DOI: 10.25728/tas.2019.50.1.6

ТЕОРЕМЫ СУЩЕСТВОВАНИЯ РАВНОВЕСИЯ В БЕЗОПАСНЫХ СТРАТЕГИЯХ

Искаков М.Б.

(Институт проблем управления РАН, Москва) mih_iskakov@mail.ru

Предлагается метод построения теорем существования равновесий в безопасных стратегиях из известных теорем существования равновесий Нэша. При выполнении условия сильных угроз для существования РБС достаточно потребовать соблюдения требований исходной теоремы только на безопасном множестве. В качестве примера применения метода построена теорема существования РБС на основе теоремы существования социального равновесия Дебре.

РБС и множества безопасных стратегий при условии сильных угроз. В качестве самой общей идеи построения критерия существования РБС можно взять как аналогию принцип сильных штрафов в теории активных систем [Бурков 1977]. Принцип заключается в том, что «штрафы за отклонение от реализации плана настолько велики, что единственной разумной линией поведения предприятия является безусловное выполнение принятых обязательств» [Бурков 1977, стр.43]. То есть, если имеется множество желательных или приемлемых планов, то выход агентов за его пределы штрафуется настолько сильно, чтобы исключить всякую мотивацию отклониться.

По аналогии, пусть есть множество безопасных стратегий, а любой опасный профиль содержит угрозы настолько серьёзные, что осторожный рациональный игрок всегда будет искать решения только в безопасном множестве. Такие условия исключают возможность НБО профилей, не являющихся РБС, и избавляют от необходимости проверять наиболее сложное условие наличия

безопасных отклонений. Насколько сильными, по минимуму, должны быть угрозы, чтобы обеспечить такой эффект? Ответ можно сформулировать следующим определением. Пусть дана игра $G = (S_i, u_i)_{i=1}^N$ с соответствующей игрой угроз $\hat{G} = (S_i, v_i)_{i=1}^N$.

Определение 1. Безопасным выигрышем игрока і в профиле стратегий s называется функция

$$v_{i}(s) = \begin{cases} inf & u_{i}(s'_{j}, s_{-j}), s_{i} \notin Q_{i}(s_{-i}), \\ i \neq j, s'_{i} : u_{j}(s'_{j}, s_{-j}) > u_{j}(s) \\ & u_{i}(s), s_{i} \in Q_{i}(s_{-i}). \end{cases}$$

Соответствующей игре G **игрой угро**з называется игра $\tilde{G} = (S_i, v_i)_{i=1}^N$.

Определение 2. Угроза игроку і в профиле s является сильной, если существует безопасная стратегия $s' = (s'_i, s_{-i})$, такая, что u(s') = v(s') > v(s). Если для игрока і содержащиеся в любом опасном профиле угрозы являются сильными, то такой игрок имеет лучшую безопасную альтернативу (для него выполняется условие сильных угроз). Игра G называется игрой с сильными угрозами, если все игроки в ней имеют лучшую безопасную альтернативу.

Вторая составляющая идеи теоремы существования РБС состоит в том, что если для игры выполняется требование сильных угроз и имеется некоторая известная теорема существования равновесия Нэша, то можно потребовать выполнения условий этой теоремы только на безопасном множестве (или даже на некотором предпочтительном подмножестве этого множества, содержащего в себе наилучшую безопасную альтернативу), и этого будет достаточно для существования РБС.

Более формально можно описать этот подход следующим образом. Пусть имеется некоторое верное утверждение (исходная теорема): «Если для игры выполняется условие (#####), то в игре существует равновесие Нэша». Пусть это условие (#####) выполняется на множествах безопасных стратегий игроков. Такое предположение надо сформулировать строго. Под выполнением условия на множествах безопасных стратегий будем понимать следующее. Введём вспомогательную игру \bar{G}_{Q_i} , выигрыши

игроков в которой равны выигрышам исходной игры G в профилях, где их стратегии безопасны, и некоторой константе $C_{min} \leq u_i(s), \forall i, s$, ограничивающей функции выигрыша компактной игры снизу, там где стратегии этих игроков не безопасны. То есть, если $Q_i \subset S$ — множество безопасных профилей игрока i в исходной игре G, то игру $\bar{G}_{Q_i}(S_i, \bar{u}_i), \bar{u}_i(s) = \begin{cases} u_i(s), s \notin Q_i \\ C_{min}, s \in Q_i \end{cases}$ будем называть соответствующей ей обрезанной игрой.

Определение 3. Пусть дана игра $G(S_i,u_i)_{i=1}^N$ с множествами безопасности $Q_i \subset S$. Игра $\bar{G}_{Q_i}(S_i,\bar{u}_i), \bar{u}_i(s) = \begin{cases} u_i(s), s \notin Q_i \\ C_{min}, s \in Q_i \end{cases}$ называется соответствующей ей обрезанной игрой. Условие (#####) существования равновесия Нэша выполняется для игры G на безопасных множествах $Q_i \subset S$, если оно выполняется для соответствующей обрезанной игры.

Таким образом, если для игры выполняются два условия: условие теоремы существования равновесия Нэша на безопасном множестве и условие сильных угроз, то можно ожидать, что в данной игре имеется РБС. Условие исходной теоремы (####) обеспечивает наличие равновесия в нужном множестве, а условие сильных угроз гарантирует его устойчивость в смысле РБС для всей игры. Теперь можно сформулировать и доказать теорему.

Теорема 1. Пусть верно утверждение: «Если для игры выполняется условие (#####), то в игре существует равновесие Нэша». Если для игры $G(S_i, u_i)_{i=1}^N$ выполняется условие сильных угроз, а на её безопасных множествах $Q_i \subset S$ выполняется условие (#####) существования равновесия Нэша, тогда в игре G существует равновесие в безопасных стратегиях.

Доказательство. По предположению теоремы, для обрезанной игры $\bar{G}_{Q_i}(S_i, \bar{u}_i)$ выполняется условие (#####). Следовательно, в этой игре имеется равновесие Нэша s^* . В этом профиле стратегия каждого игрока $s_i^* \in Q_i$ является безопасной стратегией, так как в противном случае выигрыш некоторого игрока в обрезанной игре $\bar{u}_i(s)$ принимал бы минимальное значение C_{min} и для этого игрока имелась бы лучшая альтернатива в безопасном множестве Q_i .

Рассмотрим любое отклонение от равновесного профиля s^* $\overset{i}{\to}(s'_i,s^*_{-i})$. Либо s'_i является безопасной стратегией, и тогда $u_i(s^*) \geq u_i(s')$. Либо s'_i — небезопасная стратегия и тогда угроза содержащаяся в s' сильна. Это означает, что $s^* \overset{i}{\to} (s'_i,s^*_{-i})$ не является безопасным отклонением. Таким образом, s^* — РБС. \Box

Утверждение доказанной теоремы носит общий характер и содержательно слабо, так как требуемые в ней условия достаточно сильны. Например, в ней не предусмотрена возможность того, что для некоторых окружений определённый игрок может вообще не иметь безопасных стратегий. Рассмотрение прикладных задач показывает, что такой случай весьма распространён. Но в таким образом сформулированном виде теорема 2 наиболее прозрачно демонстрирует общий принцип, по которому можно строить более конкретные и сильные теоремы существования.

Локальный вариант теоремы. Здесь ослабление условия *пучшей безопасной альтернативы* заключается в том, что его выполнение требуется только по отношению к некоторому множеству $B = \times_{i=1}^{N} B_i$, где множества B_i предполагаются компактными выпуклыми подмножествами S_i .

Определение 4. Игрок і имеет **лучшую безопасную** в В, если для каждого $s_{-i} \in B_{-i}$ существует непустое подмножество $\tilde{Q}_i(s_{-i}) \in Q_i(s_{-i}) \cap B_i$ такое, что для каждой стратегии $s_i \notin \tilde{Q}_i$ существует стратегия $s_i' \in \tilde{Q}_i$ такая что $u_i(s_i', s_{-i}) = v_i(s_i', s_{-i}) > v_i(s_i, s_{-i})$. Игра G называется игрой **с сильными угрозами** по отношению к В, если каждый игрок имеет лучшую безопасную альтернативу в В.

Для любого $s_{-i} \in B_{-i}$, множество $\tilde{Q}_i(s_{-i})$ в BSA-игре предполагается всегда непустым. График многозначной функции $\tilde{Q}_i(s_{-i}), \ \Gamma(\tilde{Q}_i) = \{(s_i, s_{-i}) | s_i \in \tilde{Q}_i(s_{-i}), s_{-i} \in B_{-i}\}$ определяется как подмножество B. Теперь можно сформулировать локальный вариант базовой теоремы существования РБС.

Теорема 2. Пусть верно утверждение: «Если для игры выполняется условие (#####), то в игре существует равновесие Нэша». Если игра $G(S_i, u_i)_{i=1}^N$ является игрой с лучшей безопасной альтернативой (BSA-игрой) по отношению к B, а на её безопасных

множествах $Q_i \subset S$ выполняется условие (#####) существования равновесия Нэша, тогда в игре G существует равновесие в безопасных стратегиях.

Доказательство. Рассмотрим для каждого игрока k=1,...,N игру $G_k((B_k,S_{-k}),u)$. По теореме 2 в каждой из этих игр существует РБС. Так как игра $G(S_i,u_i)_{i=1}^N$ является игрой с сильными угрозами или BSA-игрой, то любое из этих равновесий в играх G_k является РБС и в G. \square

Таким образом, сформулировано достаточно сильное для практического применения утверждение базовой теоремы существования РБС. Теперь можно конкретизировать использованный в ней абстрактный вид исходной теоремы и получать уже прикладные варианты критериев существования.

Теорема существования РБС по Дебре.

Теорема G.Debreu (**1952**). В качестве первого варианта исходной теоремы существования равновесия Нэша была взята конструкция из статьи [Дебре, 1952]. Она формулируется следующим образом.

Полигедрон — множество в \mathbb{R}^n гомеоморфное геометрическому полигедрону (т.е. объединению конечного числа выпуклых оболочек в \mathbb{R}^n). Он очевидно замкнут. . . .

Пусть при заданном s_{-i} (т.е. действиях всех остальных), выбор i-го агента ограничен непустым компактным множеством $A_i(s_{-i}) \subset S_i$. Агент i выбирает s_i из $A_i(s_{-i})$ так, чтобы максимизировать $u_i(s_{-i}, s_i)$, которая предполагается непрерывной по s_i в $A_i(s_{-i})$. Множества $A_i(s_{-i})$ интерпретируется как задающие совокупность социально приемлемых выборов.

Это делает интуитивным следующее определение социального равновесия по Дебре.

Определение Debreu. s^* является точкой социального равновесия, если для всех $i=1,\cdots,n:s_i^*\in A_i(s_{-i}^*)$ & $u_i(s^*)=\max_{s_i\in A_i(s_{-i}^*)}u_i(s_{-i}^*,s_i)$.

График функции $A_i(s_{-i}^*)$ определяется как подмножество $S_{-i} \times S_i$ следующего вида: $\Gamma_i = \{(s_{-i}, s_i) \mid s_i \in A_i(s_{-i})\}$. Для любого s_{-i} , множество $A_i(s_{-i})$ всегда предполагается непустым.

Теорема Debreu. Пусть для всех $i=1,\cdots,n$ множества S_i — стягиваемые полигедроны, $A_i(s_{-i})$ — многозначные функции из S_{-i} в S_i с замкнутыми графиками Γ_i , u_i — непрерывные функции из Γ_i в дополненную ось действительных чисел такие, что $\varphi_i(s_{-i}) = \max_{s_i \in A_i(s_{-i})} u_i(s_{-i},s_i)$ непрерывна. Если для каждого i и s_{-i} множество $M_{s_{-i}} = \{s_i \in A_i(s_{-i}) \mid u_i(s_{-i},s_i) = \varphi_i(s_{-i})\}$ стягиваемо, то существует точка социального равновесия.

Теорема существования РБС. Воспользуемся теоремой Дебре, чтобы доказать существование РБС в BSA играх в конечномерных евклидовых пространствах. Для этого класса игр ослабим стандартные условия существования равновесия Нэша (в чистых стратегиях), потребовав их выполнения в соответствующем множестве B. В этом случае равновесие Нэша в множестве B оказывается РБС в исходной игре, в соответствии с теоремой 4 и теоремой Дебре.

Теорема 3. Пусть $G(S_i, u_i)_{i=1}^N$ является BSA-игрой по отношению к B, в которой для всех i, график $\Gamma(\tilde{Q}_i)$ замкнут, $u_i(s)$ – непрерывная функция из $\Gamma(\tilde{Q}_i)$ в \mathbb{R} , а функция $\varphi_i(s_{-i}) = \max_{s_i \in Q_i(s_{-i})} u_i(s_{-i}, s_i)$ непрерывна. Если для любых i и $s_{-i} \in B_{-i}$ множество $M_{S_{-i}} = \left\{ s_i \in \tilde{Q}_i(s_{-i}) \mid u_i(s_{-i}, s_i) = \varphi_i(s_{-i}) \right\}$ стягиваемое, то в игре G в множестве B существует равновесие в безопасных стратегиях.

Доказательство. В качестве основы доказательства используем теорему существования социального равновесия Дебре и теорему 4. Поскольку множества $\tilde{Q}_i(s_{-i})$ предполагаются в BSA игре непустыми для всех $s_{-i} \in B_{-i}$, можно рассматривать их как многозначную функцию из B_{-i} в B_i . Далее, следуя Дебре, определим профиль s^* как точку социального равновесия, если для всех $i=1,\dots,N$: $s_i^* \in \tilde{Q}_i(s_{-i}^*)$ и $u_i(s^*) = \max_{s_i \in \tilde{Q}_i(s_{-i}^*)} u_i(s_i,s_{-i}^*)$. Тогда все условия теоремы существования Дебре удовлетворяются и существует точка социального равновесия $s^* \in B$.

Покажем, что эта точка является РБС в G. Рассмотрим выгодное отклонение s_i' произвольного игрока i в профиле s^* . Очевидно, оно является несоревновательным, поскольку s^* безопасный профиль стратегий. Если $s_i' \in \tilde{Q}_i(s_{-i}^*)$, то $u_i(s_i', s_{-i}^*) \leq u_i(s^*)$, и

отклонение не является выгодным. Если $s_i' \notin \tilde{Q}_i(s_{-i}^*)$, то в соответствии с BSA условием существует отклонение $s_i'' \in \tilde{Q}_i(s_{-i}^*)$ такое, что $u_i(s_i'',s_{-i}^*)>v_i(s_i',s_{-i}^*)$. Поскольку $u_i(s_i'',s_{-i}^*)\leq u_i(s^*)$, то получается $v_i(s_i',s_{-i}^*)< u_i(s^*)$. По определению 15 функции безопасного выигрыша v_i это означает, что несоревновательное отклонение не является безопасным. Таким образом, в безопасном профиле s^* ни один игрок не может сделать безопасное несоревновательное отклонение, то есть s^* является точкой РБС в игре G. \Box

Итак, если взять в качестве исходной теорему Дебре, достаточно легко её условия приводятся к требуемым формулировкой теоремы 2, и из неё получается теорема существования РБС. Единственное потребовавшееся уточнение этих условий определялось использованием понятий социального равновесия и множеств социально приемлемых выборов, которое очевидно переносится на понятия РБС и безопасных множеств.

Литература

- 1. БУРКОВ В.Н., 1977. Основы математической теории активных систем. М.: Наука.
- 2. DEBREU, G., 1952. A social equilibrium existence theorem // Proc. Natl. Acad. Sci. USA 38(10), 886-893