mismatch is proportional to the cur-

rent value of the mismatch and the difference between some final mis-

match  and the current. The mismatch dynamics satisfies the Bernoulli 

differential equation 

(4.3) 
dt

tdx )(
 =  x(t) ( – x(t)), 

where  and  are some contants. 

T(C). At the starting point x, the solution is the logistic curve: 

x(t) =  x
0
 / (x

0
 + ( – x

0
) e

 -   t
). 

A. The presence of a ―braking add-on‖ in (4.3) in comparison with 

(4.1) and (4.2) leads to the fact that the LC is not exponential, but logistic 

— an inflection point appears. The learning rate, in contrast to previous 

models, depends not only on the proportionality coefficient between the 

rate of change of the mismatch and the current value of the mismatch, but 

also on the magnitude of the final mismatch.  

 

Model 4.4. [26, 32, 33]. 

D. The classic axiomatic model of iterative learning is the well-known 

system of postulates of C. Hull for the behaviorist model S-R-S (the basis 

of training is the strengthening of stimulus-reaction relationships). 
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H(A, C). The law of skill formation (IV postulate) states that if the re-

inforcements are uniform (the uniformity of samples is an important char-

acteristic of iterative learning) follow one after another, and everything else 

(external conditions and learning objectives) does not change, then as a 

result the strength of the skill x(n) will increase with increasing number of 

tests according to the equality: 

xn = 1 – 10
 - n

. 

А. Note that the curve of forgetting according to the VIII postulate is 

also an exponential curve [33].  

 

Model 4.5. [4, 5]. 

D. A ―generalized training model" (for example, training a human op-

erator). The variable x is the probability that the trained system has formed 

an adequate model of the external environment. 

H. From an analog of the principle of least action (see also the models 

in Section) it follows that the change in probability satisfies the differential 

equation [5]: 

(4.4) 
dt

tdx )(
 +  x(t) = . 

Note that sometimes equations of type (4.4) are called the "law of re-

inforcement of the statistical theory of learning." In [21] this law is written 

as 

xn = xn-1 +  (1– xn-1), 
which corresponds to  =  (or (4.2) with  = 0; if x

0
 = 0, then x


 = 1 [4]). 

T(C, A) – see model 4.2.  

 

Many researchers initially postulate a slow-asymptotic type of SC and 

use it in the future for quantitative analysis, development of various rec-

ommendations, etc. [43 et al.]. 

In almost all models of this section, it is assumed that the mismatch of 

the system satisfies the linear differential equation with constant coeffi-

cients. Moreover, the linearity and stationarity of the coefficients are suffi-

cient (but not necessary) conditions for the exponentiality of the solution. 
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5. Models - analogies of physical phenomena and technical systems 

 

The iterative learning models discussed in this section, proposed by 

various authors, are based on analogies of physical phenomena and the 

principles of functioning of technical systems. Many of the analogies used 

are rather arbitrary and the adequacy of assumptions to the valid patterns 

that occur in biosystems can cause justifiable objections. 

 

Model 5.1. [18]. 

D. In some models of the nervous system, the brain is considered as a 

technical system for pattern recognition, the parameters of which depend 

on the electrical characteristics of nerve fibers. 

H. The neuron process is a long RC-chain (RC-line consisting of a ca-

pacitor and a resistor). 

T. If Uin is the voltage at the input of the RC-circuit, Uout(t) is the volt-

age at the output, then the connection between them, by virtue of Kirch-

hoff's laws, is described by the differential equation: 

C 
dt

tdUout )(  = 
R

tUU outin )(
, 

where C is the capacitance of the capacitor, and R is the resistance value. 

C. The output voltage varies exponentially. Since the temporal charac-

teristics of the processes of signal transmission and propagation in the 

nervous system are determined by exponential transfer functions with a 

characteristic time  = R C, so  = 1 /  will determine the rate of transi-

tional (adaptive) processes in the system, that is, be described by an expo-

nential dependence. 

A. The difference in the amplitude of the signal (stimulus) in the con-

sidered model is described by a law that practically coincides with the 

Weber-Fechner law. The output voltage of the circuit - the main character-

istic of the model - satisfies the linear differential equation (see the fourth 

section).  

 

Model 5.2. 

D(H). By analogy with the mechanisms of radioactive decay in phys-

ics, suppose that the mismatch of the learning system is determined by the 

mismatch of elements, each of which may have either some initial mis-

match or some final mismatch. The system mismatch is a function of the 

number of elements having nonzero mismatch, and the decrease in mis-



 29 

match occurring for each element in steps is a probabilistic process charac-

terized by a constant (independent of time and number of elements) proba-

bility  "zeroing" of the element mismatch per unit time. 

F. The number of elements N(t) with nonzero mismatch at time t satis-

fies the equation N(t + t) = N(t) –  N(t) t. 

Passing to the limit in t, we obtain the differential equation 

(5.1) 
dt

tdN )(
 = –  N(t). 

C. Solution of equation (5.1) is 

(5.2) N(t) = N0 e
 -  t

, 

where N0 – the number of elements in the system (at time zero, all elements 

had a maximum (initial) mismatch). 

A. The constant , characterizing the half-life, characterizes the speed 

of learning. The greater the probability of reducing the mismatch of an 

element per unit time, the higher the learning rate. 

Note that the assumption of the sameness for all elements and the sta-

tionarity of the probability of "decay" is significant. 

It is also important that the above equation for N(t) is satisfied not on-

ly by the mechanisms of radioactive decay, but also by the processes of 

bacterial growth, pharmacokinetic processes, most kinetic schemes of 

chemical reactions (including the law of acting masses), etc. from time to 

time, the macroscopic characteristics in all these cases turn out to be expo-

nential simply because the behavior of any element is probabilistic, and the 

statistical characteristics of the processes (decay, growth, etc.) are inde-

pendent of time and the history of the system. This statement of stationari-

ty, which underlies the description and explanation of the mentioned class 

of processes, is an assumption consistent with experimental data.  

 

Model 5.3. 

D. Each element of the learning system has its own regulator, striving 

to reduce its mismatch. The mismatch of the system as a whole is a mono-

tonic function of the mismatch of elements. 

H. Each regulator is characterized by a constant relative error in (to 

require the constancy of absolute error seems illogical, since the regulator 

must be universal [7]). At the n-th step, the controller randomly transfers 

the element from the state xn-1 to the state xn uniformly distributed in the 

 = (xn-1)-neighborhood of zero mismatch. 
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T(C, A). With a sufficiently large n, the learning curve - the average 

mismatch of the elements - is a decreasing exponential function. The type 

of LC is due to the constancy of the relative error of the regulator and the 

assumption of probability distributions (compare with the change in infor-

mation when measuring values with an error [14]).  

 

Model 5.4. 

D(H, T, C). The training system is a set of first-order controllers (that 

is, first-order aperiodic units that control the magnitude of the variable and 

its rate of change), similar to those used in automatic control. Transfer 

function (response to pulsed input) of each element is 

h(t) = 1 – exp (– i t). 

A. It is interesting to note that the second-order aperiodic link (which 

controls the value of the variable and its first two derivatives), which can 

be considered as a serial connection of two first-order aperiodic links, has a 

logistic transfer function. Within the framework of this model, logistic 

learning curves can be considered as the LC of a hierarchical system con-

sisting of two subsystems, the results of iterative learning of each of which 

is described by an exponential curve.  

 

Model 5.5. [4]. 

В. The probabilities of finding the system in certain states are investi-

gated. Let the learning system have two possible structural states s1 and s2. 

We denote the probabilities of finding the system in these states 

p = Prob {s1} and q = Prob {s2}; q = 1 – p; p’ = 
dt

tdp )(
. 

H. By analogy with mechanical systems, we assume that the system is 

described by two functions of time, one of which we will arbitrarily call the 

level of organization ("potential") of the system: 

(5.3) V(t) =  p
2
(t), 

and the second - the "kinetic energy" of the system: 

(5.4) T(t) = dp
2

)'( . 

We note that V(t) and T(t) correspond to the potential and kinetic en-

ergy of a mechanical system whose phase variable is p(t). The function 

K = T - V is the "total energy of the system." Next, we introduce the fol-

lowing assumption: ―In order for the dynamic process of changing the level 

of organization of the system, due to internal causes or actions of the 
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environment, to be optimal, it should apparently obey a principle similar to 

the principle of least action‖ [4]. 

T. Substituting (5.3) and (5.4) into the Lagrange equation and solving 

it, we obtain 

(5.5) p(t) = 1 – e
 -  t

, 

где 

(5.6)  =  / . 

C. "The optimality of living systems lies in the exponential laws of 

probability change ..." [4]. 

A. It should be recognized that today the model described above is one 

of the most elegant and beautiful (if these terms can refer to mathematical 

models). 

Without diminishing the merits of the model and its significance, we 

will try to restore the course of reasoning of its author. 

First, it is known from experiments that the probabilities in the process 

of IL change in most cases according to an exponential law. Secondly, 

there must be general laws for the functioning of living systems. Since the 

principle of least action has sufficient generality (at least for mechanical 

systems), we transfer it to living systems. 

And then everything is quite simple - we write the corresponding 

equations and investigate what the structure of the ―potential‖ and ―kinetic 

energy‖ should be so that the solution satisfies (5.5). It turns out that the 

only construction leading to the desired result is (5.3) and (5.4). It should 

be noted, however, that the choice of the initial conditions and (5.3)-(5.4) is 

not trivial. Moreover, meaningful interpretations of (5.6) as learning speeds 

are also difficult. 

This model demonstrates very well the simultaneous application of 

both the direct method of constructing IL models (when assumptions are 

introduced and conclusions are drawn from them that coincide with the 

experimental data) and the converse (in which those assumptions and 

hypotheses about the functioning mechanisms of the system under study 

that lead to the desired result are sought )  

 

Thus, the above iterative learning models, constructed by analogy with 

the principles and laws of the functioning of physical and technical sys-

tems, use the "generalization" of a number of physical laws. As a rule, an 

assumption is made that the laws (in most cases, conservation laws) formu-

lated for a certain class of systems of animate and inanimate nature (and 
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valid for describing learning systems at a certain microlevel of considera-

tion) remain valid for a ―macroscopic‖ description of these systems. The 

validity of this assumption in most cases, unfortunately, is not yet support-

ed by experimental confirmation. 
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6. Information theoretical models 

 

A significant part of the iterative learning models described in the lit-

erature is made up of models based on the consideration of information 

processing in trained systems. What unites these information-theoretical 

models is that, in almost all of them, it is assumed that the capabilities of 

the learning system for the transmission and processing of information (the 

amount of information transmitted, processed, acquired, etc. per unit time) 

are limited [13, 35, 40, 46 and other]. For example: 

"... the average time required to clearly understand the meaning of a 

certain signal and the correct response to it increases in proportion to the 

average information contained in this signal. Based on this, we can assume 

that in the case of fairly regular events that are characterized by a certain 

statistical stability, the message about the occurrence of such an event is 

transmitted through the senses and the central nervous system on average 

over a time proportional to the information contained in this message. ... 

transmission community In a living organism, it happens so that, over the 

same time, the same amount of information is transmitted on average "[80, 

p. 115]. 

A special case of the assumption of the limited possibilities of a per-

son in the processing of information is the well-known Hick law, which 

establishes proportionality (in a certain range) between the amount of 

processed information and the signal uncertainty; when the last certain 

threshold value is exceeded, the amount of processed information remains 

constant. 

There are two types of information - related (initial, a priori infor-

mation embedded in the structure of the system) and free. The learning 

process can be interpreted as follows: "... free information gradually be-

comes connected, there is a process of" learning " - increasing the initial 

organization of the system, increasing the amount of related information" 

[81, p. 15]. Training can also be understood as "... the development of a 

system without increasing the elemental composition, increasing the value 

of information by establishing additional links" [19, p. 193], and modifica-

tion of the structure of goals in most cases causes only quantitative rather 

than qualitative changes [37]. 

The information received at the input of the system or its subsystem 

can be used, in particular, as follows: 

1) direct reaction; 
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2) remembering previous situations in order to select the most suc-

cessful reactions of a direct type; 

3) remembering external influences in order to extrapolate them and 

identify a rational response to extrapolated external influences; 

And, finally, the most common fourth case is the creation of models of 

the outside world and obtaining a forecast based on the functioning of 

models [41]. 

Almost all the iterative learning models discussed in this section are 

based on the above points. 

 

Model 6.1. [4]. 

О. In [24], an approach was proposed to define the concept of the or-

ganization of a system and its complexity [17] through entropy. The corre-

spondence between the complexity and organization of the system and the 

complexity and organization of the environment is established by the 

principle of adequacy. 

Various formulations of the principle of adequacy are known [4]. For 

example, the capabilities (complexity, throughput, etc.) of the control 

system determine the limits of "controllability" of the control object, no 

matter how great its own capabilities are (the inverse relation is extremely 

rare in biology). In other words, ―in order for the system to function suc-

cessfully in the environment, its complexity and organization must be 

adequate to the complexity and organization of the environment‖ [4]. 

In [4], the principle of dynamic adequacy was proposed: "... with a 

change in the complexity and organization of the environment, the biosys-

tem constantly strives to achieve a new level of adequacy in complexity 

and organization with the environment, minimizing the time, cost of matter 

and energy." 

H. In particular, in [4] the following assumption is introduced (which 

in one form or another is used in almost all theoretical information models 

of the IL: change in entropy in the learning system - (the amount of infor-

mation processed received, transmitted etc. by the system) in proportion to 

the change in the entropy of the environment. 

T(C, A). The proportionality coefficient depends on the capabilities of 

the system - the bandwidth of the information transfer channels, the maxi-

mum allowable rate of change of the parameters of the elements, etc., and 

if the proportionality coefficient and the amount of information received 

per unit time are constant (do not depend on time), then the dynamics of 
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the system , obviously, is described by an exponent (see below in more 

detail). If training is considered as a process of obtaining information, then 

in the learning system there is a phased elimination of uncertainty due to 

information coming from the external environment [44].  

 

Model 6.2. [62]. 

D. The process of processing information by a trained system. 

H. Suppose that information flows satisfy the equation 

(6.1) 
dt

dI
 =  

dt

dJ
 +  J, 

where I is the amount of incoming information, J is the amount of absorbed 

information,  and   are constants that characterize the learning system 

and determine the speed of learning. 

Equation (6.1) indicates that the rate of assimilation of information is 

proportional to the rate of receipt of information and decreases (also pro-

portionally) with the growth of information already received. 

Suppose that the amount of information entering a unit of time is con-

stant: 

(6.2) I(t) =  t. 

T(C). The solution of (6.1) within the framework of the assumption 

made has the form 

(6.3) J(t) =  (1 – e
 -  t

) 

where 

(6.4)  =  / ,  =  / . 

А. Assumptions about the constancy (or limitation) of the amount of 

information received or processed by the learning system per unit of time 

are used in almost all information-theoretic models of iterative learning, 

and in most of them they have exactly the form (6.2). In this model, to 

obtain expression (6.3), it was necessary to introduce a rather specific 

hypothesis about the relationship between incoming and assimilated infor-

mation. It is interesting to note that the learning rate determined by the 

constants  and  does not depend on the rate of receipt of information 

 - an external parameter, but is determined only by the parameters of the 

system itself.  

 

Model 6.3. [57]. 

D. Memorization and storage of information in human memory. 
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H. Information flows obey the relation 

(6.5) 
dt

dJ
 = 
dt

dI
 – (J – J


) / T, 

where J is the amount of assimilated information, 
dt

dJ
 is the rate of assimi-

lation of information, 
dt

dI
 is the rate of supply of information, T is the time 

constant (the characteristic time that determines the speed of learning) of 

the information processing process by the human memory, J

 is the limit 

value of the acquired information (compare with (6.1)) 

T(C, A). Assuming 
dt

dI
 =  = Const (constancy of external condi-

tions), solution (6.5) has the form 

(6.6) I(t) =  (1 – e
 - t

), 

where  = I

 +  T,  = 1 / T (compare with (6.3)).  

 

Model 6.4. [65]. 

D. The process of accumulating information and forgetting it. 

H. With a constant amount of information coming in per unit of time, 

the ―ideal memory‖ remembers all the information. In real memory, the 

amount of information stored per unit time decreases with the growth of 

already stored information (delayed asymptotic behavior). After the end of 

the learning process, the ideal memory stores information indefinitely, and 

in real memory the amount of information decreases monotonously (forget-

ting) after the end of the learning process, and the current forgetting speed 

is proportional to the amount of information I(t) available at the moment 

(slow asymptotic behavior, see Fig. 6.1). 
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Fig. 6.1. The amount of remembered information 

 

T(C, A). If the ―memory equation" is represented by a linear integral 

equation, then the qualitative conclusion will be the same as when using 

equations (6.1) and (6.5) in models 6.2 and 6.3 [65].  

 

Model 6.5. [71, 72]. 

D. Processing information by a human operator. 

H(T, C, A). The exponential dependence of the quality of the opera-

tor's work on the training time is postulated.  

 

Model 6.6. [64]. 

D. Information processing by the operator (in the human-machine sys-

tem) during training and in the process of professional activity. 

H. The amount of information I processed by the operator in the pro-

cess of his activity corresponds to a change in his entropy: I = H. There-

fore, the disorder in the activity of the operator W (the number of possible 

states of the system under study, the logarithm of which determines the 

entropy) depends on time as follows: 

(6.7) W(t) = W0 e 
-  t

. 

Assume that I(t) =  t, where t is operator training time,  is a con-

stant characterizing the training system. Define the quality of the operator 

as follows 

Q(t) = Qmax (1 – W(t)). 

T(C). Then 
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(6.8) Q(t) = Qmax (1 – W0 e
-  t

), 

where  =  . 

А. The exponential nature of the LC is due to the choice of entropy 

and information as the characteristics of disorder, specific (in particular, 

linear) dependences of the characteristics of the operator's activity on 

disorder and the assumption of a linear increase in the amount of accumu-

lated information. In the model under consideration, the speed of learning 

depends both on the rate of information flow in the learning process, and 

on the characteristic time of disorder change. 

It should be noted that in [64] there were three stages of training: 

1. The initial "running-in" of the human operator to this mode of oper-

ation. 

2. "Development" of effective characteristics within the framework of 

a fixed regime (actually the stage of iterative learning). 

3. Activities characterized by statistically stable characteristics. 

In this case, the dependence of the error on time can be represented 

schematically by the curve shown in Fig. 6.2.  

 
 

x(t) 

t 

I stage 

x0 

II stage 

III stage 

 
 

Fig. 6.2. Dependence of operator error on time 

 

 

Model 6.7. [27]. 

D. Information processing during the training of the perceptron (pat-

tern recognition system, which can be considered as a model of memoriza-

tion and learning in living systems). 
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H. For the correct recognition of the i-th image, it is necessary and 

sufficient that it be shown at least once to the perceptron in the learning 

process. 

T. For n random (equally probable) displays of images, the probability 

of occurrence of one of the N samples is 

(1 – 1 / N)
n
  exp ( – n / N). 

C. Then the full effectiveness of training (the probability of correct 

recognition depending on the duration of the learning phase) 

pn = 1 – e 
-  n

. 

where  = 1 / N. 

А. Compare with the model 5.2. In this model, as in 5.2, the probabil-

ity of decreasing the mismatch of elements (each element is ―responsible‖ 

for remembering one image) is characterized by a constant probability  of 

―zeroing‖ its mismatch per unit time (the probability that the corresponding 

image was shown and remembered). The learning system is supposed to be 

quite passive, so the learning speed is inversely proportional to the number 

of possible options N.  

 

Model 6.8. 

D. The system being taught has a communication channel through 

which information is received from the external environment during the 

learning process, and the more information is received by the system, the 

less is the mismatch. 

H. There is interference on the communication channel, whose band-

width is limited [63]. At each step, all information that is not yet received 

by the system is sent, and each time the system receives only some fixed 

part of it undistorted. 

T. Suppose that for successful learning, the system must receive com-

plete information I. At the first step, all information is sent, undistorted 

"reaches" I ( < 1). 

At the second step, information is sent in the amount of (1 – ) I, from 

which the system receives  (1 – ) I, etc. The amount of information 

received by the system in n > 2 steps is determined by the expression 

(6.8) Jn = (1 + (1 – ) + (1 – )2
 + ... + (1 – )n-1

)  I, 

i.e. Jn =  I (1 – (1 – )n
). 

Other interpretations are possible. Let, for example, all information I 

be sent at each step. Then the amount of received information changes over 

time as follows: 
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(6.9) J(t+t) = J(t) +  (I – J(t)) t. 

C. Solution of (6.9) is 

(6.10) J(t) = I (1 – e
 -  t

). 

A. This type of solution is due to the proportionality of the amount of 

new information received by the system to the amount of information that 

remains to be transmitted. In other words, this property (assumption) can 

be interpreted as follows: the ability of the system to absorb (remember) 

information decreases in proportion to the amount of stored and processed 

information. 

In this case, it is critical (in order for the solution to have the form co-

inciding with (6.10)) that the proportion between the received part of the 

information and the already accumulated one remains constant in time. It 

should be noted that within the framework of this model, simply assuming 

limited bandwidth of the communication channel would lead to completely 

different conclusions (the amount of accumulated information would grow 

linearly, etc.). The learning rate in the model under consideration is deter-

mined by the channel capacity  - the more information comes without 

distortion, the higher the learning speed.  

 

Model 6.9. 

D. Consider a complex learning system in the form of a set of ele-

ments (their number is denoted by N), the combined actions of which lead 

to the achievement of some fixed goal. 

Suppose that each element is characterized by a finite set of its admis-

sible states Si(t) (the number of elements of the set Si is ni(t)), in one of 

which it can be at time t, i = n,1 . The number of independent states of the 

system as a whole (described by enumerating the states of its non-

interacting elements) is equal to the product of the number of admissible 

states of all elements. 

H. Suppose that learning consists in reducing the number of permissi-

ble states of each element to a certain minimum, that is, in leaving one or 

more fixed states corresponding to the problem being solved. The purpose 

of training for the system is to minimize the number of its permissible 

states. A decrease in the number of permissible states of each element 

occurs as it receives information. 

Entropy of the i-th element (its disorder) is 

(6.11) Hi(t) = ln ni(t). 
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The amount of control information i(t), received by the i-th element 

at time t, reduces the uncertainty: 

(6.12) 
dt

tdH i )(  = – i(t), t > 0. 

Suppose that there is an absolute limit to the amount of regulatory in-

formation arriving at each moment: i(t) i,  t  0. In the general case, at 

time t, i(t) belongs to the interval [0; i] (i(t)0  corresponds to the fact 

that the i-th element at the moment t is not being trained). 

T. We study how the number of permissible states of elements will 

change over time. Substituting (6.11) into (6.12) and solving the corre-

sponding differential equation, we obtain 

(6.13) ni (t) = 
0

in  exp ( – 
t

i d
0

)(  ), i = n,1 , t > 0, 

where 
0

in  is the number of permissible states of the i-th element before the 

start of learning. The integral in the exponent corresponds to the accumu-

lated information: Ii(t) = 
t

i d
0

)(  . 

С. Let us consider how the number of admissible states of the system 

as a whole will behave in time, reflecting, by virtue of the assumption 

introduced above, the effectiveness of learning: 

(6.14) n(t) = 


n

i

i tn
1

)(  = n
0
 exp (– I(t)), 

where n
0
 = 



n

i

in
1

0
, 

(6.15) I(t) = 


n

i

i tI
1

)( . 

If we assume that the characteristics of the elements and the rate of re-

ceipt of information are constant, that is, the amount of information pro-

cessed by each element per unit of time is constant: Ii(t) = i t, then (6.14) 

passes into the classical exponent with the exponent I(t) = t 


n

i

i

1

 . 
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A. The hypothesis of a monotonic decrease in the number of admissi-

ble states does not reduce the generality of the above reasoning, since if 

they grow, an expression of the form 

n(t) = n

 (1 – e 

– I(t)
), 

with about the same intermediate calculations. 

The results of models 6.2, 6.3, 6.5, 6.6, and 6.8 can be considered as 

special cases of model 6.9. 

In all the models of this section, the learning rate is determined by the 

amount of information accumulated, therefore, to increase the learning 

speed, within the framework of the model under consideration, it is advisa-

ble to choose the highest possible rate of information transfer. However, it 

should be borne in mind that in real systems, exceeding a certain threshold 

(for the trained system), volume of incoming information can have a nega-

tive effect and reduce the effectiveness of learning (analogue of the effect 

of interference of skills).  

 

Thus, in the theoretical information models of iterative learning, the 

exponential nature of learning curves is due to the constancy of the amount 

of information processed, transmitted, assimilated, etc. system elements per 

unit time. 
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7. Models - analogies of cybernetic systems 

 

The difference between the iterative learning models discussed in this 

section and those described above is that the objects of research are not 

living systems, the study of which is based on hypothetical analogies and 

assumptions about the relationship between the parameters of the elements 

and the learning system, and cybernetic systems are automata, algorithms, 

neural networks, etc. In other words, when constructing mathematical 

models of iterative learning of biological systems, we used above analogies 

with physical phenomena, these or those intuitive assumptions, etc. In 

models - analogies of cybernetic (abstract-logical models that are not 

materially implemented, unlike technical) systems, the principles of func-

tioning of the latter, on the one hand, are transferred (at the level of hy-

potheses) to simulated systems, and on the other hand, many cybernetic 

systems use analogies with living systems . 

The separation is not accidental. For example, finite state machines 

and neural networks are widely used in control theory, applied mathemat-

ics, and other fields of science, not only as models of living systems, but 

also as objects that deserve independent study and are used in the synthesis 

of control systems, pattern recognition, etc. [56, 61]. To the same class of 

models we include models that use analogies with optimization methods - 

there are a number of IL models in which it is assumed that nature "uses" 

one or another algorithm to reduce, for example, the mismatch value. On 

the other hand, if we want to draw some conclusions about the behavior of 

humans and animals in iterative learning based on an analysis of the behav-

ior of, for example, a neural network, then we need to understand what 

relation the studied cybernetic system has to the network of neurons in the 

human brain. 

At the same time, however, one must clearly understand that artificial 

systems behave in one way or another not by themselves, but in strict 

accordance with the rules and algorithms that were laid down in them by 

the person who created the system. 

The first use of extremum search methods in the analysis and model-

ing of the behavior of biological systems is, apparently, the ravine method, 

in which all variables (system parameters) are divided into two qualitative-

ly different classes - significant and non-essential. Some of them are char-

acterized by the fact that when they change, the value of the minimized 

function changes quite quickly (descent along the slope of the "ravine" - 
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the surface of the function), and others by a rather slow change of the 

minimized function (descent along the inclined bottom of the ravine). 

Accordingly, to achieve the minimum as quickly as possible, it is necessary 

to move along the bottom of the ravine as quickly as possible (note that 

here and in the course of the subsequent presentation we will not discuss 

the locality of the algorithms, their convergence, etc., confining ourselves 

to a qualitative analysis). 

 

Model 7.1. 

D(H, T, C). Suppose that the algorithm for minimizing the mismatch 

uses the method of finding the root (of some function f(x) on the interval 

[a; b]) by dividing the segment in half. The upper bound for the mismatch 

(depending on the number of iterations) is given by the expression xn  (b –

 a) / 2
n
, i.e., xn   e

 -  n
, where 

 = exp (log2 (b – a) ln 2),  = ln 2. 

A. Approximately exponential convergence (for sufficiently "good" 

functions) have not only dichotomous root search methods, but also many 

others.  

 

Model 7.2. 

D(H). Suppose that a system mismatch at time n is defined as the 

arithmetic mean of the current mismatch values of all N elements. 

Let the mismatches of all elements at the initial moment of time be 

equal to unity, non-negative at any moment of time, and at the nth moment 

of time the mismatch of the i-th element xi(n) can take any value less than 

xi (n – 1) with equal probability. 

T(C). Then, if you define the mismatch of the entire system as 

XN(n) = 


N

i

i nx
N 1

)(
1

, then, if the number of elements is large enough, then 

the system mismatch id Xn = Xn-1 / 2 n, n = 1, 2, …, X0 = 1. 

A. The assumption of non-growth of the mismatches of the elements 

is fully consistent with the well-known principle of "not missing what was 

achieved" [7]. At the same time, the use of the arithmetic mean as the value 

of the mismatch of the system and the assumption that the permissible 

values of the mismatch of the elements are equally probable do not seem 

very justified. It is worth noting some proximity of the model under con-

sideration to models 5.1 and 8.4.  
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Model 7.3. [9]. 

D. A technical system whose variable characteristics are probabilities 

(of certain actions, states, reactions, etc.). 

H. Depending on the ―success‖ or ―failure‖ in step n, in step n + 1, the 

probability p is defined as follows: 

pn+1 = 









nn

nn

pp

pp



 )1(
. 

T(C). Suppose that if the correct action is chosen at the n-th step (with 

probability pn), then the probability of ―success‖ is p (respectively, ―fail-

ure‖ - (1 – p)). If the wrong action is chosen (with probability (1 – pn)), 

then the probability of "success" is q. Then the expectation of ―success‖ at 

the (n + 1)-th step is equal to Vn+1 = Vn (pn+1 p + (1 – pn+1) q). 

Substituting the law of probability variation, we find that Vn changes 

exponentially with time (see model 4.2). 

А. The exponential form of a curve reflecting a change in expected 

"success" is due to a linear change in probability. In the 50-60s, during the 

rapid development of cybernetics, a significant number of the most diverse 

learning machines were built: conditional probability machines [9], learn-

ing matrices [66], С. Shannon’s ―mouse‖ (labyrinth model), ―turtle‖ of 

G. Zemanek, the ―speculative machine‖ (analogue of the unconditioned 

reflex) and ―CORA‖ (analogue of the conditioned reflex) G. Walter [76] 

and others. 

Most of them used linear laws of change of variables (in contrast, for 

example, to non-linear laws used in the homeostat by W.R. Ashby [7]). 

Moreover, when studying the general laws of adaptation and learning 

processes in automatic systems, many laws of instruction (for example, 

linear algorithms of optimal learning) were also chosen linear.  

 

The exponential form of a curve reflecting a change in expected "suc-

cess" is due to a linear change in probability. In the 50-60s, during the 

rapid development of cybernetics, a significant number of the most diverse 

learning machines were built: conditional probability machines [9], learn-

ing matrices [66], K. Shannon’s ―mouse‖ (labyrinth model), ―turtle‖ of 

G. Zemanek, the ―speculative machine‖ (analogue of the unconditioned 

reflex) and ―CORA‖ (analogue of the conditioned reflex) G. Walter [76] 

and others. 
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A large class of learning automata are the so-called finite probabilis-

tic/stochastic automata with variable structure. A finite state machine is 

understood to mean an object having some internal states, the input of 

which may receive external influences and the output parameter of which 

can take one of a finite number of values [38, 74]. The internal states of the 

automaton change with a change in the input parameters, and the output 

states with a change in the internal states. For our analysis, the ability of 

the automaton to "independently" change its structure is important - the 

transformation "input" - "internal state", "input, internal state" - "output" 

(of course, the machine does not change these laws at its discretion, but in 

accordance with algorithm into it), functioning in a non-stationary envi-

ronment. This ability allows one to talk about adaptability of behavior, 

effects of collective behavior (games of automata, hierarchical learning 

automata [39, 73]) and the presence of some kind of learning (understood 

in this case as the accumulation and processing of information about the 

external environment and the development of appropriate laws of behavior 

in these specific conditions [73]). 

 

Model 7.4. [39, 73]. 

D. A probabilistic automata at time t performs the i-th action (selects 

the i-th output state) with probability pi(t), i = k,1 , where k is a finite 

number of output states. The purpose of the automata is to maximize the 

gain, depending on its actions and the state of the environment. The ―varia-

bility‖ of its structure means the possibility of changing probabilities. It is 

clear that if under the given conditions (under the given state of the envi-

ronment) the ―correct‖ action was chosen that led to a positive gain, then 

the probability of choosing this action should be increased, and the proba-

bilities of choosing other actions should be reduced accordingly, since the 

normalization condition must be fulfilled (compare with the "labyrinth" 

model 4.2). 

H. Suppose that the probabilities of the choice of actions i and j vary 

according to such a law pi(t), that 

pi(t + 1) = pi(t)  pi(t), 

pj(t + 1) = pj(t)  pj(t), j  i, 

pi(t) + 
ij

pj(t) = 0. 
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T(C, A). If the law of change pi(t) is linear in pi(t), we obtain an ex-

ponential sequence. In the general case, of course, no purely exponential 

curve will be observed, however, in most cases, during simulation, approx-

imately exponential slow-asymptotic curves were observed, for example, 

the average gain on the number of games played [38, 39].  

 

Another vast class of cybernetic systems that claim to simulate the 

phenomena and processes that occur in biological systems are the so-called 

neural networks. 

Algorithms for learning neural networks can conditionally be divided 

into deterministic algorithms and random search algorithms. In fact, train-

ing a neural network is nothing more than the task of minimizing the multi-

extreme function of many variables [31]. The number of various training 

methods known today (minimization algorithms) and various network 

designs (their architectures) is at least several dozen. We will look at some 

common approaches to learning neural networks without going into details.  

A neural network consists of several layers of neurons that have lo-

gistic or some other sigmoid-like transfer functions. The outputs of the 

neurons of each layer are fed to the inputs of the neurons of other layers 

with specific weights. The weight of the ―connection‖ is the number w(i, j) 

by which the output signal of the i-th neuron is multiplied before summing 

at the input of the j-th neuron. Learning a neural network consists in select-

ing (sequentially changing) the weights of neurons corresponding to the 

problem being solved (signal recognition, minimization of function, etc.). 

The training takes place as follows: certain signals are supplied to the 

neural network, the output signals of the network are compared with stand-

ard values, and based on this comparison, weights are adjusted. 

Quite common algorithms for changing weights are the backpropaga-

tion algorithm - first, the weights of the neurons of the last (output) layer, 

then the penultimate one, etc. change, and the so-called random multistart 

(more precisely, its modifications - the starting point is selected, the next 

point is determined by adding to the initial, for example, a Gaussian ran-

dom vector and an ―inertial additive,‖ the values of the error function at 

these points are compared, etc.). 

In fairness, it should be noted that in the general case, the weights of 

individual neurons and their errors do not always change in a slow-

asymptotic manner. However, the general error, which is most often calcu-

lated as the average error of neurons, in most cases varies approximately 
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exponentially (in particular, when using the gradient descent method). It is 

clear that the dynamics of error depends both on the method of learning 

used and on the specifics of the minimized function. The rate of conver-

gence to the minimum point of the error function (the rate of learning a 

neural network) depends on the algorithm for changing the weights of 

neurons, which, in turn, is laid down by the designer. 

 

Thus, when teaching cybernetic systems, the exponential nature of the 

corresponding LC is due to the linear law of variation of the internal pa-

rameters of the system and / or a large number of its constituent elements. 
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8. Models of collective behavior 

 

This section discusses iterative learning models based either on the re-

sults of experimental observations of the interaction of team members, or 

on analogies with the principles used in formal models of collective behav-

ior. 

 

Model 8.1. [7]. 

One of the first models of the adaptive interaction of elements is the 

Ashby homeostat, which serves as a good illustration of the possibilities of 

using ultrastable dynamic systems in modeling the properties of the nerv-

ous system. It should be recognized that since the study of the homeostat 

focuses on the adaptability of behavior, its ―learning curves‖ in some cases 

are not slow-asymptotic. This model is so famous and studied in detail that 

we restrict ourselves to a reference to the source [7].  

 

Model 8.2. [49]. 

D. The homeostat model can be used to analyze the group activities of 

operators. In fact, the difference from the previous model is that the com-

pensation of influences (external to a particular operator) is carried out not 

due to physical feedback (device device), but due to the purposeful activity 

of each operator, taking into account the actions of the others. 

H(T,C). The matrix equation of the ―Homeostat‖ has the form: 

 = A U, where U is the matrix of positions of the control knobs,  is the 

matrix of positions of the hands of the instruments, A is the matrix charac-

terizing the structure of the ―homeostat‖ and the values of the coefficients 

of mutual coupling (the readings of each device are a linear combination of 

the positions of the control knobs). Depending on the method of connecting 

the operators (a ring, star, chain, etc. were used) and the number of opera-

tors, the difficulty of the tasks being solved is determined. 

А. For various structures, the difficulty of the problem to be solved 

depends significantly on the number of operators. The assumption of a 

linear relationship significantly simplifies the model. In this case, again, 

due to adaptability, the dynamics of the system is not always described by 

a delayed asymptotic curve.  

 

Model 8.3. [58]. 

D. Self-organization parameters in a group of three subjects. 
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H. Denote by Hmax - the maximum value of the entropy of the system, 

H(t)  Hmax – current entropy value, h = Hmax – H – the amount of accumu-

lated information. Suppose that the rate of accumulation of information 

(increment of information per iteration or per error) is constant (see Section 

6) and that the residual entropy is evenly distributed between the identifia-

ble objects. 

T(C). In accordance with the accepted assumptions, if x(t) is the total 

number of errors in time t, then 
dt

dx
 is the probability of error at the time t, 

dt

dH
 = , H(t) = – M ln(1 – 

dt

dx
). If x(0) = 0, then H =  x. As a result, we 

obtain the following equation of the theoretical total error curve: 

x = Hmax /  – M /  [exp(Hmax / M – 1) exp (–  t / M) + 1]. 

А. The validity of a number of assumptions accepted by the author of 

this model is not obvious, some statements (especially formal ones) need 

explanation. Nevertheless, [58] is considered one of the classic works on 

experimental and formal research of self-organization processes in collec-

tives. Note that the resulting expression determines the dependence of the 

accumulated error on time. The curve of the current value of the mismatch 

will be logistic.  

 

From our point of view, game-theoretic models of iterative learning, 

or rather, models using the results of the theory of collective behavior, have 

sufficient generality. 

Before considering specific models, we will describe the general prin-

ciples. Let the system consist of n elements, each of which can be in the 

state si(t)   = [


is ; 


is ]. Suppose that the state of the entire system is 

uniquely described by the state vector of elements: 

s(t) = (s1(t), s2(t), ..., sn(t)), s(t)   = 



n

i

i

1

,  t  0. 

The quantity h() = {s(t)   |  < t}, that is, information on the strat-

egies of all the elements selected up to the moment  will be called the 

history of the game. 

Consider how the elements will behave. Suppose that there exist some 

functions () = {i(s)}, which we will call the objective functions of the 

elements, reflecting the interests of the elements (each element seeks to 
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maximize the value of its objective function). Note that the objective 

function of each element in the general case depends not only on its own 

state (the strategy chosen by it or assigned to it by the ―control device‖), 

but also on the states of other elements, that is, there is a play of elements 

(for example, each element can tend minimize the indicator function [51]). 

We will assume that this game is non-cooperative, that is, each element 

chooses a strategy on its own, without being able to agree with the other 

elements. 

By successively changing their strategies, the elements strive to reach 

a certain equilibrium point. In game theory, there are several concepts of 

equilibrium. If we consider the game of elements to be non-cooperative, 

then it is advisable to consider the Nash equilibrium (as such a combination 

of strategies, a single deviation from which is not beneficial to any of the 

elements). For our analysis, the primary is not the concept of equilibrium, 

but the principles of the behavior of the elements. By the principle of 

behavior of the i-th agent we mean the rule by which he chooses his strate-

gy at time t, knowing his objective function and admissible set, knowing 

(and sometimes not knowing or only partially knowing) the objective 

functions and admissible sets of other elements and knowing (and some-

times not knowing or knowing only partially) the history of the game h(): 

(8.1) si(t) = Fi(, , h(t), t), i = n,1 , t > 0. 

Anticipating possible objections to vesting elements of the learning 

system with some ―interests‖, we note that, indeed, in active systems (for 

example, a group of interacting operators), the functions {i, Fi} reflect the 

interests of system elements, and in passive systems Fi()is nothing more 

than a law (sometimes unknown to the researcher) of the change of state of 

elements that satisfies physical, biological and other restrictions. 

It is clear that by adopting one hypothesis or another about the behav-

ior of elements and their interaction, it is possible to calculate the trajecto-

ries of each of them. With an increase in the dimensionality of the system, 

the expediency of using this method becomes problematic and there is a 

desire to describe the behavior of the system as a whole (it may be some-

what averaged and not quite accurate) without going into a detailed de-

scription of each of the elements. 

Intuitively, in some cases such an aggregated description will turn out 

to be more accurate with an increase in the dimension of the system. 

In the particular case (8.1) turns into a dynamical system 
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(8.2) is  = fi(s(t)), i = n,1 , t > 0, 

or, if time is discrete, (8/1) turns into a system of difference equations: 

(8.3) si(k + 1) = fi(s(k)), i = n,1 , k = 0, 1, 2, ... . 

In the last two cases, the task of studying the dynamics of collective 

behavior is reduced to studying the properties of a dynamic system [51]. In 

particular, it is necessary to determine whether there exists an equilibrium 

point (sometimes this is equivalent to studying the existence of the equilib-

rium position of a dynamic system) and whether it is stable, whether the 

trajectories of the system converge to this equilibrium position (what are 

the regions of attraction of various equilibrium points), what is the rate of 

convergence and so on. To date, answers to these questions in the general 

case do not exist, and most studies have concentrated on the study of 

particular private models. 

 

Model 8.4. 

D(H). The states of the elements of the system satisfy the normal sys-

tem of differential equations: 

(8.4) is  = fi(s(t), t), i = n,1 , t > 0. 

Suppose that the functions {fi} are continuous and Lipschitz (satisfy-

ing a certain restriction on the growth rate) in the entire admissible region. 

T(C). For any admissible initial point, a solution to system (8.4) exists 

and is unique. Moreover, if the solution (8.4) is asymptotically stable, then 

the equilibrium position is reachable in infinite time (group property). 

If {fi} are linear functions and all eigenvalues of the corresponding 

matrix have negative real parts, then there are two exponential functions 

that limit the trajectory of system (8.4) from above and below. The intro-

duction of an additional assumption about the monotonicity of the right-

hand side of system (8.4) leads to the slow-asymptotic form of the trajecto-

ries of its solution. 

A. The Lipschitz character of the right-hand side of the system of dif-

ferential equations can be interpreted as the limitation of the rate of possi-

ble changes in the states of the elements (and, consequently, the mismatch), 

leading to the unattainability of the equilibrium position (zero error) for a 

finite time. In order to exclude the possibility of inflection points, one 

should introduce a sufficiently strong assumption about the monotonicity 

of the right-hand side.  
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One of the most common and well-studied assumptions about the ra-

tional behavior of elements of any active system is the hypothesis of indi-

cator behavior. In accordance with this hypothesis, at each iteration, each 

element takes a step in the direction of the strategy that would be optimal if 

all other elements would choose the same strategies as in the previous step. 

In this case, we determine the position of the target of the i-th element: 

wi(s-i) = arg 
iis 

max  i(si, s-i), 

where s-i = (s1, s2, ..., si-1, si+1, ..., sn) – is the game situation for i-th element. 

Then the hypothesis of indicator behavior can be written as 

si(k+1) = si(k) + 
k

i  (wi(s-i(k)) – si(k)),  i = n,1 , k = 0, 1, 2, ... , 

where parameters 0  
k

i   1 define "step sizes". A detailed study of 

systems in which elements behave in accordance with the indicator behav-

ior hypothesis was carried out in [42, 51]. 

With an increase in the number of elements with "approximately the 

same" effect on the system as a whole, it turns out that the behavior of the 

system is determined by some "averaged" element. At the same time, there 

is no need to study all the elements — the values of the indicators charac-

terizing the entire system turn out to be stable over a fairly wide range of 

element parameter values [52, 53, 54]. The possibility of such an ―averag-

ing‖ (without significantly losing the accuracy of the description) seems 

quite attractive, since the number of elements in real iteratively taught 

systems is usually extremely large (it doesn’t matter at all what to mean by 

an ―element‖ as a brain neuron, degree of freedom of the hand etc.). An 

example of the use of asymptotic aggregation methods in the study of 

collective behavior (within the framework of the indicator behavior hy-

pothesis) is the model below (a reader who is not familiar with the appa-

ratus used may skip the following formal results whose boundaries are 

marked with " "). 

 

Model 8.5. 

D. Consider a system consisting of n interconnected elements that 

function in discrete time. The state of the system at time k: s
k
 = (

ks1 , 
ks2

, …, 
k

ns )     n
 is determined by the states of the 

k

is   i, 

k = 1, 2, … , where 

 < 


is  < 


is  < +, i = n,1 . 
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H. Suppose that the behavior of the system satisfies the hypothesis of 

indicator behavior - at each moment in time, each of the elements changes 

its state in the direction of the current position of the target, i.e. described 

by an iterative type procedure 

(8.5) 
1k

is  = 
k

is  + 
k

i  [wi(
k

is ) – 
k

is ], k = 1, 2, … , i = n,1 . 

where wi(
k

is ) – the current position of the target of the i-th element, which 

depends on the states of the remaining elements, and the parameters  k
 = (

k

1 , 
k

2 , …, 
k

n ), chosen by the elements, determine the values of steps 

(learning speed) and have arbitrary distributions in a unit cube. 

 Suppose that the equilibrium point of the system c = (c1, c2, …, cn), 

ci  [


is ; 


is ], i = n,1 , exists, is unique, and the trajectories (8.5) converge 

to this point (the corresponding conditions are given, for example, in [42, 

51]). 

As a measure of the current "remoteness" of the system from the equi-

librium position, we choose the mismatch 

(8.6) 
k

n  = ||c – s
k
|| = 




n

i

k

ii sc
n 1

||
1

, 

i.e. the distance between points s and c in  n
 space. 

T. Using (8.5), we obtain: 

(8.7) 
1kn  = 




n

i

k

ii

k

i

k

i

k

ii swcsc
n 1

|))(()1)((|
1

 . 

Obviously: 
1kn   

1~ kn , where 

(8.8) 
1~ kn  = 




n

i

k

i

k

ii sc
n 1

)1(||
1

  + 



n

i

k

ii

k

i swc
n 1

|)(|
1

 . 

For sufficiently large n, the mismatch estimate 
1~ kn  should differ 

slightly from the ―average value‖ 

(8.9) 
1kn  = (1 – 

k

n ) 
k

n  + 
k

n  



n

i

k

ii swc
n 1

|)(|
1

, 

where 
k

n  = 


n

i

k

i
n 1

1
 . 
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Let’s give the correct formulation and justification of this statement. We 

define what is meant by proximity 
1~ kn  and. 

1kn  According to [53, 54], 

the sequence of functions 
1~ kn ( k) stabilizes on unit cubes Kn = [0; 1]

n
 if 

there exists a numerical sequence 
1kn  such that 

(8.10) Pr {|
1~ kn  – 

1kn |  }  0, n  + 

for any given  > 0. 

In order to conclude something about the stabilization, we estimate the 

difference in the values of the function 
1~ kn () in the following points: 

 k
  Kn и  k

 = (
k

1 , 
k

2 , …, 
k

n )  Kn: 

|
k

n
~

( k
) – 

k

n
~

( k
)| = | 




n

i

k

i

k

i

k

ii sc
n 1

)(||
1

  +  

+ 



n

i

k

ii

k

i

k

i swc
n 1

|)(|)(
1

 |. 

Denoting  = 
i

max  (


is  – 


is ), obtain 

|
k

n
~

( k
) – 

k

n
~

( k
)|  




n

i

k

i

k

i
n 1

||
2




, 

so )(kn  is a Lipschitz function with Lipschitz constant of order 1 / n. 

By virtue of Theorem 2 [54], for any distributions  k
 on Kn dispersion 

D{
k

n }  0, n  +, therefore, by the Chebyshev inequality, (8.10) 

holds. 

C. The stabilization of sequence 
k

n
~

 allows us to formulate the fol-

lowing conclusion. With an increase in the number of system elements, 

estimate (8.8) of the mismatch (8.6) converges in probability to (8.9), i.e. 

occurs: 

(8.11) Pr {
1kn  > (1 – 

k

n ) 
k

n  + 
k

n 



n

i

k

ii swc
n 1

|)(|
1

} 



n

0. 

Some special cases of the above statement are considered below: 

- if the system moves monotonously to the equilibrium position (if 
k

is   сi, then 
k

is   wi(s
k
)  ci and, accordingly, if 

k

is   сi, then 
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k

is   wi(s
k
)  ci, i = n,1 , k = 1, 2, ...) , then (8.7) converges in probability 

to (8.9) 

- if the system moves monotonously to the equilibrium position (if, 

then, and accordingly, if), then (8.7) converges in probability to (8.9); 

- if the elements of the system do not interact or there exist  > 0: |ci –

 wi(s
k
)| ~ o(n


), i = n,1 , k = 1, 2, ... , then (8.7) converges in probability to 

(1 – 
k

n ) 
k

n .  

А. The study of the model allows us to make the following qualitative 

conclusion: if 

- elements do not interact, or 

- the position of the target does not change over time (for example, 

wi = ci), or 

- the average change in the position of the target relative to the equi-

librium points for each element at each step is quite small: 

|ci – wi(s
k
)| << |ci – 

k

is |  i = n,1 , k = 1, 2, ... , 

then the average mismatch can be accurately approximated by an exponen-

tial curve. 

The assumption about the validity of the indicator behavior hypothesis 

and the choice of the mismatch in the form (8.6) are essential in this model. 

Moreover, the assumption of the stationary position of the target, in fact, 

reduces the model in question to model 4.1.  

 

In collective behavior models, the slow-asymptotic nature of the LC is 

a consequence of either a large number of elements of the system, or / and 

the absence or limitation of their interaction, or / and the constancy of the 

position of the goal. 
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9. Some generalizations 

 

As has been repeatedly noted above, iterative learning is characterized 

by the constancy of external conditions and learning objectives, that is, 

there is a stationarity of external (with respect to the learning system) 

parameters (functioning conditions). We show that in order to explain the 

slow-asymptotic (exponential) nature of the iterative learning curves, it 

suffices to introduce the assumption that some parameters of the learning 

system itself (internal operating conditions) are stationary. Moreover, this 

assumption is sufficient to explain a much wider range of phenomena and 

processes than just IL - starting from a number of physical and chemical 

laws and ending with the processes of self-organization and adaptation in 

complex biological and cybernetic systems. 

Consider the following model, which is a generalization of almost all 

the models considered above in the following sense: we will not introduce 

assumptions about the nature, laws, etc. the interaction of elements and the 

structure of the system, assuming that there are some characteristics of the 

elements (their mismatch) that determine the mismatch of the system. 

D. Consider a system consisting of n elements. The discrepancy of the 

i-th element is denoted by xi(t), i = n,1 . Without loss of generality, we can 

assume that if the system learns, then there is 

xi(0) = 1, xi(t) > 0  t > 0, 
t

lim xi(t) = 0, i = n,1 . 

Any curve of this type can be represented as 

(9.1) xi(t) = 
)(tie


, i = n,1 . 

where i(0) = 0, i(t) 



t

 +, i = n,1 . We will conventionally call the 

learning speed of the i-th element the logarithmic derivative of its mis-

match ("relative speed" ii xx / ), that is, the quantity i(t) = 
dt

td i )(  (in each 

case, you need to clearly understand what is an element of the simulated 

system and what are the meaningful interpretations of the speed of the 

learning). 

As a rule, the trajectories of real physical and biological systems are 

sufficiently smooth, therefore, in most cases, the corresponding derivative 

is defined. If i() are absolutely continuous functions (which, up to a 
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constant, can be represented as an integral of the derivative), then (9.1) 

takes the form 

(9.2) xi(t) = exp { – 
t

i d
0

)(  }, i = n,1 . 

H. The mismatch of the system as a whole is some function of the 

mismatch of the elements: 

x(t) = F(x1(t), x2(t) ..., xn(t)). 

It is natural to assume that the function F() is non-negative, monoton-

ic in each variable and vanishes if and only if the mismatches of all ele-

ments vanish. For example, F() may be the norm in the space  n
. It is 

known that in finite-dimensional spaces (in the model under consideration, 

the dimension of space is determined by the number of elements of the 

system being studied, and it is always finite), all norms are equivalent, that 

is, for any two norms F1() and F2() there exist constants  and , such that 

for any x   
n
 

(9.3)  F2(x)  F(x)   F (x). 

Let the mismatch F() be the geometric mean of the mismatch of ele-

ments: 

(9.4) x(t) = 

n
n

i

i tx

/1

1

)( 










 = exp {–  


t n

i

i d
n

0 1

)(
1

 }. 

If you choose the arithmetic mean of the mismatch of the elements 

mismatch: 

F(x1(t), x2(t) ..., xn(t)) = 


n

i

i tx
1

|)(| , 

then for sufficiently large n the arithmetic mean ―coincides‖ (accurate to 

the multiplicative constant) with the geometric mean (the correct justifica-

tion is given in [53]). 

Thus, in order for (9.4) to be, in the sense defined in [53], an estimate 

of the mismatch of the system (see (9.3)), it is necessary that the number of 

elements of the system be large. 

T(C). Now we use the hypothesis of stationarity of the characteristics 

of elements. More precisely, we assume that the element learning rates are 

independent random variables having arbitrary stationary distributions. 

Then the integrand in (9.3) is asymptotically constant [54], that is, for 

large n: 
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(9.5) 


n

i

i t
n 1

)(
1

    Const,  t  0. 

Denoting this constant (learning rate) by , from (9.4) and (9.5) we ob-

tain: 

(9.6) x(t) ~ e
- t

. 

A. Thus, within the framework of the considered model, the exponen-

tial form of the time dependence of the system mismatch is a consequence 

of the stationary nature of the external and internal parameters (operating 

conditions), as well as a large number of system elements. 

The presence of a large number of elements of the system is essential - 

the ―learning curves‖ of individual elements can be far from exponential. 

Roughly speaking, the greater the number of elements of the system and 

the more "stationary" their characteristics, the more accurately (9.6) ap-

proximates the learning curve of the system. 

It should be noted that the proposed model is far from perfect. For ex-

ample, an attentive reader may ask: why did we use representation (9.1) for 

the ―learning curve‖ of an individual element? (assuming the derivatives 

)(txi  are stationary, then we get a linear function that does not satisfy the 

asymptotic condition), what is the function i(t), and why is the distribution 

of its derivatives stationary? Similar objections may cause the validity of 

assumptions about the properties of the function F(), the independence of 

the characteristics of the elements, etc. 

The following reasoning may serve as a justification. Let a certain sys-

tem be characterized by an exponential LC with a learning speed whose 

value , in fact, determines the difference between one LC (learning sys-

tem) and another. In constructing the IL model, the researcher, when con-

sidering the interaction of system elements, is forced to introduce certain 

assumptions. As the analysis above shows, there are a number of assump-

tions that lead to the required conclusion about the exponential dynamics 

of the behavior of the system. Therefore, the introduced assumptions 

should serve as a criterion for comparing IL models (which model is ―bet-

ter‖). From this point of view, the proposed model is ―better‖ than those 

considered above (it is more general, that is, it includes most of the known 

models as special cases). The process of generating models can and should 

continue. Nevertheless, one must clearly realize that it is most likely that it 

will be impossible to completely abandon the assumptions about the sta-
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tionarity and / or boundedness of certain system parameters and / or the 

multiplicity of its constituent elements.  

 

Now we show that the presented model generalizes the models con-

sidered in the previous sections. 

A large number of elements of the learning system is essential in the 

models: 4.2, 5.2, 5.3, 6.1, 6.7, 6.10, 7.2, 7.5, 8.5. 

Stationarity of characteristics of system elements takes place and plays 

a key role: 

- in models 4.1, 4.5, 5.1, 5.4, 6.5, 8.2, 8.3 the logarithmic derivative of 

the mismatch is constant, that is, the proportionality coefficient between 

the rate of change of mismatch and its current value is constant (it is clear 

that even with n = 1 this assumption is immediate leads to the exponential 

form of the mismatch curve); 

- in models 4.2, 7.3, 7.4, the proportionality coefficients in the expres-

sions for the increment of probabilities are constant; 

- in model 5.2, the probability of "decay" does not depend on the time 

and number of "decaying atoms"; 

- in model 5.3, the relative error of each of the regulators is constant; 

- in model 5.5, the variation in the organization of the system is con-

stant (equal to zero); 

- in models 6.2, 6.3, 6.6, the amount of information absorbed, received 

or processed by the trained system per unit of time is constant; 

- in model 6.7, the likelihood of displaying various images is equal; 

- in model 6.9, the proportion between the transmitted and received in-

formation does not depend on the time and amount of accumulated infor-

mation; 

- Model 6.10 (like 5.2) is very close to the model discussed in this sec-

tion; 

- in model 7.1, the proportion of split segments is constant; 

- in model 7.2, the mismatches of the elements of the system are dis-

tributed evenly at each moment of time; 

- in model 8.4, the limited rate of change (Lipschitz) of the right-hand 

sides of the normal system of differential equations is sufficient for the 

asymptotic behavior of the system trajectory; 

- in model 8.5, the non-interaction of elements or the constancy of the 

position of the target lead to the exponential form of the mismatch curve. 
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At the same time, it should be noted that during iterative learning in 

the case of unsteady internal characteristics of the system, non-exponential 

(logistic, with an intermediate plateau, etc. - see the second section) learn-

ing curves can be observed and repeatedly observed in experiments. 

Thus, in the above models, to obtain a conclusion on the exponentially 

of the learning curve, either assumptions are made about the multiplicity 

and uniformity of system elements (see also the remark on the need to 

average individual LCs in the second section) and the stationarity of some 

characteristics of elements (multiplicity for ―weak‖ stationarity makes it 

possible to ―average‖ and obtain ―strong‖ stationarity ―on average‖; intui-

tively, ―small non-stationarity‖ leads to ―approximate exponentially‖), or a 

stronger assumption of stationarity. 

 

So we can draw the following conclusion: if the number of elements 

of the system being taught is large enough, and its characteristics and 

functioning conditions (internal and external) are stationary, then the 

corresponding learning curve will be exponential. Moreover, the model 

presented in this section turns out to be adequate not only for iterative 

learning, but also for the processes of self-organization and adaptation in 

large systems that satisfy stationarity assumptions. 



 62 

Conclusion 

 

Thus, the analysis of mathematical models of iterative learning carried 

out in this work allows us to draw the following conclusions. 

Modeling iteratively learned systems is an effective method of their 

study, predicting the specifics of the behavior of real systems in various 

conditions, as well as improving the organization of the educational pro-

cess. 

The results of the study of mathematical models of iterative learning 

allowed us to put forward the following law of iterative learning: 

IF THE NUMBER OF ELEMENTS OF THE LEARNING SYSTEM 

IS SUFFICIENTLY GREAT AND / OR EXTERNAL AND INTERNAL 

CONDITIONS OF ITS FUNCTIONING ARE STATIONARY, THEN 

THE LEARNING CURVE IS EXPONENTIAL. 

At the same time, a dual statement can be formulated (put forward as 

an explanatory hypothesis): 

IF THE LEARNING CURVE IS EXPONENTIAL, then, probably, 

THE EXTERNAL AND INTERNAL CONDITIONS OF ARE 

STATIONARY THE NUMBER OF ELEMENTS OF THE LEARNING 

SYSTEM IS SUFFICIENTLY GREAT. 

The formulated statements are quite consistent with the corresponding 

experimental laws, physical laws, and observation results. 

As promising areas for future research on the mechanisms and pat-

terns of iterative learning, it is worth highlighting: the need for further 

analysis of various types of IN models and, first of all, models using the 

inverse construction method; the study of the correspondence between the 

hypotheses underlying the existing and newly created direct models of IN 

and experimental studies of IN in living systems; as well as the widespread 

use of simulation results to develop recommendations for the selection of 

optimal forms and methods of training. 

It should be noted that many of the models considered above describe 

and reflect a much wider range of phenomena and processes than just 

iterative learning. It can be hypothesized that the slow-asymptotic nature of 

the change in the aggregated parameters of large and complex systems is a 

general pattern that manifests itself under stationary external and internal 

conditions not only during iterative learning, but also in the processes of 

adaptation, self-organization, etc. 
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