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The methodology of complex activity is further elaborated with a set of in-

terconnected mathematical models that describe the processes of technology 

design, adoption and use. 

The technology of complex activity and its general models are considered in 

Chapter 1. The models of the processes of technology design and adoption are 

introduced in Chapter 2. The models of technology management are presented in 

Chapter 3. Finally, the analytical complexity and errors of solving technology 

design/optimization problems are estimated in Chapter 4. 

This book is addressed to experts and researchers interested in the general 

principles of activity organization and control of complex organizational and 

technical systems. 
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INTRODUCTION 

 

Without any doubt, the history of mankind development can be 

called the history of technological progress. Really, technologies are 

demanded by economy and society; have accelerated growth; are the 

systemically important (backbone) elements of any production; finally, 

maintain the existence and further development of mankind [12. , 52. , 

66. ]. All these factors determine the conceptual meaning of the above 

statement. In addition, it seems somewhat populistic: fashionable expres-

sions like “technological revolution,” “converging technologies,” “neural 

technologies,” “digital technologies,” … are alternating each other rapid-

ly, causing a gracious smile of professionals and a muddle of men in the 

street. 

In accordance with the definition of the Merriam–Webster Diction-

ary, technology
1
 is (1a) the practical application of knowledge especially 

in a particular area; (1b): a capability given by the practical application of 

knowledge; (2) a manner of accomplishing a task especially using tech-

nical processes, methods, or knowledge; (3) the specialized aspects of a 

particular field of endeavor. This term originates from Greek technologia 

(technē art, skill + -o- + -logia –logy), meaning “systematic treatment of 

an art.”  

In [12. , 49. ], a technology was defined as a system of conditions, 

criteria, forms, methods and means for achieving a desired goal. The 

models of technology design, adoption and use described below will rest 

on this definition. 

The models of technologies can be classified in the following general 

way, in the descending order of their scale: 

1) “civilization models,” which reflect the general “macro” laws of 

technology design and interaction with society over characteristic periods 

of century or decades (technological structures, Kondratiev cycles, etc. 

[27. , 42. , 46. ]); 

2) “innovations models,” which study the general laws of innova-

tions initiation, implementation and deployment/diffusion at the micro 

                                           
1
 The term “technology” was introduced in 1772 by German scientist Johann 

Beckmann to mean the science of trade. 
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level, including the scale of economic sectors and organizations [48. ] (an 

innovation is a new technology); 

3) “activity models,” which study the general organization laws of 

any activity, including those of the design and use of different activity 

technologies [12. ]; 

4) “models-standards,” which are being intensively developed in 

Systems Engineering and contain the well-systematized extensions of 

best practices from practical or industrial activity [35. , 72. ]. 

5) “subject-matter models,” which describe specific technologies in 

different sectors. 

This book
2
 is focused on the third (activity-related) level of the clas-

sification and further develops the original results of the authors present-

ed in [9. –12. ]; also see Chapter 1. A systematic overview of the first two 

classes of the models seems unreasonable due to their extreme richness 

and fast evolution; moreover, it would be beyond the scope of this re-

search. The fourth class of the models is fixed while the fifth one consists 

of concrete (and specific) elements, and hence they should not be over-

viewed too. 

Technologies may have different translation forms such as flow 

charts and process regulations in industrial production, construction 

documents in building, network diagrams in project management, busi-

ness processes descriptions in the activity of organizations, etc. The 

general form is an information model that describes the actor’s states and 

also the actions (together with the corresponding methods and means) to 

transform it. Much attention below will be therefore paid to the infor-

mation models of technologies. At the same time, the computerized 

design and management tools for the information models of products and 

technologies known as Continuous Acquisition and Lifecycle Support 

(CALS) systems––Computer Aided Design, Manufacturing and Engi-

neering (CAD, CAM, CAE) systems and Product Data Management 

(PDM) systems––will be not considered in this book because they are 

merely a particular (albeit modern) case of technology translation means. 

On the one hand, the design of each technology includes the gen-

eral-system and also specific components. We will adopt the general-

system approaches only, which neglect any sectoral specifics. On the 

                                           
2
 The research was partially supported by the Russian Scientific Foundation, 

project no. 16-19-10609. 
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other hand, the design of each technology includes routine and also 

creative components. This book does not pretend to model creation. 

From a mathematical viewpoint, a technology is an algorithm that 

describes a multivariant scenario of activity in which multiplicity is 

caused by external and internal conditions. However, the automatic 

design and optimization problems of nontrivial algorithms with given 

properties
3
 either cannot be solved in general form or have a very high 

computational intensiveness. As a result, a technology is often designed 

using its decomposition into interconnected simple parts or some heuris-

tics. 

A technology can be interpreted as a mapping of the set of situations 

(current states and, perhaps, the history of system, requirements to result, 

constraints, etc.) into the set of actions and utilized resources. In other 

words, “what, how, and by which means” should be done in a certain 

situation. As a matter of fact, technology design and adoption consist in 

proper search and operation of these mappings; see Chapter 2 for details. 

A technology is often represented as a graph––a finite set of states 

and transitions between them (perhaps, the latter functionally depend on 

available resources). 

For a technology defined by a function, optimization problems can 

be formulated as follows: find an optimal value of an efficiency criterion 

subject to given constraints and properties of the “controlled” system.
4
 

Such optimization problems will be studied in Chapter 3. 

Control mechanisms (the sets of rules and procedures––“mappings”) 

can be treated as a “technology” of managerial decision-making: they 

describe the desired behavior of a controlled element (agent) and the 

corresponding decisions of a control element (Principal) in different 

situations. Technologies need to be optimized, in many cases using ex-

haustive and heuristic search methods. The design and adoption of tech-

nologies often involve the so-called typical solutions. Thus, the corre-

sponding analytical complexity and errors have to be analyzed; see 

Chapter 4 below. 

                                           
3
 As a rule, the results obtained within the framework of mathematical logic and 

automata theory are very concrete and can be included in the fifth class of the 
models (somewhat conventionally). 
4
 In accordance with this approach, optimal positional control design is the 

design and further optimization of a control technology. 
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This book is organized
5
 as follows. The technology of complex ac-

tivity and its general models are considered in Chapter 1. The models of 

technology design and adoption are introduced in Chapter 2. The models 

of technology management are presented in Chapter 3. Finally, the ana-

lytical complexity and errors of solving technology design/optimization 

problems are estimated in Chapter 4. 

 

 

1. TECHNOLOGY OF COMPLEX ACTIVITY 
 

In this chapter, using the results of [12. ], the technology control 

problem for the complex activity
6
 (CA) of organizational and technical 

systems (OTSs) is formalized. 

The role and place of technologies in complex activity are discussed 

in Section 1.1. The most important peculiarities of the CA of modern 

adaptive extended enterprises are analyzed in Section 1.2. The formal 

models of their CA are studied in Section 1.3. The information models to 

manage the technology components of CA are considered in Section 1.4. 

Some well-known models and methods are briefly overviewed in Section 

1.5. The management problems of technology components of CA are 

stated in Section 1.6. 

 

1.1. Role and place of technologies in complex activity 

 

Methodology of complex activity. The problematique considered in 

this subsection is a subset of the control problems for organizational and 

technical systems (OTSs) and their complex activity (CA), which was 

thoroughly studied in the monograph [12. ]. 

An important result of [12. ] consists in the fixation of a set of con-

trol means for OTSs. Among them, the key role is played by the man-

                                           
5
 Chapters consist of sections. Formulas are numbered independently within each 

chapter while the figures, tables, examples and propositions continuously 
throughout the book. 
6
 An activity is a purposeful behavior of a human. A complex activity is an 

activity with a nontrivial internal structure, with multiple and/or changing actors, 
technologies and roles of the subject matter in its relevant context [12]. 
An organizational and technical system is a complex system that consists of 
humans, technical and natural elements. 
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agement of technology components of the CA performed by OTSs. A 

technology is defined as a system of conditions, criteria, forms, methods 

and means for achieving sequentially a given goal; see the Introduction. 

The management of technology components of CA is understood as the 

activity towards the development of technology components in the form 

of information models and their maintenance in an adequate state in 

accordance with external conditions (environment). This book is focused 

on the development and management of technology components as major 

problems. It represents a logical continuation of the monograph [12. ] but 

is a separate study as well. 

The concept of an organizational and technical system used in [12. ] 

actually extends the definitions of technical, organizational [56. ], ergatic 

and sociotechnical systems, matching in some sense the term “enterprise” 

[60. ] in the Western academic literature. This term seems more natural 

for the context of this book. Hereinafter, the concepts of an OTS and 

enterprise will be used equivalently. 

Note that the enterprises themselves create no utility: of crucial im-

portance is their activity, which produces a result of real value. Therefore, 

while considering enterprises, first of all we have to analyze their com-

plex activity using the approaches and results of the methodology of 

complex activity [12. ]. 

The following results were established within the methodology of 

complex activity [12. ] and are of direct relevance to technologies. 

1) A technology is a key component of any structural element of ac-

tivity. 

2) A technology determines the result of CA up to the realized event 

of uncertainty. 

3) Technology development is the key stage that includes the activi-

ty steps for achieving a target result (goal) at the phase of activity imple-

mentation. The requirements to this result are formulated and further 

specified at the stage of goal-setting and structuring of goals and tasks. 

4) Technology design is the activity whose subject matter is always 

a new (e.g., further specified) information model of CA and/or another 

subject matter. 

5) The design of new technologies of CA can be described by two 

processes that are intended to operate information (process (a)) and 

material objects (process (b)): 

(a) the design and specification of goal, conditions, forms, meth-

ods, means (including resources) and criteria; 
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(b) the definite organization of material resources (information 

resources are organized during the design process). 

6) The technology of any element of CA is described by the logical, 

cause-effect and process models in combination with the models of lower 

SEAs and elementary operations. 

7) A newly created technology and its result may and must be veri-

fied and/or falsified (at the epistemological level) and/or tested at the 

technology implementation level. 

8) The life cycle of a technology includes three phases as follows: 

development/creation (an analog of the organization and design phase); 

productive use, with a possible return to the first phase (an analog of the 

technological phase or the implementation phase); an infinite existence in 

form of historical data, with a possible return to the second phase. 

9) Technologies are a link between the animate (staff/OTS) and in-

animate (product/technological complex) elements and subject matters of 

activity. 

10) The need for technology development is a creativeness criterion 

of activity. 

11) To a considerable degree, technology design is specific and 

hence can be optimized only up to the development of several alternatives 

with further choice of a best one. 

12) Managing the technology of CA is a complex activity towards 

creating the information models of its components (including resources) 

and maintaining them in actual state through modernizations. 

These general postulates will be described in detail below. 

Technology and structural element of activity. The monograph 

[12. ] laid the theoretical foundations of this research by introducing the 

methodology of complex activity as an extension of general methodology 

[49. ] to the case of any complex human activity with a nontrivial multi-

level internal structure. In particular, the basic element of CA modeling 

and analysis––the structural element of activity (SEA)––was identified 

and the logical, cause-effect (causal) and process structures of complex 

activity were described in constructive terms. 

The model of the structural element of activity is shown in Fig. 1 

[12. ]. The arrows in this diagram have the following semantics. The 

arrow from the actor to the “needs–goal–tasks” aggregate indicates that 

the actor accepts the demand (and need) and executes the goal-setting. 

The arrows from the actor to the technology and to the actions indicate 

that the actor executes actions (acts) in accordance with the technology. 
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The arrow from the result to the actor indicates that the actor evaluates 

the output as well as performs self-regulation and reflection. 

 

 
 

Fig. 1. Model of structural element of activity 

 

The arrows from the technology and actions to the subject matter in-

dicate that the subject matter is transformed by the action in accordance 

with the technology. Finally, the arrow from the subject matter to the 

result indicates that the result is the final state of the transformed subject 

matter and its evolution in the course of activity. 

Technology is the key component of any SEA that determines its re-

sult. 

The phases, stages and steps of the life cycle of CA are presented in 

Table 1. Stage III (technology development) is the key stage that includes 

the activity steps for achieving a target result (goal) at the phase of activi-

ty implementation. The requirements to this result are formulated and 

further specified at the stage of goal-setting and structuring of goals and 

tasks. 
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Table 1. Phases, stages and steps of life cycle of CA 
Phase Stage Step 

D
ES

IG
N

 
I. Establishing 
demand and 
recognizing needs 

1. Establishing demand and recognizing 
needs 

II. Goal-setting and 
structuring of goals 
and tasks 

2. Designing logical model 

III. Developing 
technology 

3. Verifying technology readiness and 
resources sufficiency 
4. Designing cause-effect model 
5. Designing technologies of lower CA 
elements 
6. Creating/modernizing resources 
7.  Scheduling and resource planning 
8. Performing resource optimization 
9. Assigning actors and defining responsibili-
ties 
10. Assigning resources 

IM
P

LE
M

EN
TA

TI
O

N
 IV. Executing 

actions and form-
ing output 

11. Executing actions and forming output 

R
EF

LE
C

TI
O

N
 V. Evaluating 

output and per-
forming reflection 

12. Evaluating output and performing 
reflection 

 

Information models. Complex activity is implemented together 

with the development and modification of an information model
7
 (IM) of 

                                           
7
 We will consider an information model as a model of an object represented in 

the form of information that describes the significant parameters and variables of 
the object, the relations between them and also the inputs and outputs of the 
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the subject matter and CA. The recent decades have been remarkable for 

a growing role of the information model developed in parallel with CA 

implementation and also with the evolution of the subject matter. IMs 

have become complicated, and a topical problem is to develop efficient 

operation procedures for information models and knowledge manage-

ment. 

Complex activity in the field of complex OTSs is actually imple-

mented in the form of two interconnected parallel processes as follows: 

1) the development and maintenance (including modification) of an 

information model; 

2) the execution of actions over an object in accordance with this 

model and also the guaranteed evolution of the object during its life cycle 

(activity itself). 

This transformation has become an objective source for reviewing 

the role of information in social life; for example, see numerous discus-

sions on “information explosions,” “transition to information society,” 

“digital economy,” “knowledge economy,” etc. 

An information model generally contains not only normative (prior) 

information on complex activity but also operational (online) information 

and predictive information for concrete objects as well as various histori-

cal data and auxiliary knowledge with different level of detail and degree 

of formalization. 

The gradual complication of IMs and the increase of their role re-

quire the development of efficient methods and tools for creating, storing, 

using, modifying and maintaining IMs. These methods, procedures and 

means are the subject matter of several fields of knowledge and activity 

of information technology. 

Technology elements. The above definition of technologies under-

lines that the technology of CA is purposeful, i.e., oriented towards 

achieving a given goal. This definition not just outlines the set of tech-

nology elements but determines their ordered collection, representing a 

technology as a system. Also this definition specifies the following 

technology elements: 

i. the concrete conditions under which CA is implemented; 

ii. the organizational forms of CA; 

                                                                                               

object. An information model can be used to simulate all possible states of an 
object by supplying information about its input variations. 
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iii. the methods of CA as a concept that extends operations and tech-

niques; 

iv. the implementation means of CA; 

v. the criteria of goal achievement. 

All technology elements are informational (knowledge) or material. 

Conditions (element i) describe in which circumstances and under which 

rules CA is implemented. In other words, a condition is an information 

object but it may describe material objects. The same applies to forms 

(ii), methods (iii) and criteria (v). The implementation means of CA (iv) 

are, in the first place, resources; see the monograph [12. ]. Thus, elements 

i–iii and v are purely informational while element iv is both informational 

and material. Hence, goal-setting and the development of new technolo-

gies of CA can be represented by two processes as follows: 

a) the design and further specification of the goal, conditions, 

forms, methods, means (including resources) and criteria of CA; 

b) the organization of material resources (note that information 

resources are organized in the course of design). 

Process (a) is intended to operate information while process (b) material 

objects. 

An information model contains all information on the relevant ac-

tivity. Therefore, we may claim that goal-setting and technology devel-

opment are an activity with a new (e.g., detailed) information model as 

the subject matter. In particular, it establishes a correspondence between 

elements i–iii and resources. In special cases, the resources themselves 

can be the subject matter too. 

A prerequisite for goal-setting and technology development is to 

predict how technology implementation will guarantee the achievement 

of activity goals under possible uncertainty. This is connected with a 

fundamental feature of new technologies: the development and practical 

use of a new technology are separated in time. Technology development 

corresponds to the initial stages of its life cycle. Prediction can be very 

difficult and treated as an independent complex activity. This process has 

specifics but, for predictive purposes, the impact of uncertainty can and 

must be structured into the two general-system attributes considered 

above. First, these are the primary sources of uncertainty [12. ] as fol-

lows: 

 the uncertainty in the environment––the external demand and exter-

nal conditions, requirements and norms; 
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 the uncertainty in the technology and subject matter––the means, 

methods and factors; 

 the uncertainty in the actor––recognizing the needs, goal-setting, 

executing the actions, evaluating the result and decision-making 

(acting as the subject of CA or not). 

Second, these are the structuring binary attributes [12. ] as follows: 

 Will the result have the planned properties or functions? 

 Will the final properties and functions of the result yield the desired 

effect in the interaction with the environment? 

 Will the properties of the result match the future demand when the 

result is presented to the customer? 

 Will the environment match the current prediction of its state when 

the result is presented to the customer? 

On the one hand, a technology is a collection of interconnected ele-

ments i–v; on the other, any SEA can be described by the structural, 

cause-effect (causal) and process models [12. ]. Due to the fractality of 

CA elements, a complete description must include the models of all lower 

elements in the logical structure of CA. Such a collection of models 

reflects the conditions, forms, methods, means and criteria of goal 

achievement, i.e., the technology elements. Therefore, at the general-

system level we may claim the following [12. ]: the technology of any 

CA element is described by the structural, cause-effect and process 

models together with the models of lower SEAs and elementary opera-

tions. 

Technology testing. Any activity is reflexive in the following sense: 

generally, a newly created technology and its result can and must be 

verified and/or falsified (at the epistemological level) and/or checked at 

the technology implementation level. Such a check can be called testing.  

On the one hand, the technology of CA has a considerable share of 

specific components (the technologies of elementary operations). On the 

other hand, it includes the logical, cause-effect and process models of 

CA, which determine its general-system components. 

Therefore, technology testing (including the completeness of its de-

scription) also has general-system specifics. They will be formulated as a 

list of testable conditions that must be satisfied for a new technology. 

I. The structural completeness and consistency of technological 

goals––the logical structure and the subgoals structure of the cen-

tral SEA. 
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II. The availability of a specified actor and technology (SEA or ele-

mentary operation) for each technological goal. 

III. The availability of specified characteristics for the subject matter 

of CA for each of the subgoals, which can be used to check their 

achievement and evaluate the efficiency. 

IV. The mutual logical consistency of the actors and technologies as-

sociated with the subgoals structure and also with the resource 

pools for their support and organization. 

V. The availability of a specified resource allocation mechanism for 

the functions performed by the actors of all lower SEAs or for the 

technologies of all lower elementary operations (in particular, for 

making the goals and preferences of individuals as the actors of 

SEAs consistent with the goals of the central SEA). 

VI. The availability of specified uncertain events and response rules 

for them within the central SEA (procedures for decision-making 

or escalating current problems to higher SEAs). 

VII. The consistency and coordination of the logical and cause-effect 

structures. 

Tests I–VII can be implemented together within a separate reflexive 

operation or independently embedded into separate operations. 

Life cycle of technology. As was noted in [12. ], a special case of 

resources is knowledge and technologies (technological knowledge as 

operational knowledge; see Fig. 2). 
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Fig. 2. Life cycle of technology as operational knowledge 

 

The life cycle of knowledge as an object is simple and includes three 

phases as follows:  

1. development/creation (an analog of the organization and design 

phase);  

2. productive use, with a possible return to the first phase (an analog 

of the technological phase, also called the implementation phase); 

3. an infinite existence in form of historical data, with a possible re-

turn to the second phase (the reflexion phase). 

If knowledge is used as an element of some technology (operational 

knowledge), then the life cycle of its pool (Fig. 2) is similar to the life 

cycle of a resource pool [12. ]. 

Technologies and hierarchical structure of CA. From the view-

point of the logical structure of CA, the relations of upper and lower 
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SEAs in terms of the subject matters and actors of their activity can be 

described by Table 2. 

Here the columns correspond to the upper (superior) SEAs while the 

rows to the lower (subordinate) ones. Each cell reflects the relation be-

tween upper and lower SEAs. The subject matter of lower SEAs can be 

any element of the upper SEA. In other words, lower SEAs may be 

organized for creating/executing/transforming a subject matter/result, 

technology or actor (OTS). 

As is well illustrated by Table 2, knowledge––technology descrip-

tion––represents a connecting link between the animate (staff/OTS) and 

inanimate (product/technological complex) elements and subject matters 

of activity. 

 

Table 2. Relations between subject matters and actors of SEAs 
 

 
Upper SEAs 

Material product Knowledge OTS 

Lo
w

er
 S

EA
s 

M
at

e
ri

al
 p

ro
d

-
u

ct
 Creating product 

components 

Creating products 
(equipment) for 

technology 

NO 
(indirectly through 

knowledge and 
technologies) 

K
n

o
w

le
d

ge
 

Creating techno-
logical process for 
product manufac-

ture 

Creating compo-
nents of technolog-

ical process 

Creating technolo-
gy of OTS function-

ing 

O
TS

  NO 
(indirectly through 

knowledge and 
technologies) 

Staff training for 
executing techno-

logical process 

Transforming OTS 
elements 

 

Complex activity has a logical structure: the goal of each SEA is de-

composed into the lower subgoals, which have cause-effect relations. The 

technology of CA determines the cause-effect relations between the goals 

of CA––the SEAs and elementary operations. For example, design, 

erection, maintenance and other works must be performed in a definite 

sequence for obtaining a required result. 
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Creative activity and technologies. Creative CA and creative SEAs 

are an activity that generates an a priori uncertain demand for the results 

of an a priori unknown activity whose technology has to be designed in 

the course of the former activity. In other words, the need for technology 

design is a criterion of activity’s creativeness. 

Creative activity (creative SEAs) is an activity with an incompletely 

defined (partially known) technology at the time of its beginning. There-

fore, the technology of creative activity is designed during its implemen-

tation. This technology is unknown due to the uncertain demand and/or a 

priori uncertain specification of its result. Creative activity produces a 

result that is not completely specified at the time of its beginning. For 

example, consider the activity of design and production managers, re-

searchers, the producers of movies and shows, the partners of law firms, 

etc. The actors of creative CA independently determine the structure and 

characteristics of complex result and hence the structure and technology 

of activity. In fact, they are the engineers of activity (as a system) and 

also the engineers of its result (as a system). A fundamental difference 

between the creative and replicative (and regular) CAs is that the for-

mer’s structure contains at least one fragment in which the subject matter 

of activity is the technology of another (lower) fragment of CA. This 

follows from the need for a new technology to be designed during activi-

ty implementation. 

Design of optimal technology. To a considerable degree, technolo-

gy design is a specific process. Therefore, it can be optimized only up to 

the development of several alternatives, with further choice of a best one. 

(Note that the number of such alternatives affects the computational 

complexity of this process.) In many cases, technology design is heuris-

tic, which requires the use of appropriate error estimation methods. Both 

aspects (complexity and errors) will be considered in Chapter 4 of the 

book. 

At the same time, technology design establishes some requirements 

to resources, which leads to several optimization problems as follows:  

- determining an optimal set of resource pools in accordance with the 

needs of technologies of different CA elements; 

- determining an optimal amount of each resource pool; 

- maintaining the characteristics of resources within given ranges in 

an optimal way during their life cycle. 

The design of new technologies includes (a) a general-system part 

(here, of secondary role) with the above-mentioned resource optimization 
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problems and (b) a specific part with the design of technologies of all 

elementary operations and also the logical and cause-effect structures. 

Due to these specifics the corresponding optimization problems cannot be 

formulated at the general-system level. However, for this part a series of 

general-system recommendations or requirements can be formulated, 

which will serve as bases for developing alternatives (and choosing a best 

one among them). 

First, all technologies can be divided into groups by their levels of 

maturity, testedness, suitability, or readiness. Different tools of organiza-

tion and management have to be used for the elements of CA whose 

technologies belong to different groups. In the most general case, there 

exist three groups of technologies as follows (in a certain sense, groups 1 

and 3 are polar). 

Group 1. Well-known technologies used without any modifications 

or with slight modifications not affecting the technological uncertainty. 

For example, the replication of a well-known component (assembly or 

end product) using a well-known technology on a new production site; 

the production of a well-known component using a well-known technolo-

gy with a small change of its dimensions. In these situations, the technol-

ogy of a new element of activity is a priori known and is actually copied. 

Group 3. Fundamentally new technologies with a considerable level 

of the technological uncertainty for which the possibility of successful 

implementation can be evaluated by subjective expertise only. For exam-

ple, the use of new processing principles for raw materials in manufactur-

ing; repair and maintenance works in uncertain conditions (the significant 

characteristics of an object that affect the repair and maintenance man-

hours and also the result of these works are a priori unknown and can be 

evaluated only in their course). In these situations, the technology of 

activity is designed during the activity itself. 

Group 2. The technologies not included in groups 1 and 3 cover all 

intermediate situations with a considerable a priori known part of tech-

nology. Technological uncertainty can be measurable or true, but without 

any considerable effect on the final result. 

Second, introduce the general-system bases that will be used in fur-

ther recommendations. Recall that some approaches to eliminate uncer-

tainty were considered in the book [12. ]. One of the important conclu-

sions established there is as follows. For the case of a true uncertainty 

with completely unknown characteristics of events, all or some compo-
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nents of the activity and/or environment turn out to be insufficiently 

studied. Therefore, in this case, activity represents the acquisition of new 

knowledge, causing modifications in its technology during implementa-

tion. 

Hence, a natural base for further recommendations is a more precise 

and detailed fixation of elements of activity with small level of uncertain-

ty. This allows us to specify the domain of uncertainty, the existing 

knowledge, and to get focused on the really uncertainty elements. Conse-

quently, the general-system recommendations have to deal with a more 

precise and detailed description of all elements of CA in terms of subject 

matter, actions, technologies and other bases as well as with the localiza-

tion of uncertainty or the extension of “the domain of certainty.” 

Thus, the following recommendations on the design of specific tech-

nologies can be suggested. 

a) Structure the subject matter of CA, with sufficient level of detail, 

for a more precise localization of its highly uncertain elements and, at the 

same time, identify its standard (typical) elements for which ready-made 

solutions can be adopted. For example, a key trend of modern production 

technologies is a wide use of purchased components for end products 

(about 65% cost of a modern car is accounted for standard parts). 

b) With sufficient level of detail, structure the technologies of CA. 

This recommendation has a close connection with recommendation a): 

separate the elements of activity that belong to different groups 1–3 and 

apply different approaches to them in order to improve the efficiency of 

activity. In practice, this recommendation covers the detailed specifica-

tion of technological operations and also planning. 

c) Develop and study alternatives, for the technology of activity and 

also for its subject matter and elements. The development of several 

alternatives under high uncertainty is equivalent to the formation and 

testing of several hypotheses about an a priori unknown object, which 

increases the amount of knowledge about it. 

d) Employ the scenario approach for prediction. Different scenarios 

of possible events development also increase the amount of knowledge 

(although, subjective) about the uncertain future. This knowledge can be 

used for technology design. For example, the development strategy of a 

retail bank (a special case of CA technology) is designed using some 

long-term forecasts––scenarios––for the dynamics of financial and stock 

exchange markets, even despite the subjectivism of such an approach. 
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e) Stipulate for the intermediate and preliminary actions on integrat-

ing the elements of the subject matter and technology into a unified 

system. The uncertainty in any complex system is directly connected with 

complexity and emergence, which often causes considerable problems 

during system integration. For example, the design of a new model of a 

modern aircraft or car includes the design of very many heterogeneous 

systems, assemblies and units. Due to their different character, the com-

ponents of a product are designed by separate groups of engineers, often 

from different firms (or even countries). In this case, the integration of an 

end product becomes a complex process consisting of several intermedi-

ate stages. 

f) Stipulate for the additional actions on refining the needs, i.e., mak-

ing a more precise specification of the desired characteristics of the 

subject matter. The complexity, emergence and uncertainty of the subject 

matter and goal of CA as a complex system induce incomplete 

knowledge on the needs at the early stages of CA. In other words, a 

natural situation is when the actor and also all external users of the CA 

result (customers) have inaccurate estimations of its goals––the target 

values for the characteristics of the CA subject matter. Therefore, in the 

recent decades the traditional customer feedback methods of needs re-

finement have been supplemented with special management tools used in 

uncertain needs conditions, such as Agile and SCRUM. 

g) Stipulate for intermediate checks of activity––the evolution of the 

subject matter’s characteristics––for an early identification of any their 

deviations from the required dynamics. In the modern project and pro-

gram management, product life cycles management, a common principle 

is to plan and perform intermediate tests called the checkpoints, mile-

stones or gates of decision-making. Each test is a priori specified by 

several groups of rules. First, the matter concerns the rules determining 

the times of tests. They can be associated with the execution times of 

separate tasks (e.g., 10 days after the beginning of works), stages or even 

steps of activity; an alternative approach is to determine the times of tests 

depending on the evolution of the subject matter’s characteristics. The 

second group of rules specifies a set of the subject matter’s characteristics 

and their combinations to be tested. The third group describes all neces-

sary actions to be performed after each test depending on its results. 

h) Stipulate for a checking procedure for the CA technology rather 

than for its result. Such a procedure can be used (1) to identify incipient 

problems as soon as possible and (2) to reveal the manifestations of 
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problems––any deviations of the subject matter’s characteristics from the 

required dynamics––and also their causes dictated by the technology. In 

the recent decades, this approach has become widespread in practical 

activity: different quality standards (e.g., ISO9000) and production ma-

turity models (e.g., CMMI) are being intensively used now. 

i) Stipulate for a checking procedure for the implementation of activ-

ity by lower actors. This recommendation is connected with recommen-

dation h), also guaranteeing an early identification of problems before the 

CA results of lower actors are submitted to customers. This procedure 

involves the checks of intermediate results and, in the first place, the CA 

technologies of lower actors. In practice, large companies and govern-

ment authorities require that their suppliers (lower actors) undergo an 

independent quality certification. 

The above recommendations lead to more precise estimations of the 

complexity and resources required for the elements of activity, which is 

achieved by decomposing the activity and its subject matter into detailed 

elements. As a result, the resource intensity of the activity can be reduced 

using the differentiated optimization of all necessary resources of the 

activity elements with different level of uncertainty, including the aug-

mentation of regular activity elements––the tested technologies and also 

the verified results of activity. Additional tests and intermediate integra-

tion can be used to identify problems at earlier stages (thereby avoiding 

potential losses due to unreasonable actions) and to choose an alternative 

path of activity implementation. 

Of course, any of these recommendations imposes extra cost to 

maintain additional elements of organization and management. Therefore, 

they should be followed mostly during the design of fundamentally new 

technologies (group 3) rather than during the use of well-known technol-

ogies (group 1). 

Management of CA technology. Two important types of activity––

management and organization––were considered in detail in the book 

[12. ]. The components of organization (analysis, synthesis and concreti-

zation) as well as the components of management (organization, regula-

tion and reflection) were described. As was demonstrated there, the 

subject matter of organization and management for CA is the aggregate 

of complex activity itself and the actor implementing the latter (OTS). 

In the book [12. ], the general management problems of OTSs were 

studied in the context of coordinating the interconnected life cycles of the 

corresponding structural elements of activity. It was shown that an OTS is 



23 

managed through a coordinated control of all interconnected life cycles 

of the structural elements of the CA implemented by this OTS. The tools 

for solving the OTS management problem were defined as the following 

components of management: synthesis (technology components man-

agement based on information models; resources pools management) and 

concretization (network planning and scheduling, resource allocation; 

interests coordination for different actors). It was discovered that the OTS 

management problem has to be solved by eliminating measurable uncer-

tainties (more specifically, by considering different response scenarios 

for them) and also by performing multiple iterations of the sequential 

solution procedure if necessary due to a possible occurrence of the true-

uncertainty events during the life cycles of all CA elements. 

Managing the technology of CA is a complex activity towards creat-

ing the information models of its components (including resources) and 

maintaining them in actual state through modernizations. 

 

1.2. Technological adaptivity, cyclicity and regularity of activity of 

modern enterprises 

 

The modern stage of global economy development is remarkable for 

several trends determining some peculiarities of the firms, governmental 

agencies and other actors of the international economic system, in partic-

ular, their activity. Consider these trends and also the associated peculiar-

ities of the modern enterprises and their complex activity. 

Social digitization and the development of new approaches to organ-

ize and manage the economy (networked, extended and virtual enterpris-

es, global and service-based production, the Internet of Things, to name a 

few; for example, the new technologies of management were surveyed in 

[66. ]) have resulted in deep integration of different enterprises and their 

activities. Really, it is not enough to connect different sensors, executing 

devices and controllers of machining centers or automatic warehouse 

complexes, to integrate automatic control systems with computer-aided 

manufacturing systems at the level of shop floors or the entire enterprise. 

Integration has become global, and presently a common form of organi-

zation is the so-called extended enterprises, i.e., the sets of enterprises 

and firms united by the same technological processes and relations with-

out legal or financial integration. For the extended enterprises, a major 

role is played by their technological relations rather than by their pattern 

of ownership, organizational structure or stock capital. 
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In management, the ideas of changing organizational paradigms, re-

placing the rigid managerial organizational structures with the platforms 

and functional houses [23. ] (the pools of homogeneous resources) and 

also increasing the flexibility and speed of response to the varying envi-

ronment are becoming more and more popular. This means that manage-

rial relations are gradually transferred from the rigid organizational 

structures to the flexible technological relations. 

An example of extended enterprises is Boeing Civil Aviation, a 

company that manufactures the Boeing 787 Dreamliner. About 60% 

components of this commercial aircraft are supplied by nearly 20 000 

subcontractors around the world (Japan, Italy…), which are operating in 

an integrated technological chain determined by the parent company. 

In different fields of practical activity, e.g., manufacturing and con-

trol of organizational and technical systems (firms, organizations, pro-

jects), the concept of life cycles (LCs) has become widespread recently. 

Following the definition given in [36. ], a life cycle will be understood as 

the evolution process of a system, product, service or another object, 

from its origin (or design concept) to utilization (or disappearance). 

The life cycle is often treated as a set of stages (perhaps, parallel or 

overlapping with each other in time). In [36. ], the general LC stages of a 

complex artificial system were identified as follows: concept, design, 

production/development, application, maintenance and utilization. The 

concept of LC is widely used for organizations, businesses, project pro-

grams, employees, production assets, technologies and knowledge. 

Natural cycles are connected, e.g., with the multiple repetition of 

 a typical operation; 

 a production process for a component or a service procedure; 

 a working shift or working day; 

 an accounting or schedule period. 

These examples point to the existence of CA cycles and their hetero-

geneous lengths. Some cycles are parts of the other, thereby forming 

complex hierarchies. Consider a general diagram of CA cyclicity present-

ed in Fig. 3. 
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Fig. 3. Multiple cycles of CA 
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Another relevant trend [66. ] consists in announcing a series of na-

tional programs (e.g., Industry 4.0 in Germany and Smart Manufacturing 

in the USA) towards the development of industrial enterprises that will be 

capable to combine 

 the high efficiency of large-scale productions with the high 

personalization of job-order or even artisan productions; 

 the fast and efficient design or modernization of technolo-

gies with the regular and standard computer-aided, digital-

ized and robotized productions. 

Also note the fast varying political, economic, social and technologi-

cal environments of the enterprises as well as the dynamics of the de-

mands for their products and services. 

Therefore, today the global economy represents a set of different-

scale enterprises, which come into existence, implement the life cycles of 

their complex activities and disappear; have complex relations with each 

other; form new complex structures and become their elements. Hereinaf-

ter, such enterprises will be described by the term adaptive extended 

enterprises (AEEs). An AEE is an extended enterprise (a special case of 

organizational and technical systems) that is operating under dynamic 

uncertainty and has high adaptivity of their activity at the level of tech-

nology design and modification. (In other words, an AEE is capable to 

combine the fast and efficient design or modernization of technologies 

with the regular and standard computer-aided, digitalized and robotized 

operational activities. This property of AEEs will be called technological 

adaptivity. 

Increasing the efficiency of modern enterprises and their activity is 

an issue that deserves special consideration. 

The efficiency of CA is mostly determined by its technology and also 

depends on the realized uncertainty [12. ]. Hence, the main methods to 

increase the efficiency of modern enterprises are the improvement of 

technologies and the reduction of uncertainty. They are implemented 

through the maximum possible ordering and regulation of activity. The 

reengineering of business processes, quality control based on the 

ISO9000 standards, the LEAN methods and similar ones have become 

widespread here. The improvement and regulation efforts are focused not 

only on the process flowcharts of key productions but also on the value 

streams of other lines of activities such as logistics, infrastructure, fi-

nance, staff, etc. A conventional approach is to use information enterprise 

resource planning (ERP) systems for detailed planning. As a matter of 
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fact, the majority of enterprises (in Russia and all over the world) are 

using different ERP systems. In the terminology of [12. ], these trends 

mean that most elements of the routine activity of modern enterprises are 

regular, i.e., a total “regularization” of AEEs activities can be observed. 

A common feature of the activity of modern enterprises concerns 

continuous improvements. In this context, note several well-known and 

popular approaches like TQM, the Toyota Production System (TPS), Six 

Sigma and 7S Framework McKinsey. The main ideas of these approaches 

are as follows: (1) involving the entire staff into the improvement of all 

enterprise’s activities; (2) perform continuous improvements during the 

routine operation of an enterprise. In other words, at the reflexive phase 

of the CA life cycle, the efficiency of an enterprise is deeply analyzed; at 

the design phase, the CA technology is improved and the modified tech-

nology is used at the next cycle. This is implemented during the routine 

operation of AEEs. Interestingly, the technology remains invariable 

during each implementation phase, which allows performing the regular 

activity. 

Thus, AEEs combine the frequent technological chang-

es/improvements at the design phase with the use of the regular and 

invariable technologies at the implementation phase. Fig. 3 well illus-

trates this peculiarity, also emphasizing the simultaneous character of the 

managerial activities of the actor: the technological chang-

es/improvements (level 1 in Fig. 3) run in parallel with CA implementa-

tion (level 2), together with uncertainty checking and response generation 

(level 0). Recall that this peculiarity follows from the continuous im-

provement of efficiency in combination with the technological adaptivity 

of AEEs. 

 

1.3. Model of complex activity of adaptive extended enterprises 

 

Now, introduce a formal description for the life cycle of the activity 

of an adaptive extended enterprise with the above-mentioned peculiari-

ties. Further considerations will be based on the process model of an 

SEA––the life cycle model of CA suggested in the book [12. ]. This 

model includes three phases of CA, namely, design, implementation and 

reflection. Also the detailed structure of the managerial activities of the 

actor during the entire life cycle of CA will be used, as is illustrated in 

Fig. 4. 
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Fig. 4. Detailed structure of management components 

 

Consider the life cycle model of the CA of an AEE––the process 

model––in the BPMN format
8
 [18. ]; see Fig. 5. 

                                           
8
 The BPMN format uses the following notations: rounded rectangles as opera-

tions or actions; arrows as control flows––the sequences of transitions between 
actions; circles as different events (thin boundary––initial event; thick boundary–
–terminal event; double boundary––event of uncertainty occurring during action 
implementation); diamonds as control points––branching and merging of control 
flows, including parallel execution and conditions checking.  
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Fig. 5. Life cycle model of CA of AEE 
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The design phase is intended to develop a technology and an AEE it-

self. At this stage, the actor’s activities [12. ] are the components of 

organization as follows: 

 analysis (1––establishing demand, analyzing capabilities, ex-

ternal conditions and previous activity); 

 synthesis (2––managing technology components based on in-

formation models: creating the logical, cause-effect and pro-

cess models as well as the technologies of lower elements 

and maintaining them in actual state through modernizations; 

3––managing resources pools: assigning and modernizing re-

sources); 

 concretization (4––network planning and scheduling, allocat-

ing resources; 5––coordinating the interests of different ac-

tors). 

A newly created technology is used for CA at the implementation 

phase. The actor performs regulation (6) and also executes the actions 

(7). The life cycle of CA ends with the reflection phase, at which the 

results of CA are evaluated (8). 

Recall that the activity of an AEE is cyclic, and this property implies 

the following. Once establishing the demand in the course of analysis (1) 

and creating the technology components (2), during the implementation 

phase the actor repeatedly executes the activity in some cycle, which will 

be called productive. Accordingly, the activities that represent this cycle 

will be called productive activities; e.g., see activities 3–8 inside the grey 

rectangle in Fig. 5). 

Recall that an AEE is technologically adaptive, and this property 

implies the following. The CA technology of an AEE undergoes periodic 

modifications or modernization (2); clearly, modernization (2) is preced-

ed by the evaluation of the past activity (8). 

Recall that an AEE is operating continuously, performing CA in cy-

cles, and this property implies the following. Uncertainty checking, 

reflection and technology modernization are performed in parallel to CA 

implementation, as is shown in Fig. 3. That is, during a definite produc-

tive cycle the CA performed at the previous cycle is reflected and its 

technology is modernized. The improved technology will be used at the 

next productive cycle. 

Recall that the activity of an AEE is regular, and this property im-

plies the following. The technology of CA elements remains invariable 

during the productive cycle in which they are implemented; their tech-
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nology is modified or modernized only during one of the preceding 

cycles (the technologies of the productive activities 3–8 are fixed during 

their execution). 

Recall that the CA of an AEE is uncertain, and this property implies 

the following. The events of measurable and true uncertainty may occur 

during the implementation of life cycles. The possible occurrence of 

measurable uncertainty must be considered during technology compo-

nents design; hence, such events do not violate the implementation of the 

life cycle of CA, which corresponds to the repeated execution of the 

productive activities (3–8 between points b and c). On the contrary, the 

events of true uncertainty generate conditions under which the technology 

becomes inadequate. As a result, the technology must be modernized; see 

the transition to point a and the execution of activity (2)––technology 

components management––in Fig. 5. 

 

1.4. Management of technology components based on information 

models 

 

The list of all technology components of complex activity follows 

from the system of descriptive models suggested in [12. ]. Actually, the 

technology components of each SEA [12. ] are: 

 the logical, cause-effect (causal) and process models; 

 the technologies of lower elements
9
; 

 the technologies of SEAs; 

 the technologies of elementary operations. 

Because the technology of an SEA includes the technologies of all 

lower SEAs in accordance with the logical structure, the technology is 

fractal, like the complex activity itself. Hence, the management of tech-

nology components also has fractal organization: this activity is imple-

mented through iterative self-addressing (Fig. 6). 

 

                                           
9
 The particular cases of the lower CA elements are managerial activities––

resources pools management, network planning and scheduling, interests coordi-
nation for different actors, regulation and evaluation (reflexion). 
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Fig. 6. Management of technology components: 

logical structure of activity 

 

The technological structure of an SEA consists of the logical, cause-

effect and process models and also the relations and design sequences of 

the technologies of all its lower elements. Accordingly, managing the 

technological structure means creating and maintaining this structure in 

an adequate state depending on the environment. 

The elements of “Managing technology components” are decom-

posed into the lower-level elements and form a fractal hierarchy. The 

elements of the “Managing technological structure” and “Managing 

technology of elementary operations” blocks depend on the specifics of a 

given subject matter and also on the peculiarities of a given activity. They 

do not need further specification (a more detailed description) at the 

system level. The technologies of elementary operations and the techno-

logical structure can be therefore united and called the elementary tech-

nology components (ETCs). Following this approach, the other technolo-

gy components will be called the complex technology components 

(CTCs). 

Consider a management model for the ETCs starting from their crea-

tion. The creation of the ETCs is heuristic; generally speaking, this 

process cannot be described in detail or formalized (of course, if the 

matter concerns the creation of a new technology rather than the redesign 

of a partially or completely known technology). Therefore, it can be 

represented by a single element––an elementary operation (the structur-

ing of heuristics makes no sense). However, the life cycle of any activity 

includes the reflection phase and the creation of the ETCs is not an ex-

ception here: the adequacy of each ETC has to be evaluated for different 
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states of the environment. Also note that the heuristic is preceded by the 

actor’s decision to perform activity. 

Thus, the life cycle of designing the technology of the ETCs as an 

activity can be described by the process model in Fig. 7. It includes three 

main phases as follows: 

1. the analysis phase (the actor decides to implement activity);  

2. the heuristic phase (the actor generates a heuristic––a draft ETC–

–also called an alternative); 

3. the reflection phase (the actor tests whether the alternative com-

plies with the goal–requirements–demand chain. If not, the actor 

returns to phase 2, repeating it until an adequate alternative is ob-

tained). 

Adequacy tests can be performed in the form of mental experiments; 

model experiments with mathematical, computer or physical models; 

natural experiments. In the general case, we may assume that adequacy 

tests are multiple repeated and each test is used for evaluating the ade-

quacy of an ETC for one state of the environment that occurs during this 

test. The reflection phase ends as soon as a maturity measure of tests 

(e.g., the share or number of possible states of the environment for which 

the testing procedure is complete) reaches a given threshold. 

Now, generalize this process model to the case of managing the 

complex technology components. Generally, this is the technology of an 

SEA (Fig. 8). 
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Fig. 8. Process model of managing technology components 
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The analysis (1) and reflection (3) phases will have the same form as 

in the case of managing the ETCs, as there are no grounds for the oppo-

site. 

As indicated by the complete list of all technology components (see 

the analysis in the beginning of this section), the heuristic phase will 

represent a certain sequential-parallel combination
10

 (2) whose nodes are 

the activity elements on managing an ETC (a) or the technology of an 

SEA (b). The staff and structure of this combination depend on the spe-

cifics of the subject matter. Hence, any other rules cannot be established 

or used at the general-system level. 

Thus, the activity on managing the technology components is re-

flected by the process model; see Fig. 8 for the general case and Fig. 7 for 

a special case of ETCs. 

This managerial activity includes not only the creation of the tech-

nology components but also their maintenance in an adequate state during 

use. Therefore, the management problem can be formalized within a 

model that well describes both processes––the creation and use of a 

technology. This model (Fig. 9) actually integrates the life cycle model of 

the CA of AEEs (Fig. 5) with the process model of technology compo-

nents management (Fig. 7 and Fig. 8). 

                                           
10

 The staff and relations of nodes in structure (2) are somewhat conditional. 
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Fig. 9. Integrated model of technology component management 
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The integrated model illustrates the main feature of the technology 

component management process––multiple cyclicity. In the course of 

technology creation or modernization, direct synthesis (2) is followed by 

multiple tests (3) of the synthesized technology. If a test fails, the process 

returns to the synthesis stage (from d to а). As soon as all tests are suc-

cessfully completed, the technology is repeatedly used within the produc-

tive cycle (4, b → c → b → …). Under varying environment (e.g., de-

mand), the technology becomes inadequate and hence has to be 

modernized; see return from c to a. All these cycles together form the life 

cycle of a corresponding element of complex activity.  

As a result, the management problem of CA technology consists in 

the management of the multiple interconnected cycles within the integrat-

ed model in Fig. 9. 

 

1.5. An overview of well-known models and methods 

 

Formally speaking, the management process of technology compo-

nents is the sequential repetition of cycles within the integrated model 

(Fig. 9); see the details in the previous subsections of this chapter. Such 

problems arise in many fields of knowledge (e.g., complex systems 

testing, software analysis and testing), and each field suggests specific 

solutions. Consider a series of well-known models and methods for 

solving them: 

 complex systems analysis––testing and verification of char-

acteristics [33. ]; 

 software testing [1. , 2. , 4. , 13. , 39. , 58. , 80. ]; 

 knowledge management and elicitation/acquisition [57. , 70. , 

78. ]; 

 large-scale manufacturing and its efficiency improvement 

during adoption [20. , 32. , 79. ]; 

 learning in pedagogics, psychology, human and zoophysiolo-

gy [19. , 40. , 73. , 74. ] and machine learning [71. ]; 

 knowledge testing for trainees in pedagogics [76. ]. 

Like technology design, all these problems have uncertainty and are 

often described using probabilistic models and/or the framework of 

random processes. 

The testing procedure of complex systems (in particular, aircraft 

complexes) is represented as a hierarchical structure in which nodes 
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describe the tests of elements, units and systems. The efficiency of prod-

uct’s components is assumed to have an exponential (or logistic) depend-

ence on the duration of tests; as a rule, the rate of growth of this efficien-

cy is assumed to be proportional to the unreliability detected at a current 

time. The expected test times required for reaching a given efficiency 

level and also the corresponding cost are calculated at each level of the 

hierarchy. The total expected test time of a system (product) is the sum of 

the expected test times at each level of the hierarchy. Actually, the as-

sumption that the efficiency of the system’s components depends on the 

duration of tests is not completely justified while the integration of the 

components’ tests as the sum of their expected test times seems a strong 

simplification (although this general scheme can be taken as a basis for 

further development and correction). The optimization problem of the 

testing procedure is written using the well-known approximations of the 

random functions in terms of their means and variances. The testing 

problems of different products and mathematical models are often posed 

as the problems of hypotheses verification and experiment planning. 

Model checking and its modification––statistical model checking––

are popular methods to test complex systems and complex software [1. , 

33. ]. These methods are used for complex systems with a finite set of 

states and quantitative properties specified by logical expressions. Such 

an approach allows measuring the correspondence between system prop-

erties and their required values. A stochastic system is tested by verifying 

the hypothesis that its properties satisfy given requirements. The logical 

descriptions of the system can be used to integrate elementary tests into 

complex ones. General testing approaches were presented in many classi-

cal works; for example, see the Guide to the Software Engineering Body 

of Knowledge (SWEBOK), version 3.0, in [13. ]. 

Another popular software testing method is regression testing and its 

numerous variations [2. ]. Regression testing is intended to verify ex-

ploited software and to prove its quality after changes and moderniza-

tions. The collections of tests are gradually growing in size following the 

rapid development of software, which makes the execution of all tests for 

each change very costly. Regression testing includes such techniques as 

the minimization, selection and prioritization of tests, which are imple-

mented as formal procedures. Minimizing the collection of tests, a soft-

ware engineer eliminates all redundant test examples. Selecting test 

examples, a software engineer activates the tests directly connected with 
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the last changes. Prioritizing test examples, a software engineer adjusts a 

sequence of tests so that the errors can be detected as fast as possible. 

Among other common methods, note model-based testing, different 

sequential testing procedures and sequential analysis procedures [67. ], 

simulation modeling [45. ], special testing methods for cyber-physical 

systems [4. ], etc. 

In the paper [45. ], the coordinated planning problem for a group of 

autonomous agents (mobile robots) on a pendulum plane was considered. 

The goal of the group was to stabilize the plane. This problem was solved 

using an original collective learning procedure with the cyclic generation 

of learning signals and the statistical reinforcement of “the skills.” 

Today, there exist many descriptive models for the process of 

knowledge elicitation/acquisition; all of them are implementing sequen-

tial processes to analyze the subject matter and improve the models. 

Consider several examples as follows. In [78. ], a general decision sup-

port algorithm based on the analysis of large mixed data was suggested. 

As was claimed in [57. , 70. ], the stochastic and deterministic knowledge 

are supplementing and improving each other; a stochastic model of 

acquired knowledge based on the diffusion approximation was also 

introduced. The paper [57. ] was dedicated to the optimal Bayesian 

agent––an algorithm that describes the process of knowledge elicitation 

in the course of sequential observations of a stochastic environment with 

a denumerable set of states. The algorithm rested on Solomonoff’s theory 

of inductive inference. 

In [19. ], the generalization methods of knowledge acquired from 

empirical observations were considered. Knowledge was synthesized by a 

clustering algorithm using the identification of statistically significant 

events. The algorithm with a probabilistic information measure per-

formed the grouping of ordered and unordered discrete data in two phases 

as follows. During cluster initiation, the distribution of the distances 

between nearest neighbors was analyzed to choose a proper clustering 

criterion for the samples. During cluster refinement, the clusters were 

regrouped using the events covering method, which identified the subsets 

of statistically significant events. 

The potential improvement of manufacturing efficiency as the result 

of technology adoption had been discussed by economists since the early 

development of machines in the 19th century but the per-unit cost reduc-

tion effect for large production outputs was first described by Wright as 

far back as in 1936; see [79. ]. Wright’s approach postulated the exponen-
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tial model of the learning curve, also known as Wright’s curve in man-

agement and economics. Wright’s model was generalized by Henderson 

(Boston Consulting Group) in his paper [32. ]. During the research per-

formed by Boston Consulting Group in the 1970s, the specific cost reduc-

tion effects were identified for different industrial sectors; they varied 

from 10 to 25% under double output increase. 

Recall that learning is the process and result of acquiring an individ-

ual experience. In pedagogics, psychology, human and zoophysiology, 

iterative learning models [55. ] describe the process of learning in which 

a learned system (can be living, technical or cybernetic) is repeating some 

actions, trials, attempts, etc. over and over again for achieving a fixed 

goal under constant external conditions. In [55. ], tens of the well-known 

and widespread iterative learning models were surveyed and a general 

model combining the properties of separate models was formulated. Both 

the separate and general learning models have restrictions as follows. 

First, they postulate certain learning laws. Second, they do not provide 

for proper integration processes of partial learning elements into a com-

plex learning system. 

In pedagogical measurements, the methods of item response theory 

[76. ] have become very popular in recent time. This theory is intended 

for evaluating the latent (unobservable) parameters of respondents and 

test items using statistical measurement models. In item response theory, 

the relation between the values of the latent variables and the observable 

test results is defined as the conditional probability of correct answers to 

the test items by the respondents. The conditional probability is given by 

the logistic curve or the Gaussian probability distribution. The most 

widespread models of this class are the Rush and Birnbaum models, 

which use the specific values of the coefficients of the logistic curve. 

Summarizing this short overview of the well-known results, we em-

phasize that the models mentioned are actually some elements of a cycle 

of the integrated model in relatively simple form: (1) without the itera-

tiveness and fractality of such cycles; (2) with the postulated character of 

the basic laws (e.g., the exponential or logistic relation between the 

efficiency of the product’s components and the duration of tests; the 

exponential or logistic relation between the learning level and time). 

Generally speaking, the basic laws are a consequence of more sophisti-

cated processes, which have to be analyzed and modeled. At the same 

time, the results of the book [12. ] have been adopted to study the peculi-

arities of this cycle and reflect them by the general-system integrated 
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model (Fig. 9). Consequently, this model further generalizes, specifies 

and refines the well-known models. 

Using the framework of the integrated model (Fig. 9), we will for-

mulate some optimization problems for the management process of CA 

technology components. 

 

1.6. Management problems for technology components 

 

In the life cycle of complex activity (Fig. 9), the design and use of its 

technology is a process that includes the creation of elementary technolo-

gy components (ETCs) and also their integration into the complex tech-

nology of CA. First of all, management problems have to be solved for 

the ETCs; then, based on these solutions, the ETCs have to be integrated 

into the complex technology components (CTCs), the entire complex 

technology, and its management. 

Management problems for elementary technology components. 

The integrated model (Fig. 9) describes a cyclic repetition of tests for the 

ETCs, during the preliminary testing (block 3 in Fig. 9) and also during 

the life cycle implementation (block 4 in Fig. 9). Hence, a natural ap-

proach is to treat the creation of the ETCs as a discrete process, assuming 

that at each time (one preliminary test or one life cycle) the environment 

takes precisely one state from the set of possible states of the environment 

(SPSE). For solving this problem, suppose the SPSE can be partitioned 

into a certain number of non-intersecting subsets so that all states of the 

environment belonging to the same subset are indistinguishable. There-

fore, let the SPSE be finite and also let the environment take precisely 

one state from the SPSE at each time. 

If at some time the environment evolves to a new state never ob-

served before, then an event of uncertainty occurs. This event leads to 

additional cost for creating or adapting the ETCs to the new conditions. If 

the environment returns in this state at one of the subsequent times, then 

no additional cost is required. 

Then the design process of the ETCs is completely characterized by 

the dynamics of the states of the environment: which values from the 

SPSE the environment has already taken (and how many times) and 

which has not. Introduce the maturity level of a technology, which de-

scribes its preparedness for use. (This is an analog of the learning level; 

the sequence of values of the learning level is called the learning curve). 

Define the maturity level of a technology as the share of the states of the 
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environment for which the technology has been tested or adapted during 

the past times, or the probability that at the next time the environment 

will take one of its previous states. 
A natural formulation of the management problem is to reach a re-

quired learning level (a required maturity level of the technology) as fast 

as possible or using as few resources as possible. Thus, the optimized 

and/or restricting parameters can be the consumption of resources or 

time. 

In the general case, the technology management process can be op-

timized by: 

 partitioning all states of the environment into non-

intersecting subsets so that the states from each subset are 

equivalent; 

 choosing a sequence of the exhaustive search of all states of 

the environment for testing; 

 redistributing these tests between the design level of the 

ETCs (block 2 in Fig. 9) and the level of the SEAs after the 

integration of the ETCs (block 3); 

 allocating limited resources among separate ETCs, with or 

without considering the ETC design process (its beginning 

and duration); 

 determining an admissible amount of attracted resources (in 

terms of risk) for supporting all ETCs. 

The heuristic operations of technology design (block 2 in Fig. 9) and 

technology testing (block 3) are specifics and hence cannot be managed 

or optimized at the general-system level. Therefore, the heuristic opera-

tions will be assumed to have known execution times and resource con-

sumptions (in a special case, random variables with given distributions). 

In addition, these operations will be assumed independent of each other 

so that their connections are implemented through given cause-effect 

(causal) relations between the design processes of separate technology 

elements; the list of the CA elements and the logical and cause-effect 

models will be assumed fixed. 

The actor’s knowledge about the environment and his/her capabili-

ties to influence the latter can be characterized by different factors (see 

Table 3) depending on the CA specifics. 

If the actor knows the list of all possible states of the environment 

and can choose a next state (row 1 in Table 3), the design problem be-
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comes trivial: the actor simply rearranges the states in the descending 

order of their probabilities, sequentially choosing them until a required 

maturity (learning) level is reached. This algorithm will minimize the 

time and cost of reaching the required learning level. 

The setup in which the actor does not know the states of the envi-

ronment but can choose them at his/her own will (row 2 in Table 3) is 

inconsistent. 

 

Table 3. Possible setups of technology design problem 
Actor knows the 
list of all possible 
states of environ-

ment and their 
probabilities 

Actor can manage 
the choice of 
environment 

states 

The list of all possible states of 
environment and their probabil-

ities 

are fixed may vary 

Yes 
Yes 

Trivial problem 

No Setup is inconsistent 

Yes 
No 

Problem 1 Problem 3 

No Problem 2 Problem 4 

 

The other setups are consistent and lead to Problems 1–4; see Table 

3. In all of them, a next state of the environment is uncertain and does not 

depend on the actor. 

If the environment uncertainty is true (i.e., the actor has no grounds 

to describe the environment by some laws and/or restrictions), the prob-

lem becomes degenerate. 

In the case of measurable uncertainty, the actor can use stochastic, 

fuzzy, interval or some other models of the environment to eliminate the 

uncertainty. 

Problem 1 (the actor knows the list and probabilities of all possible 

states of the environment) surely arises and is basic in the following 

sense: the actor performs an initial synthesis of the CA technology using 

a list of all states of the environment defined by the demand for the CA 

result; the testing process (block 3 in Fig. 7, Fig. 8 and Fig. 9) corre-

sponds to Problem 1. The basic problem can be formulated as follows: 
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calculate the maturity level curve of the technology and then optimize in 

terms of time and available resources. 

In a similar way, Problem 4 arises during a continuous repeated use 

of the technology due to the natural variability of the environment. This 

setup corresponds to the implementation of the productive activities 

(block 4 in Fig. 9). A reasonable formulation of Problem 4 is to optimize 

the decision procedure on the identification of any changes in the envi-

ronment’s behavior and the adaptation/modernization of a technology 

component if necessary. 

Problems 2 and 3 have intermediate character. They arise (or not) 

depending on the specifics of the subject matter. Formally speaking, both 

problems are variations of Problem 4. 

Management problems for complex technology components. 

Complex technology components (CTCs) are formed by integrating 

elementary technology components (ETCs). Therefore, the integration 

process of the ETCs into the CTTs. This process is implemented in 

accordance with the logical and cause-effect structures of CA [12. ]. 

The logical structure of CA [12. ] is defined as a finite acyclic graph 

that describes (a) the goals structure of all CA elements and (b) the fact 

that each SEA (and the entire CA, as a special case) is decomposed into a 

finite number of lower SEAs and elementary operations. In addition to 

the goals structure, the logical structure also represents a “managerial” 

hierarchy for the subordinance and responsibility of the actors of all 

SEAs for their results (the achievement of goals). The logical structure of 

each separate SEA has a single level, actually reflecting the subgoals of 

all lower CA elements. Hence, at the general-system level the logical 

models of any SEAs are equivalent: the logical model of a CA element of 

an AEE has the fan structure, like the logical model of any SEA. 

The cause-effect model of an SEA [12. ] describes the technological 

relations between the lower CA elements, thereby determining the order 

of goals achievement for each CA element. This model is a cause-effect 

structure defined on the goals set. The structure can be described by a 

directed graph in which the nodes reflect the goals of all CA elements (or 

the elements themselves) while the arcs their cause-effect relations. The 

graph has several properties dictated by its interpretation (the nodes are 

the goals of the CA elements organized by a lower SEA) as follows. 

 The graph contains a unique terminal node corresponding to 

the final goal of all CA elements. 
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 The graph is connected, since any subgoals that are not nec-

essary for achieving the final goal become unreasonable. 

 The graph includes no cycles, since the decomposition of the 

goals into subgoals implies that any subgoal is achieved 

once. If a certain subgoal must be achieved a finite number 

of times, then it has to be reflected as several subgoals. 

(Note that the decomposition of a goal into an infinite num-

ber of subgoals makes no sense.) 

 The graph nodes have correct numbering (i.e., there are no 

arcs coming from a node with a greater number to a node 

with a smaller number). The correct numbering of the graph 

nodes reflects the prior beliefs about the cause-effect rela-

tions of the results obtained by the lower activity elements. 

Such a graph will be called a binary network: any element of this 

network is characterized by its binary result––the goal is achieved or not. 

If the goal of a CA element is achieved, then the result can be used by 

other CA elements. If not, the result is inapplicable for other CA ele-

ments. 

Also a binary network defines the preconditions to implement the 

CA elements––the logical functions whose arguments are the results of 

the immediate predecessor nodes. The simplest examples of the precondi-

tion functions are logical conjunction (an element is executed only after 

achieving the results of all its immediate predecessors) and disjunction 

(an element is executed after achieving the result of at least one of its 

immediate predecessors). 

Due to the properties of a binary network, it is necessary and suffi-

cient to consider the following integration processes for technology 

components: (a) sequential integration; (b) parallel conjunctive integra-

tion; (c) parallel disjunctive integration. For each integration process, the 

maturity level of a complex technology component has to be optimized in 

terms of time and resources. 

 

In this chapter, the management problems of the complex activity 

technology of organizational and technical systems have been described 

in the form of the algorithmic models and problems of technology com-

ponents management. This theoretical formalization can be used for 

developing the mathematical models of the design and adoption of com-

plex technology components of complex organizational and technical 

systems. Such models will be described in Chapter 2 of the book. 
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2. MODELS OF TECHNOLOGY DESIGN AND ADOPTION  
 

The management problem of the CA technology of OTSs has been 

considered and formalized in Chapter 1 (also see [12. ]). More specifical-

ly, the most important peculiarities of the CA of OTSs have been ana-

lyzed and also formal models and a mathematical setup of this manage-

ment problem have been presented. 

In this chapter, the design and/or adoption problem of CA technolo-

gy is formalized as a mathematical model that generalizes some probabil-

istic models of learning. The properties and characteristics of the model 

are studied and expressed in analytical form; some integration processes 

for technology elements are suggested. As is demonstrated below, special 

cases of the model include the well-known exponential, hyperbolic and 

logistic learning curves from the classical theory of learning as well as 

the models of learning-by-doing and collective learning. 

This chapter is organized as follows. In Section 2.1, using the results 

of Chapter 1 the general-system problems of CA technology design, 

adoption, optimization and modernization are examined and the corre-

sponding mathematical problems are formulated. In Section 2.2, the 

properties of the design and adoption process of a technology are ana-

lyzed. In Section 2.3, some approximations of the learning curve under 

different probability distributions of all possible states of the environment 

are obtained. In Section 2.4, the expected times of reaching a required 

learning level are estimated. In Section 2.5, the integration models of 

technology components are described. 

 

2.1. Conceptual description of technology management problem 

 

Recall that the technology of CA has been defined as a system of 

conditions, criteria, forms, methods and means for sequentially achieving 

a desired goal. In Chapter 1, technology management has been viewed as 

an activity for creating technology components in the form of corre-

sponding information models, their integration and maintenance in an 

adequate state depending on the environment during the entire life cycle 

of CA. This process has been described using an integrated model in the 

BPMN format [18. ] (Fig. 9). In a practical interpretation, a technology 
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represents the scenarios of the actor’s activity in different external condi-

tions (states of the environment). 

Now, we will refine the concept of technology management by ex-

tending the semantics of the integrated model (Fig. 9), which reflects 

different types of CA as follows: 

 the design of a new CA technology or its modernization (blocks 1 

and 2 and also the cycle with block 3); 

 the use of the CA technology (block 4); 

 the identification of a need for technology modernization (transi-

tion from c to a); 

 the testing or adoption of the CA technology, which can be objec-

tive (a new technology is considered) or subjective (an existing technolo-

gy is learned by the actor); see the cycle with block 3. 

Despite the whole variety of these types of activity, all of them have 

a common feature––the same subject matter (CA technology). All these 

types of activity are intended to modify CA technology, its states or 

relations with the actor. Therefore, all these types of activity consist in 

the management of CA technology. (In accordance with the definition 

given in [12. , 56. ], management (control) is a complex activity that 

implements an influence of a control subject on a controlled system 

(controlled object) for driving the latter’s behavior towards achieving the 

former’s goals. 

In the general case, the technology management process can be op-

timized by: 

 partitioning all states of the environment into non-

intersecting subsets so that the states from each subset are 

equivalent; 

 choosing a sequence of the exhaustive search of all states of 

the environment for testing; 

 redistributing these tests between the design level of a tech-

nology component (block 2 in Fig. 9) and the integration lev-

el (block 3); 

 allocating limited resources among separate technology man-

agement operations; 

 determining an admissible amount of attracted resources (in 

terms of risk) for supporting all technology components. 

Each of the heuristic operations of technology design (blocks 1 and 2 

in Fig. 9) and technology testing (block 3) depends on the subject matter, 
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which determines its specifics. Hence, they cannot be managed or opti-

mized at the general-system level. Therefore, the heuristic operations will 

be assumed to have known execution times and resource consumptions 

(in a special case, random variables with given distributions). In addition, 

these operations will be assumed independent of each other so that their 

connections are implemented through given cause-effect (causal) rela-

tions between the design processes of separate technology elements; the 

list of the CA elements and the logical and cause-effect models will be 

assumed fixed [12. ]. 

The execution of different types of CA within the integrated model 

(Fig. 9) will be represented as a discrete process in which each time is 

associated with the implementation of precisely one CA element (one of 

the blocks 1–2–3–4 of the model in Fig. 1) under precisely one state of 

the environment from a finite set of possible states of the environment 

(SPSE). 

If at some time the environment evolves to a new state never ob-

served before, then an event of uncertainty occurs. This event leads to 

additional cost for creating or adapting the technology to the new condi-

tions. If the environment returns in this state at one of the subsequent 

steps, then no additional cost is required. The concept of environment 

uncertainty implies that the actor is unable to affect the choice of a cur-

rent state of the environment; the uncertainty will be described using 

probabilistic methods. 

Let the SPSE be composed of K different values. Assume at each 

time the environment takes precisely one of them regardless of the past 

states. Denote by pk the probability that the environment takes the kth 

value (obviously, 
1

1
K

k

k

p


 ). 

At time t, the current state of the implementation process of different 

phases in the technology’s life cycle will be described by a K-

dimensional row vector  1 2, , , , ,t t t kt Ktx x x ... x ... x  as follows. Each xkt 

is 0 if the environment has not taken the kth value so far and 1 if it has 

done so at least once. Within the framework of this model, the kth ele-

ment of the vector xt may move from state 0 to 1 but not conversely. 

Therefore, the implementation process of different phases in the 

technology’s life cycle is completely characterized by the dynamics of 

the states of the environment: which values from the SPSE the environ-

ment has already taken (and how many times) and which has not. 
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The maturity level of the technology (its preparedness for use) at 

time t will be measured by the index 
1

K

t kt k

k

L x p


 , 0 ≤ Lt ≤ 1. (Note that 

(1 – Lt) can be also chosen.) The index Lt gives the share of the states of 

the environment for which the technology has been tested or adapted 

during the past t times, or the probability that at the next time (t + 1) the 

environment will take one of its previous values. The index Lt will be 

called the maturity level of the technology or, following the conventional 

approach of learning models [55. ], the learning level (accordingly, the 

sequence of its values will be called the learning curve). Interestingly, in 

similar meanings the term “learning curve” is widespread in modern 

science, starting from the Ebbinghaus “forgetting curves” [25. ], the 

psychology of the 20th century (e.g., see the classical papers [73. , 74. , 

75. ] and the monographs [7. , 17. , 34. ]) and the models suggested by 

Wright [79. ] and his followers [20. , 32. ] (the reduced time cost effect of 

unit production for larger production outputs) and ending with the learn-

ing models of artificial neural networks. 

In this setup, the technology design and adoption process can be 

considered from another viewpoint––as the sequential observation of 

different series of the well-known states of the environment that are 

interrupted by the newly occurring ones. The length of such a series 

(from a newly observed state to the next one) has the Bernuolli (binomi-

al) distribution parameterized by the learning level. This parameter is 

constant during each series and has jumping at the end point of the series 

when a new state is observed. Then at each time t the expected value of 

the current series length (till a nearest new state of the environment is 

observed, exclusive this moment) can be calculated as Lt (1 – Lt)
-1

. The 

series length corresponds to the number of repetitions required for in-

creasing the maturity (learning) level. In turn, this characterizes, e.g., the 

time cost of a next learning level increment (in fact, the cost of acquiring 

new knowledge). Therefore, in some cases the expected series length will 

be employed together with the learning level to describe the learning 

process. It will be denoted by Nt = Lt (1 - Lt)
-1

, where Lt < 1. 

A natural formulation of the management problem is to reach a re-

quired learning level (a required maturity level of the technology) as fast 

as possible or using as few resources as possible. Thus, the optimized 

and/or restricting parameters can be the consumption of resources or 

time. 
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In Chapter 1, two technology components management problems 

have been stated depending on the actor’s knowledge about the environ-

ment. 

The first problem (further referred to as basic) rests on the assump-

tion that the list and probabilities of all possible states of the environment 

are constant and known to the actor (in other words, K and all {pk} are 

given, independent and time-invariant). This problem surely arises and is 

basic in the following sense: the actor performs an initial synthesis of the 

CA technology and testing process (block 3 in Fig. 9) using a definite list 

of all states of the environment. The basic problem is to derive a relation 

between the technology’s maturity level and time as well as to optimize 

this relation in terms of the available resources. 

The second problem is characterized by the unknown properties of 

the environment, i.e., the list and probabilities of all states of the envi-

ronment (the set K) or at least some of the probabilities {pk} are unknown 

to the actor or may vary. This problem arises during a continuous repeat-

ed use of the technology when (due to the natural variability of the envi-

ronment) the previously designed technology becomes inadequate in new 

conditions, which is identified as the result of the productive activities 

(block 4 in Fig. 1). The second problem with the unknown properties of 

the environment is solved using the laws established for the first problem. 

Thus, the main attention below will be focused on the first (basic) prob-

lem. 

Complex technology components are formed by integrating different 

components within the logical and cause-effect structures of CA [12. ]. At 

the general-system level, the logical models of any structural (internally 

organized) elements of CA are equivalent and have the fan structure; see 

Chapter 1 of the book for details. At the same time, the cause-effect 

model is described by the so-called binary network, a graph of definite 

type. Due to the properties of a binary network, it is necessary and suffi-

cient to consider the following integration processes for technology 

components: (a) sequential integration; (b) parallel conjunctive integra-

tion; (c) parallel disjunctive integration. Also a complex integration 

process that deserves analysis is (d) integration with “the learning to 

learn” in which a technology component is created simultaneously with 

its technology. This complex case arises in “pioneering” innovations. For 

each integration process, the learning level of a complex technology 

component has to be optimized in terms of time and resources. 
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Thus, the design and adoption processes of CA technologies gener-

ate two management problems for the CA technology components (the 

basic problem and the problem with unknown properties of the environ-

ment) and also four integration problems for the CA technology compo-

nents (see cases (a)–(d) above), all being embedded in the integrated 

model (Fig. 9). 

 

2.2. Analysis of design and adoption of technology component 

 

Now, study the properties of the design and adoption process of a 

technology component and also the properties of the learning level Lt in 

the case where K and all values {pk} are known to the actor of CA. 

This process (the row vector xt) represents a Markov chain with a fi-

nite number of states whose numbers 
ty  are formed from the elements of 

xt by the rule 1

1

2
K

k

t kt

k

y x 



 . Then the process 
ty  is also a Markov chain 

taking any integer values from 0 to 1

1

2 2 1
K

k K

k

I 



    inclusive. 

Construct the transition probability matrix 

 ; 0,1, ..., ; 0,1, ...,ij i I j I     of the process 
ty . At the initial time t = 0, 

the process 
ty  is in the 0th state 

0 0y   (
0 0kx   for all k) with probability 

1. From the state “0,” the process may pass only to the states with num-

bers 12k  with the probabilities 
kp  as follows: to the state “1,” with the 

probability 
1p ; to the state “2,” with the probability 

2p ; to the state “4,” 

with the probability 
3p  and so on. The process may not stay in the state 

“0.” 

From the state “1,” the process may not return to the state “0;” may 

stay in this state with the probability 
1p ; and may pass to the state 12 1k   

with the probability 
kp  for each 1 k K  . 

Calculate the elements of the ith row of the matrix П, where 0 i I 

. Consider the binary representation of the number i under the assumption 

that the first digit is least significant. Denote by b(i,k) the value of the kth 

digit in this representation. Consequently,   1

1

2
K

k

k

i b i,k 



 . 
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The probability that the process will stay in the ith state at the next 

time is  
1

K

ii k

k

b i,k p


 . The transition to any other state with a number 

j < i is impossible ( 0ij  ). For each k such that xk = 0, the probability of 

transition to the state 12ki   is 
kp . Finally, the transitions to the other 

states with the numbers exceeding i are also impossible. 

Thus, the elements of the transition probability matrix are given by 

 
1

0 if 2 , 1 2

if

if 2 1 2 and

n

K

ij k

k

n

n

j i n , ,..., K ,

b i,k p j i,

p j i , n , , ...,K j I ,




   



 

    

  

where 0 1i , ,...,I  and 0 1j , ,...,I . 

Then the transition probability matrix Π of the Markov chain 
ty  is 

upper triangular and the state with the maximum number 2 1KI    is 

absorbing: 1II   and 0 forIj j I .    

Write the distribution of the state probabilities  it tq Pr y i   of this 

chain in the vector notation  0 1, ,..., ,...,t t t it Itq q q q q . At the initial time 

t = 0, the distribution is  0 1 0, ..., 0q , . Hence, qt = qt-1Π for any t > 0 

and qt = e0Π
t
= (1,0,0,…,0)Π

t
. Hereinafter, denote by ei a row vector of 

appropriate dimension in which all elements are 0 except for the ith one 

(1). 

Proposition 1. As t  , the probability 
itq  of each state with num-

ber 0 i I   is majorized by the function 1K tt  , i.e., 1K t

itq t  , where 

α and ν < 1 are some constants. 

The proof of Proposition 1. Divide all states of the Markov chain in-

to groups by the number of unities in their binary representations, i.e., 

 
1

K

k

b i,k


 . These groups have two properties, one following from the 

other. 

1) Any state from the lth group can be reached from the 0th state in l 

times. 

2) Any state from the lth group can be achieved only from the states 

of the (l – 1)th group.  



54 

There exist K + 1 groups totally, since l varies from 0 to K. Consider 

the states from the 1st group; for each of them, 
t

it kq p , where k is the 

number of the corresponding state of the environment. 

Then the states of the 1st group satisfy the inequality 
0

1

t

itq t  , 

where  1 max k
k

p  , α = 1. 

Let 1l t

it lq t   for all states of the lth group. The distribution of 

the state probabilities of the Markov chain evolves in accordance with the 

law 
1

1 1

0

i

it ji jt ii it

j

q q q 


 



  . For any state from the (l+1)th group, 0itq   if 

t < l, and 
1 1

1 1

0 0 0 0

t l i i t l

it ii ji jt ji ii jt

j j

q q q 

 

 

   
   

   

   

      if t ≥ l. This gives the 

following bound of 
itq : 

 
1 1 1

1 1 1 1

1

0 0 0 0 0 0

1
i t l i t l i t l

l t l t

it ji ii jt ji ii l ji ii l

j j j

q q t t    



  

          
     

     

 

     

            

    
11 1

1 1max ;
tl l t

ii l l lt t l t    
 

    , 

where   1 max ; maxl l ii
i

     and the maximum is calculated over all 

states i belonging to the (l + 1)th group. 

Therefore, the inequality  1

1 1

l t

it l lq t 

   holds for all states of 

the (l + 1)th group. 

And the desired result follows by mathematical induction for all ith 

states expect for the Ith one. The proof of Proposition 1 is complete. •
11

 

Proposition 1 has the following practical interpretation: the probabil-

ities of all states of the Markov chain except for the Ith one are decreas-

ing not faster than 1K tt  ; conversely, the probability of the Ith state is 

converging to 1 not slower than 1K tt  , i.e., 11 K t

Itq t   , where 

 1 min k
k

p   . 

Moreover, Proposition 1 directly implies that there exists the unique 

stationary distribution  0, 0, , 0 1 Is ... , e   of the state probabilities of 

                                           
11

 Hereinafter, the symbol “•” indicates the end of a proof or example. 
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the Markov chain 
ty , which is the unique solution of the matrix equation 

s s   (
0

I

i ji j

i

s s


 ). 

Hence, the design and adoption model of technology components 

described in this section has a unique stable equilibrium––the state in 

which all possible states of the environment are tested. In other words, 

any learning level (arbitrary close to 1) can be reached on a sufficiently 

large horizon. 

Now, study the learning curve––the behavior of the expected value 

of the process 
1

K

t kt k

k

L x p


 . Denote by E[∙] the expectation operator. 

Above all, in accordance with Proposition 1 the learning level con-

verges in probability to 1: 

  0, lim Pr 1 0t
t

L 


    . 

First, by the definition of the process Lt its increments are always 

nonnegative: 
1 0t t tL L L     . In addition, the values of Lt and also the 

increments ΔLt are nonnegative and do not exceed 1. Second, the process 

Lt is also a Markov chain, i.e., 
tL  and 

tL  independent random variables 

for any t. Then
12

 

(1)         
1 1 1

1 1 1 1
K K K

t t

k kt k k k k

k k k

tE L p E x p p p p
  

         . 

On the other hand, expression (1) of  tE L  can be obtained using 

the distribution of the state probabilities qt: 

   
1

0

1

K

t k

k

I
t

it

i

E L q eb i,k p 


 
   

 
  , where β denotes a column vector 

composed of the elements  
1

K

k

k

b i,k p


 . In turn, they are the diagonal 

elements of the matrix П. 

From (1) the series length can be calculated as 

                                           
12

 Recall that the learning curve Lt describes the probability that the environment 
will take a new value at time (t + 1). This probability is estimated using the 
observations during t times inclusive. 
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1

1

1 1

1 1 1 1
K K

t t

t k k kt kt

k k

N E L E L p p p p




 

  
       

  
  . 

Since 
1 0t t tL L L     , the first differences of the sequence  tE L  

are strictly positive for all t. The formulas of the mth differences, m ≥ 2, 

are derived using the (m – 1)th differences in the following way: 

       
1 12

1 1 1

1 1 1 1 1 0t

K K K
t t t

k k k k k k

k k k

E L p p p p p p
 

  

 
          

 
   , 

         

 

1 22 2 2

1 1

23

1

1

1 1

1 0

K K
t t

k k k k

k k

K
t

k k

k

t t tE L E L E L p p p p

p p .



 

 





         

   

 


 

In the general case, 

     
1 1

1

1 1
K

m t mm m

kt k

k

E L p p
 



    . 

Note that, for any time t, the differences of the learning curve form 

an alternating sequence whose values are decreasing by absolute value (

   1m m

t tE L E L   ). In addition, the first differences satisfy the 

inequality    1 t tE L E L   . 

Thus, the following important result has been established. 

Proposition 2. The learning curve  tE L  has several properties as 

follows. 

 At the initial time t = 0, its value is  0 0E L  . 

 It is monotonically increasing:   0tE L  . 

 Its first differences are bounded by the inequality 

   1 t tE L E L   . 

 Its growth rate is monotonically decreasing:  2 0tE L   and 

 3 0tE L  . 

 It has asymptotic convergence to 1. 

 

2.3. Approximation of learning curve 
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Consider some approximations of the learning curve  tE L  (see 

formula (1)) depending on the probability distribution 

1

; 1, ; 1
K

k k

k

P p k K p


 
   
 

  of all possible states of the environment. 

A) Uniform distribution P. For the sake of simplicity, denote 

δ = 1 / K. Then 

(2)          
1 1

1 1 1 1 1 1 1 exp
K K

t t t

k k

k k

tE L p p      –    t   
 

            , 

where γ = ln(1 + 1 / (K - 1)) is the rate of variation of the learning level––

the rate of learning [12]. 

The exponential learning curve (2) (and its difference analog defined 

by E[Lt] = E[Lt-1] + γ (1 - E[Lt-1])= γ + (1 – γ) E[Lt-1]) is classical for 

the theory of learning; see the survey [55. ] and also the pioneering book 

[34. ]. At the same time, for the model under consideration this curve is a 

special case that corresponds to the uniform distribution of all possible 

states of the environment. Moreover, as will be demonstrated in Chapter 

3 below, the uniform distribution of all possible states of the environment 

actually maximizes the expected learning level. 

In the uniform distribution case, the expected series length has an 

exponential growth,  exp 1tN   t  . This is intuitively clear: with further 

increasing the learning level (and hence the share of the “known” states 

of the environment), the acquisition of new knowledge requires more 

efforts “to find” the new states. 

The difference equation of Nt has the simple form 

    1 exp exp 1t tN   N       ; hence, the expected series length is growing 

multiplicatively. 

For K ≫ 1, the rate of learning becomes 

γ = ln(1 + 1/ (K - 1)) ≈ 1 / (K - 1) ≈ 1 / K, 

and 

(3)    1 exptE L    –    t / K  . 

B) Distribution (n, δ) (n highly probable states and (K – n) lowly 

probable states with δ ≪ 1 / K). This distribution is given by  

(4)   1 ( ) , 1 ; , 1k kP p K n / n k ,n p k n ,K         . 

It makes sense to consider the case in which the probabilities 

 1 ( )K n / n   of the states from the first group are considerably great-
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er than the probabilities δ of the states from the second group. Really, the 

case in which these probabilities differ insignificantly can be well ap-

proximated by the uniform distribution (see above). In other words, let 

  1 K n / n   , which implies 1K . Find the learning curve for 

this distribution: 

   
1

1 1 kt

K
t

k

k

E L p p


     

 
1 1

1 1
1 1 1

tn K
t

k k n

( K n ) ( K n )

n n

 
 

  

    
     

 
  , 

i.e., 

       
1

1 1 1 1t

t
t( K n )

E L ( K n ) K n
n n

   
 

         
 

. 

Since 1/K  and n < N, then    1 1 1/ n    . Hence, for large t, 

distribution (4) tends to the uniform one: 

     1 1t

t
E L K n      . 

For small t, the approximation is 

   
1

1 1 ( ) 1

t

t

( K n )
E L K n

n n
 

 
      

 
. 

C) “Disturbed uniform” distribution. Let the uniform distribution 

be disturbed on a “large” set of domains of all possible states of the 

environment in the following way: 

(5) 
1

; 1, 2, ..., ; 1; 1; 1
K

k k k

k

P p k K p p K


 
   
 

 . 

For small t, the learning curve is approximated by 

(6)       2 2

1 1 1 1 1

1 1 1 1 1 ,
K K K K K

t

k k k k k k

k

t k

k k k k

E L p p p tp p t p t p
    

               

i.e., has a linear growth in t with the rate 2

1

K

k

k

p


 . 

For large t, there are two possible behavior patterns of the learning 

curve as follows. If all domains of all possible states of the environment 

are nearly equivalent and their probabilities differ insignificantly (

1 1,kp / K,k K  ), then the uniform distribution estimate (3) also 
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holds. If a certain number n of the domains have a substantial distinction 

from the others, then an adequate description is the approximation 

 
1

1 1 1

t

t

n
E L

K K

  
     

  
 (distribution B). 

Interestingly, the analytical expressions (2), (3) and (6) as well as the 

properties of the learning curve  tE L  established within the current 

model well match many conventional models of learning (in particular, 

the ones discussed in Sections 4.2 and 6.7 of the book [55. ]). However, 

the well-known models postulate the form of the learning curve or its 

equations, whereas the model suggested in this section describes the 

process of learning (design) and the equations and properties of the 

learning curve are derived during model analysis. 

 

2.4. Expected learning time 

 

In this section, the expected time of reaching a required learning 

level Lreq (0,1)  (the technology’s maturity level) will be calculated. 

This is the expected time t at which 

req

1

K

t kt k

k

L x p L .


   

For this purpose, study the behavior of the Markov chain 
ty , in par-

ticular, the evolution of the probability distribution  it tq Pr y i   of its 

states. As it has been established earlier, the initial distribution for t = 0 is 

 0 1 0, ..., 0q ,  and also qt = qt-1Π for any t > 0, 

qt = e0 Π
t
= (1, 0, 0, …, 0) Π

t
. 

The matrix Π is upper triangular, which gives several properties of 

the matrix Π
t
 as follows. 

 The determinant of the matrix Π (denoted by ∆П) is the product of 

all its diagonal elements: 
1

I

ii

i




  . 

 The matrix Π
t
 is also an upper triangular. (This fact is immediate 

from the multiplication rules of matrices.) 

 The diagonal elements of the matrix Π
t
 are the powers of the diag-

onal elements of the matrix Π:  
tt

ii ii  . 
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 The determinant of the matrix Π
t
 is the product of the determinant 

Π:  
1

t
I

tt

ii

i




 
     

 
 . 

Construct a mask––a column vector r of the same dimension as the 

row vector qt––by the rule 

 

 

req

1

req

1

1   if 

0  if 

K

k

k

i K

k

k

b i,k p L ,

r

b i,k p L ,









 
 





 

where  
1

2 0 1
K

k

k

i b i,k , ,...,I


  .  

This mask vector “extracts” the states of the process 
ty  for which the 

learning levels are below the required one. Then, for each time, the 

probability that the learning level has reached or exceeded the required 

level is  reqPr 1t tL L q r    (equivalently,  reqPr t tL L q r  ). The probabil-

ity that the time treach of reaching the required learning level exceeds the 

current time is  reachPr tt t q r  ; the probability that the required learning 

level has been reached by the current time is  reachPr 1 tt t q r   . Obvious-

ly, 0Ir  . In accordance with Proposition 1, the probabilities 

   req reqPr PrtL L t t    can be majorized by the function 1K tt   as 

t  . Consequently, 

  1 1

reach

0 0 0

Pr
I I I

K t K t

i t i i

i i i

t t rq r t r t .    

  

 
     

 
    

Using the relation qt = e0 Π
t
, write  reach 0Pr t

tt t q r e r    . Since 

     reach reach reachPr 1 Pr Prt t t t t t      , it follows that 

     reach reach reachPr Pr 1 Prt t t t t t      . 

Then the expected time can be calculated as 

      reach reach reach reach

0 0

Pr Pr 1 Pr > 
t t

t t t t t t t t t
 

 

       . 
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Because all probabilities  reachPr t t  are majorized by 1K tt   as 

t  , the series  reachPrt t t  is converging and has a finite sum 

 reach

0

Pr
t

t t t




 . As a result, 

    

     

reach reach reach

0

reach reach reach

0 0 0

Pr 1 Pr

( 1) Pr Pr Pr

t

t t t

t t t t t t

t t t t t t t t .





  

  

     

      



  
 

Thus, 

(7)    
1

reach reach 0 0 0

0 0 0

Pr t t

t t t

t t t e r e r e E r,
  



  

 
        

 
  

 

where Е is an identity matrix of the same dimension as the matrix П. The 

existence of the inverse  
1

E


  follows from the upper triangular prop-

erty of the matrix (Е – П). All its diagonal elements can be found from 

the above expression of ij , and their product is positive. 

This theoretical development naturally leads to the following result. 

Proposition 3. For any Markov chain, the expected time of first 

reaching a state from the given set is  reach reach

0

Pr
t

t t t .




   If this series 

is converging, then  
1

reach 0t e E r.


   

Generally speaking, formula (7) can be used for calculating reacht  de-

pending on the probability distribution  ; 1, 2, ,kP p k ... K   of all possi-

ble states of the environment (as the values pk are taken into account 

through the matrix П) and also on the required learning level (as the value 

reqL  is taken into account through the vector m). Unfortunately, formula (7) 

is not constructive because neither the probabilities 
kp  nor the level reqL  

enter it in explicit form. Furthermore, the considerable dimensions of the 

matrix П (2
K×2

K
) make the use of (7) difficult in practice. 

In a series of special cases, simpler and more constructive expres-

sions can be obtained. Consider one of them––the uniform distribution 

 1 ; 1,kP p / K k K     of all possible states of the environment. 
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In this case, instead of the Markov chain 
ty  with the values 0 1i , , ..., I , 

consider a chain 
ty  whose values correspond to the number of the states of 

the environment for which the technology has been tested. In other 

words, the chain 
ty  takes the values from 0 to K inclusive. Then 

t tL y

, and the transition probabilities have the form 

0  if  or 1,

1 if 1,

      if ,

ij

j i j i

i j i

i j i

 



  


   
 

 

where 0, 1, ..., .i K  

Then the matrix (E – П) is an upper triangular, bad matrix with the 

elements 

0           if  or 1,

1      if ,                   

1     if 1,              

ij

j i j i

i j i

i j i

 



  


  
   

 

where 0, 1, ..., .i K  

 

The inverse 1( )E П   is also an upper triangular matrix with the ele-

ments 

 
1

0               if ,          

1   if ,

1               if ,         

ij

j i

i i j K

j K

 





   
 


 

where 0, 1, ..., .i K  

The operation   
1

1  0, 0, ..., 0, E r


  removes the first row from the 

matrix  
1

E


  and sums up those elements of this row for which 

req

1

K

k k

k

x p L


 . In the uniform distribution case, the sum consists of the 

first req reqL / K L   elements, and the expected time of reaching the re-

quired learning level 
reqL  is 

 
req req

1
reach

0 0

1

KL KL

i i

K
t i .

K i
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For 1K , the value reacht  has the compact approximation 

   

reqreq req

req

1 1
reach

1 1
0 0 0

1

req
0

1 1

1 1

ln 1 ln 1 ,

KLKL KL

i i

KL

K
t K K K K dx

K i K i K x

K K x K L

 

 
 



   
  

     

  
 

and 

(8)  reach reqln 1t K L .    

Note that expression (8) coincides with the approximate solution t̂  

of the equation     req1 1t

t̂
E L   L     (see (2)), for which 

 
 

 
 req req

req

ln 1 ln 1
ln 1

ln 1

L L
t̂ K L .

 

 
     


 

Next, calculate the expected time of reaching the “absolute” learning 

level Lt = 1. 

Assume several states of the environment have been tested by some 

time; let I ≤ K states with the probabilities {pi; i = 1,I } be still unknown. 

Clearly, 
1

1
I

i

i

p


 . 

Denote by T({pi; i = 1,I }) the expected time of testing the residual I 

states, i.e., the expected time of reaching the learning level Lt = 1. Using 

mathematical induction, prove the formula 

(9)       
1 11

1 ; ; ;

; 1
I

i i i k i k l

i i k i k l

T p i ,I p p p p p p ...
 



          . 

Write (9) in another (equivalent) form: 

(10)     
1 2

1

1

1 ; ;...; 1

; 1 1
j

k

I k
k

i i

k i i i j

T p i ,I p





 

 
    

 
   . 

In other words, it is necessary to demonstrate that the expected time 

represents the sum of the alternating partial sums of all ks from 

{pi; i = 1,I }, n = 1,I . 

Introduce the compact notation Θ(k; I) for the sums of all ks from 

{pi; i = 1,I }, k = 1,I , that appear in (10): 
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(11)  
1 2 1 2 1 2

1

; ;...; 1 ; ;...;

1
; 

j

k k k

k

i

i i i j i i i i i i

k I p
p p ... p





 
   

   
   . 

In view of (11), expression (10) takes the form 

(12)         
1 2

1

1 1

1 ; ;...; 1 1

; 1 1 1 ;
j

k

I k I
k j

i i

k i i i j j

T p i ,I p j I



 

  

 
      

 
    . 

Assume a single state of the environment remains untested; then 

T({pi; i = 1}) = 1 / p1. 

Let relations (9), (10) and (12) be valid for the (I – 1) states, i.e., 

      
1

1

1

; 1 1 1 ; 1
I

k

i

k

T p i ,I k I






      . 

Show that, in this case, relations (9), (10) and (12) will be valid for 

the I states. The event that the i = 1,I  states have been realized sequen-

tially is the union of the I events in each of which one of the I states has 

been realized first and the other (I – 1) states sequentially after it. Then  

(13)      
1 1

1 1 1

; 1 ; 1 ;
I I I

i i j i i

i j i

T p i ,I p p p T p i ,I i j

 

  

   
       

   
   , 

where the first term is the expected time to the first of the realized states 

i = 1,2, … I. Each of the jth terms in the summand gives the probability 

that the jth state has been tested first; then T({pi; i = 1,I ; i ≠ j}) gives the 

expected testing time of the residual (I – 1) states. 

Substituting (12) into the right-hand side of (13) yields 

(14)       
1 1

1
1

1 1 1 1

; 1 1 ; 1
I I I I

k

i i i j

i i j k

T p i ,I p p p k I

 




   

     
          

     
    . 

Using (11) transform the second sum in the following way: 

     
1 2 1 2

1 1
1 1

1 1 1 1 ; ;...;

1 ; 1 1
k k

I I I I
k k j

j

j k j k i i i i i i

p
p k I

p p ... p

 
 

   

 
     

   
    . 

Each of the probabilities pj in the numerators does not appear in the 

sum 
1 2 ki i ip p ... p    in the denominators. Hence, the order of summation 

can be modified so that 
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1 2 1 2

1 2

1 2 1 2

1 1
1 1

1 1 1 1 ; ;...;

1 11

1 ; ;...; 1; ; ;. ..;

1 ; 1 1

1

k k

k

k k

I I I I
k k j

j

j k j k i i i i i i

I I
k

i i i j

k i i i j j i i i

p
p k I

p p ... p

p p ... p p .

 
 

   

 

  

 
      

   

    

   

  
 

Here the summation procedure runs over all js from 1 to I not coin-

ciding with any of i1, i2, …, ik. Consequently, 

 
1 2

1 21; ; ; ...; 1
k

k

I I

j i i i i

j j i i i i

p p p p ... p
  

 
     
 

  . 

Using this relation in the second sum gives 

     
 

     

1 2

1 2 1 2

1 2

1 2 1 2

1 1
1 1 1

1 1 1 ; ;...;

1 111 1

1 1 ; ;...; 1 ; ;...;

1

1 ; 1 1

1 1 1

k

k k

k

k k

I

i i i iI I I
k k i

j

j k k i i i i i i

I I I
k k

i i i i

i k i i i k i i i

I

i

i

p p p ... p

p k I
p p ... p

p p p ... p

p

 
  

  

  

  



 
    

   
      

   

 
        
 

 
  
 


   

    

      
1 1

1

1 1

1 ; 1 ,
I I

k k k

I

k k

k I C
 



 

    

where k

IC  is the number of k-combinations from the set of I elements. 

Substituting this formula into (14) yields 

      

     

1 1
1

1

1 1 1 1

1
1 1

1

1 1 1

; 1 1 ;

1 ; 1 1

I I I I
k

i i i i

i i i k

I I I
k k k

i I

k i k

T p i ,I p p p k I

k I p C .

 




   


 



  

      
            

      

   
        

   

   

  

 

By definition,  
1

1

;
I

i

i

I I p





 
   

 
 , and also 

     
1

1

1 1 1 1 1 0
I

n I In

I

n

C




       . Hence,    
1

1

1

1 1 1
I

n In

I

n

C






    . 

Finally, the desired expected time of reaching the “absolute” learn-

ing level Lt = 1 (in form (12)) is 

      
1

1

; 1 1 ;
I

k

i

k

T p i ,I k I




    . 
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The outcomes of Sections 2.2–2.4 can be summarized as follows. 

The properties of the design and adoption process of a technology com-

ponent, the learning level and the expected learning time have been 

studied in detail. The next stage is to analyze the integration models of 

technology components, which will be done in the next section. 

 

2.5. Integration models of technology components 

 

Consider the integration of partial technology components, each de-

scribed by the basic model, as the following processes: 

A) sequential integration; 

B) parallel conjunctive integration; 

C) parallel disjunctive integration; 

D) parallel integration with complete information exchange; 

E) integration with “the learning to learn.” 

To examine their properties, consider the management process of 

several technology components with an appropriate integration of their 

results. The states of partial processes are Markov chains with the proper-

ties established above. Then an integrated process will also evolve as a 

Markov chain on the state set defined by the direct product of the state 

sets of the partial processes. 

Following the same approach as before, introduce a K -dimensional 

process  1 2, , , , ,t t t kt Kt
x x x ... x ... x , 

1

M
m

m

K K


 , in which each element xkt 

takes value 0 or 1, meaning that a corresponding state of the environment 

is untested or tested, respectively. Also introduce a process 
ty  that reflects 

the number of a current state of the process 
tx . Both processes 

tx  and 
ty  

are Markov chains. The transition probability matrix of the process 
ty  is 

upper triangular, and this process satisfies Proposition 1 (on the asymp-

totic behavior of the probability distribution of states) and Proposition 3 

(on the expected time of reaching a given learning level). 

A. Let the integration process be intended to create all partial tech-

nology components (the conjunction of all М partial components). Then 

the learning level 1...M

tL  (the maturity level of the integrated technology) is 

the probability that none of the partial processes will have an untested 

state of the environment during a next test––the product of the maturity 

levels of all partial technologies. In turn, this probability is the product of 
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the probabilities m

tL  of all partial technology components: 1...

1

M
M m

t t

m

L L


 . 

Consequently, 

(15)  1...

11 1

1 1
M M K

t
M m m m

t t k k

km m

E L E L p p
 

 
          

 
  . 

Formula (7) that determines the expected time of reaching a required 

learning level of a single technology component can be easily extended to 

the case of M elements as follows: 

(16)      reach  reach  reach

0 0

Pr Pr maxA A m
m

t t

t t t t t
 

 

       

 0

0 1

1 1
M

t

m m

t m

e r


 

 
    

 
  . 

If the design processes of all technology components have the same 

characteristics, then 

      
1

 reach 0 0

0 0 1

1 1 1
M

M mmt m t
A M

t t m

t e r C e r
 



  

 
        

 
    

       
1

1 1

0 0 0

0 0 2 0

1 1
M

m Mm Mt m t t

M

t t m t

M e r C e r e r
   

 

   

 
        

 
    . 

Using the sequence of the expected times  reachAt  for different increas-

ing values M, we can calculate the first differences 

 
1

0 0

0

1
M

t t
M

t

t e r e r






      and also the second differences 

   
2 2

2

0 0

0

1
M

t t
M

t

t e r e r






      . Clearly,  reachAt  is growing with M but 

the rate of growth is an increasing function of M. In addition, the first 

differences are bounded above and below: 

   
2

reach reach0 0 0 0

0 0 0

1t t t t
M

t t t

t e r e r e r t e r t .
  

  

              

B. Let all partial processes be independently implemented in parallel 

to each other and also let the integration process be intended to create at 

least one of the partial components (the disjunction of М partial compo-

nents). Then the “non-maturity” level of the complex technology is the 
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share of the untested states of the complex environment, 

 1

1

1 1
M

_ M m

t t

m

L L


    and hence 

(17)  1_

11

1 1
M K

t
M m m

t k k

km

E L p p


 
      

 
 . 

In this case, the expected time of reaching a required learning level 

of M elements is calculated as 

(18)      reach  reach  reach 0

0 0 0 1

Pr Pr min
M

t
B B m m m

m
t t t m

t t t t t e r .
  

   

 
      

 
     

If the partial processes have the same characteristics, then 

  reach 0 0

0 01

M
M

t t
B m m

t tm

t e r e r .
 

 

 
    

 
   

For the parallel implementation of several partial processes with the 

same characteristics (cases A and B), the expected time is 

     
1

1 1
 reach reach  reach0

0 2

1 1 ,
M

mm Mm t
A BM

t m

t M t C e r t
 

 

 

 
      

 
   

where reacht ,  reachAt  and  reachBt  denote the expected times of completing a 

partial process, all M partial processes and at least one of the M partial 

processes, respectively. In addition, the following chain of bounds holds: 

 reach  reach  reach reach1 B AMt M t t M t .     

For the parallel implementation of two partial processes with the 

same characteristics (cases A and B), the expected time formula gives 

 reach reach  reach2A Bt t t  . Hence, the expected times are related by 

 reach  reach  reach 2A Bt t t / .   

C. Let two technology components be implemented sequentially so 

that the second component is initiated directly after the completion of the 

first component. This case is described by two independent Markov 

chains: the second chain starts evolution from a known state as soon as 

the state of the first chain reaches a given domain. Such a complex tech-

nology consists of two elements and the second element can be designed 

only after the completion of the first component. The probability distribu-

tion of the design completion time of this complex technology––the time 

of reaching a given domain for the second chain––is the convolution of 
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the probability distributions of the times for both chains. This law can be 

used for calculating the integrated learning curve and the expected design 

time as the sum of the expected design times of the partial technologies. 

D. Let a technology component be independently implemented in 

parallel within several (M) processes with complete information ex-

change. Then M independent tests are organized during one period (be-

tween two successive times) and hence 

(19)  1

1

1 1
K

Mt||M

t k k

k

E L p p


       . 

In this case, the expected time of reaching a required learning level 

of M elements can be calculated as 

(20)    
1

reach reach 0 0

0 0

Pr mt m

t t

t t t e r e E r.
 



 

        

As is easily demonstrated, the learning curves (15), (17) and (19) 

satisfy all statements of Proposition 2. 

E. “Learning to learn.” Let the process of technology adoption be 

running simultaneously with its design. In other words, assume the inten-

sity of environment testing is varying in accordance with another learning 

curve. 

Consider a process 
1

K

t kt k

k

L x p


  that describes the design and adop-

tion process of a new technology and also a process 
1

J

t jt j

j

L x q


  that 

describes the management process of the design technology of the former 

technology (“the learning to learn”). The processes 
tL  and 

tL  will be 

assumed to be statistically independent. 

At each time t, the states of the environment are tested with the 

probability 
tL  or “skipped” with the probability (1 tL ). In the latter case, 

a state of the environment is not tested and the processes xkt has invaria-

ble states.
13

 Consequently, 

                                           
13

 This model may have an alternative interpretation as follows. Checks are 
performed at each step while a technology for a new state is designed with some 
probability determined by a metaprocess. In the logistic model, this probability is 
equal to the learning level in the process itself; in the hyperbolic model, to the 
probability of “error” raised to some power with the proportionality factor µ. 
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1

1

1

                   with probability 1 ,

1    with probability ,

J

kt jt j

j

kt kt J

kt kt k jt j

j

x x q

E x x

x x p x q











    

  







 

where ktxE     denotes the conditional expectation operator given 
ktx . 

Then  1 1kt kt kt kt ktE x x x p xГ     , where 

 
1 1

1 1
J

t

t j j

j

J

j jt

j

Г E q qq x
 

 
    

 
  . 

Passing from the conditional to unconditional expectations yields the 

difference equation 

(21)       1 1kt kt t k ktE E Г p xEx x    , 

which can be used for calculating  ktE x  sequentially for all t ≥ 0. 

Introduce the notation  1 tt kxE   . Then 

  11 1 1t t t tkt kE Гx p      and  1 1 kt t t pГ   . 

Since 
0 1  , it follows that  

1

0

1
t

kt Г p







    and consequently 

     
1 1

10 0

1 1 1 1 1kt k

t t J

jk j

j

kx p p pE Г q q .




 

 

 

 
      

 
    

Finally, the learning curve takes the form 

(22)      
1

01 1

1 1
K K

t k kt k k

k

t

k

E E ГL p x p p





 

  
 

  





    

 
1

101

11 1
t JK

jk k jk

k j

p p q qp








 
  

 
    . 

Consider expression (21) in detail. Calculate the first differences: 

  t tkt kE Гx p   . Note that (a)   0 0kt tE x    for any kp  because 

0 0Г   and (b)   0ktE x   for any t > 0. In other words,  ktE x  is 

growing for t > 1 , which seems intuitively clear. 

Calculate the second differences: 

(23)        2

11kt k t t t t t tt kt k k kx x x p p pE E E Г Г Г             
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 1 1k kt t t t k tp Г p ГГ p      1 1t t t tk kp Г Г p Г   . 

Above all,   0

2

1 0kt t kx pE Г   . However, Гt is monotonically 

increasing from 0 and asymptotically converging to 1 as t  . Then 

  22 0kt t k tx pE      and  2 0kt txE    . 

The learning curve    
1

k

K

t k

k

txE L p E


  is a linear combination of the 

processes  ktE x  with strictly positive coefficients. Hence, the first and 

second differences of the learning curve satisfy all statements formulated 

for  ktE x . More specifically, 

   0 0t tE L   ; 

   0 0t tE L    and   0tE L   for all t > 0 (the learning curve is 

increasing in t from 0 and asymptotically converging to 1); 

   0

2 0t tE L   ,  2 0t tLE    and  2 0t tLE     (the learning 

curve has an inflection point, being strictly convex on the left and strictly 

concave on the right of it). 

Consider an example for “the learning to learn.” Let all possible 

states of the environment be uniformly distributed, 

 1 ; 1,kP p / K k K   , and also let  1 ; 1,jQ q / J j J   . 

Using the notation  1J  , write 

   1 1 1

11

1 1 1 1 1 (1 )
J

t t
t

t

J

j jt

j j

G E J J Jq x   



 
          

 
 . 

The corresponding learning curve has the form 

(24)     
1

0

1 (11 1 )
t

tE L 



 




   . 

The second difference formula (17) can be employed for estimating 

the inflection point t  of the learning curve (18) in the case of complex 

technologies (K ≫ 1, J ≫ 1 and K < J). The resulting estimate is 
20 25 0 5t KJ . K . K.    

Write (24) in the equivalent form 

   
1

0

exp(1 exp ln )1 -
k

tE L


 




 
   

 
 , where φ = ln(1 + 

1

1J 
). Then 
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        1

1

2

0

1 (1 ) 1 (11 )t

t t

k

LE EL 



   




      =  

=      1

1 1(1 ) 1 (1 )t

t tE EL L   

     = βt + ( 1 – βt)  1tE L  , 

where βt =  11 (1 ) (1 exp( ( 1))t t         . Thus, the learning curve 

(24) is a “generalization” of the learning curve (2) in which the coeffi-

cients { }t  of the difference equation depend on the time variable. 

Consider several special cases of learning to learn, namely, process-

es in which the probability of successful technology design for each of 

the first encountered states of the environment is not identically 1 and 

depends not on the state of a similar “external” process (see expression 

(22)) but on the learning level reached in the process itself. Moreover, 

this relation can be both increasing (see the logistic learning curve model 

below) and decreasing (see the hyperbolic learning curve model below). 

The corresponding class of learning processes will be conventionally 

called auto-learning. 

Logistic learning curve. Consider an important special case of 

“learning to learn” as follows. For a sufficiently large number of practical 

situations, the intensity of testing different states of the environment is 

proportional to the learning level: Гt = 𝜇 E[Lt]. Really, when testing new 

(e.g., aerospace or transport) equipment, or commissioning new produc-

tion complexes, at the first stages the product or complex is often tested 

for a limited set of operating modes (bench and ground tests, idling, etc.). 

As experience develops, the range of modes is expanded to the complete 

set of all possible modes and conditions of the environment, and the 

transition to standard use is performed, which well matches the formal 

assumption that “the rate of learning” is proportional to the reached level. 

This situation corresponds to a special case of the self-learning mod-

el in which the design process 
tL  of the technology coincides with its 

adoption process 
tL . 

For the sake of analysis, rewrite the difference equation (21) in a 

slightly modified form as follows: 

(25)     1 1 ttkt k kxE x pГ E  . 

If all states of the environment are equally probable (pk = δ = 1 / K), 

then due to (25) the learning level satisfies the difference equation 

       2 2

1 1kt ktt t t ktx xE xE Г Г Г E        . 
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Summation over k yields 

(26)       2

1 1t t t tttE Г K Г EL Г EL L     . 

In the case Гt = 𝜇 E[Lt], the difference equation of the learning level 

takes the form 

(27)       1 1t t tL L LE E E    . 

(A similar result for the continuous-time model was established in [40. ].) 
Equation (27) represents a difference analog of the differential equa-

tion dx/dt = β x (1 – x), where    . The latter’s solution is the logistic 

curve, a classical concept in the theory of learning; for example, see a 

survey in [55. ]. The discrete form of the logistic curve is described by 

(28)  
1

1
1 ( 1) exp( )

tE

t

L






  

. 

This function is monotonically increasing from λ > 0 (at t = 0) to 1 

(as t  ). 

As a rule, the solutions of similar difference and differential equa-

tions are not the functions of the same form; generally speaking, the 

logistic curve in the discrete form (28) is not a solution of (27). There-

fore, we will establish conditions under which function (28) well approx-

imates the solution of equation (27). 

For the sake of local simplifications, introduce the compact notation 

1

1 tt
a

x
b




 for function (28). 

First, prove that the difference equation describing (28) will turn into 

the differential equation dx/dt = β x (1 – x) as 0t  . (Here Δt denotes 

the discrete time increment.)  

In view of the compact notation, write 
1

1 t tt tx
ba

 



 and further 

transform this expression. The following chain of transformations are 

correct as 0t   (in fact, under the condition   1ln a t ): 

    
1 1 1

1 11 1
t t tt ttt

ba ba ba ln a tb
x

a ln a t
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1

1

2

1 1

1 1 1

1
1 1

1

1
1

1 1

t t t

t

t t

t

t

t

t t
t

ba ba ba ln a t

ba ba ln a t
ba

ba
ln a t ln a t.

ba
x x x

ba





 
 

 

 

    


    
 

 

Therefore,    1t t t t t ln a tx x x x     if   1ln a t . As a result, 

   1t t t
t t

x
a

x
xln

t
x




 , which completes the proof. 

Obviously, for ln(a)<<1 and 1t   all these transformations remain 

in force, and the difference equation describing the logistic curve in the 

discrete form (28) is well approximated by (27). 

In accordance with the intermediate notations, ln(a) = β = μ δ= μ / K 

and hence the condition ln(a)<<1 can be written as μ / K<<1. Thus, for a 

large dimension K of the set of all states of the environment the logistic 

curve (28) is well approximated by the difference equation (27). 

The logistic learning curve (28) is classical in the theory of learning 

[55. ]. At the same time, this curve is a special case of the learning-to-

learn model that corresponds to the uniform distribution of a “large” set 

of all states of the environment and the proportional relation between the 

intensity of testing different states of the environment and the reached 

learning level. 

If the learning curve is logistic (see (28)), then the expected series 

length has the form  
1

1 exp( )tN t  


   generated by the compact 

difference equation Nt+1 = exp (β) Tt. 

Hyperbolic learning curve. In another special case of auto-

learning, the intensity of testing different states of the environment is 

decreasing in the learning level: Гt = 𝜇 (1 – E[Lt])
a
, where a > 0. In prac-

tice, this relation well describes the limited cognitive and/or computa-

tional capabilities of a learned actor (in particular, the finite capacity of 

short-term memory). 

We will derive a difference equation of the learning level in this case 

by analogy with the logistic learning curve for the equally probable states 

of the environment; see the previous paragraph. In this special case, 
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expression (26) remains in force too. Substituting Гt = 𝜇 (1 - E[Lt])
a
 into it 

gives 

(29)        1

1

1 1t t

a

ttL LE Г LE E  


     . 

Equation (29) represents a difference analog of the differential equa-

tion dx/dt = β (1 - x)
1+a

, where    . The latter’s solution is the hyper-

bolic learning curve, a classical concept in the theory of learning; for 

example, see a survey in [55. ] and the pioneering papers [73. , 74. ].  
The discrete form of the hyperbolic curve is described by 

(30)  
 

1

1
1

1
/ atE

a
L

t
 


. 

This function is monotonically increasing from 0 (at t = 0) to 1 (as 

t  ). 

Like for the logistic curve, introduce the compact notation 

 
1

1
1

1
t / a

x
a t

 


 and use the same considerations under the condi-

tions β<<1 and aβ<<1 to obtain  
1

1 1
a

t t tx x x


    . 

The condition β<<1 is equivalent to μ δ = μ / K<<1. Consequently, 

the hyperbolic curve satisfies the difference equation (29) for a “large” 

dimension K of the set of all states of the environment. 

In this case, the expected series length has the form 

 
1

1 1
/ a

tN a t   . 

The difference equation of the expected series length is 

 
1

1 1 1
/ a

a

t tN N a
    
 

. 

In particular, for a = 1 the equation turns into Nt+1 = Nt + β. 

Thus, the hyperbolic learning curve (30) (its difference analog 

E[Lt] = E[Lt-1] + β (1 – E[Lt-1]
1+a

) is a special case of the learning-to-learn 

model that corresponds to the uniform distribution of a large set of all 

states of the environment and a decreasing relation between the intensity 

of testing different states of the environment and the reached learning 

level. 

Auto-learning. Consider a continuous auto-learning model as fol-

lows. Let the dynamics of the learning level ( ) [0,1], 0,z t t   be de-

scribed by the differential equation 
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(31) ( ) (1 ) ( )z t z p z   

with an initial condition z(0) =   [0, 1), where  > 0; p (  ): 

[0, 1]  (0, A] is a continuous function; 0 < A < +∞. (If p  means proba-

bility, then A = 1.) 

Due to the above assumptions, we have the following. 

a) The solution of equation (31) exists and is unique. 

b) The relation z(t) is a strictly monotonically increasing function, 

i.e., 0 : ( )t z t    . 

c) If z(0) = 0, then 10 : ( ) exp( )At z tt     . 

d) The relation z(t) is slowly asymptotic, i.e., 

lim ( ) 1, lim ( ) 0
t t

z t z t
 

  . 

Different auto-learning curves can be obtained by varying p (z). Spe-

cial cases include many of the learning curves considered: 

1) the exponential curve (“degenerate case”––auto-learning is re-

placed by standard learning, p (z)   1) 

 = 0; ( ) (1 )z t z  ; ( ) 1 exp( )z t t   . 

2) the logistic curve 

p (z) = z,  > 0; ( ) (1 )z t z z  ; 
1

( )
1

1 ( 1) exp( )

z t

t




  

. 

3) the hyperbolic curve 

p (z)   (1 – z)
a
, a > 0,  = 0; 

1( ) (1 ) az t z   ; 
 

1

1
( ) 1

1
/ a

z t
a t

 


. 

The graphs of the three learning curves with  = 0.1 and a = 1 are 

shown in Fig. 10. 
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Fig. 10. Example of three learning curves: solid line––exponential, 

thick line––logistic, dashed line––hyperbolic 

 

Complex learning curves. The framework of the auto-learning 

model (31) can be used to construct “complex learning curves” [55. ], 

e.g., the curves with plateau. Fig. 11 illustrates the graph of a learning 

curve determined by the equation ( ) (1 ) ( )z t z p z  , where 

1
( ) 1 Sin(6 )

2
p z t  , with the parameter  = 0.1. The second term in 

the right-hand side may describe productivity variations during a working 

day (e.g., the warming-up or fatigue effects). 
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Fig. 11. Example of learning curve with plateau 
 

Forgetting effects. The general auto-learning model (31) may also 

reflect forgetting effects (though, under the assumption that the function 

p (  ) may have negative values). Suppose the learning process was de-

veloping before a time T0, and then the reached learning level started 

decreasing, e.g., in accordance with the law 

0

2

0

1, ,

( ) 1
, .

2

t T

p z
z t T




 
 


 

The corresponding learning curve with the parameters  = 0.1 and T0 = 40 

is shown in Fig. 12. 
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Fig. 12. Learning curve with forgetting effects 

 

Some generalizations. The auto-learning model (31) allows for sev-

eral extensions, namely, transitions to learning-by-doing and collective 

learning. 

Consider the learning-by-doing model in which a learned actor 

(agent) can choose the intensity w(t) ≥ 0 of his/her activity (e.g., the 

amount of work executed per unit time; the number of current states of 

the environment analyzed per unit time, etc.). The amount of executed 

work W(t) = 
0

( )

t

w d   can be treated as the experience accumulated by 

the agent, his/her “productive internal time” [51. , 55. ]. 
Replacing the function p (z) with the intensity w(t) in equation (31) 

yields the differential equation 

(32) ( ) (1 ) ( )z t z w t  ; 
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its solution is the “exponential” learning curve 

(33) ( ) 1 exp( ( ))wz t W t   . 

Following [51. ], assume function (33) specifies the probability of 

achieving the result at a time t––the share of all successful actions of the 

agent. Then the cumulative expected result can be calculated as  

(34) W+(t) = 
0

)( ()w

t

wz d   = 
0 0

(1 exp( )) ( )

t

w d w d



      . 

Let T ≥ 0 be a given interval and also let W0 be a maximum amount 

of work in accordance with the agent’s capabilities. In view of (32)–(34), 

expected result maximization is the dynamic programming problem 

W+(T) 
0( ), ( )

max
w W T W 

 . 

Similar optimization problems (in particular, subject to the agent’s 

cost constraints, etc.) interpreted in terms of the agent’s optimal learning 

strategy were considered in [51. ]. Also see Chapter 3 of this book. 

Concluding this section, we will describe the process of collective 

learning [51. ] in terms of auto-learning. 

Up to this point, the agent’s learning process has been considered 

under the assumption that the agent uses his/her “own” experience only. 

However, the members of real groups are exchanging their experience: an 

agent can gain experience by observing the activity of the others (their 

achievements or challenges). Such models were described in [51. , 55. ]. 
For a proper reflection of this effect, let the experience p  accumulated by 

an agent be dependent on the learning levels of the other agents. 

Consider n agents. Introduce the following notations: i as the agent’s 

number; zi as his/her learning level; z = (z1, z2, … , zn) as the learning 

levels vector. For each agent, write an analog of equation (31): 

(35) ( ) (1 ) ( ), 1,i i i iz t z p i n  z . 

In model (35), agents may have different influence on each other as 

follows. 

- If 
( )

0i

j

p

z






z
, then agent i adopts experience from agent j. 

- If 
( )

0i

j

p

z






z
, then the experience of agent j “confuses” agent i. 
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- If 
( )

0i

j

p

z






z
, then the experience gained by agent j does not affect 

agent i. 

Within the framework of model (35), the optimal collective learning 

problem for a group of agents can be formulated and solved in the same 

way as in [51. ]. 

 

Thus, in Chapter 2 the design and adoption models of CA technolo-

gy have been considered. The main results include the following. 

- The basic learning curve for technology design (formula (1)) has 

been obtained and its properties (Propositions 1 and 2) have been estab-

lished. 

- The learning curve has been approximated in a series of important 

special cases (formulas (3) and (6)). 

- The expected time of reaching a required learning level has been 

estimated (formula (7)) and its properties have been established (Proposi-

tion 3). 

- Also: 

 the integration models of partial technology components (for-

mulas (15), (17), (19), (21), (25), (26) and (16), (18), (20) for 

the learning curves and expected times, respectively) and 

 the models of learning to learn and auto-learning 

have been suggested and analyzed. 

Note that the exponential (2), logistic (27) and hyperbolic (30) 

curves (the classical ones in the theory of learning [55. ]) have turned out 

to be special cases of the suggested auto-learning model.  

For the classical learning curves, the expected series length (an index 

that has been introduced in Chapter 2) satisfies linear difference equa-

tions as follows: 

 for the exponential learning curve, Nt+1 = exp(γ) Nt + (exp(γ) - 1); 

 for the logistic learning curve, Nt+1 = exp(β) Nt; 

 for the hyperbolic learning curve of first degree, Nt+1 = Nt + β. 

Perhaps, this fact deserves further study. 

A promising line of research is to formulate and solve management 

problems for the design and development of technologies based on their 

models presented in Chapter 2. Some of such management problems will 

be considered in Chapter 3. 
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3. MODELS OF TECHNOLOGY MANAGEMENT 
 

In Chapter 2, the basic design and adoption model for the technology 

of complex activity (CA) has been presented [51. ]. In the current chapter, 

a set of management problems arising in the design and adoption of the 

new technologies of complex activity will be considered, which includes 

the following problems: optimal learning (optimal choice of typical 

solutions); resource allocation in technological networks; optimal strategy 

development for the transition from technology design to productive use. 

Let us summarize the key results of the previous chapters. The exe-

cution of different types of CA is described by a discrete process as 

follows: at each time, precisely one CA element is implemented under the 

assumption that the environment takes precisely one value from the set of 

all possible states of the environment. If at some time the environment 

evolves to a new state never observed before, then an event of uncertainty 

occurs. This event leads to additional cost for creating or adapting the 

technology to the new conditions. If the environment returns in this state 

at one of the subsequent times, then no additional cost is required. 

Let the SPSE be composed of K different values. Assume at each 

time the environment takes precisely one of them regardless of the past 

states. Denote by pk > 0 the probability that the environment takes the kth 

value (obviously, 
1

1
K

k

k

p


 ). 

Within the framework of this model, the implementation process of 

different phases in the technology’s life cycle is completely characterized 

by the dynamics of the current states of the environment: which values 

from the SPSE the environment has already taken (and how many times) 

and which has not; see the details in Chapter 2. The maturity level of the 

technology (an analog of the learning level) is used here. Recall that the 

sequence of its values is called the learning curve. The index Lt gives the 

share of the states of the environment for which the technology has been 

tested or adapted during the past t times, or the probability that at the next 

time (t + 1) the environment will take one of its previous values: 

(1) Lt = 1 – 
1

(1 )
K

t

k k

k

p p


 . 

While sequence (1) represents the learning curve, the sequence 



83 

(2) Qt = 1 – Lt = 
1

(1 )
K

t

k k

k

p p


  

can be interpreted as the error curve (the probability that at the next time 

(t + 1) the environment will take one of its new values not observed 

before). 

Note that the technology adoption process should be treated as the 

actor's learning process; see the classical works [25. , 34. , 69. , 73. , 74. , 

75. ] and also the modern learning models in the surveys [6. , 24. , 37. , 

55. ], in which the learning curves (1) are typical. 

In this chapter, model (1), (2) will be used to formulate and solve the 

following management problems: the optimal learning problem––find a 

partition of the set of all possible states of the environment into a finite 

number of subsets that minimizes the expected error (Section 3.1) or the 

entropy (Section 3.2); the optimal resource allocation problem in techno-

logical networks (Section 3.3); the optimal transition problem from 

technology design to productive use (Section 3.4). 

 

3.1. Optimal learning: typical solutions 

 

Consider an actor (agent) that makes certain decisions during his/her 

activity. Let the efficiency [0,1]x  of the agent’s decisions be described 

by a function f(x,  ) that depends on the realized state of the environment 

[0,1]  . For the sake of simplicity, assume arg 
[0,1]

max
x

 f(x, θ) = θ. An 

example of such a function is f(x, θ) = 1 – (x - θ)
2
. 

Assume the agent distinguishes among K values of the state of the 

environment that are realized with probabilities {pk}, k = 1,K . Partition 

the unit interval into K sequential subintervals 
k  of the lengths {pk} 

with the limits [
1

0

k

i

i

p




 , 
0

k

i

i

p


 ], where p0 = 0. 

Consider a discrete learning process of the following form. At each 

time, a certain state of the environment is realized; if some state of the 

environment is realized again, then the agent chooses the corresponding 

optimal decision x
*
(θ), where x

*
(θ) = arg 

[0,1]
max
x

 f(x,  ); if some state of 

the environment (e.g., j-th) is newly realized (never observed before), 

then the agent chooses an arbitrary decision from the corresponding 
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subinterval 
j . On the one hand, this decision principle formally matches 

the Aumann’s model [8. ], in which decision-making based on act-

rationality and rule-rationality was considered. On the other hand, the 

model suggested in this section well reflects the ideology typical solu-

tions (see Chapter 4 of the book), which is widespread in situational and 

adaptive management. 

Let the function f(∙,  ) be uniformly l-Lipschitzian, where l > 0, for 

any states of the environment. (If l ≤ 0, the efficiency turns out to be 

independent of the decisions.) Then the maximum expected error of the 

agent’s decision at time t (the difference between the efficiencies of the 

chosen and optimal solutions) can be estimated as 
1

(1 )
K

t

k k k

k

p p l p


 . Also 

see formula (2). 

Fixing an arbitrary integer K ≥ 1 and a minimum threshold ρ, 

1
0

K
  , for distinguishing the states of the environment, we may 

formulate the optimal partition problem of all possible states of the envi-

ronment (the unit interval) into K subsets as follows: 

(3) Q({pk}, t) = 
2

1

( ) (1 )
K

t

k k

k

p p l


  

1

{ }: 1

min
K

k k

k

p p


 




. 

Note that the nonzero threshold ρ allows us to avoid the trivial solu-

tion p1 = 1 and pj = 0, where j = 2,K . 

For the uniform distribution (pk = 1 / K), the objective function of 

problem (3) takes the form 

(4) Q0(K, t) = 
1

(1 )tl

K K
 . 

Problem (3) can be interpreted as seeking for an optimal set of typi-

cal solutions that minimize the expected error of the current decisions at a 

given time. 

Proposition 4. (0,1/ ]K   ( )t   such that ( )t    the unique 

solution of the problem 

(5) Q({pk},  ) 

1

{ }: 1

min
K

k k

k

p p


 




 

is the uniform distribution. 
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The proof of Proposition 4 will rest on an intermediate result as fol-

lows. 

Lemma 1. (0,1/ ]K   ( )t   such that ( )t    the function 

Q({pk},  ) is strictly convex in the variables {pk}. 

The proof of Lemma 1. Fix an arbitrary number k = 1,K . Omitting 

the subscript k below, demonstrate that (0,1/ ]K   ( )t   such that 

( )t    the function G(p) = p
2
 (1 – p)

t
 is convex in p. Calculate the 

second-order derivative of the function G(∙): 

(6) 
2

2

( )d G p

dp
 = (1 – p)

t – 2
 [2 (1 – p)

2
 – 4 p t (1 – p) + p

2
 t (t – 1)]. 

As t() choose the maximum root of the quadratic equation 

(7) [ 1 ]p ,      2 (1 – p)
2
 – 4 p t (1 – p) + p

2
 t (t – 1) = 0, where t  2. 

Equation (7) has a nonnegative solution, since its coefficient at the 

highest (quadratic) term is strictly positive. Clearly, any ( )t   satisfies 

the system of inequalities 
2

2

( )d G p

dp
 > 0, [ 1 ]p ,    . Hence, due to the 

continuity of the right-hand side of expression (6) in t, it follows that 

[ 1 ]p ,    , ( )t   : 
2

2

( )d G p

dp
 > 0. 

Thus, each term of 
2

1

( ) (1 )
K

t

k k

k

p p l


  represents a convex function of 

pk because the Lipschitz constant is nonnegative by definition. Conse-

quently, their sum is also a convex function, which concludes the proof of 

Lemma 1. 

Now, prove the main result––Proposition 1. Fix an arbitrary time 

t > 0. Assume {qk} is the solution of problem (5) for ( )t t   and, in 

addition, there exists a pair i, j 1, K , such that i ≠ j and qi ≠ qj. For the 

sake of definiteness, let j > i. Due to the strong convexity of the objective 

function, we have 

Q({qk}, t) > Q(q1, …, qi-1, 
2

i jq q
, qi+1, …, qj-1, 

2

i jq q
, qj+1, …, qK, t), 

which contradicts the assumption. This means that in the optimal solution 

all values {qk} are the same. The uniqueness of this optimal solution 
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follows from the strong convexity of the objective function. The proof of 

Proposition 4 is complete.  

Interestingly, the solution of problem (5) does not depend on the 

Lipschitz constant l. 

Example 1. Choose K = 2. The graph of Q(p, t) is shown in Fig. 13. 

 

 
 

Fig. 13. Graph of Q(p, t) in Example 1  

 

Proposition 4 can be generalized to the following case. Denote by 

Сk(pk) the agent’s “losses” incurred by the first realization of the kth state 

of the environment (in a practical interpretation, the cost of obtaining the 

optimal solution in this situation). This cost can be determined as the 

computational complexity of the optimal solution in this situation. As it 

will be established in Chapter 4, the corresponding computational cost 

has linear or even superlinear growth with respect to the “size” of the 

optimization domain. 

The optimal partition problem of the set of all possible states of the 

environment (the unit interval) into K subsets in terms of the minimum 

expected losses at the current time t takes the form 
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(8) QС({pk}, t) = 
1

( ) (1 )
K

t

k k k k

k

C p p p


  

1

{ }: 1

min
K

k k

k

p p


 




. 

Corollary 1. Let the functions Ck(∙), k = 1,K , be strictly positive and 

have bounded first- and second-order derivatives. Then (0,1/ ]K   

( )t   such that ( )t    the unique solution of problem (8) is the 

uniform partition (uniform probability distribution). 

This corollary is proved by analogy with Proposition 4, with the only 

exception that the function G(p) is replaced by the function 

GС(p) = C(p) p (1 – p)
t
. Calculate the second-order derivative of GС(∙): 

(9) 
2

2

( )Cd G p

dp
 = (1 – p)

t – 2
 [ ( )C p  p (1 – p)

2
 +2 ( )C p  (1 – p) (1 – p –

 p t) + C(p) p t (t – 1)]. 

By the hypotheses of Corollary 1 the coefficient at the highest (quad-

ratic) term in the right-hand side of expression (9) is strictly positive 

while the other coefficients are bounded. The proof of Corollary 1 is 

complete.  

Next, assume the agent will gain some payoff Hk(pk) if the kth state 

of the environment is realized one or more times again. In this case, the 

optimal partition problem of the set of all possible states of the environ-

ment (the unit interval) into K subsets in terms of the maximum expected 

utility (the difference between the payoff and cost) at time t can be writ-

ten as 

(10) ({pk}, t) = 
1

{[1 (1 ) ] ( ) ( )(1 ) }
K

t t

k k k k k k k

k

p p H p C p p


     

1

{ }: 1

max
K

k k

k

p p


 





. 

Theorem 1 (on optimal typical solutions). Let the functions Hk(∙), 

k = 1,K , be such that the functions x Hk(x) are strictly concave for 

[0,1]x , and also let the functions Ck(∙), k = 1,K , satisfy the hypotheses 

of Corollary 1. Then (0,1/ ]K   ( )t   such that ( )t    the 

unique solution of problem (10) is the uniform partition. 

The proof of Theorem 1. By the hypotheses of this theorem and 

Corollary 1, each of the terms in the objective function (10) is a strictly 

concave function as the difference of strictly concave and strictly convex 

functions. Hence, the function ({pk}, t) is concave in {pk}. Using the 

same considerations as in the proof of Proposition 4, we can easily show 
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that the optimal values of {pk} are the same. The proof of Theorem 1 is 

complete.  

Proposition 4 claims that, for any threshold, there exists a time since 

which the uniform probability distribution will minimize the expected 

error of the agent’s decisions. A natural question, which actually charac-

terizes the converse property, is as follows. For sufficiently large times, 

does there exist a threshold under which the uniform distribution is 

optimal? The answer is affirmative. 

Proposition 5. 
2[2 3 2 2( 1)]t K / K K       ( ) 1t / K   

such that one of the solutions of the problem 

(11) Q({pk}, t) 

1

{ ( )}: 1

min
K

k k

k

p t p


 




 

is the uniform partition. 

The proof of this result seems trivial: under the hypotheses of Propo-

sition 5, the convexity condition 

2 (1 – K)
2
 – 4 t (1 – 1/K) / K + t (t – 1) / K

2
 ≥ 0 

holds for ( ) 1t / K  . Also see expressions (6), (7) and (9). 

Up to this point, the number K of pairwise distinguishable states of 

the environment has been assumed to be fixed. Now, consider how this 

number affects the expected error, i.e., find the optimal value of K. In 

view of Proposition 4 and Theorem 1, it suffices to study the class of 

uniform distributions only. Direct analysis of formula (4) gives the fol-

lowing result. 

Proposition 6. For any t ≥ 0, there exists the unique “worst” value 

K*(t) = t + 1 that maximizes the error. 

Example 2. The graph of (4) with t = 50 is shown in Fig. 14; here 

K* = 51. 
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Fig. 14. Graph of Q(K, t = 50) in Example 2  

 

Error (4) achieves minimum under small or sufficiently large values 

of K. Hence, additional criteria should be introduced, e.g., the bounded-

ness of the agent’s cognitive capabilities, the relation between the learn-

ing level and the number of states of the environment, etc. 

Indeed, up to this point the expected error (the objective function in 

the optimization problem (3)) has been adopted as the criterion. Now, for 

this role choose the learning level––the probability that a known state of 

the environment is realized; see (1). 

Example 3. For the uniform distribution, the relation between the 

expected learning level and K has the form 

(12) L(K, t) = 1 – 
1

(1 )t

K
 . 

The graph of (12) is presented in Fig. 15. 
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Fig. 15. Graph of L(K, t) in Example 3  

 

Consider the expected learning level maximization problem 

(13) L({pk}, ) = 1 – 
1

(1 )
K

k k

k

p p 



  

1

{ }: 1

max
K

k k

k

p p


 




. 

For this problem, an analog of Proposition 4 can be established using the 

convexity conditions of the objective function’s terms as follows. 

Proposition 7a. (0,1/ ]K   
2

( ) = 1t 


   such that ( )t    

the unique solution of problem (13) is the uniform partition. 

Which probability distribution is “worst” in terms of criterion (13)? 

The next result gives the answer.  

Proposition 7b. (0,1/ ]K   
2

( ) = 1*t 


   such that ( )*t    

the solution p
min

 of the problem 

Lτ = 1 – 
1

(1 )
K

k k

k

p p 



  

1

{ }: 1

min
K

k k

k

p p
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has the form 
min

iip  = 1 – (K – 1) ρ, min

ikp  = , k i , 1i ,K . 

Proof. As it has been established earlier (see Proposition 4), 

(0,1/ ]K   ( )*t   such that ( )*t    the function 
1

(1 )
K

k k

k

p p 



  is 

strictly convex in 
1

{ }k k ,K
p


. (The estimate 

2
( ) = 1*t 


  follows 

directly from the positivity of the second-order derivative.) On a 

bounded convex set, a strictly convex function achieves maximum 

at one of its extreme points. The point p
min

 is an extreme point of 

the convex polyhedron 
1

{ 1 ; 1}
K

k k
k

p ,k ,K p


   . Due to the obvi-

ous symmetry of the objective function, its minimum is achieved at 

this point also (note that the values at all К extreme points are the 

same).  

Using Proposition 7b, calculate a lower bound of the value Lτ 

for ( )*t  : 
min ( ) 1 ( 1) [1 ( 1) ] ( 1) (1 )L K K K  

             . 

In accordance with Proposition 7a, for ( )*t   the value Lτ 

achieves maximum under the uniformly distributed probabilities of 

the states of the environment. The corresponding upper estimate is 

max 1
1 (1 )L

K



     (interestingly, for *0 ( )t   the inequality 

min ( )L   ≥ 
maxL  holds; see Fig. 1). Standard transformations yield 

 max 1 exp ( )   – L   K   , 

where γ(K) = ln(1 + 1 / (K – 1)). 

Since (0,1/ ]K   
min ( )L    L   

maxL  and minlim ( )L





 = maxlim L


 = 1, then lim L


 = 1 and max minlim ( ( )) 0L L 





  . In 

fact, the following result has been argued. 

Theorem 2. (0,1/ ]K   and ( )*t   , 

1) min ( )L  is increasing in ρ; 
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2) min ( )L    maxL ; 

3) min 1
( )L
K


 = maxL ; 

4) max minlim ( ( )) 0L L 





  . 

 

 

Fig. 16. Graphs of 
min ( )L   (solid line) 

and maxL  (dashed line) for K = 20 and ρ = 0.04. 

Vertical line is ( ) = 49*t  . 

 

For any fixed time, the learning level is decreasing in the number K; 

see expression (12) and also Fig. 15. Moreover, by Proposition 6 the 

relation between the error and this number has a maximum point. Why 

cannot we choose K = 1, assuming that the set of all possible states of the 

environment is a singleton? This question seems natural but such an 

assumption will make the system’s behavior independent of the states of 

the environment. Hence, a reasonable approach is to hypothesize the 

existence of K0 fundamentally different states of the environment that 

require qualitatively different responses from the agent. (The number K0 

has to be a priori known.) On the one hand, this number can be deter-

mined from some objective laws or retrospective data (in the case of 

measurable uncertainty in the states of the environment), or determined 

using some heuristics/expertise (in the case of true uncertainty in the 

states of the environment). On the other hand, this number imposes an 

explicit lower bound on the number of different states of the environment 
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(the inequality K ≥ K0) and must agree with the threshold ρ (the inequali-

ty 
0

1

K
  ). 

Now, analyze which factors may restrict an infinite increase of the 

parameter K. The natural restrictions on the number K are as follows. 

- The inequality pk ≥  implies K  1 / . 

- Proposition 4 gives ( ) 2 1t K   . 

- If  is the agent’s “differential threshold” for the values of the ob-

jective function, then K  l / . 

Thus, a rational choice is to partition the set of all possible states of 

the environment into K equally probable “situations” so that (a) K ≥ K0, 

(b) K guarantees a reasonable compromise between the expected error 

and the learning level at a current time and (c) K satisfies the above-

mentioned upper bounds. For each situation, the agent will find optimal 

or typical solutions during technology design. 

Consider an example of the optimal management problem as fol-

lows. Given some K0, l and ρ, the problem is to reach a required learning 

level Lreq by a time 𝜏 so that the expected error will not exceed ε. Within 

Proposition 4, this system of requirements is consistent if there exists a 

positive integer K such that 

(14) 

0

req

1
,

1
1 (1 ) ,

1
(1 ) .

K K

L
K

l

K K










 



  




 


 

(Also see formulas (4) and (12).) In accordance with Proposition 6, for 

K0  K*( 𝜏) it suffices to check all inequalities (14) for the number K = K0 

(the greater numbers of K are pointless because they will simultaneously 

reduce the learning level and increase the expected error); for K0 > K*( 𝜏), 

the admissible values of the parameter K have to be found. 

 

3.4. Entropy 

 

Assume one of the two events may occur at each time––the realiza-

tions of the known or unknown (new) states of the environment. The 
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former event has the probability L({pk}, t) defined by (13). In the case of 

two possible events, the entropy is  

(15) S(t, {pk}) = – L({pk}, t) ln (L({pk}, t)) – 

– (1 – L({pk}, t)) ln (1 – L({pk}, t)). 

Study the relation between entropy (15) and {pk}, K and t. More spe-

cifically, consider the entropy minimization problem at time t: 

(16) S(t, {pk}) 

1

{ }: 1

min
K

k k

k

p p


 




. 

Theorem 3 (on entropy). (0,1/ ]K   
2

( ) = 1t 


   such that 

( )t    the unique solution of problem (16) is the uniform partition. 

Theorem 3 directly follows from the fact that entropy (15) is mini-

mum if one of the probabilities L({pk}, t) or (1 – L({pk}, t)) achieves 

maximum. By Proposition 7 precisely the uniform distribution maximizes 

(13). 

The result of Theorem 3 is not trivial: the maximum variety of the 

initial states (the uniform probability distribution of all possible states of 

the environment) not only minimizes the expected error and maximizes 

the learning level (Propositions 4 and 7, respectively) but also minimizes 

the entropy of the agent’s learning states. 

Proposition 8. The maximum value of entropy (15) does not depend 

on the distribution {pk}, being equal to ln(2). 

Indeed, Proposition 8 follows from the fact that expression (15) is 

maximized with respect to the time variable if L({pk}, t) = 1 – L({pk}, t), 

i.e., if the known and new states of the environment are realized with the 

same probability. 

For the uniform distribution, relation (15) between the entropy, time 

and parameter K takes the form 

(17) S(t, K) = 

1

1
1

1
1

t
K

t K

t

K

K
ln

K

K

 
 
 

 
   

       
  
   

  
  

. 

Entropy (17) achieves maximum at the time 
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(18) tS(K) = (2)

(1 1 )

ln

ln / K



. 

Note that tS(K)  ( )t  , i.e., the uniform distribution is optimal for the 

times considerably exceeding the characteristic time for achieving the 

maximum entropy. 

 

 
 

Fig. 17. Graph of S(K, t) under uniform distribution with K = 25 

(tS(K) ≈ 17) 
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Fig. 18. Graph of S(K, t) under uniform distribution. 

 

This model satisfies the principle of determinism destruction [26. , 

55. ] because there exists a maximum point of the entropy. (At the initial 

time, the entropy is 0, meaning that the system is completely determinis-

tic; hence, any state of the environment realized at the initial time will be 

new for the agent; the entropy vanishes as t → 0.) 

Now, consider the system with 2
K
 possible states. At time t, its dy-

namics are described by a K-dimensional binary vector, in which the kth 

component is 1 if the state of the environment has taken the kth value at 

least once before this time inclusive and 0 otherwise. The entropy 

s(t, {pk}) of this system has the form 

(19) s(t, {pk}) = 
1

1
(1 (1 ) )

1 (1 )

K
t

k t
k k

p ln
p

 
   

  
 . 

The corresponding entropy minimization problem at time t can be 

written as 
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(20) s(t, {pk}) 

1

{ }: 1

min
K

k k

k

p p


 




. 

Proposition 9. (0,1/ ]K   ( )t   such that ( )t    the 

unique solution of problem (20) is the uniform partition. 

This result is established by analogy with Proposition 4 and Theo-

rem 1. (For sufficiently large t, we should demonstrate the strict convexi-

ty of the function 
1

(1 (1 ) )
1 (1 )

t

t
p ln

p

 
   

  
 in the variable p.) The tech-

nical details are therefore omitted. 

 

3.5. Technological networks 

 

Recall that the technology of CA has been defined as a system of 

conditions, criteria, forms, methods and means for achieving a desired 

goal. A sequence of actions (the logical, temporal and process structures 

of CA [12. ], i.e., technological networks) is traditionally described using 

graph theory. This language provides the structural description (the 

connections between the whole and its parts, the connections between 

different elements), the cause-effect description and the functional de-

scription (the system’s behavior and interaction with the environment, 

etc.). Really, network models well reflect the cause-effect relations be-

tween the CA elements: the descriptive and predictive function (from the 

causes to their effects), the explanatory function (from the effects to their 

causes) and the normative function (from the causes to the optimal effects 

or from the optimal causes to the required effects). 

There are different classes of models that characterize the significant 

properties of a technological structure as follows: 

- the information-logical models of science and technologies; 

- the semantic, logical and Bayesian networks, namely, probabilistic 

logic networks (PLNs) [29. ], Markov logic networks [62. ] and binary 

neural networks [38. ]; 
- the knowledge representation models: the production models, the 

networked models (semantic networks, ontologies), the frame models, 

and others; see surveys in [15. , 30. ]; 
- the models of science development in terms of bibliometry and ci-

tation networks [41. ]; 



98 

- the knowledge epidemics models for ideas diffusion [77. ]. 
In addition, using the concepts of the technologies readiness level 

(TRL) and integration readiness level (IRL), recently many researchers 

have considered the maximization problems of the systems readiness 

level (SRL) subject to different TRL and IRL constraints [64. , 65. ]. 
However, all these classes of models still need to be adapted for the 

management problems of CA technology design and adoption. Let us 

analyze the capabilities of the network active system models for these 

purposes. 

A network active system (NAS) is defined as follows. Consider a 

network G = (N, E) (a directed and connected graph without cycles), 

where N = {1, 2, …, n}, n ≥ 2, is a finite set of nodes (the agents imple-

menting elementary technologies) and E N N   is a finite set of edges 

(the logical relations between them). The nodes of this graph have proper 

numbering, which reflects the prior beliefs about the cause-effect rela-

tions between the activities of different agents. 

The entire network can be treated as the model of some complex 

technology while its subgraphs as the models of partial technologies. 

Denote by Li = { ( ; )j N | j i E  } the set of the immediate prede-

cessors of agent i in the network G and by Ri = { ( ; )j N | i j E  } the 

set of the immediate followers of agent i, i N . Designate as GN the set 

of all possible networks with correct numbering that connect all nodes 

from the set N. 

Assume the network has a unique output––node n. (An output is a 

node without any outgoing edges.) Let M0  N be the set of all inputs of 

this network. (An input is a node without any incoming edges.) Let Mk be 

the set of all nodes with the incoming edges only from the nodes belong-

ing to the sets {Mj}, where 0 1j ,k  , 1,k m , m  n – 1 and Mm = {n}. 

(The value k(i) is the rank of node i belonging to the set `Mk.) Obviously, 

the output’s rank k(n) is the length of the maximal path from the network 

inputs to its output.) The collection of all {Mk}, 0k ,m , is a partition of 

the set N. 

Introduce the notation M
k
 = 

1

0

k

k

j

M




, 1k ,m , and also let M
0
 = . Des-

ignate as S0 = {n}, Sk  N, the set of all nodes of the graph G with the 

outgoing edges only to the nodes belonging to the set Sk–1, 
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k = 1, 2, … , k(n). Since the graph G is connected,
( )

0

k n

k

k

S


 = N. Denote by Wi 

the set of all predecessors of agent i, i.e., the nodes that have a path to 

node i. Since the graph G is connected, Wn = N \ {n}. The rank of a node 

can be interpreted as the maturity level of a corresponding technology. 

Let the NAS be binary in the sense that agent i chooses a binary ac-

tion yi {0;1} , which gives a binary result zi {0;1}  of his/her activity. 

(For example, “0” means “the action is not implemented” or “the result is 

not achieved,” while “1” means “the action is implemented” or “the result 

is achieved”). Designate as yD and zD, where D  N, the action and result 

vectors of all agents, respectively. 

The agent’s result depends on his/her actions and also on the results 

of other agents used by him/her. This dependence will be described by 

the logical technological function Qi: {0;1} {0;1}i|N |
 , i.e., ( )

ii i i Nz y Q z . 

For 
0i M , Ni = ; hence, let 

0( )i i iz y Q z , where z0 is the l-dimensional 

vector of all inputs of the network (l = |M0|). Assume the choice yi = 1 

incurs some cost ci  0 on agent i. 

The simplest examples of technological functions are the conjunctive 

function min ( ) min { }
i i

i
N j

j N
Q z z


  (agent i obtains the desired result only if 

all his/her immediate predecessors have achieved their own results) and 

the disjunctive function max ( ) max { }
i i

i

N j
j N

Q z z


  (agent i obtains the desired 

result if at least one of his/her immediate predecessors has achieved 

his/her own result). 

Consider an actor that manages the NAS (hereinafter, such an actor 

will be called the Principal). If the Principal knows the graph G, the 

technological functions {Qi()} and also the cost functions {ci} of all 

agents, then he/she may implement the following algorithm for each node 

i of the graph G. 

– Find the function Q
i
(

iWy ) determining the relation between the 

result zi of agent i and the actions vector 
iWy  of all his/her predecessors. 

(This function can be treated as the aggregate technology of agent i; for 

agent n, this is the aggregate technology of the entire NAS.) 

– Find the set 

(21) Ai = {(
iWy ) {0,1} i|W |
  | Q

i
(

iWy ) = 1} 
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of the actions vectors for achieving the result of agent i. 

– Find the set 

(22) 
*

iA  = Arg 
( )
min
W ii

y A

 
i

j

j W

c


  

of the actions vectors for achieving the result of agent i with the mini-

mum total cost 

(23) Ci = ci + 
( )
min
W ii

y A

 
i

j

j W

c


 . 

For the conjunctive technological functions, sets (21) and (22) have 

the same form *

nA  = An = N. For the disjunctive technological functions, 

*

nA  is the set of all nodes of the graph G that lie on the shortest path (in 

terms of the total cost) from any of its inputs to the output; the value Cn 

equals the length of this path. In the general case, the methods of graph 

theory, network scheduling, planning and control can be used. 

The Principal considers the interests of different agents, stimulating 

them to choose required actions in a rather simple way––using the de-

composition theorems of the agents’ game [56. ]. Therefore, the only 

problem that has to be solved by the Principal is to find sets (22) (the 

planning problem). 

In addition, it would be interesting to establish general-form suffi-

cient conditions under which the NAS can be aggregated, i.e., represent-

ed as an equivalent network structure of a single element with construc-

tively defined properties (of course, depending on the properties of the 

elements of the original network). 

The above NAS model is based on the assumption that the Principal 

completely knows the network G and also all its technological functions. 

However, technology design often consists in the development of a 

sequence of actions under a prior uncertainty in the external conditions 

and also in the knowledge about possible methods for achieving a goal 

(the result of a corresponding agent), i.e., a prior uncertainty in the cause-

effect and/or logical relations between different potential technology 

elements. 

The technology design process is (a) to eliminate this uncertainty 

(considering the cost) using the Principal’s purposeful actions that modify 

his/her beliefs about the NAS structure and (b) to synthesize an optimal 

technology––the NAS for achieving the required goal with the minimum 
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technology design and implementation cost (cost management during the 

technology’s life cycle). 

Consider the optimal learning problem within the technological net-

work. For a given technological graph, an agent can analyze as many 

states of the environment (per unit time) as much resources he/she re-

ceives from the Principal.  This may form the Principal’s managerial 

actions. Assume each state of the environment requires the same time for 

analysis. 

Then the problem can be written in the following general form: 

1) Construct a technological graph. 

2) For each node, partition the set of possible states of the environ-

ment into a finite set of non-intersecting subsets and then estimate the 

probabilities of each subset (in accordance with Sections 3.1 and 3.2, the 

uniform partition should be chosen). 

3) Fix the relation between the learning characteristics of the nodes 

(agents) and the resources. 

4) Find the relation between the characteristics of the entire techno-

logical graph and the resources (in particular, see formulas (21)–(23)). 

5) Solve the management problem (the resource allocation problem 

among the network nodes). 

Consider a series of models implementing the last step. Denote by 

u  1 the resource quantity, i.e., the share of the states of the environment 

that are tested per unit time. 

For the uniformly distributed probabilities of the states of the envi-

ronment, the relation between the learning level, time and resource quan-

tity takes the form 

(24) L(t) = 1 – exp (– u t). 

(See expression (1).) 

In accordance with the aforesaid, for K ≫ 1 the expected time τ of 

reaching a required learning level Lreq  [0, 1) can be approximated as 

(25) τ(u) = – reqln(1 )L

u


. 

Due to the convexity of (25) in u, the following result can be easily 

established. 

Proposition 10. For any relation between the resource quantity and 

time, there exists a constant value of this quantity under which a required 

learning level is reached in the same or greater expected time. 
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Assume the technology design/adoption process incurs some cost 

c(u K) on the agent. Let the cost function be a strictly monotonically 

increasing and convex function of the states of the environment tested per 

unit time (this number of states can be interpreted as the efficiency of 

allocated computational resources). 

In what follows, two special cases will be studied––sequential and 

parallel technology design. 

Sequential technologies design. Consider n technologies with num-

bers i 1,n  that are designed sequentially (in accordance with their 

numbering) with the same learning level Lreq for all of them. Then the 

design time for the entire complex of these technologies is the sum of the 

design times of partial technologies: 

(26) Tmax(u1, …, un) = – 
reqln(1 )L  

1

1n

i iu

 . 

In this case, the minimum design cost is 

(27) сmin(u1, …, un) = c(
1,

max
i n

 {ui Ki}). 

The minimization problem of the design time (26) subject to an 

upper bound C on the cost function (27) has the solution 

(28) ui = 
1

1,

( )

max{ }i
i n

c C

K





. 

In other words, the same resource quantity is allocated for the optimal 

design (28) of each technology. 

From formulas (26) and (28) it follows that the complex of sequen-

tial technologies can be represented as an aggregate technology with the 

following relation between the design time and resource quantity: 

(29) T(С) = – reqln(1 )L  n 1,

1

max{ }

( )

i
i n

K

c C




. 

The inverse problem, which is to find the minimum cost Cmin of de-

signing the complex of sequential technologies in a given expected time 

T, has the solution 

(30) Cmin = 
req

1,
ln(1 ) max{ }i

i n
L n K

c
T


  

 
 
 

. 
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Parallel technologies design. Now, consider n technologies with 

numbers i 1,n  that are designed in parallel with the same learning 

level Lreq for all of them. Then the design time for the entire complex of 

these technologies is the maximum of the design times of partial technol-

ogies: 

(31) Tmin(u1, …, un) = 
req

1,

ln(1 )

min{ }i
i n

L

u


 
. 

In this case, the minimum design cost is 

(32) сmax(u1, …, un) =  
1

 i i

n

i

c u K


 . 

The minimization problem of the design time (31) subject to an 

upper bound C on the cost function (32) has the solution 

(33) ui = – 
*

minT  reqln(1 )L , 

where 
*

minT  satisfies the equation 

(34)  *

req min

1

ln(1 )  
i

i

n

L Tc K


  = С. 

Note that the same resource quantity is allocated for the optimal de-

sign (33) of each technology, and the design processes of all technologies 

are completed simultaneously in the time 
*

minT . 

The inverse problem, which is to find the minimum upper bound 

Cmin for the cost of designing the complex of parallel technologies in a 

given expected time T, has the solution defined by (34) with *

minT  = T. 

From formulas (31) and (33) it follows that the complex of parallel 

technologies can be represented as an aggregate technology. For the 

linear cost function c( ), the analytic relation between the design time and 

resource quantity of this aggregate technology is given by 

(35) T(С) = – reqln(1 )L  1

n

i

i

K

C




. 

Thus, a sequential-parallel network diagram of technologies design 

can be first decomposed into the sequential and parallel elements with the 

above optimal resource allocations and equivalent aggregate representa-
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tions (formulas (29) and (35)). As a result, this network diagram can be 

written in a simple analytic aggregate form. 

Sequential-parallel networks are called aggregable. In accordance 

with the well-known aggregability criterion, a network is aggregable if it 

contains bridges. Any network can be transformed into an aggregable one 

by splitting a series of nodes into new nodes; in this case, the optimal 

solution of the minimum design time (or cost) problem for the resulting 

aggregable network will be a lower bound of the corresponding solution 

for the initial network. 

 

3.6. Transition from technology design to productive use  

 

Using the established properties of the technology management pro-

cesses, consider an important problem of technological decision-making: 

completing the design phase (block 3 in Fig. 9) and performing further 

transition to productive use at the implementation phase of the CA life 

cycle (cycle b–c in Fig. 9). 

Assume the actor invests in the creation of his/her CA technology 

during the design phase for gtaining payoffs from its productive use 

during the implementation phase. At each time during the design phase, 

the CA effect for the actor is deterministic and negative: he/she bears 

some cost cd regardless of a current state of the environment. 

At each time t of the implementation phase, one of two possible 

events occurs as follows. 

 The environment takes one of the known states for which the 

technology has been developed earlier. In this case, the actor gains a 

payoff v. This event will be denoted by ξt = 1. 

 The environment takes an unknown state (ξt = 0), and the technol-

ogy has to be modernized accordingly. In this case, the subject bears the 

cost cp without any payoff (here the inequality cp > cd is natural because 

otherwise the design phase makes no economic sense). 

During the implementation phase the effect is uncertain and depends 

on the state of the environment (1 ) ( )t p t p t pv c v c c       . At time t the 

expected effect depends on the technology’s maturity level Lt-1 reached 

by this time and can be calculated as 

1( ) ( )E[ ] ( )Pr( 1) ( )p t p p t p p t pV t v c c v c c v c L c            . 
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For such problems, the standard additivity assumption claims that 

the effect gained on a time interval is the sum of the effects gained at 

each time of this interval. 

Recall that the CA life cycle is implemented as follows (see Chapter 

1 and Fig. 9). Before each time, the actor chooses between CA design 

(which incurs the cost cd) and CA execution. In the latter case, he/she 

gains the payoff v or bears the cost of modernization cp, depending on a 

current state of the environment. 

Let dt be an indicator function for the actor’s decisions at each time t 

with the following values: “0” (CA design) or “1” (CA execution). Then 

the actor’s expected effect on the time interval between times t1 and t2 can 

be written as 

1

2

1 11 2, ( (1 )) (1 )(   )
t

p d

t

v L c L d cV t t d   



 



       . 

Then the technological decision problem on the completion of the 

design phase and transition to the implementation phase of the CA life 

cycle is to find the decision strategy {
*

td } maximizing the expected effect 

V(t1, t2): 

 
 

2

1

1 1arg max ( (1 )) (1 )
t

*

t p
d

t

t

dd v L c L d c d   



 



       . 

Assume the actor makes sequential decisions at each time t = 1,T  

independently of his/her decisions at the past times. In this case, all {dt} 

are independent of each other. 

Then at the current time t the decision strategy has to maximize 

V(t, T): 

(36) 
 

 
 

1 1max , max ( (1 )) (1 )
t t

T

p d
d d

t

V t T v L c L d c d   



 



 
     

 
 . 

Due to the independence of {dt} for different times, the maximum of 

the sum of the expected effects is the sum of the maximum effects. From 

expression (36) then it follows that 

 
   

 
 

 
1

1 1

1 1

max , max ( (1 )) (1 )

max ( (1 )) (1 ) max 1,

t

t t

T

p d
d d

t

t p t t d t
d d

V t T v L c L d c d

v L c L d c d V t T .


   





 



 

     

      


 

Making trivial transformations and denoting 
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(37) thres

р d

p

c c
L

c v





, 

we finally get 

 
 

 1

1 thresmax ( , ) ( ) max ( ) max ( 1, )
т

t t
t

d p t t
d dd

V t T c v c L L d V t T


       . 

The following result is immediate. 

Proposition 11. The optimal decision strategy that yields the maxi-

mum total effect is given by 

(38) 
1 thres

1

1 thres

0  if 
( )    

1  if 

t

t t

t

L L ,
d L

L L .








 


 

In other words, the optimal strategy (38) has a single switch from 0 

to 1 (from the design phase to the implementation phase), and the transi-

tion condition is determined by the technology’s maturity level as fol-

lows. While this level is not exceeding the threshold (Lt-1 < Lthres), the 

actor benefits from technology design through investments; starting from 

the time treach of reaching the maturity level Lthres, the actor chooses the 

productive use of the technology (for gaining the payoffs from activity 

execution), further improving the maturity level in parallel. First, the 

actor just designs the technology and then redesigns (improves) it in the 

course of activity execution. 

Using formulas (36) and (38) in combination with the Wald identity, 

we will derive an explicit expression of the prior maximum expected 

effect 

(39) 
reach

1 reach reach

1

(0, ) ( ) ( )
T

*

p d p

t

V T v c L c t c T t





 

     , 

where treach is the expected time of reaching the maturity level Lthres. 

Substituting the expected maturity level Lτ-1 into (39) gives 

reach

1

reach reach

1

(0, 1 (1) ( ) () )
T

*

p d p

t

K

k k

k

V T v c c cp T tp t

 





 
     

 
  . 

In the final analysis, 

reach

1

reach(0 ) ( ) ( ) (1 ) ( )( ) 1
K

T

k k

k

t*

d p p p p .V ,T v T v c t v c v c


             

Interestingly, the optimal strategy is independent of the interval 

length T, which actually defines the resulting effect (0, )*V T  only. 
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The following conclusion is immediate from (37) and the monotonic 

increase of the process Lt (see Proposition 5 and its extensions to different 

integration processes).  For any arbitrarily large cost cd and cp such that 

cd < cp and any arbitrarily small nonzero payoff v, there exists a time Tpayb 

since which the agent’s activity will yield a positive effect. In other 

words, Tpayb will determine the break-even point of the CA life cycle. 

This time can be found from the equation 

reach

1 2 reach

1 1

(1 ) (11 )
t

K

k k

k k

t
K

a t pa tp
 

       

in t, where 10 ( ) 1pa v / v c     and 20 ( ) ( ) 1d pa v c / v c     . The mono-

tonic increase of the technology’s maturity level (see Proposition 5 and 

its extensions to different integration processes) allows proving that the 

sequential single-switch strategy is optimal among all sequential decision 

strategies dt (not only among the strategies with independent decisions at 

each time). On the other hand, the optimal sequential decision strategy is 

not worse than any prior strategy. This leads to another important result 

as follows. 

Proposition 12. The sequential single-switch strategy (38) is optimal 

among all admissible ones. The resulting effect (39) is maximum achiev-

able while the payback time Tpayb is minimum possible. 

Now, consider the technological decision problem on the transition 

from the design phase to the implementation phase under the unknown 

but fixed characteristics of the environment (the dimension K and also the 

probabilities {pk}). In this case, the technology’s maturity level cannot be 

calculated and hence the decision strategy (38) (see Proposition 9) be-

comes inapplicable. 

The expected effect can be written as 

 
   

 1

порmax ( , ) ( )max Pr 1 max  ( 1, )
t t t

d p t t
d d d

V t T c v c L d V t T


        . 

Therefore, the sequential strategy optimizing the expected effect 

V(t, T) consists in   thresPr 1 max
t

t t
d

L d    , which is achieved by 

dt = 1 if Pr(ξτ = 1) > Lthres and dt = 0 otherwise. In other words, dt must be 

the result of the sequential testing of the composite main hypothesis 

Lt < Lthres against its composite alternative Lt ≥ Lthres (whether the value of 

the unobserved process Lt is exceeding the threshold Lthres or not). 

Under the unknown characteristics of the environment, all available 

information for decision-making is whether a current state has been 



108 

observed before or not. Denote by θk the times when the environment 

takes new states never observed before. These times form an increasing 

finite sequence 0 = θ1 < θ2 <…< θk <…< θK observed by the actor. By 

definition, at each time θk the process Lt has an unknown increment pk 

and takes the value 
1

k

k

i

i

L p


 , which is fixed till the next time θk+1. 

Consider the series lengths ψk = (θk+1 – θk – 1) for k = 1, 1K  . The values 

ψk are independent random variables, each obeying the geometric distri-

bution parameterized by the current partial sum 
1

k

k

i

i

L p


  of the proba-

bilities of all realized states of the environment. (Note that this parameter 

is unknown to the actor.) In other words,     1Pr 1
k k

n

k n L L     , and 

the expected values and variances are  1
k k

L / L   and  
2

1
k k

L / L  , 

respectively. The actor has no prior knowledge about the dimension K 

and the distribution {pk}; hence, the length of the sequence {ψk} cannot 

be defined and this sequence should be considered a priori infinite. 

Let s be the number of the last new state observed by the current 

time t, i.e., 0 = θ1 < θ2 <…< θs ≤ t. Also introduce the notation ψs= t – θs. 

Thus, at each time t the actor disposes of the following information 

for his/her decisions: 

 the series lengths ψ1, ψ2, …, ψs-1, ψs, further denoted by {ψ}; 

 the knowledge that each of ψk is generated by the geometric 

distribution with an unknown increasing parameter 
1k k

L L .  
  

Under the unknown properties of the environment, the problem is to 

synthesize a sequential testing criterion dt({ψ}) for the composite main 

hypothesis H0: s
L  < Lthres (the value Lt has not exceeded the threshold 

Lthres before the time t) against the set of composite alternatives {Hi: 
i

L

 ≥ Lthres} (the value Lt has exceeded the threshold Lthres at the time θi) by 

maximizing the expected effect V(0, T). For the synthesis procedure of 

this criterion, the decision strategy dt({ψ}) will be chosen using the 

likelihood ratio while the criterion parameters will be adjusted by opti-

mizing the expected effect V(0, T). 

The relative likelihood ratio of the series lengths {ψ} generated by 

the geometric distribution has the form 
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1 1

0 0 0

0

Pr 1

1Pr

i i is s
i k k s

k s

k i k ik k s

H L L L
l i,t ln ln ln ln

L L LH


 



 

 

        
          

       
  . 

where 0

kL  and i

kL  give the values of the process Lt at the times θk when the 

main 
0

threskL L  and alternative 
thres

i

kL L  hypotheses are true, respectively, 

and i (i=1,2, …s) means the number of the alternative hypothesis (actual-

ly, the serial number of the new ith state of the environment). 

There is no available information on the properties of the environ-

ment, and the only constructive considerations about the values 
0

kL  and 

i

kL  are the inequalities 0

threskL L  and thres

i

kL L . Hence, let 
0

threskL L L   

and thres

i

kL L L  . (As a matter of fact, this assumption seems neither 

better nor worse than any other.) 

At a current time t, the main hypothesis will be rejected for its alter-

native if at least one of the functions l(i, t) exceeds some threshold lthres, 

i.e.,   thresmax
i

l i, t l . 

Denote    max
i

l t l i,t  and study how this function will vary with 

the course of time. If at a current time t a known state of the environment 

is observed, then each of the likelihoods l(i, t), 1 ≤ i ≤ s, will increase by 

thres
1

thres

0
L L

a ln
L L

  
  

  
. As a result, l(t) will increase by the same value, 

l(t + 1) = l(t) + a1. If a new state is observed, then each of l(i, t), 1 ≤ i ≤ s, 

will decrease by thres
2

thres

1
0

1

L L
a ln

L L

  
  

   
. Also the new (s + 1)th func-

tion l(s + 1, t + 1) = 0 will be formed. Therefore, in this case 

l(t + 1) = max{0; l(t) + a2}. 

The resulting value of the likelihood function l(t) is compared with 

the threshold lthres. Because all the three constants a1, a2 and lthres have to 

be determined, without loss of generality let a1 = 1 and a2 = –a. 

Thus, we have derived the sequential likelihood-based criterion to be 

used under the unknown properties of the environment. This criterion 

includes the iterative calculation of the likelihood function l(t) and the 

corresponding decision strategy dt({ψ}) given by 
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(40) 

 

 

 

  

  
    

    

1 thres

1 thres

0 0,

1 1 if known state is observed,         

max 0;  if new state is observed;

0 if 0 and ,  

1 if 1 or 

t

t

t

l

l t l t

l t a

d l t l
d

d l t l .










 


  




  
 

 

 

For completing the synthesis procedure, it remains to calculate the 

constants a and lthres by optimizing the expected effect V(0, T, a, lthres) 

under different assumptions of the environment’s properties. 

To this end, write the expected effect on some time interval between 

0 and T (with the initial learning level L0 = 0) as a function of the con-

stants a and lthres and also of the assumed properties of the environment––

the distribution {pk} and its dimension K. 

Hereinafter, a sequence of the numbers {k1, k2, … , kK} of new states 

of the environment in the order of their observation during technology 

design will be called a trajectory while the times when the states ki occur 

will be denoted by θi. As a trajectory evolves, the learning level varies 

from 0 to 1, taking the values 
1

i i

i

k

j

L p



  at the times θi. The probability 

of each trajectory {ki} is     
1

1

1

1
i i

K

i k

i

P k p L






  
  

 . 

First of all, calculate the effect V({ki }, T, a, lthres) for each trajectory 

and then perform averaging over all trajectories: 

(41)

       
 

    
 

thres thres

thr 1

1

es

1

, , ,

, 1

, ,

,,

i

i i

i

i i

k

K

i k

k i

a  V T V k T P k

V k T p L

l a  l

a  l .







 

  
  



 
 

For calculating the effect V({ki }, T, a, lthres), each trajectory {ki} is 

assumed to be fixed. Hence, for the sake of simplicity let ki = i, and 

accordingly 
ii kp p  and 

iiL L . 

Introduce a two-dimensional discrete random process (k(t); l(t)), 

where k(t) denotes the number of all unrealized trajectory states at time t 

(k(0) = K – 1, and at the subsequent times θi the function k(t) is gradually 
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decreasing by 1 down to 0); l(t) denotes the values of the likelihood 

function (l(0) = 0, and at the subsequent times l(t) is varying between 0 

and lthres inclusive in accordance with rule (40)). 

If at some time t the second component of the process (k(t), l(t)) 

reaches the value l(t) = lthres, then the effect for this trajectory will take the 

value v(T – t) – cp k(t) –cd t. 

Therefore, the expected effect for the trajectory is 

          
 

thres thres

;

, , ; ;,i

t k t

d pa  l v T t c t    V k T Pr tt k lc k t     

    
 

    
 

thres thres

; ;

; ; ; ;
p

t k t t k t

d

d

v T v t Pr k t l t Pr
c

c k t
c

k t l t .
v

  
    

  
   

Consider this expression in detail. The first term vT depends neither 

on the properties of the environment, nor on the trajectory and nor on the 

parameters of the criterion. Hence, it will be omitted for the sake of 

simplicity. The second term describes the learning cost: the constant 

(v + cd) is multiplied by the sum of the expected time of reaching the 

required learning level (the first sum) and the expected number of unreal-

ized states of the environment (the second sum) with the factor 

μ = cp (v + cd)
-1

. 

Thus, the optimal effect can be calculated by minimizing the cost  

(42) 

     
 

    
 

t thres thres

; ;

hres, , ; ; ;, ;i

t k t t k t

C k T t Pr k t l t Pa  l k r k t l tt   . 

In view of (42), effect (41) takes the form 

         
 

      
 

thres

1

1

1

thres

thres

, ,, , ,

, , , 1

i

i i

i

d i i

k

K

d i k

k i

V T v T c v C k T P k

v T c

a  

v C k T p L .

l a  l

a  l 







   

    
  



 
 

This means that the effect optimization problem 

V(0, T, a, lthres) → max is equivalent to the expected cost minimization 

problem C(T, a, lthres) → min, where 
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(43) 

      
 

     
 

 
 

thres thres

1

1

1

1

thres 1

; 1

, , , 1, ,

; ; 1

i i

i

i i

i

K

i k

k i

K

k

k t k t i

C T C k T p L

t t Pr k t

a  l a  

l

l

t p Lk t .

















   
  

           

 

  

 

For solving this problem, we have to find the probability distribution 

Pr(k(t); lthres; t). 

Also note that the expected cost can be written as 

       
 

     
 

  
 

thres

;

thres thres; ;

;

; ;;

;

i

i

i i

k

i

k t k t

C T C k Ta  l a  l

k

P k

t Pr k t l t P kt

 

 
    

 



 
 

  
 

       
 

  
  

thres thres

; ;

; ; ; ;
i i

i i

k t k t k t k t

t Pr k t l t P k Pr k t l t P k .k t  

 

Consequently, 

(44)        thres thres thres; ; ; ; ;; ; ; k ka  l p a  l p a  C T t K lK k  , 

where   thres; ; ;kp a  lt K  gives the expected time of reaching the level 

lthres by the process l(t);   thres; ; ;kp a  lk K  is the expected number of 

unrealized states of the environment by the time when the process l(t) 

reaches the level lthres; finally, the known parameter μ = cp (v + cd)
-1

 char-

acterizes the general impact of the payoff v and cost cp and cd.  

Formula (44) can be used for the qualitative analysis of the expected 

cost dynamics under different values of the parameters. Obviously, the 

function  t   is monotonically increasing in a and lthres while the function 

 k   is monotonically decreasing in a and lthres for any probability distribu-

tions of all states of the environment. For lthres = 0 (obviously, a ≤ lthres), 

the criterion will be satisfied immediately at time 1; the functions  t   

and  k   will be equal to 1 and K – 1, respectively, and the expected cost 

will become C(T, 0, 0) = 1 + μ (K – 1). Conversely, for “very large” 

values lthres, the criterion will not be satisfied on the entire interval to T, 

the functions  t   and  k   will be equal to T and 0, respectively, and the 

expected cost will become C(T, a, ∞) = T (for any a). 
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Hence, the expected cost C(T, a, lthres) has an optimum that depends 

on K, {pi}, μ, a, and lthres (in a special case, the optimum corresponds to 

one of the limit values, 1 + μ (K – 1) or T). 

By definition the process (k(t), l(t)) evolves in accordance with the 

following rules. 

 At the initial time t = 1, the process has the deterministic value 

(k(0); l(0)) = (K – 1; 0). 

 At each time t > 0 when a known state of the environment is real-

ized again, (k(t); l(t)) = (k(t – 1); l(t – 1) + 1). If also l(t –

 1) ≥ lthres, then (k(t; l(t)) = (k(t – 1); lthres). The probability of this 

event is Lk(t). 

 At each time t > 0 when an unknown state of the environment is 

realized, (k(t); l(t)) = (k(t – 1) + 1; max{0; l(t – 1) – a}). If also 

l(t – 1) ≥ lthres, then (k(t); l(t)) = (k(t – 1) + 1; lthres). The probabil-

ity of this event is 1 – Lk(t). 

For 0 ≤ k < K and 0 <  l< lthres, the evolution of the probability func-

tion P(k; l; t) of the process (k(t), l(t)) with the discrete time t > 0 can be 

therefore described by the system of difference equations 

(45) P(k; l; t)= LkP(k; l – 1; t – 1) + (1 – Lk+1) P(k + 1; l + a; t – 1), 

with the initial conditions 

(46) P(K – 1; 0; 0) = 1 and P(k; l; 0) = 0 for any k < K – 1 or l > 0, 

and with the boundary-value conditions 

(47) 

      

   

     

 

thres thres thres

1 thres

1

1

thres

; ; ; 1; 1 ; ; 1

1; ; 1 ,

; 0; 1 1; ; 1 ,                         

; ; 0 if  <  or < 0  ,            

+

+ 1

  

k

k

a

k

l

P k l t  L P k l – t – P k l t –

L P k l t –

P k t L P k l t

P k l t l l l k t.







 



   

  



  

Using the system of difference equations (45)–(47), we may itera-

tively calculate the probability function of the process (k(t); l(t)). In turn, 

the probability distribution of the times of reaching the threshold level 

lthres and the number of the unrealized trajectory states can be obtained as 

Pr(k(t); lthres; t) = Lk P(k; lthres – 1; t – 1). This gives the expected cost, and 

hence the cost C(T, a, lthres) can be optimized numerically by choosing the 

optimal values of the parameters a and lthres so that C(T, a, lthres) → min 

for the expected properties of the environment––the probability distribu-

tion {pk} and its dimension K. 



114 

Thus, we have derived the sequential likelihood-based criterion (40) 

to be used under the unknown properties of the environment (the dimen-

sion K and the probability distribution {pk}). For this criterion, an algo-

rithm of choosing the optimal parameter values (in terms of the minimum 

cost) under the expected properties of the environment has been suggest-

ed. 

The properties of the synthesized criterion were examined by simu-

lation modeling for the numerical solution of the difference equations 

(45)–(47) and the iterative calculation of the probability function 

Pr(k(t); lthres; t) and the expected cost C(T, a, lthres). The optimal values of 

the parameters a and lthres were chosen by the exhaustive search with a 

given step depending on the expected properties of the environment––the 

probability distribution {pk} and its dimension K. 

Different scenarios were considered as follows: the uniformly dis-

tributed probabilities of the states of the environment of the dimension K 

= 5, …, 80 varied with step 5 and the parameter μ = 3, …, 30 varied with 

step 3. The simulation results led to the following conclusions. 

First, for all the values K and μ considered, the least expected cost 

was achieved for a = 0; see Table 4–Table 7 below. This result will be 

interpreted below. 

Second, the following functions were constructed in tabular form 

(see Table 8 and Table 9 below): 

– the minimum in lthres expected cost Copt(K; μ) for different K and μ, 

a =0; 

– the optimal value lopt(K; μ) of parameter lthres for different K and μ 

under which the minimum cost Copt(K; μ) is achieved (see Table 7). 

In accordance with Table 8 and Table 9 and also the graphs in Fig. 

19 and Fig. 20, for any fixed μ both functions Copt(K; μ) and lopt(K; μ) can 

be considered linear in K with a high accuracy for engineering applica-

tions (R
2
 ≥ 0.99). Their linear approximations have the form 

(48) 
      

    
opt

opt

0 5 0 85 0 33 0 13,; 

;  0 95 0 12 0 05 0 56

K . ln . . ln .

K . ln . . .

K

K .

C

l

  

  

      

      
 

Expressions (48) can be used to perform preliminary calculations 

and also to choose the initial values of the parameter lthres in simulations. 

Approximations (48) well match the results of numerical experi-

ments and, at the same time, have a high accuracy (see the values R
2
 for 

the graphs in Fig. 19 and Fig. 20). Such a high accuracy of the linear 
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approximations of experimental data needs theoretical study, which will 

be done in the next section. 

 

3.5. Simulation model for technological transition 

 

Table 4–Table 7 present the values of criterion (40) obtained by the 

simulations for calculating the optimal values of the parameters lthres and 

a. Each of the tables contains the values of the expected cost, the parame-

ters lthres and a are varying in columns and rows, respectively. Clearly, the 

optimal values of the expected cost correspond to the upper row, i.e., 

a = 0. 

 

Table 4. Expected cost for K = 8, μ = 3, lthres = 6,…,11 and 

a = 0,…,(lthres – 1) 

 

6 … 9 10 11 … 19 20 

0 14.2 … 13.62 13.61 13.66 … 15.5 16.1 

1 13.9 … 14.2 14.4 14.6 … 17.6 18.0 

2 14.1 … 14.8 15.1 15.4 … 18.7 19.2 

… 

  

… … … … … … 

10 

    

17.1 … 21.8 22.3 

11 

     

… 21.9 22.4 

12 

     

… 22.0 22.5 

… 

     

… … … 

19 

       

22.8 

 

 

Table 5. Expected cost for K = 8, μ = 27, lthres = 20,…,35 and 

a = 0,…,(lthres – 1) 

 

20 … 28 29 30 … 35 

0 27.79 … 24.36 23.98 24.33 … 24.63 

1 25.4 … 24.7 24.9 25.1 … 26.4 

2 25.0 … 25.4 25.6 25.9 … 27.5 

… … … … … … … … 

19 26.3 … 28.7 29.1 29.5 … 31.7 

20 

  

28.8 29.2 29.6 … 31.8 

… 

  

… … … … … 

27 

  

28.9 29.3 29.7 … 32.0 

28 

   

29.3 29.7 … 32.0 
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… 

     

… … 

34 

      

32.0 

 

 

Table 6. Expected cost for K = 60, μ = 3, lthres = 55,…,61 and 

a = 0,…,(lпор – 1) 

 

55 56 57 58 59 60 61 

0 83.45 83.42 83.41 83.41 83.42 83.44 83.47 

1 87.7 88.0 88.2 88.5 88.8 89.1 89.4 

2 93.4 93.8 94.2 94.6 95.0 95.3 95.7 

3 98.3 98.8 99.2 99.6 100.1 100.5 101.0 

… … … … … … … … 

54 134.7 135.7 136.6 137.6 138.5 139.5 140.4 

… 

    

… … … 

59 

     

139.5 140.5 

60 

      

140.5 

 

 

Table 7. Expected cost for K = 60, μ = 27, lthres = 170,…,188 and 

a = 0,…, (lthres – 1) 

 

170 … 180 181 182 … 187 188 

0 149.35 … 148.91 148.87 148.92 … 149.07 149.20 

1 151.96 … 154.10 154.35 153.64 … 155.88 156.15 

2 157.32 … 160.37 160.69 159.73 … 162.69 163.03 

3 157.98 … 165.65 166.01 164.92 … 168.24 168.63 

… … … … … … … … … 

180 

   

225.8 226.4 … 

  181 

    

226.4 … 

  … 

     

… … … 

186 

      

229.1 229.6 

187 

       

229.6 

 

 

Next, Table 8 presents the expected cost calculated by the simula-

tions for different dimensions of the probability distribution of the states 

of the environment and different parameters μ. Table 9 presents the 

optimal value of the threshold lthres under which the minimum cost is 
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achieved. In these tables, the dimension K is varying in rows while the 

parameter μ in columns. 

 

Table 8. Minimum in lthres expected cost Copt(K; μ) for different K and μ 

(minimum is achieved at lthres = lopt(K; μ), see Table 9) 

 

3 6 9 12 15 18 21 24 27 30 

5 7 8 9 10 10 11 11 11 11 12 

10 14 17 19 20 21 22 23 23 24 24 

15 21 26 29 31 32 34 35 36 36 37 

20 28 34 38 41 43 45 47 48 49 50 

25 35 43 48 52 54 57 58 60 61 63 

30 42 52 58 62 65 68 70 72 74 76 

35 49 61 68 72 76 79 82 84 86 88 

40 55 69 77 83 87 91 94 97 99 101 

45 62 78 87 93 98 102 106 109 111 114 

50 69 87 97 104 109 114 118 121 124 127 

55 76 95 106 114 120 125 130 133 136 139 

60 83 104 116 125 131 137 141 145 149 152 

65 90 113 126 135 142 148 153 158 161 165 

70 97 122 136 146 153 160 165 170 174 177 

75 104 130 145 156 164 171 177 182 186 190 

80 111 139 155 167 175 183 189 194 199 203 

 

 

Table 9.  Optimal value lopt(K; μ) of parameter lthres for different K and μ 

under which minimum cost Copt(K; μ) is achieved (see Table 7) 

 

 

3 6 9 12 15 18 21 24 27 30 

5 6 8 10 10 12 12 14 14 14 14 

10 10 15 19 23 25 25 27 29 29 31 

15 14 24 30 34 36 38 42 42 44 46 

20 19 31 39 45 49 51 55 57 59 61 

25 24 39 48 56 60 64 68 72 74 78 

30 29 47 59 67 73 79 83 87 89 93 

35 34 55 68 78 84 92 96 100 104 108 

40 38 63 77 89 97 105 111 115 119 123 

45 43 70 87 100 110 118 124 130 134 140 

50 48 78 97 111 121 131 137 145 149 155 
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55 53 86 107 122 134 144 152 158 164 170 

60 58 94 117 133 145 157 165 173 179 187 

65 62 102 126 144 158 170 180 188 194 202 

70 67 110 136 155 170 183 193 201 209 217 

75 72 118 146 166 182 196 206 216 226 232 

80 76 125 155 177 195 209 221 231 241 249 

 

The graphs of the expected cost Copt(K; μ) and the optimal threshold 

lopt(K; μ) as functions of K under fixed value μ are demonstrated in Fig. 

19 and Fig. 20, respectively. 

 

 
 

Fig. 19. Graph of Copt(K; μ) for different K and fixed μ 
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Fig. 20. Graph of lopt(K; μ) for different K and fixed μ 

 

These results should be thoroughly analyzed for explaining trends 

(48). 

For the optimal parameter value a =0, the likelihood functions l(t) of 

criterion (40) are constructed as follows: 

(49)  

 

 

 

0 0,

1  if new state is observed,           

1 if known state is observed.

l

l t l t

l t

 


  




 

Consequently, at each time (in particular, when the criterion is satis-

fied––the likelihood function l(t) reaches the threshold lthres) we have the 

equality l(t) = t – (K – k(t)), where t is the total number of observations 

and (K – k(t)) is the number of observations with newly realized states of 

the environment never occurring before. As a result, 

(50) t = l(t) + K – k(t). 

The expected value of (K – k(t)) is the learning level multiplied by 

K, i.e., K (1 – (1 – 1/K)
t
). On the other hand, the expected value of k(t) 

(the number of all unrealized states) is E[k(t)] = K(1 – 1/K)
t
. Hence, it 

follows that the expected time   thres; ; ;kp a  lt K  of reaching the level 
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lthres by the process l(t) and the expected number   thres; ; ;kp a  lk K  of 

the unrealized states of the environment by this time satisfy the equation 

(51)    
 thres

thres

;
1 1;

t K  l
 l K / Kk K  . 

Hereinafter,     thres thres; ;  ;;kl p a  lt K t K  for the case a = 0. 

The expected cost (44) are minimized by choosing a value lthres such 

that 

(52)      thres thres thres

thres thres thres

; ; ;;  0C T t Ka  l l l
l l l

k K
 

  
  


 

Substituting (51) into (52) gives the equation 

(53)         opt

opt

; 
1 ; 01 1 1 1

t K l
 –  / K K  –  / K l

l
ln t K .




   

From this equation, find the expected time t (K; lopt) corresponding 

to the optimal expected cost and then, using t (K; lopt), calculate the 

optimal threshold lopt. 

 

The derivative  ; l
l
t K




 never vanishes because the expected time is 

monotonically increasing in l. Therefore, the desired value t (K; lopt) can 

be obtained from 

     opt; 
1 1 1 11 0

lt K
 –  / K K  –  / Kln  . 

Solve this equation in t (∙), taking into account  1 11 K –  / Kln /  . The 

value t (K; lopt) corresponding to the optimal expected cost is 

(54)    opt; lt K K ln .  

Using (54) and (55), find the approximate relation of t (K; l), k

(K; l) and lopt. 

Apply the expectation operator to (50): 

E[t] = E[l(t)] + K – E[k(t)]. 

In view of (51), write 

     
 

1 1
E t

E t    E l t    K  – K / K     . 

Let   ; l lE l t K     to obtain 

   
 ; 

; 1 1
t K l

t K l K K / Kl     , 
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or, in an equivalent form, 

(55)    
 ; 

; 1 1
t K l

l t K K K / Kl    . 

Finally, substitute (54) into (55) to get 

(56) 

   
 

   
 

     

     

; 

opt

1 1

; 1 1

1 1

l

K ln

K ln ln

ln

t K

/ K

l

K ln K K

K l

l t

n K

K K K / K

/ K

e

e

K

K ln K K K ln K .K /











  





    

  

 

  

 



 

 

 

The approximate value of the optimal threshold (57) is 

 opt K .ln Kl K /    

Due to the linear relation of t (K; l), k (K; l) and lthres (see expres-

sion (50)), the optimal expected cost will have a similar trend: 

(58)    opt; 0;a  l K lC T K.n    

Thus, the analytic approximations of the optimal threshold (57) and 

expected cost (58) well reflect the main trends of the simulation experi-

ments (48). 

 

In this chapter, a set of management problems for the design and 

adoption of complex activity technologies has been considered. Using the 

optimal learning problem, it has been demonstrated that the uniform 

partition of the set of all possible states of the environment is asymptoti-

cally optimal in terms of the minimum expected error and entropy and 

also in terms of the maximum expected learning level. For the resource 

allocation problem in aggregable technological networks, the optimal 

resource allocation procedures have been obtained in simple analytic 

form. For the technological decision problem on the transition from 

design to productive use, the optimal single-switch time has been esti-

mated. 

Promising lines of further research include the analytic methods for 

solving the optimal resource allocation problems for the large classes of 

technological networks and also the optimal learning problems for more 

complicated models (in particular, with nonstationary probability distri-

butions of all possible states of the environment; their dependence on 

accumulated experience and the interaction of different agents; the de-

pendence of cost functions on the realized states of the environment, 

etc.). 
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4. ANALYTICAL COMPLEXITY 
AND ERRORS OF SOLVING TECHNOLOGY DESIGN 

AND OPTIMIZATION PROBLEMS 
 

In this chapter, using the results [50. ] a uniform search-based esti-

mation procedure for the analytical complexity and errors of solving 

control problems for organizational and technical systems is presented. It 

is demonstrated that, first, attempts to reduce the errors cause the rising 

complexity; second, the complexity goes down as the number of levels in 

a control hierarchy is increased (under decomposition of control prob-

lems); and third, the errors and complexity are natural restrictors for the 

growth of organizational hierarchies and further application of complex 

control mechanisms as well as stimulate the choice of typical solutions 

(patterns). 

Organizational and technical systems (OTSs) are characterized, first 

of all, by a complicated hierarchical structure and a variety of tasks 

performed at different levels of hierarchy. Therefore, for these systems 

one often uses the complexes of interconnected control mechanisms, i.e., 

the mappings of the sets of controlled variables into the sets of control 

variables (e.g., in incentive mechanisms, these are the relationships 

between the incentive of an agent and the result of his/her/its activity; in 

resource allocation mechanisms, the relationships between the amount of 

an allocated resource and requests for it, etc. [44. ]). From this viewpoint, 

as mentioned in the Introduction, a control mechanism is a technology, 

i.e., a technology of managerial decision-making. 

Second, OTSs include agents (individuals, their groups and collec-

tives), which are active and pursue their own goals. Thus, the associated 

mathematical models proceed from the assumption that the agents seek to 

maximize their payoff functions, and hierarchical games are the basic 

modeling tool of decision-making and organizational control [28. ]. 

As is well-known [53. ], the maximin principles of optimality, which 

are typical for hierarchical games, actually suffer from instability. For 

example, arg max
y

 f(x, y) of a continuous function f(∙, ∙) is not continuous, 

and hence in such problems the first- and second-order oracles [47. ] 

cannot be generally applied. (These are standard convex optimization 

tools employing information on the first- and second-order derivatives of 
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a goal function.) As a rule, numerical optimization in such problems is 

based on different search methods. The complexity and errors estimates 

given below are upper bounds: they can be considerably decreased if (in 

special cases) gradient optimization methods become applicable. 

The sets of structurally interconnected optimization problems arising 

in control problems for OTSs (in particular, in technology design or 

modernization) should be analyzed in terms of complexity. However, this 

aspect has received little attention in organizational control [56. ] so far. 

The consideration below will begin with general approaches to define and 

estimate analytical complexity (which is comprehended as the worst-case 

number of oracle launches [47. ]) and errors of solving individual deci-

sion problems and control problems for a single agent within the basic 

model (Section 4.1). Then the results will be extended to the case of fan 

structures (Section 4.2), and also the model of growing hierarchies will be 

studied (Section 4.3). Finally, the search for typical solutions and the 

integration of technologies/mechanisms in terms of analytical complexity 

and errors will be discussed (Sections 4.4 and 4.5, respectively). 

 

4.1. Basic model 

 

Consider the basic model of an elementary OTS consisting of two 

active elements––a single control element (Principal) and a single 

controlled element (agent). Both elements are active in the sense that 

each of them pursues individual interests and may have strategic 

behavior. Let the Principal’s goal function ( , , , )F x y C  be Lipschitzian 

with a constant L  and depend on (a) scalar actions [0,1]x  and 

[0,1]y  chosen by the Principal and agent, respectively, (b) the state of 

the environment [0,1]   and (c) a numerical parameter [0,1]C . (For 

the sake definiteness, the l  norm will be used.) In a similar way, let the 

agent’s goal function ( , )f x y  be Lipschitzian with a constant l  and 

depend on the actions of both elements. 

Note that, if a function satisfies the Lipschitz condition, then it is 

uniformly continuous and hence continuous on the whole definitional 

domain. The latter property implies that the functions of maximum and 

minimum are also continuous and Lipschitzian. 

Assume the Principal and agent play the hierarchical game 
2  with 

side payments. (Recall that the game Γ2 is a game with a fixed sequence 
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of moves in which the choice of the first player (the Principal who makes 

the first move) is a function of the action chosen by the second player 

(agent); see [4] for details.) Then their goal functions take the form 

( , , , ) ( )F x y C u y   and ( , ) ( )f x y u y , respectively, where the 

payment ( )u   can be interpreted as an agent’s incentive given by the 

Principal. 

Denote by [0, 1]|h the set of points on a uniform grid with a step 

h ≪ 1 on the unit segment. Let the function f(∙, ∙) be defined in tabular 

form using uniform grids with steps H and h in the first and second 

arguments, respectively (the zero-order oracle in the terminology of [47. 

]). In fact, such a definition corresponds to uniform search. In this case, 

the analytical complexity W0 of calculating the agent’s best response to an 

action x chosen by the Principal (the agent’s decision model) 

(1) BR(x) = Arg 
[0,1]|

max
hy

 f(x, y) 

has order 
1

h
, i.e., W0 ~ (

1

h
). This model yields the maximum value of 

the agent’s goal function with the error/accuracy ∆0 
2

l h
 ; see the general 

results in [47. ]). If the goal functions are incompletely known, the meth-

ods described in [53. ] can be used; or interval optimization methods [31. 
] in the case of the goal functions with inexact coefficients. 

 Note a couple of important aspects as follows (see the estimates 

below). 

 1) Under sequential optimization (e.g., the summation of maxi-

ma/minima), the corresponding complexities and errors have to be added 

to each other. 

 2) Under the iterative calculation of maxima/minima of a certain 

function, the corresponding complexities have to be multiplied by each 

other. 

 As was demonstrated in [53. , 56. ], the Principal’s minimum pay-

ment 

(2) u(x, z, y) = [0,1]
max ( ) ( , )

0

w
f x, w f x z , y z,

, y z,




  




 

where > 0  is an arbitrarily small constant, stimulates the agent to 

choose the action =y z  as the unique maximum point of his/her/its goal 

function and is also  -optimal for the Principal. Owing to this fact, the 
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original game can be reduced to the game 1 . (Recall that the game 1  is 

a game with a fixed sequence of moves in which the choice of the first 

player making the first move does not depend on the actions of the 

second player [28. ]). Note that the choice = / 2lh  in formula (2) 

compensates the unknown values of the goal function beyond the nodes 

of this grid; any > 0  can be taken if additional information, e.g., on the 

monotonicity of ( , )f x y  in y , is available. 

Actually, the optimal solution structure (2) of the game 
2  with side 

payments [28. ] eliminates the need for calculating the optimal function 

( )u  ; however, this stage is computationally intensive. Moreover, in the 

case of several agents playing the normal-form game under a given 

choice of the Principal, Nash equilibrium design generally represents an 

NP-hard problem [22. , 43. ], and a separate problem here is to find 

polynomial approximation algorithms for Nash equilibrium (and also to 

estimate the relationship between the accuracy of such an approximation 

and the number of agents). For example, see the references in [21. ]. 
Assume the function ( , , , )F      is defined in tabular form using a 

uniform grid with steps , ,H h p , and q , respectively. In view of (2), the 

calculation procedure for the guaranteed value of the Principal’s goal 

function 

(3) G(C) = 
( , ) [0,1]| [0,1]|

max
H hx z  

 [
[0,1]|

min
p
F(x,z,θ,С) + f(x,z) - 

[0,1]|
max

hy
f(x, y) – ε] 

has the analytical complexity W1 ~  (
1 1 1 1

p h h H

 
 

 
); for ε = l h / 2, it 

yields the value of (3) with the error 

∆1 
max{ , , }+ ( 2 max{ , })

2

L h H p l h h H
 . 

The structure of these expressions suggests to choose the step 

= max{ , }p h H , which will be done below. 

Under sequential calculations, the analytical complexity can be also 

used as a rough estimate for the size of required computer memory. For 

example, with a fixed value C , the calculation of the right-hand side of 

formula (3) has the complexity 
1W , but it is necessary to obtain the 
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relationship ( )G C  with respect to the parameter C  on the uniform grid 

[0,1] |q  and the complexity of this operation reaches 
1 /W q . 

Consider the following problem. By an appropriate choice of the 

steps h  and H , minimize the error 
1  subject to the constraint T imposed 

on 
1W  in the form 

(4) 
,

( 2 ) max{ , } + min
h H

L l h H l h  , 

(5) 
1 1 1 1

max{ }h, H h h H

 
 

 
 ≤ T. 

This inequality can be interpreted as the real-time constraint: given the 

time   of one oracle launch, the total time of all calculations constitutes 

=t W . An alternative interpretation is the limited cognitive capabilities 

of a decision-maker.  

 For the sake of simplicity, the special case =h H  will be studied. It 

follows from the structure of problem (4)–(5) that the optimal solution 

makes (5) an identity, i.e.,  

(6) h = H = 3
2

T
. 

For example, for = =1l L  and 4= 10T , from (6) we have 

= 0.05h H , and also 
1 0.1  . 

It makes sense to compare the resulting error with the maximum 

variation of the goal function on its definitional domain. (Recall that this 

variation is determined by the corresponding Lipschitz constant.) 

Following this approach, the value 
1 1= / L   can be treated as the relative 

error. 

Using a known relationship between the complexity, errors and grid 

steps, we may pose and solve the error minimization problem (4)–(5) 

subject to the complexity constraints and also the complexity 

minimization problem subject to the error constraints. 

Hereinafter, for the basic model let p = h = H = 3
2

T
, W1 ~ (

3

2

h
) 

and ∆1 ( 3 ) 2L l h /  . In this case, δ1 ~ (1 + 3 l / L) h / 2, i.e., the 
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relative error of Principal’s goal function maximization is proportional to 

the grid step. 

The above analysis of the basic model yields a qualitative conclusion 

as follows. In hierarchical organizational (active) systems, the analytical 

complexity (as well as the associated computational speed requirements) 

and also the errors satisfy the principle of uncertainty: any attempts to 

reduce the errors cause the growing complexity; conversely, a smaller 

complexity leads to higher errors. 

 

4.2. Hierarchical structures 

 

Consider an OTS of the fan structure. It consists of a single Principal 

with a goal function 
=1

( , , , )
n

i i i i i

i

F x y C , where the functions ( )iF   are L -

Lipschitzian, and also of 2n  autonomous agents, which are assigned 

numbers = 1,i n  (a system with weakly related agents [56. ]). Because the 

agents are independent, for each of them the Principal may choose a 

specific side payment of form (2), calculating the corresponding terms 

=1,
{ ( )}i i i n
G C  using formula (3). 

Under fixed values 
=1,

{ }i i n
C , the sequential calculation of 

=1,
{ ( )}i i i n
G C  

by formula (3) has an analytical complexity of order 
3

2n

h

 
 
 

. Moreover, 

the relationships between 
=1,

{ }i i n
G  and 

=1,
{ }i i n
C  have to be memorized, 

and hence this complexity further raises to 
3

2n

qh

 
 
 

. In the incentive 

problem of n  independent agents, the Principal’s maximum total payoff  

(7) GΣ(C1, …, Сn) = 
1

( )
n

i i

i

G C


  

is calculated with the error ( 3 ) / 2
2

n

nqL
L l nh     (here the second 

term corresponds to the solution of problem (9) by uniform search). As a 

result,  

(8) δn ~ (1 + 3 l / L) n h / 2+ n q / 2. 
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Let us optimize 
1( , , )nG C C

, e.g., through an appropriate choice of 

{ 0}iC  over the simplex 
=1

=
n

i

i

C c , i.e.,  

(9) g(c) = 

1

{ 0}:

max
n

i i

i

C C c



 
 

1

( )
n

i i

i

G C


 . 

(A possible interpretation of this optimization problem is that the 

Principal allocates a resource c (incentives) among the agents; for the 

sake of simplicity, let =1c  in (9), (13).) 

Since the goal function is additive and each term depends on the 

corresponding variable only, problem (9) can be solved using dynamic 

programming, which has an analytical complexity of order 
2

n

q

 
 
 

. 

Hence, for the OTSs of the fan structure, the analytical complexity of the 

entire hierarchy of the optimization problems ((1), (3), (9)) has order 

3 2

2n n

qh q

 
  
 

. However, as has been mentioned earlier, this chapter 

considers uniform search as a most universal method that does not utilize 

the properties of goal functions. For problem (9), the complexity of this 

method can be estimated as 1
nq

 
 
 

. We have to calculate maxima (3) for 

each combination of the values 
=1,

{ }i i n
C ; hence, the analytical complexity 

of solving the entire hierarchy of the optimization problems ((1), (3), (9)) 

is 

(10) Wn ~ 
3

2 1
n

n

h q

 
 
 

. 

Formula (8) naturally suggests a series of qualitative conclusions as 

follows. For the system with a higher number of agents, the error of 

calculating the optimal value of the Principal’s goal function can be 

retained invariable only by a proportional decrease of the grid step. On 

the other hand, this causes an exponential growth of the analytical 

complexity. 

Like in many multidimensional optimization problems, the 

minimization of the error n  (and/or )n  is equivalent to the 
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minimization of the grid step h  due to their linear relation. However, any 

attempts to decrease this step lead to a very fast (exponential) growth of 

the analytical complexity. As an illustrative example, consider the basic 

model with = =1l L  and the optimal grid steps = 0.05h H . For the 

system with five agents and 0.05,q  the relative error (8) reaches 

almost 62% while the analytical complexity (10) has an order of 52 10 . 

Thus, the errors and complexity are the sources and also natural 

restrictors of growth in organizational hierarchies; see Section 4.3. On the 

other hand, they stimulate the choice of typical solutions (see Section 5) 

and raise considerable barriers on the way to the “faithful” optimization 

of the entire organization, top to bottom; see Sections 4.3 and 4.4. 

Up to this point, the Principal’s resource allocation problem (9) in 

the fan (two-level) organizational hierarchy has been considered and also 

estimates (8) and (10) of the relative errors and complexity, respectively, 

have been derived. In this context, a natural question is as follows: what 

will be the errors and complexity if the Principal constructs a three-level 

hierarchy, partitioning the same set of n  noninteracting agents, e.g., into 

two groups of sizes 1n  and 2n , 1 2 =n n n , then solves problem (9) for 

each group and seeks for an optimal resource allocation between the two 

groups? 

Denote 

(11) gj(cj) = 

1

{ 0}:

max
n j

i i j

i

C C c



 

 
1

( )
jn

i i

i

G C


 , j = 1, 2. 

At the upper hierarchical level, the Principal then solves the optimi-

zation problem 

(12) g1(c1) + g2(c2) → 
1 2 1 20 0

max
c , c , с с с   

. 

By analogy with (8) and (10), we obtain the following estimates for 

the errors and complexity: 

(13) 
1 2n n   = (1 + 3 l / L) n1 h / 2 + n1 q / 2 + (1 + 3 l / L) n2 h / 2 + 

+  n2 q / 2 + q / 2 = δn + q / 2. 

(14) 
1 2n nW   ~ 

1 2

1 2

3 3

2 21 1 1
n n

n n

h q h q q

 
 

 
. 
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In accordance with (13), regardless of the agents’ partition into 

groups, a transition from the two-level hierarchy to its three-level 

counterpart increases the relative error by / 2q . 

Clearly, for > 2n  and 
1 2= = / 2n n n , it follows that 

1 2
<n n nW W

, i.e., 

by partitioning the agents into two equal-size groups the Principal 

reduces the complexity. 

A more general optimal partition problem can be formulated as 

follows: under which sizes of two groups (or even for which number of 

groups) does complexity (14) achieve minimum? Denote by m the size of 

the first group; hence the size of the second group is n - m. In a 

continuous approximation, we have the following binary setup of the 

structure design problem: 

(15) 
[0; ]

min
m n m m n

m n m

q q  

 
  

 
. 

(Here “binary” means the partition into two groups.) 

This setup is elementary: for a given set of agents, generally we may 

seek for an arbitrary multilevel structure (not necessarily tree) with 

required properties; see the surveys and results in [54. , 56. ]. 

The solution of problem (15) has the form = / 2m n . In other words, 

for reaching the minimum analytical complexity the Principal should 

partition the set of all agents into two equal-size groups, which reduces 

the relative complexity by order /2nq  in comparison with the fan structure. 

Consequently, in the current model with a fixed set of agents, 

increasing the number of hierarchical levels actually reduces the 

complexity. 

Thus, complexity reduction under an insignificant rise of the errors 

is a factor stimulating the appearance and further growth of 

organizational hierarchies. However, this is just one of many other 

essential factors for a rational choice of organizational structures; see the 

survey in [54. ].  
Treating the total amount of resource c as a variable, we may pose 

and solve resource optimization problems, e.g., to maximize profits 

defined as the total payoff minus the total utilization of resource: 

(16) g(c) – c → 
max[0; ]

max
c c

. 
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For a given function g(∙), problem (16) with a grid step h has the an-

alytical complexity Wc ~  maxc

h

 
 
 

. 

 

4.3. Typical solutions 

 

A rational balance between the errors and complexity––the idea 

described in Section 4.2––has been employed there for solving control 

problems in hierarchical OTSs. However, it can be used in many other 

fields. Consider two important applications, namely, search for typical 

solutions (this section) and also the integration of control mechanisms 

(Section 4.4). 

Digressing from hierarchical games, let us analyze the agent’s 

decision problem, in which he/she/it chooses an appropriate action in 

order to maximize the goal function. Recall that the search for the agent’s 

best response (1) to the Principal’s fixed action [0,1]x  has the 

complexity 
0

1
( )W
h

  and error 
0

2

lh
  . 

In game theory and decision-making, a widespread concept is the 

strategy of a player or decision-maker (DM). This concept is often 

defined as a mapping of the set of possible decision situations (including 

the history of a corresponding game, the realized values of uncertain 

parameters, the strategy profiles of other players, etc.) into the set of 

his/her/its admissible actions. In the current model, the agent’s strategy is 

the mapping 
[0,1]:[0,1] 2BR   that assigns with the Principal’s action (the 

decision situation for this agent) the set of actions maximizing his/her/its 

goal function. 

For the sake of simplicity, assume the goal functions are such that 

the agent’s best response is unique, i.e., :[0,1] [0,1]BR  . If [0,1] |Hx , 

then for each of 1/ H  values of the Principal’s action it is necessary to 

find the agent’s action that maximizes his/her/its goal function. The 

resulting (1 + [1 / H])-dimensional vector y , further called the complete 

solution of the agent’s decision problem, is calculated with the analytical 

complexity 
1

( )W
hH

   and error 
0 . 
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Denote by { }iQ , = 1, ,i k  the partition of the unit segment into k  

connected sets. Let iy  be the solution of the problem  

(17) 
|

min
i Hx Q 

 f(x, y)
 [0;1]|

max
hy 

 , 1,i k . 

The k -dimensional vector y  that is the solution of problem (17) 

will be called the typical solution. The idea of using typical solutions 

(also see the unified solutions of control problems for organizational 

systems in [56. ]) can be explained as follows [53. ]. Instead of the 

complete set of decision situations (in our case, the unit segment), we 

take k  typical situations in which the agent is suggested to choose 

corresponding typical solutions (patterns). 

For making such typical decisions, the agent has to diagnose the 

current situation: identify to which of the sets { }iQ , = 1, ,i k  the value x 

belongs to. (Suppose this problem is solved by the agent without any 

errors; then the complexity of this procedure—the implementation of a 

typical solution—can be estimated as ( )k ). Next, the agent has to 

choose the corresponding element of the vector y  as his/her/its action. 

If 
1

k
hH

, then the complexity of using a typical solution is much 

lower in comparison with the complete solution of the agent’s decision 

problem. 

The error of a typical solution (see formula (17)) is 

max{ , }
2

l
h H    ; for a given partition { }iQ , = 1, ,i k  it has the 

analytical complexity ( )
k

W
h H

 
 

. 

However, a typical solution should be characterized not in terms of 

the errors but the price of standardization, i.e., the goal function losses 

due to replacing the complete solution with a typical one [50. ]: 

(18) ∆’’({Qi}, 1,i k )= '

[0;1]1,
max max [max ( , ) ( , )]

i

i
yi k x Q

f x y f x y
 

   

1
max diam i
i ,k

l Q


 . 

Consider the same example with =1l , = = = 0.05h H h H   

( = 5)k  and the partition into equal-length segments. Then 
0 0.025  , 

510W  , 610W   and 0.2 . 
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Note that the analysis above has proceeded from the hypothesis that 

the partition { }iQ , = 1,i k , is given. Generally speaking, typical solution 

design includes two steps as follows: (1) find an optimal number k  of 

typical situations (taking into account the DM’s cognitive capabilities and 

other constraints) and (2) calculate an optimal partition that minimizes 

the price of standardization (18). The analytical complexity of the latter 

problem can be very high, especially in the case of multidimensional sets 

of admissible actions and decision situations. 

Thus, typical solutions are justified if they are calculated once but 

applied many times. 

 

4.4. Integration of technologies 

 

The book [16. ] and also the paper [44. ] considered the integration 

problem of control mechanisms in OTSs, i.e., the design of complex 

mechanisms that include one or several elementary or other complex 

mechanisms. The cases of parallel integration (a simultaneous and 

independent application of several mechanisms) and serial integration 

(the output of one mechanism as the input of the other) were described 

there. 

All the control problems studied in Sections 4.1–4.3 above are 

related with each other (see Table 10). Indeed, starting from the agent’s 

decision problem, we have passed to the incentive problem, first for a 

single agent and then for several independent agents. The established 

results have allowed us to formulate the resource allocation problem, the 

structural design problem and the resource optimization problem, one 

after the other. This sequence of actions is nothing but an integration 

process of corresponding control mechanisms. 

The orders of the analytical complexity and errors for different 

complex mechanisms are combined in Table 10; for the sake of 

simplicity, all grid steps are set equal to h . 
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Table 10. Relations between technology design/optimization problems 

no. Technology design problem  

(control mechanism design) 

Type of integra-

tion [16. ] 
Order of errors Order of cumu-

lative complexity 

1 Agent’s decision-making (1) 
- 

2

l h

 

1

h  
2 Agent’s stimulation (2)–(3) 

Sequential ( 3 ) 2L l h /  3

2

h  
3 Stimulation of n independent 

agents (7) Parallel ( 3 ) 2L l n h /  3

2n

h  
4 Resource allocation (9) 

Sequential (2 3 ) 2L l n h /  3

2
n

n

h 
 

5 Binary structure design (12), 

(15) Sequential ((2 3 ) ) 2L l n L h /   2 3

2
n /

n

h 
 

6 Resource optimization (16) 
Sequential ((2 3 ) 2 ) 2L l n L h /   2 4

2
n/

n

h 
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In accordance with this table, both the errors and complexity 

(especially, the latter) are growing rapidly as we increase the number of 

mechanisms for integration, in the first place, during transition to 

optimization in multiagent systems. They exceed all reasonable limits 

even for a relatively small number of agents. Hence, the errors and 

complexity are restricting all attempts for a centralized solution of the 

integration problem of complex control mechanisms. The way out is to 

use decentralization methods and/or typical solutions and/or heuristic 

procedures. Of course, each of these approaches reduces the efficiency of 

control, and the resulting losses should be balanced with possible errors 

of efficiency optimization under an admissible complexity. 

 

In this chapter, we have suggested an estimation method for the ana-

lytical complexity and errors of solving control problems in hierarchical 

OTSs. The established results can be extended to the following cases: 

—the nonuniform grids over convex compact admissible sets; 

—the multidimensional actions of system participants; 

—the admissible sets differing from the unit segments; 

—the agents interacting with each other (based on the decentraliza-

tion theorems of the agents’ game [56. ]); 

—the network structures of OTSs (not trees). 

Such extensions seem rather simple and would cause no difficulty of 

principle. 

The conclusion that any attempts to reduce the errors lead to com-

plexity growth (and vice versa, a smaller complexity causes higher errors) 

is quite natural. At the same time, the decreasing complexity of multilevel 

hierarchical systems seems to be somewhat unexpected. 

The range of problems studied in Chapter 4 belongs to the class С
3
 

(Control, Computing, Communication); see the surveys in [5. , 52. ]. 

Really, an explicit analysis of the computational complexity and structure 

of an OTS, together with the real-time requirements, the cognitive capa-

bilities of an DM as well as other constraints, allows us to compare 

control mechanisms (in particular, complex ones) in terms of these char-

acteristics and also to perform error optimization subject to complexity 

constraints. 

As has been demonstrated above, the errors and complexity are the 

natural restrictors of growth in organizational hierarchies and complex 

control mechanisms. In addition, they stimulate the choice of typical 

solutions and decentralized approaches (e.g., the ones developed within 
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the framework of multiagent systems and distributed optimization [14. , 

61. , 63. , 68. ] as well as algorithmic game theory [3. , 43. ]). 
 

 

CONCLUSIONS 
 

In this book, an integrated set of models describing the design, adop-

tion and use of complex activity technologies has been presented. 

Despite the rigorous considerations at the activity level only (see the 

Introduction), the results of this book can be efficiently used at other 

levels of technology modeling. For example, the overwhelming majority 

of the diffusion-of-innovations models postulate the logistic (S-curve) or 

bell-shaped dynamics of technology spread, while both curves are a 

consequence of the corresponding lower-level assumptions; the details 

have been discussed in Chapter 2. Another example: the results obtained 

within the framework of technology optimization models (including 

technological networks) can be used at the subject-matter level for mod-

ernizing concrete technologies, etc. 

Note that many of the established results allow for a wider range of 

application, both in terms of their formal models and practical interpreta-

tions. 

First, historically the learning models have been used for various 

purposes, not just for technology adoption. A rather simple and general 

learning model with classical learning curves (exponential, hyperbolic, 

logistic, and others) as well-interpretable special cases has been success-

fully constructed in Chapter 2. This fact seems of high epistemological 

potential for educational, psychological and other studies. 

Second, the procedure and results of solving the control problems 

(see Chapter 3) can be used for other controlled probabilistic processes. 

The unexpected outcome that the initial uniform probability distribution 

of system states is minimizing its “asymptotic” entropy requires further 

comprehension and development. 

Third, the results on the analytical complexity and errors of solving 

some classes of optimization problems (see Chapter 4) are applicable not 

only to technology design and modernization but also to control design in 

hierarchical organizational and technical systems. However, the decreas-

ing complexity of multilevel hierarchical systems––an effect that has 

been discovered in Chapter 4––seems somewhat surprising. 
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In addition to further theoretical study of the above-mentioned clas-

ses of models, a promising line of future investigations is to accumulate 

typical “technological solutions” with sectoral specifics using the unified 

general approach suggested in Chapter 2. And possible endeavors to 

formalize the creative components of technology design are perhaps even 

more fruitful. 
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