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The book is dedicated to mathematical models of mob control with thresh-

old (conformity) collective decision-making of the agents. 
Based on the analysis results of the interconnection between the micro- and 

macromodels of active network structures, the static (deterministic, stochastic 
and game-theoretic) and dynamic (discrete- and continuous-time) models of mob 
control are considered. Much attention is given to models of informational 
confrontation. Many results are applicable not only to mob control problems, but 
also to control problems arising in social groups, online social networks, etc. 
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1. INTRODUCTION 
 
Mob is understood below as an active or aggressive gathering of 

people, i.e. an active or aggressive group, crowd, etc. In scientific litera-
ture, mob control has several stable and widespread interpretations. 

Control of agents' motion (goal achievement, collision avoidance, 
obstacle avoidance, formation control, etc.). This direction of group 
control demonstrates intensive development since the early 2000s, em-
bracing two broad fields of research, namely, analytical and simulation 
(agent-based) models. For instance, agent-based models of mob dynam-
ics were surveyed in [2, 14, 86]; a classical example is models of evacua-
tion from buildings. Thousands of papers and tens of reviews were pub-
lished in these fields. A separate aspect concerns choosing a set of 
physical influence measures for a mob (prevention of jams, mass riots, 
and so on), which also represents a subject of many investigations. 

Control of mob behavior (decision-making). Here it is possible to 
distinguish between two large directions of research, viz., humanitarian 
descriptive investigations (within the framework of social psychology, to 
be more precise, its branch known as mob psychology [5, 30, 39, 57, 60, 
61, 63, 84, 87]) and mathematical modeling (e.g., see a short survey in 
[32]). By-turn, the latter is decomposed into two main subdirections as 
follows. 

The first one covers models of teams (joint adaptive decision-
making by groups of people using information about uncertain factors). 
In this context, we refer to an overview in [71] and [7]. 

The second subdirection (actually, contributed by the present book) 
originates from the classical paper [44] and monographs [82, 83] that 
induced an avalanche of research efforts in the field of mathematical 
modeling of the so-called conformity threshold collective behavior; by 
assumption, the decision of a given agent depends on the proportion or 
number of other agents making a corresponding decision (particularly, 
mob behavior), see the surveys [20, 21, 56, 86]. Nevertheless, despite 
numerous works dedicated to mob behavior description, there exist few 
formal statements of mob control problems to date. 

Mobs are classified using several bases. This book proceeds from a 
substantial hypothesis that a mob can be united by a common object of 
attention (be organized in some sense), while its members–people 
(agents)–may undertake certain actions or not. To put it tentatively, 
agents can be active (e.g., supporting some decision, participating in mass 
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riots, etc.) or passive. Accordingly, mob control represents a purposeful 
impact (as a rule, informational influence) exerted on a whole mob or 
separate agents for implementing their desired behavior [74]. If the goal 
of control is to optimize the number or proportion of active agents, exact-
ly this index forms a major control efficiency criterion. 

As actions of agents and communications among them are both vital 
for mob analysis, a mob can be treated as a special case of an active 
network structure (ANS). Other special cases of ANSs are social groups, 
online social networks and so on. Some models developed in the book 
turn out applicable to wider classes of ANSs, not only to mob control 
problems. In such cases, the term ANS will be used. 

The works [69, 70] identified several levels of the description and 
analysis of ANSs. At level 1 (the lowest one), a network of agents is 
considered “in toto” using statistical methods, semantic analysis tech-
niques, etc., which makes up the macromodel of ANS. At level 2, the 
structural properties of a network are studied within the framework of 
graph theory. At level 3, the informational interaction of agents is ana-
lyzed, making up the micromodel of ANS. Here a researcher disposes of a 
wide range of applicable models, namely, Markov models (including 
consensus models), finite-state automata, the models of innovations 
diffusion, infection models, and others; a good survey can be found in the 
book [48]. At level 4, associated control problems are posed and solved 
by optimal control or discrete optimization methods, also in terms of the 
micromodels that reflect the interaction of separate agents. And finally, at 
level 5, game theory (including reflexive games) is used to describe 
informational confrontation, i.e., the interaction of active subjects affect-
ing a social network for their individual goals. 

Therefore, each level of the ANS description operates a large set of 
feasible models and methods–a user toolkit for solving current problems. 
On the one hand, it is possible to adapt well-known models and methods. 
On the other hand, the ANS specifics (particularly, the features of a mob 
as a controlled object) arising at each level require new methods with 
proper consideration of the high-dimensional distributed incompletely 
observable object (mob), many interacting subjects pursuing different 
interests, and so on. 

The descriptive heterogeneity of ANSs in terms of various research-
er-relevant aspects [69] directly follows from these specifics. At the same 
time, it would be desirable to surmount difficulties connected with big 
data [40, 67]. Among them, we mention (a) abstraction as transition from 
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detailed micromodels to macroones involving aggregated characteristics 
(without loss of substantial information) and (b) formulation of ANS 
analysis/control problems in terms of macromodels. 

The book has the following structure. Section 2 summarizes the 
models of threshold collective behavior underlying the approaches pro-
posed below. Section 3 analyzes the interconnection between the micro- 
and macromodels of ANSs, as well as the issues of their identification. 
Sections 4–6 present static deterministic, stochastic and game-theoretic 
models of mob control, respectively. Sections 7 and 8 cover dynamic 
models of mob control in the discrete- and continuous-time settings, 
respectively. Sections 9 and 10 develop the micro- and macromodels of 
informational confrontation in ANSs, respectively. And finally, Section 
11 considers models of “spontaneous” mob excitation. The conclusion 
outlines some promising directions of current and future investigations. 

The authors thank A.Yu. Mazurov, Cand. Sci. (Phys.-Math.), for the 
careful translation of the book from Russian into English, as well as for 
several helpful remarks improving the presentation.  

This work was supported in part by the Russian Scientific Founda-
tion, project no. 16-19-10609. 

 
 

2. MODELS OF THRESHOLD COLLECTIVE BEHAVIOR 
 
Consider the following model of an active network structure that in-

cludes several interacting agents. Each agent chooses between two deci-
sions resulting in one of two admissible states, namely, “1” (active, the 
excited state) or “0” (passive, the normal or unexcited state). For in-
stance, possible examples are a social network [48] or a mob [23], where 
the active state means participation in mass riots.  

While making his decision, each agent demonstrates conformity be-
havior, taking into account the so-called social pressure [30, 87] as the 
observed or predicted behavior of the environment: if a definite number 
(or proportion) of his “neighbors” are active, then this agent chooses 
activity. The minimum number (or proportion) of neighbors that “ex-
cites” a given agent is called his threshold. Note that there also exist 
models of anti-conformity behavior and “mixture” of conformity and 
anti-conformity, see [26]. 

Numerous models of threshold collective behavior [20, 21] extend-
ing Granovetter’s basic model [44] define the “equilibrium” state of a 
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mob within collective behavior dynamics via the distribution function of 
agents’ thresholds. The framework of the game-theoretic models of 
threshold behavior [18, 19] also treats thresholds’ distribution as a major 
characteristic determining the set of Nash equilibria in the agents’ game. 

The model adopted below is close to the agent-oriented models such 
as the bounded-neighborhood model and the spatial proximity model 
proposed by T. Schelling [82]. 

If the relationship between the equilibrium state of a system (a social 
network, a mob) and the threshold distribution function is known, one can 
pose threshold control problems, e.g., find an appropriate control action 
modifying agents’ thresholds so that the system reaches a desired equilib-
rium.  

Consider the following model of a mob as a set = {1, 2, , }N n…  of 
agents. Agent i N∈  is characterized by 

(1) the influence 0jit ≥  on agent j  (a certain “weight” of his 
opinion for agent j ); for each agent j , we have the normalization 
conditions =1, = 0ji ii

i j
t t

≠
∑ ; 

(2) the decision {0;1}ix ∈ ; 
(3) the threshold [0;1]iθ ∈ , defining whether agent i  acts under a 

certain opponents’ action profile (the vector 1 1 1( ,..., , ,..., )i i i nx x x x x− − +=  
comprising the decisions of the other agents except agent i). Formally, 
define the action ix  of agent i  as the best response to the existing 
opponents’ action profile:  

(1) 
1,  

( )
0,  .

ij j i
j i

i i i
ij j i

j i

if t x
x BR x

if t x

θ

θ
≠

−

≠

 ≥
= = 

<


∑

∑
 

This book has independent numbering of formulas for each section; while 
referring to a formula from another section, the double numbering system 
is used, where the first number indicates the section. 

The behavior described by (1) is called threshold behavior, see 
surveys in [20, 21]. A Nash equilibrium is an agents’ action vector Nx  
such that Nx  = BR( Nx ), where 

BR( Nx ) = (BR1( 1x− ), …, BRn( nx− )). 
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Consider the following discrete-time dynamic model of collective 
behavior [23]. At the initial (zero) step, all agents are passive. At each 
subsequent step, the agents act simultaneously and independently 
according to the best-response procedure (1).  

Introduce the notation  
(2) Q0 = Ø, Q1 = {i ∈ N | θi = 0}, 

Qk = Qk–1 ∪ {i ∈ N | 
1 ,k

ij
j Q j i

t
−∈ ≠

∑  ≥ θi},  k = 1, 2, …, n – 1. 

Clearly, Q0 ⊆ Q1 ⊆ … ⊆ Qn ⊆ N. Let T = {tij} be the influence ma-
trix of th agents and θ = (θ1, θ2, …, θn) correspond to the vector of their 
thresholds. Evaluate the following index: 
(3) q(Т, θ) = min {k = 0, 1n −  | Qk+1 = Qk}. 

Define the collective behavior equilibrium (CBE) [23]  

(4) ( , )

( , )

1,  
( , ) =

0,  \ , .
q T

i
q T

if i Q
x T

if i N Q i N
θ

θ

θ∗
∈

 ∈ ∈
 

The value  

(5) x* = ( , )# q TQ
n

θ  = *1 ( , )i
i N

x T
n

θ
∈
∑

 
with # denoting set power characterizes the proportion of active agents in 
the CBE. 

Further exposition mostly deals with the anonymous case where the 
graph of agents’ relations is complete: tij = 1/(n – 1)). In the anonymous 
case, expression (1) takes the form 

(6) xi = BRi( ix− ) = 

11, if ,
1

10, if .
1

j i
j i

j i
j i

x
n

x
n

≠

≠

 ≥ θ −

 < θ
 −

∑

∑
 

Designate by F(⋅): [0, 1] → [0, 1] the distribution function of agents’ 
thresholds, a nondecreasing function defined on the unit segment that is 
left continuous and possesses right limit at each point of its domain. Let 
{xt ∈[0, 1]}t ≥ 0 be a discrete sequence of the proportions of active agents, 
where t indicates time step. 

Assume that the proportion xk of active agents at step k is known 
(k = 0, 1, …). Then the following recurrent expression describes the 
dynamics of the proportion of active agents at the subsequent steps [19-
27, 44, 56]: 
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(7) xl+1 = F(xl),  l = k, k + 1, … . 
(as a matter of fact, in theory of conformity collective behavior, this 
equation is sometimes called Granovetter’s behavior). 

The equilibria of system (7) are defined by the initial point x0 (as a 
rule, x0 = 0) and by the intersection points of the distribution function F(⋅) 
with the bisecting line of quadrant I, see [19, 23, 44]: 
(8) F(x) = x. 
Note that 1 forms a trivial equilibrium due to the properties of the distri-
bution function. 

Potentially stable equilibria are points where the curve F(⋅) crosses 
the bisecting line approaching it “from left and top.” 

Denote by ( ] ( ){ }inf : 0,1 ,y x x F x x= ∈ =  the least nonzero root of 
equation (8). The collective behavior equilibrium (CBE) and, as shown in 
[23], a Nash equilibrium of the agents’ game is the point 

(9) 
[ ] ( )* , if 0, : ,

0, otherwise.
y z y F z z

x
 ∀ ∈ ≥

= 


 

According to the properties of the distribution function, for imple-
menting a nonzero CBE a sufficient condition is F(0) > 0. 

Therefore, given an initial state (the proportion of active agents at 
step 0), further dynamics of system (7) and its equilibrium states depend 
on the properties of the distribution function of agents’ thresholds. Hence, 
a goal-oriented modification of this function can be treated as mob con-
trol. 

Possible ways of such control that vary the equilibrium states by af-
fecting the parameters of the threshold distribution function will be 
analyzed in the forthcoming sections. 

 
 

3. MICRO- AND MACROMODELS 
 
This section considers two approaches to the design and analysis of 

ANSs, namely, macro- and microdescriptions [13, 24]. According to the 
former approach, the structure of relations in a network is averaged, and 
agents’ behavior is studied “in the mean.” The latter approach takes into 
account the structural features of the influence graph of agents and their 
individual decision-making principles. The first and second approaches 
are compared using the threshold model of collective behavior with a 
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common relative threshold. And finally, the results of identification and 
simulation experiments are provided. 

 
3.1. Micromodel 

 
Let = {1, 2, , }N n…  be a set of agents entering an ANS described 

by a directed graph = ( , )R N E , where E N N⊆ ×  indicates the arc set. 
Agents in the network influence each other, i.e., arc ( , )i j  from node i  to 
node j  means that agent i  trusts agent j . For agent i , denote by 

( ) ={ | ( ; ) }inN i j N j i E∈ ∃ ∈  the set of his “neighbors” (agents 

influencing agent i ) and by ( ) = { | ( ; ) }outN i j N i j E∈ ∃ ∈  the set of 

agents influenced by agent i ; ( ) = # ( )out outn i N i  and ( ) = # ( )in inn i N i , 
where # stands for the power of a set.  

The mutual influence of agents can be defined via the direct 
influence (confidence) matrix = ijA aP P  having dimensions n n× , where 

0ija ≥  characterizes the confidence of agent i  in agent j  (equivalently, 
the influence of agent j  on agent i ; ∀ j ∉ Nin(i) aij = 0) [45]. By 

assumption, we have the normalization condition: ∀ i ∈ N: 
1

n

ij
j

a
=

∑  = 1. 

If agent i  trusts agent j  and agent j  trusts agent k , then agent k  
indirectly influences agent i  and so on. In other words, there may exist 
different indirect influence “chains” [47, 48]. 

Suppose that at initial step each agent has an opinion on some issue. 
The opinions of all agents in the network are reflected by a column vector 

0θ  of length n, which comprises real-valued nonnegative initial 
opinions. Possible examples of such opinions are the readiness to support 
a certain candidate in an election, to purchase a certain product, etc. We 
refer to the book [48] for a classification and numerous examples of 
opinions. Agents in the ANS interact via exchanging their opinions. 
During this process, the opinion of each agent varies under the influence 
of other agents he trusts. Assume that the opinion 1k

iθ ∈ℜ  of agent i  at 
step k  [8, 33, 48, 85] has the form  
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(1) 1= , =1,2, .k k
i ij j

j N
a kθ θ −

∈
∑ …   

Designate by 1 2= ( , , , )k k k k
nθ θ θ θ…  the ANS state at step k . 

Suppose that a consensus is reachable: as the result of multiple 
exchange of opinions, the opinions of all agents converge to a common 
final opinion = lim k

k
θ θ

→∞
. The general necessary and sufficient conditions 

of such convergence can be found in [31, 78, 85]. In this case, 
(2) θ = A∞ θ0, 
where lim k

k
A A∞

→∞
= . As is well-known (see references in [48]), consensus 

reachability leads to identical rows in the matrix A∞ . Subsequently, the 
vector θ  consists of identical elements and we will treat it as a scalar. 
Denote by , ,ia i N∞ ∈  element i  of an arbitrary row in this matrix. 

For defining the relationship between the common final opinion of 
all agents and their initial opinions, a possible “alternative” to model (2) 

involves agents’ reputations [48] {ri ∈ [0, 1]}i ∈ N , 
1

n

j
j

r
=

∑  = 1, i.e., 

θ = 0

1
θ

n

j j
j

r
=

∑ . 

Within the framework of micromodel (1), it is possible to formulate 
and solve control problems by affecting initial state, communications 
among agents, etc. [8, 48]. 

Now, pass from the micromodel of an ANS with pairwise interaction 
of the agents to its aggregated description in terms of probabilistic 
distributions (opinions, reputations, etc.). 

 
3.2. Macromodel 

 
For a given graph G , one can construct empirical probability 

distributions for the numbers of incoming and outgoing arcs. Designate 
them by ( )inP k  and ( )outP k , respectively, where = 0, 1k n − . 

Under a given vector of initial agents’ opinions, it is possible to find 
the empirical distribution function of these opinions:  

0
0

1( ) = #{ | }.iF x i N x
nθ

θ∈ ≤  
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Let 0 ( )P x
θ

 stand for the corresponding probability distribution. 

The macromodel of an ANS is the set 0{ , ( ), ( ), ( )}in outn P k P k P x
θ

; 

by assumption, the ANS structure guarantees consensus reachability. 
There exist several techniques for passing from the microdescription 

to the macrocharacteristics of ANSs and conversely. In particular, the 
influence and reputation of agents can be introduced in different ways. 
For instance, today researchers address two basic (most widespread) 
models of influence and propagation (“diffusion”) of activity (infor-
mation, opinions, etc.) in ANSs, namely, the linear threshold model 
(LTM) [44] and the independent cascade model (ICM) [41, 53]. The 
frameworks of these models consider two major problems in social 
networks: (1) resulting influence maximization (under a limited budget, 
choose an initial set of excited agents to maximize the resulting excita-
tion) and (2) early detection of external impacts (under a limited budget, 
choose a location of “detectors” in a social network to minimize the 
resulting influence of external impacts) [29, 45, 53, 73]. For example, the 
paper [53] demonstrated the following fact based on the analysis results 
of submodular set functions [66]: the choice problems of the sets of 
initially excited agents are NP-complex in both models. Furthermore, the 
authors [53] proposed a greedy heuristic (1 – 1/e)-optimal algorithm of 
their solution.  

It is possible to utilize one or more assumptions below. The first 
class of assumptions (R.1–R.3) allows determining the reputations of 
agents by a given graph G  (sometimes, the “influence” of agents is 
used).  

R.1. Agent’s reputation in an ANS is directly proportional to the 
number of agents under his influence, i.e.,  

(3) ri = ( )
( )

out

out

j N

n i
n j

∈
∑

, i ∈ N. 

R.2. Agent’s reputation in an ANS with a reachable consensus is de-
fined by the weight of his initial opinion in the common final opinion:  
(4) ri = ia∞ , i ∈ N. 

R.3. Agent’s reputation in an ANS is calculated by the PageRank al-
gorithm (e.g., see [58]), i.e., the reputation vector satisfies the system of 
equations 
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(5) ri = 
( ) ( )in

j
out

j N i

r
n j∈

∑ , i ∈ N. 

Note that the lists of such assumptions are open: other assumptions 
can be introduced [45] depending on available real data and practical 
interpretations. 

In the mathematical sense, the above class of assumptions (R.1–R.3) 
admits the following explanation. Reputation (3) appears directly propor-
tional to the node degree of the graph G, whereas the reputation vector 
represents the empirical probability distribution of node degrees. And the 
reputation vector (4) is an invariant distribution of agents’ influences; 
according to expression (5), reputation becomes directly proportional to 
the node degree of the graph G taking into account the “indirect” influ-
ences. 

The second class of assumptions (I.1, I.2) characterizes the inde-
pendence of the ANS microparameters in the macrostatistical sense. 

I.1. Agent’s reputation is independent from his opinion and vice ver-
sa. 

I.2. The initial opinions of agents are independent, and the initial 
opinion of agent i does not depend on Nin(i) and Nout(i).  

The third class of assumptions (A.1–A.3) makes it possible to find 
the direct influence/confidence matrix A  under a given graph G  and/or 
given reputations of agents. 

A.1. Agent i equally trusts all agents from the set Nin(i), i.e., 

aij = 1
( )inn i

, i ∈ N, j ∈ Nin(i). 

A.2. The confidence of agent i  in agent ( )inj N i∈  is directly 

proportional to the latter’s reputation, i.e., aij = 
( )in

j

k N i k

r
r∈

∑ , i ∈ N, j ∈ Nin(i).  

Therefore, by making certain assumptions on the general properties 
of ANSs, one can establish quantitative relations between their micro- 
and macromodels. 

Finalizing this brief discussion of the ANS macromodels, we 
emphasize an important aspect. An adequate mathematical apparatus of 
their analysis consists in random graph theory (e.g., see [15, 35, 65]) 
pioneered by P. Erdos and A. Renyi [38]. Actually, this framework is 
efficiently applied not just to social networks, but also to 
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telecommunication, informational, technological, biological, genic, 
artificial neural, and other networks, scientific community networks, etc. 
(numerous examples can be found in [3, 35, 65]).  

Imagine that an arc between any pair of nodes in an ANS graph 
exists or does not with an identical probability for any pair (this property 
and similar properties can be derived from modeling of graph formation 
dynamics, see [3, 36, 37]). Then we have the binomial distribution of the 
number of incident arcs (in the limit case—under a large number of graph 
nodes—the Poisson distribution). Such graphs are called exponential or 
Erdos–Renyi graphs. 

Interestingly, the numbers of incident arcs in most social networks 
(and in the World-Wide Web) obey not exponential, but heavy-tailed 
power-series “distributions” ( )inP k  and ( )outP k  [3, 11, 12]. Below we 

employ exactly these distributions ( ( )inP k k γ−∼ , where 1 < < 4γ ). 
Given a graph defined by the statistical characteristics of its basic 
parameters, one can find the macrocharacteristics (probability 
distributions) of influence, reputation, confidence, etc. based on the 
above-stated assumptions. 

 
3.3. Threshold Model of Agents Behavior 

 
Let us examine the equivalence of micro- and macrodescriptions 

from the theoretical viewpoint using the threshold model of collective 
behavior of agents in ANSs. 

The models of agents’ opinions dynamics in ANSs (see above) in-
volve a single characteristic of each agent—his opinion—and the rest 
parameters reflect the interaction of agents. The so-called behavioral 
models of ANSs are richer: in addition to “internal” parameters, they 
incorporate variables describing agent’s behavior (his decisions). Gener-
ally, these decisions depend on the internal parameters of an agent (his 
opinions, individual characteristics) and, may be, on the opinions and/or 
actions of other agents (all agents, neighbors or some group of agents). 
As an example of behavioral models, we choose the threshold model (the 
general game-theoretic modeling approaches to collective threshold 
behavior were outlined in the publications [18, 19]).  

Consider a social network composed of a set = {1, 2, , }N n…  of 
agents. Each of them chooses between two options, namely, being active 
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or being passive. Denote by {0;1}ix ∈  the choice of agent i , where 

=1ix  means that the agent is active (if = 0ix , passive). The choice of 

agent i  is influenced by a set ( )= in
iD N i  of other agents—his 

neighbors. Notably, agent i  decides to be active or passive depending on 
his threshold [0,1]iθ ∈  and the proportion of active neighbors: if more 

than | |i iDθ  neighbors are active, agent i  follows their choice. 
We believe that the opinion of a separate agent is his individual 

threshold [0,1]iθ ∈ . Moreover, the ANS structure admits a consensus, 
i.e., there exists a common opinion θ  characterizing all agents of the 
network in the final analysis (see formula (3)). In the sequel, this 
common opinion will be called the common relative threshold of the 
agents.  

The microlevel behavior of an agent can be expressed by the best 
response (also, see expression (2.1)) 

(6) ( )
1, ,

=
0, , ,

i

i

j i
j D

i i i
j i

j D

x d
x BR x

x d i N
∈

−

∈

 > θ


= 
≤ θ ∈



∑

∑
 

Here =i id D  gives the number of neighbors of agent i N∈ . The 
behavioral model defined by (6) is the micromodel with the common 
relative threshold. 

Now, pass to the probabilistic macrodescription of the threshold 
behavioral model. Assume that agents are undistinguishable and the 
number of agent’s neighbors makes a random positive integer 

:1 1d d n≤ ≤ − . Our analysis ignores the networks of agents without 
neighbors ( = 0)d : such agents are always passive due to (6). Let 

( ) ( ) { }= : 1,2, , 1 [0,1]inM d P d n − →…  be the probability that the 
number of neighbors is d . Consider the averaged dynamics of agents’ 
interaction in discrete time. Suppose that q  agents are active at an 
arbitrary step, and find the expected number of active agents at 
subsequent step within micromodel (6). 
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First, calculate the probabilities nG  of the events that exactly k  

agent’s neighbors are active. An agent has d  neighbors in 1
d
nC −  possible 

combinations. The number of combinations where exactly k d≤  
neighbors of an agent are active makes up k

qC , since the network contains 

q  active agents totally. Similarly, 1
d k
n qC −

− −  gives the number of 
combinations where exactly d k−  neighbors of an agent are passive (

1n q− −  is the total number of passive agents in the network). 
According to combinatorial calculus, the probability that exactly k  of d  
agent’s neighbors are active obeys the hypergeometric distribution:  

(7) ( ) 1

1

, ,
k d k
q n q

n d
n

C C
G q d k

C

−
− −

−

= . 

Evaluate the probability nP  that an agent becomes active under the 
influence of q  active agents in the network. For an agent to be active, a 
necessary condition is that more than dθ  his neighbors are active, see 
(6). The desired probability ( )= , ,n nP P q d θ  represents the sum of the 

probabilities (7) over all [ ]: <k d k dθ ≤  (as before, [ ]⋅  denotes the 
integer part operator):  

(8) ( ) ( )
[ ]

[ ]
1

1 0 1

, , , , 1
k d kdd
q n q

n n i d
k d k n

C C
P q d G q d k

C

−θ
− −

= θ + = −

θ = = −∑ ∑ . 

Probability (8) equals the proportion of active agents at subsequent 
step among the ones having d  neighbors. Hence, the expected 
proportion of active agents at subsequent step is  
(9) ( ) ( ) ( )

1

1

, , ,
n

n n
d

F q P q d M d
−

=

θ = θ∑ . 

And the number of active agents in the network evolves according to 
the recurrent scheme  
(10) ( )1 ,k n kq nF q+ =  θ   . 

To proceed, we explore the behavior of the function (9) for 
sufficiently large n. In this case, the hypergeometric distribution (7) is 
approximated by the binomial distribution with the probability = /p q n :  
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( ) ( ) ( )
1, /

, , , , 1 d kk k
n dn p q n

G q d k b p d k C p p −

>> =
≈ = − . 

By analogy with (8), the probability that more than dθ  agent’s 
neighbors are active is  

( ) ( ) ( )
[ ]

1, /
0

, , , , 1 , ,
d

n n p q n
k

P q d B p d b p d k
θ

>> =
=

θ ≈ θ = − ∑ . 

Then the distribution of the number of active agents (9) and the 
dynamics of the proportion of active agents in the ANS can be rewritten 
as  
(11) ( ) ( ) ( )

1

1

, , ,
n

B
n

d
F p B p d M d

−

=

θ = θ∑ , 

(12) ( )1 ,B
k n kp F p+ = θ . 

The behavioral model (12) is the macromodel with the common 
relative threshold. 

Threshold models research was initiated by the classical work [44]; 
we outline the key results derived by M. Granovetter. All agents are the 
neighbors of each other (the relation graph R  appears complete), and the 
number of agents is not specified. Each agent possesses a threshold—if 
the proportion of active agents exceeds this quantity, the agent becomes 
active. Moreover, the value of the threshold is described by a distribution 
function F . Assume that the proportion of active agents at step k  equals 

kr . Hence, all agents whose thresholds are smaller than kr  ( ( )kF r  
agents totally) choose being active at subsequent step. Therefore, we 
obtain the recurrent formula  
(13) ( )1k kr F r+ = . 

Macromodel (12) with the common relative threshold is equivalent 
to Granovetter’s model (13) in the following sense. Suppose that we 
know the distribution (11). Then it is possible to construct the 
corresponding Granovetter’s model by setting 

( ) ( ) [ ]= , , 0,1B
nF p F p pθ ∈ . Conversely, imagine that Granovetter’s 

model with the threshold distribution function F  is given. Solve 
numerically equation (11) for ( )M ⋅  (solution of such equations forms an 
independent problem not considered here). The distribution M  
completely characterizes the macromodel with the common relative 
threshold. 
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The paper [19] demonstrated that the equilibrium conditions in 
Granovetter’s model ( ( ) = )F x x  are equivalent to the Nash equilibrium 
conditions in the micromodel with the common relative threshold 
provided that the influence graph of agents enjoys completeness: 

= 1,id n i N− ∀ ∈ . In other words, the macromodel of agents’ threshold 
behavior in an ANS being available, one can easily find the equilibrium 
states in this network. 

This subsection has established the theoretical connection between 
the micro- and macromodels of ANSs. Identification of the suggested 
approaches and mutual adequacy of the micro- and macrodescriptions are 
studied “experimentally” below and in the paper [13] for some online 
social networks. A promising direction of further research concerns 
constructing and analyzing the thermodynamics and statistical physics 
interpretations of the macromodels of ANSs (see the papers [1, 79] and 
the surveys [20, 21, 86]). Another line of future investigations includes 
statement and solution of associated control problems (e.g., by analogy 
with the control problems of ANSs [8-10, 48, 73] described by 
expressions (1) or (6)). 

 
3.4. Identification and Simulation Experiments  

 
This subsection, written jointly with A.V. Batov, focuses on 

identification of the micro- and macrocharacteristics of ANSs proposed 
above, employing data on real online social networks—Facebook, 
LiveJournal and Twitter. The results of corresponding simulation 
experiments are provided and compared [13].  

In the previous subsections, we have introduced the notions of the 
micro- and macromodels of a social network with a common relative 
threshold [ ]0,1θ ∈ . 

Within the framework of the micromodel, the game-theoretic 
approach describes agent’s behavior via his best response iBR . At each 
step k , agents make the following decisions simultaneously and 
independently from each other: 
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(14) ( ) ( )( )
( )

( )

1

1

1

1, ,
=

0, .
i

i

k
j i

j Dk k
i i i k

j i
j D

x d
x BR x

x d

−

∈−
− −

∈

 > θ
= 

≤ θ


∑

∑
, { }1,2,...,i N n∈ = . 

For agent i, the quantity i id D=  denotes the number of his neigh-
bors, Di is the set of his neighbors and  

( ) ( ) ( ) ( ) ( ) ( ){ }1 1 1 1 1 1
1 2 1 1, ,..., , ,...,k k k k k k

i i i nx x x x x x− − − − − −
− − +=  forms the opponents’ action 

profile. Here ( ) { }0; 1k
ix ∈ , and ( ) 1k

ix =  ( ( ) 0k
ix = ) means that the agent is 

active (passive, respectively) at step k. 
The macromodel describes the dynamics of the proportion 

( ) [ ]1 0, 1k
k i

i
p x

n
= ∈∑  of active agents: 

(15) ( )1 ,k n kp F p+ = θ , 
where 

(16) ( ) ( ) ( )
1

1

, , ,
n

n
d

F p B p d M d
−

=

θ = θ∑ , 

( ) ( )
[ ]

0

, , 1 1
d

d kk k
d

k
B p d C p p

θ
−

=

θ = − −∑  is the binomial distribution function, 

and M(d) indicates the probabilistic distribution of the number of 
neighbors d in an ANS graph (for details, see above).  

Verification and comparison of the theoretical models (14) and (15) 
proceed from data on real online social networks (SNs). In this work, we 
employ simulation methods for micromodel (14) and different-type 
approximations of the distribution function (16) in macromodel (15). 

The relations among agents in a real SN can be reflected by a 
directed graph G . The direction of an edge from one agent (node) to 
another shows the former’s influence on the latter. The micromodels 
address explicitly the influence graph, whereas the macromodels operate 
its macrocharacteristic, i.e., the distribution ( )M ⋅  of the number of 
neighbors. The applicability conditions of macromodel (15) dictate that 
the number of agents is sufficiently large. Therefore, we have analyzed 
influence relations in three large SNs, viz., the Russian-language 
segments of Facebook (F), LiveJournal (L) and Twitter (T). 
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For instance, in Facebook an agent has connections to his friends, 
which can be interpreted as the influence relations of these friends on the 
agent. In LiveJournal and Twitter, directed influence relations are agent’s 
subscriptions for viewing and commenting information posted by other 
agents. We will believe that all agents influencing a given agent in a 
network are his neighbors, see expression (1). 

Table 1 contains the macroindicators of these SNs: the maximum 
number of neighbors (MaxFrnds), the number of agents (Users), the 
number of agents with nonzero amounts of neighbors (Nonzero users), 
the total number of relations (Links) and the average number of neighbors 
for agents with nonzero amounts of neighbors (AvgF = Links / Nonzero 
users). 

 
Table 1. The macroindicators of the SNs 

SN MaxFrn
ds Users Nonzero 

users Links AvgF 

Facebook 4 199 3 250 580 3 084 017 77 639 757 50.35 
Live 
Journal 

2 499 5 758 706 3 586 959 124 729 288 34.77 

Twitter 759 313 ~41 700 000 35 427 738 1 418 363 662 40.04 
 

According to Table 1, the number of agents in the SNs is large, 
which enables hypothesizing about the applicability of macromodel (15). 

The distribution function (16) of macromodel (15) includes two 
components, namely, (a) the probability ( , , )B p d θ  that a given 

proportion p  of d  agents is active and (b) the distribution ( )M ⋅  of the 
number of neighbors in an SN. Actually, these functions can be defined 
in different ways, which generates the following group of problems. 

Problem 1. Identification of the distribution functions ( )M ⋅  in the 

three SNs. Here we construct the empirical distributions ( )FM ⋅ , ( )LM ⋅  

and ( )TM ⋅ , as well as find analytically their approximating functions 

( )FM ⋅ , ( )LM ⋅  and ( )TM ⋅ .  
Problem 2. Design and analysis of the simulation models of 

threshold behavior specified by the best response (14). By assumption, 
randomly chosen agents are active at the initial step. Formula (14) serves 
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for evaluating the number of active agents at the subsequent step. Next, 
we average the result over the random sets of initially chosen agents. The 
described procedure yields a family of functions (which depends on the 
parameter θ ) to-be-compared with other distribution functions obtained 
by solving other problems (see Table 5).  

Problem 3. Approximation of the relationships derived via 
simulation by sigmoids (see Problem 2).  

Problem 4. Definition of a family of the distribution functions (16) 
dependent on the parameter θ . Then, we substitute the empirical 
distribution functions ( )FM ⋅ , ( )LM ⋅  and ( )TM ⋅  of the node degrees of 
the relation graph into the members of this family instead of ( )M ⋅ .  

Problem 5 appears similar to Problem 4, except that the empirical 
distribution functions of the SNs are replaced by their approximations 

( )FM ⋅ , ( )LM ⋅  and ( )TM ⋅  (see Problem 1). 
Problem 6. Comparison of the solution results in Problems 2–5. 
To solve Problems 2–5, we address two methods, viz., empirical data 

analysis and their analytical approximation. The general scheme of the 
study is explained by Table 2. 

 
Table 2. The models and methods used in Problems 2–5 

Model 
Method 

Empirical data analysis Analytical approxi-
mation 

Micromodel of SN Problem 2 Problem 3 
Macromodel of 
SN Problem 4 Problem 5 

 
Problem 7. Exploration of the collective behavior equilibria 

dependence on the common relative threshold θ  within Granovetter’s 
model constructed for these SNs. 

Let us describe the solution of each posed problem.  
Identification of the distribution functions ( )M ⋅  for the number 

of agents’ neighbors in ANSs (Problem 1). Today, there exist numerous 
studies of online SNs testifying that the distribution of the number of 
neighbors (the distribution of node degrees in large SNs) is well 
approximated by the power-series distribution (e.g., see [3, 12, 11]). 
These functions and their approximations for the above SNs are shown in 
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Fig. 1. The curves of the empirical distributions for the number of 
agent’s neighbors in social networks and their linear approximations:  

(a) Facebook; (b) LiveJournal; (c) Twitter.. In the log-log scale, here 
readers can find the curves of the empirical distributions ( )FM ⋅ , ( )LM ⋅  
and ( )TM ⋅  of the numbers of neighbors. Since a power function in the 
log-log scale represents a straight line with slope a and the zero-point 
value of b , we have constructed the best linear approximation. The 
obtained values of the approximation coefficients for different SNs are 
combined in Table 3. Other notation is explained below. 

 
Table 3. The approximation coefficients of the functions MF(·), ML(·) and 
MT(·) 

Function a b c_real a_pareto 
 –2.181 3.274 26.628 0.688 

 –2.208 2.828 16.878 0.765 

 –1.802 –0.196 1.8233 0.799 
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( )TM ⋅
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(b) 
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(c) 
Fig. 1. The curves of the empirical distributions for the number of agent’s 

neighbors in social networks and their linear approximations:  
(a) Facebook; (b) LiveJournal; (c) Twitter.  

 
For a small number of neighbors, the distribution of node degrees in 

the graph G  admits approximation by a horizontal line. This leads to the 
“cut” linear approximations ( )FM ⋅ , ( )LM ⋅  and ( )TM ⋅ , see Fig. 2 and 
Table 4. 
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(c) 

Fig. 2. The curves of the “cut” linear approximation of the function М(·): 
(a) Facebook; (b) LiveJournal; (c) Twitter. 

 
For a small number of neighbors, the horizontal line has been chosen 

due to the following reasons:  
– according to the normalization condition, the area under a 

distribution curve is unity. Direct normalization varies the coefficients of 
the power-series distribution, thereby affecting the accuracy of 
approximation;  

– as against other approximations, the “cut” linear approximation 
leads to smaller R -squared. For comparison, we have performed 
approximation by the Pareto distribution (with the parameter a_pareto 
from Table 3), which makes a line in the log-log scale. The “cut” 
approximation yields a better result for the empirical distribution, see 
Table 4. 

The value c  where the linear horizontal approximation becomes 
“inclined,” i.e.,  

( )
[ ]
[ ]

exp , ,

exp , ,

a

a

b c d c
M d

b d d c

 × ≤= 
× >
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(see c _real in Table 3) has been found from the normalization condition  

( )
1

1
n

d
M d

=

=∑ . 

 
Table 4. The accuracy of the “cut” linear and Pareto approximations (R-
squared) 

Approximation of SN “Cut” linear Pareto 
Facebook 0.962 0.916 
LiveJournal 0.929 0.884 
Twitter 0.849 0.849 
 
We have approximated the distribution of node degrees in the SNs. 

These results will be used in Problem 4. Now, let us simulate agents’ 
behavior in micromodel (14). 

Design and analysis of the simulation models of threshold be-
havior defined by the best response (14) (Problem 2). Simulation runs 
as follows. Consider SNs Facebook and LiveJournal described by their 
relation graphs. “Excite” randomly q  agents (a proportion / [0;1]q n∈ ). 
Next, employ formula (14) for evaluating the best response of each agent 
(being active or passive). According to (15), the resulting proportion of 
active agents is the value ( )/ ,nF q n θ . Repeat the experiment very many 

times for different values q  belonging to the segment [ ]0,1 . In all trials, 

the relative deviation of the value ( )/ ,nF q n θ  has been about 0.001 
(this is due to the randomly chosen set of initially excited agents). Fig. 3 
demonstrates the curves of ( )/ ,nF q n θ  under different values of the 

parameter θ . 
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(c) 

Fig. 3. The results of threshold behavior simulation:  
(a) Facebook; (b) LiveJournal; (c) Twitter. Notation:  

        – θ = 0;       – θ = 0.1;       – θ = 0.2;       – θ = 0.3;      – θ = 0.4; 
*  – θ = 0.5;      – θ = 0.6;        – θ = 0.7;      – θ = 0.8;      – θ = 0.9 

 
We have obtained the simulation results for SNs Facebook, 

LiveJournal and Twitter. The next stage is dedicated to their 
approximation.  

Analytical approximation of the functions Fn(p, θ) yielded by 
simulation (Problem 3). In this problem, it is necessary to find the ana-
lytical approximation of the family of functions Fn(p, θ) for each of the 
SNs. Direct observation shows that: 

– the constructed curves (see Fig. 4) belong to the class of sigmoids; 
– the curves Fn(p, θ) have an inflection point at θp ≈ . 
And so, as the candidates for approximation we choose the paramet-

ric families of functions  
( ), , , , arctg( ( ))f p pθ α λ γ = α λ − θ + γ  

and 

( ) ( ), , , ,
1 pg p

e−λ −θ

α
θ α λ γ = + γ

+
. 

Recall that ( )f ⋅  and ( )g ⋅  must be distribution functions. Having 
this aspect in mind, we adopt the following parametric families of 
functions (here λ  acts as the parameter): 
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(17) ( ) ( ) ( )
( ) ( )

arctg( ) arctg
, ,

arctg( 1 ) arctg
p

f p
λ − θ + λθ

θ λ =
λ − θ + λθ

, 

( ) ( )

( )11 1, ,
11

p

q

e eg p
ee

−λ −θ−λ

−λ−λ −θ

  − +
θ λ =    −+  

.  

Consequently, Problem 3 is (a) to find an unknown parameter λ  so 
that the surface ( ), ,f p θ λ  or ( ), ,g p θ λ  gives the best approximation 
of the experimental data and (b) to choose an appropriate family with the 
smallest approximation error.  

Interestingly, the family of functions (17) gives the best 
approximation of the experimental data for all social networks. The 
minimum approximation error is achieved under = 13.01Fλ , 

= 9.18Lλ , = 7.34Tλ . Fig. 4 shows the corresponding curve for 
Facebook. 

 

 
 

Fig. 4. Facebook: Approximation of the experimental data ( , )nF p θ  
(points) by the analytical family ( , , )Ff p θ λ  (grid). 

 
The analytical expression of function (16) allows suggesting the one-

parameter model of agents’ behavior (under different values of the 
common relative threshold θ ). Particularly, this is important in the 
context of control problems for SNs. 
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Macromodel (2) based on the empirical distribution of the 
number of neighbors in a graph (Problem 4). As mentioned, this 
problem is to find a family of the distribution functions (16) dependent on 
the parameter θ ; these functions incorporate explicitly the theoretical 
component ( , , )B p d θ . In other words, we substitute the empirical 
distribution functions ( ), ( )F LM M⋅ ⋅  and ( )TM ⋅  of the node degrees of 
the relation graph into formula (16) instead of ( )M ⋅ . Fig. 5 presents the 
corresponding results. 

 
(a) 

 
 

,nq F n  θ  

  

qn

  

 

,nqF n θ  

  

q n 

  

 

  0          0.2        0.4         0.6        0.8      q/n  

Fn (q/n, θ) 
0.9 
0.8 
0.7 
0.6 
0.5 
0.4 
0.3 
0.2 
0.1 

 
 

 0          0.2        0.4         0.6        0.8      q/n  

 

Fn (q/n, θ) 
0.9 
0.8 
0.7 
0.6 
0.5 
0.4 
0.3 
0.2 
0.1 

 
 

 



32 

(b) 
 

 
(c) 

Fig. 5. The macromodel (15) with the empirical distribution of the 
number of neighbors in the graph:  

(a) Facebook; (b) LiveJournal; (c) Twitter; 
        – θ = 0;       – θ = 0.1;       – θ = 0.2;       – θ = 0.3;      – θ = 0.4; 
*  – θ = 0.5;      – θ = 0.6;        – θ = 0.7;      – θ = 0.8;      – θ = 0.9 

 
Therefore, we have obtained the family of functions (16) for the 

SNs. Next, study them using the “cut” linear approximations constructed 
in Problem 1. 

Macromodel (15) based on the distribution of the number of 
neighbors approximated by the analytical function (Problem 5). As a 
matter of fact, this problem is similar to Problem 4, except that the 
empirical distribution functions of the SNs are replaced by their 
approximations ( )FM ⋅ , ( )LM ⋅  and ( )TM ⋅ . The results are 
demonstrated by Fig. 6. 
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(c) 

Fig. 6. The macromodel (15) with the approximated distribution function: 
(a) Facebook; (b) LiveJournal; (c) Twitter; 

        – θ = 0;       – θ = 0.1;       – θ = 0.2;       – θ = 0.3;      – θ = 0.4; 
*  – θ = 0.5;      – θ = 0.6;        – θ = 0.7;      – θ = 0.8;      – θ = 0.9 

 
Obviously, the family of functions (16) is analogous in qualitative 

terms to the one obtained in the previous problem for corresponding SNs. 
The rigorous comparison of these families takes place within Problem 6. 

Comparison of the solution results in Problems 2–5 (Problem 6). 
We have successfully solved Problems 2 and 3 (simulation and approxi-
mation of micromodel (14)), as well as Problems 4 and 5 (different-type 
approximations of macromodel (15)). Now, it is possible to parallel the 
outcomes, see Table 5. Here the headers of columns answer for the pairs 
of compared problems. 

 
Table 5. Comparison of the solution results in Problems 2–5 (R-squared)  

SN 

Prob-
lems 
2 and 

4 

Prob-
lems 
2 and 

5 

Prob-
lems 
4 and 

5 

Prob-
lems 
2 and 

3 

Prob-
lems 
3 and 

4 

Prob-
lems 
3 and 

5 
Facebook 0.9976 0.9932 0.9911 0.9973 0.9973 0.9907 
LiveJournal 0.9999 0.9872 0.9872 0.9960 0.9960 0.9855 
Twitter 0.9998 0.9631 0.9642 0.9949 0.9950 0.9599 

  

 

,n q Fn  θ   

  

qn

  

 
Fn (q/n, θ) 

0.9 
0.8 
0.7 
0.6 
0.5 
0.4 
0.3 
0.2 
0.1 

 
 
    0        0.2        0.4         0.6        0.8      q/n  
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According to Table 5, the macro- and microdescriptions yield simi-

lar results (see Problems 2 and 3, 2 and 4, and 3 and 4). Yet, the closeness 
of the outcomes for Problems 2 and 5, 3 and 5, and 4 and 5 is smaller. A 
promising line of future research lies in suggesting another function with 
better approximation of the distribution function ( )M ⋅  for the node 
degrees of the relation graph. 

Equilibria analysis in the ANSs (Problem 7). As established above, 
agents’ behavior in the model with the common relative threshold ap-
pears equivalent to threshold behavior in Granovetter’s model. Within the 
latter framework, an important role belongs to such properties of 
equilibria (i.e., points characterized by the equation ( ),nF p pθ = ) as 
their number and stability (crossing the bisecting line of quadrant I in an 
equilibrium “from left and top”). Let us investigate these issues for the 
SNs above. By observing the curves in Figs. 3–6, we naturally arrive at 
the following conclusion. Depending on the parameter θ , there may exist 
different sets of equilibria (in the sense of their number, stability or 
instability, etc.).  

The intersection point of the curve ( ),nF p θ  and the diagonal of the 

unit square lying within the interval ( )0,1  is an unstable equilibrium. 
Really, the curve ( ),nF p θ  crosses the diagonal “from left and top.”  

Under [ 0.1; 0.9]θ ∈ ∼ ∼ , this property holds for all social networks 
considered, see Fig. 3. Moreover, the points = 0q  and =1q  form stable 
equilibria.  

In the case of 0.1θ ≤ , the system possesses two equilibria, viz., the 
points = 0q  (unstable) and =1q  (stable).  

Similarly, if 0.9θ ≥ , the system admits the same equilibria, but 
= 0q  is stable, whereas =1q  appears unstable.  

Ошибка! Источник ссылки не найден. also serves for evaluating 
quilibria in the recurrent procedure (16) of the macromodel under 
different relationships between the initial state 0p  and the common 
relative threshold θ . For instance, if the vector ( )0 ,p θ  belongs to 
domain II in Ошибка! Источник ссылки не найден., then process (16) 
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erminates in the equilibrium = 0p . On the other hand, if this vector lies 
in domain I, process (16) ends in the equilibrium = 1p . 

 
Fig. 7. The relationship between the parameter θ and the intersection 

point of the curve Fn(p, θ) with the diagonal of the unit square:  
         - Facebook;         - LiveJournal;           - Twitter. 

 
The above theoretical macromodels of ANSs have been analyzed 

through simulation using real data and approximation of the obtained 
results. The outcomes lead to the following important conclusions. 

First, the probabilistic description of the macromodel agrees with the 
macrodescription: the simulation results well match the results of 
calculations based on the probabilistic model and the real distribution of 
the node degrees of relations graphs for different social networks. 

Second, despite appreciable differences in the scale and structure of 
relations graphs for the real social networks, their macromodels (15) have 
much in common: they possess the form of sigmoids and admit good 
approximation by the parametric family of functions (17) with different 
values of the coefficient λ . 

 
 
4. DETERMINISTIC MODELS OF MOB CONTROL 
 
This section studies a threshold behavior model for a group of 

agents. Making binary decisions (choosing between active or passive 
states), agents take into account the choice of other members of the 

I 
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group. Control problems for thresholds and agents’ reputation are stated 
and solved in order to minimize the number of agents choosing “to be 
active” [23]. 

 
4.1. A Threshold Model of Mob Behavior 

 
Consider the following model of a mob. There is a set 

N = {1, 2, …, n} of agents choosing between two decisions, “1” (being 
active, e.g., participating in mass riots) or “0” (being passive). Agent 
i ∈ N  is characterized by 

– the influence on agent j, denoted by tji ≥ 0 (a certain “weight” of 
his opinion for agent j); for each agent j, we have the normalization 
conditions ji

i j
t

≠
∑  = 1, tii = 0; 

– the decision xi ∈ {0; 1}; 
– the threshold θi ∈ [0, 1], defining whether agent i acts under a cer-

tain opponents’ action profile (the vector x–i comprising the decisions of 
the rest agents). Formally, define the action xi of agent i as the best re-
sponse to the existing opponents’ action profile:  

 (1) xi = BRi(x–i) = 
1, if ,

0, if .

ij j i
j i

ij j i
j i

t x

t x
≠

≠

 ≥ θ



< θ


∑

∑
 

The behavior described by (1) is called threshold behavior. A Nash 
equilibrium is an agents’ action vector xN  such that xN = BR(xN) [64]. 

By analogy to the paper [18], adopt the following dynamic model of 
collective behavior. At an initial step, all agents are passive. At each 
subsequent step, agents act simultaneously and independently according 
to procedure (1). Introduce the notation  
(2) Q0 = {i ∈ N | θi = 0}, 

Qk = Qk–1 ∪ {i ∈ N | 
1 ,k

ij
j Q j i

t
−∈ ≠

∑  ≥ θi}, k = 1, 2, …, n – 1. 

Clearly, Q0 ⊆ Q1 ⊆ … ⊆ Qn–1 ⊆ Qn = N. Let T = {tij} be the influ-
ence matrix of agents and θ = (θ1, θ2, … , θn) form the vector of their 
thresholds. Evaluate the following index: 
(3) q(Т, θ) = min {k = 0, 1n −  | Qk+1 = Qk}. 

Define the collective behavior equilibrium x* (CBE) by 
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(4) ( , )*

( , )

1,  if ,
( , )

0,  if \ , .
q T

i
q T

i Q
x T

i N Q i N
θ

θ

∈
θ =  ∈ ∈

 

Assertion 4.1. For any influence matrix T and agents’ thresholds θ, 
there exists a unique CBE (4) representing a Nash equilibrium in the 
game with the best response (1).  

Proof of Asserton 4.1. To establish the existence, one should actually 
demonstrate the following: the set used for minimization in (3) is 
nonempty. By argumentum ex contrario, suppose emptiness of this set. In 
other words, the sequence of sets Q0 ⊆ Q1 ⊆ … ⊆ Qn–1 ⊆ Qn  is assumed 
to have no coinciding elements. This implies that each consequent set 
differs from the previous one (at least) by a single element. On the other 
hand, the sequence has n + 1 sets, but there are n totally. We have arrived 
at a contradiction. 

Uniqueness follows from the CBE definition—see (4)—and from 
uniqueness of index (3). 

Let * ( ,θ)x T  specify the CBE. And so, all agents belonging to the set 

( , )q TQ θ  are active. However, according to formulas (1)–(2), this choice 
matches their best responses. All agents in the set ( , )\ q TN Q θ  turn out 

passive. By virtue of (2)–(3), these agents satisfy 
( , )q T

ij i
j Q

t
θ∈

< θ∑ , 

( , )\ q Ti N Q θ∈ . Then being passive is the best response (see expression 

(1)). Hence, for all i  we obtain xi = BRi(x-i), and * ( ,θ)x T  represents a 
Nash equilibrium. Proof of Assertion 4.1 is complete. • (here and in the 
sequel, symbol • indicates the end of a proof, example, etc.).  

We underline that the above CBE definition possesses constructive 
character, as its evaluation based on (2)–(4) seems easy. Moreover, a 
reader should observe an important fact: without agents having zero 
thresholds, passivity of all agents makes up the CBE. In the sense of 
control, this means that most attention should be paid to the so-called 
“ringleaders,” i.e., agents deciding “to be active” even when the rest 
remain passive. 

The model with reputation. Denote by 1
1j ij

i j
r t

n ≠

=
− ∑  the average 

influence of agent j ∈ N on the rest agents. The quantity rj is said to be 
the relative reputation of agent j (a certain “weight” of his opinion for the 
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other agents). The other agents consider his opinion or actions according 
to this weight. Within the framework of the model with reputation, 
influence can be characterized by the vector r = {ri}i ∈ N. 

In this model, define the action xi of agent i as the best response to 
the opponents’ action profile:  

xi = BRi(x–i) = 
1, if ,

0, if .

j j i
j i

j j i
j i

r x

r x
≠

≠

 ≥ θ



< θ


∑

∑
 

A special case of the described model is the anonymous case, where 

all agents have the identical reputations 1
1ir n

=
−

. Then choose integers 

m1, m2, …, mn as the thresholds and construct the corresponding threshold 
vector m. Next, sort the agents in the nondecreasing order of their 
thresholds: m1 ≤ m2 ≤ … ≤ mn. Believing that m0 = 0 and mn+1 > n, define 
the number p(m) ∈ {0, …, n} by 

p(m) = min {k ∈ N ∪  {0} | mk ≤ k, mk+1 > k}. 
Consequently, the CBE acquires the following structure: *

ix  = 1, 

i = 1, ( )p m ; *
ix  = 0, i = ( ) 1,p m n+ . That is, the first p(m) agents are 

active (if p(m) = 0, suppose passivity of all agents). 
In the anonymous model, a Nash equilibrium satisfies the equation 

[18]  
(5) F(p) = p, 
where ( ) { }: iF p i N m p= ∈ <  indicates the number of agents whose 
thresholds are less than p. Evidently, the CBE corresponds to the minimal 
solution of equation (5). 

Thus, one easily calculates the CBE under known thresholds and 
reputations of the agents. To proceed, let us study control problems. 
Imagine the influence and/or thresholds of agents can be modified. How 
should this be done for implementing a required CBE? In terms of the 
practical interpretations of the model, we aim at reducing the number of 
agents deciding “to be active.” 

The aggregated index of mob state is the number of active agents: 
K(T, θ) = |Qq(T, θ)|. 

In the model with reputation, replace the matrix T  with the vector r. 
In the anonymous case, we have K(m) = p(m). 
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Let T0 and θ0 be the vectors of initial values of influence matrices 
and agents’ thresholds, respectively. Suppose that the following parame-
ters are given: the admissible sets of the influences and thresholds of 
agents (Т and Θ, respectively), the Principal’s payoff H(K) from an 
achieved mob state K and his costs C(T, θ, T0, θ0) required for modifying 
the reputations and thresholds of the agents. 

As a control efficiency criterion, select the Principal’s goal function 
representing the difference between the payoff H(⋅) and the costs С(⋅). 
Then the control problem takes the form  
(6) H(K(T, θ)) – C(T, θ, T0, θ0) → 

,
max

T∈Τ θ∈Θ
. 

In the anonymous case, the control problem (6) becomes  
(7) H(p(m)) – C(m, m0) → max

m M∈
, 

where M is the admissible set of threshold vectors in the anonymous case, 
while m and m0 designate the terminal and initial threshold vectors, 
respectively. 

Now, consider special cases of the general problem (6). The thresh-
old control problem in the anonymous case is treated in subsection 4.2. 
And the reputation control problem in the non-anonymous case can be 
found in subsection 4.3. 

 
4.2. Threshold Control 

 
Assume that the Principal strives for making the number of active 

agents equal to a given quantity K* ≥ 0. In other words, the Principal aims 
at implementing a new CBE with the number of active agents K* that does 
not exceed the old CBE with the number p(m) of active agents. Here a 
practical interpretation is that the Principal reduces the number of agents 
acting in a CBE. Controlling the values of thresholds, the Principal must 
transfer the CBE to a point with the number K* of active agents. In the 
anonymous case, the agents have identical reputations, and problem (7) 
takes the form 
(8) C(m, m0) → 

*{ | ( ) }
min

m p K∈ η η =
. 

Let g be a nondecreasing function of a nonnegative argument, i.e., 
the absolute value of the difference between the initial and terminal 
values of the threshold of a controlled agent. Suppose that the threshold 
control costs for one agent constitute  
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(9) ( ) ( )0 0,i i i i ic m m g m m= − . 

By implication of costs, g(0) = 0. The total costs result from sum-
ming up the individual costs: 

(10) ( ) ( ) ( )0 0 0

1 1
, ,

n n

i i i i i
i i

C m m c m m g m m
= =

= = −∑ ∑ . 

To elucidate the principle of threshold control, first assume the fol-
lowing. The threshold distribution F(⋅) is a nondecreasing function de-
fined on the set of nonnegative numbers, being left continuous and hav-
ing the right-hand limit at each point. By analogy with equation (5), here 
the equilibrium is the left intersection of the threshold distribution func-
tion and the bisecting line of quadrant II. This part of the threshold distri-
bution function can be observed in Fig. 8. The thin line shows the thresh-
old distribution function G(⋅) obtained as the result of control.  

 

 
Fig. 8. The initial (F) and modified (G) 

threshold distribution functions 
 
Since p(m) is the minimal solution to equation (5) (see point (4, 4) 

on Fig. 8), then 
(11) ∀ K < p(m):  F(K) > K. 
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Two cases are possible, namely, F(0+) ≤ K* and F(0+) > K* (e.g., 
K* = 3 and K* = 1, respectively). 

If F(0+) ≤ K*, solve the equation F(K1) =  K* to find the point 
K1 = F-1(K*). 

By virtue of (11), K* = F(K1) > K1 = F-1(K*). The control process 
consists in that the Principal modifies all thresholds within the interval 
[F–1(K*), K*), making them equal to K*. The new distribution function 
G(⋅) is K* on the whole interval [F-1(K*), K*]. Hence, G(K*) = K*. 

Thus, we have obtained the new value of the CBE with the number 
K* of active agents, which agrees with the Principal’s goals. The new 
distribution function G(⋅) in Fig. 8 coincides with the old distribution 
function F(⋅) at all points lying outside the interval [F-1(K*), K*). 

Now, let us estimate the costs of shifting the thresholds from a small 
interval (t1, t2] (around the point t) to the point K*. Suppose that on this 
interval the function F varies insignificantly. The number of agents on the 
above interval constitutes F(t2) – F(t1), and the desired costs approximate 

( ) ( ) ( )*
2 1g K t F t F t−  −   . 

One can easily demonstrate that, in the case F(0) ≤ K*, the Princi-

pal’s control costs are  ( ) ( )
( )

*

1 *

*
K

F K

g K t dF t
−

−∫ . 

If F(0+) > K*, the Principal modifies the zero thresholds of [F(0+) –
 K*] agents, making them equal to K*. According to formula (9), the costs 
of modifying the threshold of one agent (from 0 to K*) are defined by 
g(K*). The costs of modifying the thresholds of [F(0+) – K*] agents with 
zero thresholds can be rewritten as g(K*)(F(0+) – K*)+, where (⋅)+ desig-
nates the positive part operator. 

Therefore, the total Principal’s costs (10) become 

(12) ( ) ( ) ( )( ) ( ) ( )
( )

*

1 *

* * * *0
K

F K

с K g K F K g K t dF t
−

+
= + − + −∫ . 

Assertion 4.2. Assume that the Principal implements the CBE with 
the number K* of active agents. Then costs (12) are minimal required.  

Proof of Assertion 4.2. By definition of the function F(⋅), to reduce 
the value of F(K*) (actually, exceeding K*—see (11)), one should proceed 
as follows. Increase the thresholds lying to the left from the point K* by a 
certain quantity such that their values are not smaller than K*. 
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As the cost function g is nondecreasing, modifying the values of the 
thresholds greater than K* incurs unjustified costs. Therefore, costs mini-
mization dictates that the new value of the thresholds equals K*. 

Consider the set of all possible results of control: 

[ ) ( ) ( ) ( )* * *
1

11

, ; , 1, ;
q q

i i q i i i i
ii

A a b b K a b i q F b F a F K K+
==

 
Ω = = ≤ > =  −  = −  

 
∑∪ . 

Control lies in shifting all thresholds entering these intervals to the 
point K*. Evidently, [F–1(K*), K*) ∈Ω . 

The control costs on the set A∈Ω  take the form 

( ) ( ) ( ) ( )* *

1

i

i

bq

iA a

g K t dF t g K t dF t
=

− = −∑∫ ∫ . 

Compare the total costs of modifying the thresholds from the inter-
val [F-1(K*), K*) and from an arbitrary set A∈ Ω . These costs can be 
expanded into the sum of two terms as follows: 
(13) ( ) ( )

( ) )
( ) ( ) ( ) ( )

( ) )( ) )1 * * 1 * * 1 * *

* * *

, , , \F K K A F K K F K K A

g K t dF t g K t dF t g K t dF t
− − −  ∩  

− = − + −∫ ∫ ∫ , 

(14) ( ) ( ) ( ) ( ) ( ) ( )
( ) )( ) )1 * * 1 * *

* * *

, \ ,A A F K K A F K K

g K t dF t g K t dF t g K t dF t
− − ∩ 

− = − + −∫ ∫ ∫ . 

The first summands in equalities (13) and (14) are identical. 
Even if the total costs for the sets A  and [F-1(K*), K*) differ, this 

would be observed on the sets A\[F-1(K*), K*) and [F-1(K*), K*)\A exclu-
sively. Due to definition of the set Ω , 

( ) ( )
( ) )

( ) ( )
( ) )1 * * 1 * *\ , , \

i i i i
A F K K F K K A

F b F a F b F a
− − 

 

 −  =  −    ∑ ∑ . 

The costs of shifting the thresholds from the sets A\[F–1(K*), K*) and 
[F–1(K*), K*)\A can be assigned the lower and upper estimates 
(15) ( ) ( )

( ) ) ( ) )
( ) ( ) ( )

( ) )
1 * *

1 * *1 * *

* *

\ , \ ,\ ,

min i i
t A F K K A F K KA F K K

g K t dF t g K t F b F a
−

−−
∈  

− ≥ − −  ∑∫ , 

(16) ( ) ( )
( ) ) ( ) )

( ) ( ) ( )
( ) )

1 * *
1 * *1 * *

* *

, \ , \, \

max i i
t F K K A F K K AF K K A

g K t dF t g K t F b F a
−

−−
∈  

− ≤ − −  ∑∫ . 

By monotonicity of the cost function, we have the inequality 
(17) 

( ) )
( )

( ) )
( )

1 * *1 * *

* *

\ ,, \
max min

t A F K Kt F K K A
g K t g K t

−−  ∈∈ 

− ≤ − . 

On the other hand, formulas (15)–(17) imply 
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(18) ( ) ( )
( ) )

( ) ( )
( ) )1 * * 1 * *

* *

, \ \ ,F K K A A F K K

g K t dF t g K t dF t
− − 

 

− ≤ −∫ ∫ . 

And expressions (13), (14) and (18) yield 
( ) ( )

( ) )
( ) ( )

1 * *

* *

, AF K K

g K t dF t g K t dF t
−



− ≤ −∫ ∫ . • 

Corollary 4.1. Optimal control modifies only the thresholds belong-
ing to the interval [F–1(K*), K*) if K* lies within the domain of the func-
tion F–1(⋅). In the case when K* is outside the domain of F–1(⋅), optimal 
control modifies the thresholds belonging to the interval [0, K*). 

Corollary 4.2. Solution to the threshold control problem does not ex-
plicitly depend on the initial CBE.  

Corollary 4.3. The CBE obtained by optimal control is unstable. 
Indeed, a small variation of the thresholds to the left from the point 

K* would “drive” the system to a new equilibrium position (i.e., to the 
intersection point with bisecting line; e.g., see the point (4, 4) in Fig. 8). 
To guarantee stability, it is necessary to shift the thresholds to the right 
from the point K*. 

Corollary 4.4. Assertion 4.2 remains in force when the costs of mod-
ifying the threshold of an agent make up ( )0 0/ ( )i i ig m m L m− , where L(⋅) 

is indicates any measurable strictly increasing function of the initial 
threshold. 

Solution (12) to problem (8) being available, one can revert to prob-
lem (7). The latter acquires the form of the following scalar optimization 
problem: H(K*) – c(K*) → 

*
max

K
. 

In Examples 4.1 and 4.2 below, we present the analytical solution to 
the problem (8) for a series of special cases. 

Example 4.1. Consider the relative thresholds θ /i im n= . Assume 
that their distribution function represents the Pareto distribution with a 
parameter α 1> , i.e.,   

(19) ( )
1
xF x

α

αβ
+ β

=
+ β

, 1x ≤ , β 0> . 

Then the density function has the form ( ) 1 / (1 )f x xα−
αβ = α + β . 
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The inverse function to the distribution function is defined by 

( ) ( )( )1/1 1F x x
α−

αβ = +β −β on the segment 1
1

xβ
≤ ≤

+ β
. 

The CBE equation (5) becomes 
 (20) ( )1 0x xα − + β + β = . 
Let p be the minimal positive root of equation (20). Since the distribution 
function (19) increases strictly, we naturally arrive at / (1 ).p > β + β  

Introduce the cost function ( )g x x= . 

Suppose that the goal equilibrium is *k  = K* / n. Consequently, the 
costs of implementing this CBE, * / (1 )p k≥ ≥ β + β , are defined by 

(21) 

( ) ( )
( )

( ) ( )( )
( )

( ) ( ) ( )( )( )
( )( )

* *

1 * 1 *

* * * * *

1 1/* **
* *

1

1
.

1 1 1

k k

F k F k

C k g k t dF t k F k k t dt

k kk
k k

− −
αβ αβ

α
αβ αβ αβ

α+ α+ αα

α
= − = − − =

+ β

  α − + β − β+ β = − −
 + β + β + α
 

∫ ∫
 

Now, assume that *0 / (1 )k< < β + β . Then the costs of implementing this 
CBE constitute 

(22) ( ) ( ) ( )
*

* * * * * *

01 1

k

C k k k g k t dF t k kαβ αβ

   β β
= − + − = − +   + β + β   

∫  

( ) ( )
( )( )

*1 1* *
* *

0

.
1 1 1 1 1

kk k
t dt k k

α+ α+

α  α β
+ − = − + + β + β + β + β + α 

∫  
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Fig. 9. The family of the cost functions c(k*) (Example 4.1). 
 
For α = 1.3; 1.5; 1.75; 2 and β  = 0.25, the family of the cost func-

tions (21) and (22) is illustrated by Fig. 9. Clearly, the costs grow as the 
parameter α of the Pareto distribution goes down. Hence, implementing 
the goal CBE requires higher relative costs for more uniform distribution 
of the thresholds (smaller values of the parameter α). 

The maximum costs are attained at the points where the distribution 
function has the largest “distance” to the bisecting line of quadrant I (see 
Fig. 8). This feature results in that the thresholds of relatively many 
agents should be modified by greater quantities (and the costs increase). 

For all values of the parameters α and β, the costs of implementing 
the zero CBE actually vanish. Indeed, it suffices to shift the zero thresh-
olds by a small quantity to derive a small CBE. Imagine that the Principal 
strives for implementing a new CBE being smaller than p (the CBE 
without control). In this case, optimal control lies in modifying the zero 
thresholds by a small quantity, thereby eliminating the ringleaders from 
the mob. • 

In Example 4.1, the control cost function g(⋅) does not explicitly de-
pend on the initial values of the agents’ thresholds. Instead, it is fully 
described by the value of threshold variations. In the next example, we 
analyze another cost function being explicitly dependent on the initial 
value of the thresholds. 
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Example 4.2. Within the conditions of Example 4.1, suppose that the 
cost function of thresholds modification takes the form  
(23) ( )1 2 1 2 1,g x x x x x= − . 

Let the goal CBE be *k . Consequently, the costs for 
* / (1 )p k≥ ≥ β + β  make up 

( ) ( )
( )

( ) ( )( ) ( ) ( )

( ) ( ) ( )( )( )
( )( )

* *

1 * 1 *
αβ αβ

* * * * * α 1
αβ αβ αβ *

α 1 1/α * **
*

*

α,
1 β

α 1 β ββ
.

1 β 1 β 1 α

k k

F k F k

C k g k k t dF t F k k tt dt
k

k kk
k

k

− −

−

+ α+ α

= − = − − =
+

  − + −+ = − −
 + + +
 

∫ ∫
 

Now, assume that *0 β/(1+β)k< < . On this interval, the costs turn 
out infinitely large: we should modify the zero thresholds by the quantity 
k*, which requires infinitely large costs according to formula (23). And 
so, the Principal can implement only a CBE from the interval 

* (1 )p k≥ ≥ β + β . For α = 1.3; 1.5; 1.75; 2 and β  = 0.25, the family of 
the cost functions can be observed in Fig. 10. • 

 

С(k*) 
 
 
 

0.03 
 
 
 

0.02 
 
 
 

0.01 
 
 
 

0 
 0.2         0.3         0.4          0.5         0.6          k* 

 
Fig. 10. The family of the cost functions c(k*) (Example 4.2). 
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In Example 4.2, the control cost function possesses the monotonous 

property, which is easily explained: the larger is the deviation of the new 
CBE (implemented by the Principal during threshold control) from the 
old one (without such control), the higher are the corresponding costs. 
 
4.3. Reputation Control 

 
Let the non-anonymous case take place and the agents’ thresholds be 

fixed. Consider the reputation control problem. Suppose that the Principal 
seeks for making the number of active agents not greater than a given 
quantity K* ≥ 0. In this case, the control problem acquires the form  

C(r, θ, r0, θ) → 
*

0(η ,θ )
{η | | | }

min
q

r R Q K∈ ∩ ≤
. 

In the initial CBE, all active agents form the set Qk. In other words, 
we have the following system of inequalities:  

 (24) 

0

\{ }

0

θ , ,

θ , \ .
k

k

j i k
j Q i

j i k
j Q

r i Q

r i N Q
∈

∈

 ≥ ∈



< ∈


∑

∑
 

Fix a certain set P ⊆ N. By analogy with (24), express the conditions 
under which all active agents form this set with the new values of reputa-
tions:  

 \{ }
θ , ,

θ , \ .

j i
j P i

j i
j P

r i P

r i N P
∈

∈

 ≥ ∈



< ∈


∑

∑
 

Denote by c(P) the optimal value of a criterion used in the optimiza-
tion problem  
(25) C(r, θ, r0, θ) → 

: (24)
min
r

. 

In problem (25), minimization runs on a set described by n linear in-
equalities. If the cost function is linear (convex), we obtain a linear (con-
vex, respectively) programming problem. 

The value c(P) characterizes the minimum costs to control the 
agents’ reputation such that only the agents from the set P ⊆ N are active. 
Imagine that the Principal’s goal lies in making the number of active 
agents equal to a given quantity K* ≥ 0. To minimize the control costs, 
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one should solve problem (25) for each of K*-element sets P, and then 
choose the set P* corresponding to the minimum costs: 
P* = arg 

*{ 2 : | | }
min

NP W W K∈ ∈ =
 c(P). 

 
4.4. Reflexive Control 

 
We have studied two cases of Principal’s control, namely, the im-

pacts exerted on the agents’ thresholds and on the agents’ reputation. 
Now, let us analyze the capabilities of reflexive control—the Principal 
influences the beliefs of the agents about their parameters, the beliefs 
about beliefs, etc. [74, 75]. Select the agents’ thresholds as the subject of 
control. Reflexive control forms the following awareness structures of the 
agents: θij—the beliefs of agent i about the threshold of agent j (an 
awareness structure of rank 2 or depth 2); θijk—the beliefs of agent i 
about the beliefs of agent j about the threshold of agent k (an awareness 
structure of rank 3 or depth 3), and so on. Possessing a certain awareness 
structure, the agents choose their actions as an informational equilibrium 
[75]. Notably, each agent chooses a specific action as the best response to 
the actions expected by him from the opponents (according to his aware-
ness structure). 

Recall the results derived in the previous subsections that character-
ize the thresholds leading to a desired CBE. For convenience, we believe 
that any result achievable via a real variation of thresholds can be imple-
mented by informational control (an appropriate modification of the 
agents’ beliefs about their thresholds). And so, informational control of 
the thresholds turns out equivalent to threshold control in a common 
sense. Apparently, the former type of control is “softer” than the latter. 

Nevertheless, informational control implementation in mob control 
problems faces an obstacle. One property of “good” informational control 
concerns its stability [75] when all agents observe the results they actual-
ly expected. 

Within the suggested mob model, assume that each agent a posteriori 
observes the number of agents decided to “be active.” (In fact, this is a 
rather weak assumption in comparison with the mutual observability of 
the individual actions.) Then, under a stable informational control, each 
agent observes the number of active agents he actually expects. Stability 
is a substantial requirement for a long-term interaction between the 
Principal and agents. Indeed, under an unstable informational control, the 



50 

agents just once doubting the truth of Principal’s information have good 
reason to do it later. 

Assertion 4.3. In the anonymous case, there exists no stable informa-
tional equilibrium such that the number of active agents is strictly smaller 
than in a CBE. 

Proof of Assertion 4.3. Denote by QΣ the set of agents that act in a 
stable informational equilibrium. Suppose that their number does not 
exceed the number of agents acting in a CBE: |QΣ ≤ |Qp(θ)|. Due to stabil-
ity of the informational equilibrium, each agent i ∈ QΣ satisfies the condi-
tion 1 ( 1)j i

j i
Q x nΣ

≠

− = ≥ − θ∑ . Hence, ( ) 1 ( 1) ipQ nθ − ≥ − θ , which implies 

i ∈ Qp(θ). Therefore, QΣ ⊆ Qp(θ). If passive agents exist in Qp(θ) \ QΣ, this 
equilibrium appears unstable for them. And so, QΣ = Qp(θ) for the stable 
informational equilibrium. • 

The “negative” result of Assertion 4.3 witnesses to the complexity of 
implementing long-term informational control of threshold behavior in a 
mob. 

In the current section, we have formulated and solved control prob-
lems for collective threshold behavior of a mob in several relevant cases. 
This has been done by control of the agents’ thresholds, agents’ reputa-
tions and reflexive control. A promising direction of further research is to 
analyze the efficiency of these types of control applied simultaneously. 

 
 

5. STOCHASTIC MODELS OF MOB CONTROL  
 
This section explores the following model of agents’ threshold be-

havior. Making binary decisions (choosing between “activity” and “pas-
sivity”), the agents consider the choice of other members in a group. We 
formulate and solve an associated control problem, i.e., the random 
choice problem for the initial states of some agents in order to vary the 
number of agents preferring “activity” in an equilibrium [25].  

Further exposition focuses on stochastic models of threshold behav-
ior control. The sets of agents whose thresholds undergo changes or the 
values of agents’ thresholds are chosen randomly (also see subsection 5.3 
and [24]). In practice, a possible tool of such control consists in mass 
media [48, 75] or any other unified (informational, motivational and/or 
institutional [74]) impacts on agents.  
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For instance, consider the following interpretations of potential con-
trol actions: the thresholds of a given proportion of randomly chosen 
agents are nullified (which matches “excitation”) or maximized (which 
matches “immunization,” i.e., complete insusceptibility to social pres-
sure). Or just believe that each agent can be excited or/and immunized 
with a given probability. Such transformations of agents’ thresholds 
cause a corresponding variation in the equilibrium state of an active 
network structure (a social network, a mob). Readers will find the details 
below. 

Another way for managing threshold behavior (not agents’ thresh-
olds) is staff control according to the control types classification intro-
duced in [74]. Staff control implies embedding additional agents with 
zero and maximum thresholds (provokers and immunizers, respectively) 
in an ANS. In this case, the resulting equilibrium of the ANS depends on 
the number of embedded agents having an appropriate type. 

And finally, there may exist two control authorities (Principals) ex-
erting opposite informational impacts on the agents. This situation of 
distributed control [43, 74] can be interpreted as informational confronta-
tion [46, 48, 70, 72] between the Principals. Using the analysis results of 
the control problems for each separate Principal, one can describe their 
interaction in terms of game theory. 

First, consider agents’ threshold control that affects the distribution 
function of their thresholds, causing mob “excitation.” 

 
5.1. Mob “Excitation” Control 

 
Let the agents’ thresholds be independent identically distributed ran-

dom variables with a theoretical distribution function F(⋅). According to 
expressions (2.7)-(2.9), the CBE of a mob is predetermined by the distri-
bution function of the agents’ thresholds. Hence, a control action affect-
ing this distribution function naturally modifies the CBE. Below we study 
some possible statements of such control problems.  

Suppose that a control action nullifies the threshold of each agent in-
dependently from the other agents with a same probability α ∈ [0, 1] for 
all agents. This model will be called Model I. According to (2.1), the 
agents having zero thresholds choose unit actions regardless of the ac-
tions of the others. Thus and so, the parameter α plays the role of the 
proportion of initially excited agents. 
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 Assertion 5.1. After “excitation,” the agents’ thresholds are de-
scribed by the distribution function  
(1) Fα(x) = α + (1 – α) F(x). 

Proof of Assertion 5.1. Consider a given vector θ  = (θ1, …, θn) of 
independent identically distributed random variables obeying the same 
distribution F(⋅). This vector undergoes the following transformation with 
the random component: each threshold θi is nullified with the probability 
α. Such transformation yields another random vector θ’ with some distri-
bution Fα(·) to-be-found. 

Reexpress the components of the vector θ’ in the form θi′ = θiζi, 
where P(ζi = 0) = α, P(ζi = 1) = 1 − α, and all elements of the set {ζi, θi} 
are pairwise independent. 

Construct the distribution function Fα(⋅) of the random variable θi′:  
 ( ) ( ) ( ) ( ) ( )0 1, .i i i i i iF x P x P x P P xα θ θ ς ς ς θ′= ≤ = ≤ = = + = ≤  
Owing to the independence of ζi  and θi, we have  

 ( ) ( ) ( ) ( ) ( )1, 1 1i i i iP x P P x F xς θ ς θ α= ≤ = = ≤ = − , 
which brings directly to formula (1).• 

By substituting the new distribution function (1) into equation (2.8), 
evaluate α  implementing the CBE y:  

(2) α(y) = ( )
1 ( )
y F y

F y
−
−

. 

If α(y) < 0 for some y ∈ (0, 1], then this CBE cannot be implement-
ed by the control actions under consideration, see expression (2). 

Denote by x*(α) the CBE (2.9) corresponding to the distribution 
function (1) and by *

[0;1]

( )W xα
α

α
∈

= ∪
 
the attainability set (i.e., the set of all 

proportions of agents whose excitation can be implemented as the CBE 
under a certain control action). 

A rather simple analytical form of the distribution function (1) gives 
answers to a series of practical questions. 

Assertion 5.2. If F(⋅) is a strictly convex function such that F(0) = 0, 
then Wα = [0, 1]. In other words, any proportion of excited agents can be 
implemented as the CBE by an appropriate value of the parameter α. 

Proof of Assertion 5.2. By virtue of the condition F(0) = 0, the 
boundaries of the unit segment are implemented as the CBE under α = 0 
and α = 1. 
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Fix an arbitrary point x1 ∈ (0, 1). The whole curve of the convex 
function F(⋅) lies not higher than the bisecting line and the equation 
Fα(x1) = x1 has a solution with 0 ≤ α(x1) < 1. This fact and formula (2) 
lead to ( ) ( ) ( )( ) ( )1 1 1 1 11F x x x F x xα α α= + − =  and hence 

( ) ( )
( )

1 1
1

11
x x

F x
x

α
α

−
=

−
. Consequently, ( ) ( )( ) ( )1 1 10 1 0 .F x x F xα α′ ′− = − −  

 On the other hand, strict monotonicity of the derivative of a strictly 
convex function dictates that 

( )
( ) ( )

1 1

1 1

1 1

1
1 1

' 0 ' 0
0

1 1
x x

F x dx F x dx
F x

x x

− +

′ − = < <
− −

∫ ∫ ( )
( )1

1

1

1 1

' 0
1

1 1
x

F x dx
F x

x x

+
−

=
− −

∫
. 

 
Next, we obtain  

 ( ) ( )( ) ( )1 1 10 1 0F x x F xα α′ ′− = − − < ( )( )
( )
( )

1 1

1
1

1

1
1

1 1.
1

x x
x

x
x

α
α

α

−
−

−
− <

−
 

This means that the equilibrium x1 is stable, since the curve F(⋅) 
crosses the bisecting line by approaching it “from left and top.”• 

Imagine that we know the Principal’s payoff H(x) from exciting the 
proportion of agents x and his control costs сα(α). In this case, the mob 
excitation control problem admits the following statement:  
(3) H(x*(α)) – сα(α) → 

[0;1]
max
α∈

. 

Example 5.1. Consider several distribution functions: 
(I) FI(x) = x, 

(II) FII(x) = x2, 

(III) FIII(x) = x . 

For the distribution functions (I)–(III), formula (2) gives: 
—αI(y) = 0, i.e., a unique CBE is WI = {1}; 

—αII(y) = 
1

y
y+

, xII*(α) = 
( )

1 1 2
2 1

α
α

− −
−

,Wα
II = [0, 1]; 

—αIII(y) = – y  ≤ 0, i.e., a unique CBE is again Wα
III = {1}.• 
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A possible “dynamic” generalization of the above model is when at 
each step t an agent can be independently excited with the probability α 
(including “multiple” excitation of a same agent). In this case, we have 
the distribution function  
(4) Fα(t, x) = 1 – (1 – α)t + (1 – α)t F(x),  t = 0, 1, 2, … . 

Another “dynamic” generalization–different excitation probabilities 
at different steps–is reducible to the single-step case. Really, the distribu-
tion function corresponding to two steps with independent excitation 
probabilities α1 and α2 of independent excitation possesses form (1) 
where  
(5) α = α1 + α2 – α1 α2. 

Now, analyze an alternative approach to equilibrium control (Model 
II). Here the set N (recall that #N = n) is supplemented by k external 
provokers (the set K). They have the thresholds θi = 0  ∀ i ∈ K, i.e., 
always act. Then the probability that an arbitrarily chosen agent from the 
new set N ∪ K has a threshold not exceeding x comprises the probabili-
ties of two independent events, namely: 

1) the probability that the chosen agent represents an external pro-
voker:  

;k
k n+  
2) the probability that the chosen agent is not an external provoker 

and his threshold does not exceed x:  

 ( )1 k F x
k n

 − + 
. 

Consequently, we have constructed a new set of agents whose 
thresholds form independent identically distributed random variables with 
the distribution function  

(6) ( ) ( )1K
k kF x F x

k n k n
 = + − + + 

. 

Within the framework of Model I, the parameter α (the excitation 
probability of an arbitrary agent) can be also comprehended as the proba-
bility of meeting such an agent with zero threshold. Therefore, it seems 
reasonable to introduce the same notation for the probability of meeting 
an external provoker in Model II:  
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k

k n
α =

+
. 

Direct comparison of the distribution functions (1) and (6) in the 
case of “exciting” a proportion of agents testifies to the equivalence of 
Models I and II. 

The next subsection considers “inverse” control which aims at re-
ducing excitation (the so-called mob “immunization”).  

 
5.2. Mob “Immunization” Control 

 
Suppose that, as the result of a control action, the threshold of each 

agent becomes 1 independently from the other agents with a same proba-
bility β ∈ [0, 1] for all agents. According to (2.1), the agents having unit 
thresholds are passive, and the parameter β plays the role of the propor-
tion of initially “immunized” agents. By analogy with Assertion 5.1, one 
can show that after “immunization” the agents’ thresholds are described 
by the distribution function  

(7) Fβ(x) = 
(1 ) ( ),  [0;1),

1, 1.
F x x

x
β− ∈

 =
 

Denote by x*(β) the CBE corresponding to the distribution function 
(7) and by Wβ = *

[0;1]

( )x
β

β
∈
∪  the attainability set. 

By substituting the new distribution function (7) into equation (2.8), 
we can evaluate β implementing the CBE y:  

(8) β(y) = 1
( )
y

F y
− . 

If β(y) < 0 for some y ∈ (0, 1], then this CBE cannot be implemented 
by the control actions under consideration, see expression (8). 

Assertion 5.2a. If F(⋅) is a strictly concave function such that 
F(0) = 0, then Wβ = [0, 1]. In other words, any proportion of immunized 
agents can be implemented as the CBE by an appropriate value of β. 

This result can be proved just like Assertion 5.2. 
Example 5.2. For the distribution functions (I)–(III), formula (8) 

gives: 
—βI(y) = 0, i.e., a unique CBE is Wβ

I = {0}; 
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—βII(y) = 1 – 1
y

 ≤ 0, i.e., a unique CBE is again Wβ
II = {0}; 

—βIII(y) = 1 – y , xIII*(β) = (1 – β)2, Wβ
III = [0, 1].• 

Example 5.3. Solve the control problem (3) with the distribution 
function (III). The Principal seeks for minimizing the proportion of the 
excited agents: H(x) = – x. His control costs are described by сβ(β) = λ β, 
where γ ≥ 0. This statement brings to the optimization problem –(1 –

 β)2 – λβ → 
[0;1]

max
β∈

. The solution β* = 1 – 
2
λ  corresponds to implementa-

tion of the CBE 
2

4
λ .• 

Similarly to the previous subsection, consider Model II—an alterna-
tive approach to equilibrium control where the set N is supplemented by l 
external immunizers (the set L). They have the thresholds θi = 1 ∀ i ∈ L 
and never act. Then the probability that an arbitrarily chosen agent from 
the new set N ∪ K has a threshold not exceeding x < 1 coincides with the 
probability that the chosen agent is not an immunizer and his threshold 
does not exceed x < 1:  

( )1 .l F x
l n

 − + 
  

The threshold of an arbitrarily chosen agent is surely not greater than 
1. Thus and so, we have constructed the new set N ∪ L of agents whose 
thresholds form independent identically distributed random variables with 
the distribution function  

(9) ( ) ( )1 , 1,

1, 1.
L

l F x x
F x l n

x

 − < = + 
 =

 

In Model I, the parameter β (the immunization probability of an arbi-
trary agent) can be also viewed as the probability of meeting such an 
agent with unit threshold. Therefore, we introduce the same notation for 
the probability of meeting an external immunizer in Model II:  

 .l
l n

β =
+
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Direct comparison of the distribution functions (7) and (9) in the 
case of “immunizing” a proportion of agents testifies to the equivalence 
of Models I and II. 

Now, we study simultaneous control of two Principals, one of them 
concerned with mob excitation and the other with its immunization. 

 
5.3. Informational Confrontation 

 
In the previous considerations, we have treated a mob as the object 

of control actions chosen by a single subject (Principal). There may exist 
several subjects interested in certain states of a network and applying 
control actions to it (the so-called distributed control system [59, 74]). In 
this case, the control subjects interact via informational impacts exerted 
by them on the network, which leads to their informational confrontation 
(see the survey [48]). Generally, such situations are described by a nor-
mal-form game of the Principals, and their strategies predetermine the 
parameters of the agents’ game [74]. For instance, take the models of 
informational confrontation in social networks [46, 72], on cognitive 
maps [55, 68] and others discussed in the overview [76]. As it was out-
lined in [73], more sophisticated situations are also possible when control 
actions appear “unsymmetrical” (e.g., in the “attack/defense” situation, 
Principal 1 affects the initial states of agents, whereas Principal 2 modi-
fies the structure of relations among them or/and their thresholds; Princi-
pal 2 can act simultaneously with the opponent or immediately after the 
latter, being aware of his choice). Such situations are described using 
models of hierarchical games. 

Let us investigate informational confrontation in the following set-
ting. There are Principal 1 “exciting” a proportion α ∈ [0, 1] of agents 
and Principal 2 “immunizing” a proportion β ∈ [0, 1] of agents (alterna-
tively, each agent can be independently excited or/and immunized with a 
corresponding probability). For definiteness, suppose that if a certain 
agent is excited and immunized simultaneously, then his threshold re-
mains the same (Model I). We obtain the following distribution function 
of the agents’ thresholds:  

(10) Fα,β(x) = 
(1 )  (1  2 ) ( ),  [0;1),

1, 1.
F x x

x
α β α β αβ− + − − + ∈

 =
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Denote by x*(α, β) the CBE corresponding to the distribution func-
tion (10). In addition, let ( ) ( ] ( ){ },, inf : 0,1 ,y x x F x xα βα β = ∈ =  signify 

the least nonzero root of the equation ( ),F x xα β = . According to (2.7) 
and (2.9), the collective behavior equilibrium is 

( ) ( ) ( ) ( ),* , , if 0, , ,
,

0, otherwise.

y z y a F z z
x α βα β β

α β
 ∀ ∈   ≥  = 


 

Assertion 5.3. For any β ∈ [0, 1], x*(α, β) is a monotonically 
nondecreasing function of α.  

Proof of Assertion 5.3. Consider the partial derivative ( ),F xα βα
∂

∂
 

at an arbitrary point x ∈ [0, 1):  

( ) ( )

( ) ( ) ( ) ( ) ( )( ) ( )

, (1 )  (1  2 ) ( )

1 2 1 1 1 .

F x F x

F x F x F x

α β α β α β αβ
α α

β β β β

∂ ∂
= − + − − + =

∂ ∂
− + − = − − +

 

Note that (1 − β)(1 − F(x)) ≥ 0 and βF(x) ≥ 0. Then we have 

( ), 0F xα βα
∂

≥
∂

. Hence, it follows that ( ) ( )
2 1, ,F x F xα β α β≥  under 

2 1α α> . 
 
In combination with this result, the fact that 

( )
1

*
, 1( ) : ,F x x x x xα β α β≥ ∀ <  under α2 > α1 brings to the inequality 

( )
2

*
, 1( ) : ,F x x x x xα β α β≥ ∀ < . Therefore, x*(α2, β) ≥ x*(α1, β). • 

Assertion 5.4. For any α ∈ [0, 1], x*(α, β) is a monotonically 
nonincreasing function of β.  

Proof of Assertion 5.4 is similar to that of Assertion 5.3. 
Designate by Wα,β = 

2

*

( , ) [0;1]

( , )x
α β

α β
∈
∪  the attainability set. 

Let Vα,β be the set of attainable equilibria, i.e., the set of all points 
becoming stable equilibria (CBE) under a certain control action (α, β). 
The definition implies Wα,β ⊆ Vα,β. The points of the set Vα,β implement 
the CBE under some choice of x0 (generally, not coinciding with x0 = 0 
accepted in this paper). 
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By substituting the new distribution function (10) into equation 
(2.7), we find the pairs (α, β) implementing the given CBE. 

Example 5.4. For the distribution function (I), we obtain 

(11) xI*(α, β) = (1 )
2

α β
α β αβ

−
+ −

. 

The curve of the distribution function FI
α,β(x) is illustrated by 

Fig. 11. 

 

α 
β 

xI*(α, β) 

 
 

Fig. 11. xI*(α, β) under F(x) = x 
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0 1 

1 

α(1–β) 

1–β(1–α) 

xI*(α, β) 

FI
α,β(x) 

x 

 
Fig. 12. The curve of the distribution function FI

α,β(x) 
 
In the current example, Wα,β ⊆ Vα,β = [0, 1]. • 
To construct the attainability set and identify the class of functions 

satisfying Wα,β = [0, 1], rewrite the resulting distribution function of the 
agents’ thresholds in the form  

( ) ( ) ( ) ( ) [ )
,

, , , 0,1 ,
1, 1,

k F x x
F x

xα β

δ α β α β+ ∈
= 

=
 

where 

(12) 
( ) ( )
( )

, = 1 , 

, 1 2 .k

δ α β α β

α β α β αβ

 −


= − − +
 

 
Obviously, far from any values δ ∈ [0, 1], k ∈ [0, 1] can be obtained 

via applying transformation (12) to some α ∈ [0, 1], β ∈ [0, 1]. Moreo-
ver, the constraint k + δ ≤ 1 following from the properties of the distribu-
tion function is not unique, see Fig. 13. 
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Fig. 13. The value domain of the transformation (α, β)→
(grey color) 

 
Assertion 5.5. The value domain of transformation (12

the set of points (δ, k) in the unit square [0, 1] × [0, 1] satisfying the 
conditions   
(13) 1k δ≤ − , ( )2 1k δ δ≥ − . 

Proof of Assertion 5.5. 
 
1. We demonstrate that k(α, β) ≤ 1 − δ(α

α ∈ [0, 1], β ∈ [0, 1]. Substitute δ(α, β) into formula (12) of 
get 

( ) ( ) ( ), 1 2 1 , 1 .k α β α β αβ δ α β β α= − − + = − − −   

Having in mind the inequality ( )1 0β α− ≥ , we establish that 

( ) ( ), 1 ,k α β δ α β≤ − . 

2. Now, prove that ( ) ( ) ((, 2 , 1 ,k α β δ α β δ α β≥ −

[ ]0,1α ∈ , [ ]0,1β ∈ . 

 If 0α = , the inequality clearly holds, as ( , 0δ α β

( ), 1 0k α β β= − ≥ . 

 Under 0β = , by analogy we obtain ( , 0δ α β

( ), 1 0k α β α= − ≥ . 

 
→(δ, k) 

2) represents 
satisfying the 

α, β) for 
) of k(α, β) to 

, we establish that 

( ) ), 2 , 1 ,α β δ α β δ α β  for 

), 0δ α β =  and 

), 0δ α β =  and 
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 In the case 0α > , 0β > , use the first equation of system (12) to 
express β through α and ( ),δ α β , substituting the result into the second 
equation of system (12):  

(14) ( ) ( ) ( ) ( ),
, 1 , 1 1k

δ α β
α β δ α β α

α
 

= − − − − = 
 

 ( ) ( ),
2 ,

δ α β
α δ α β

α
+ − . 

Fix ( ), constδ δ α β= =  and minimize ( ),k a δ  in α. The first-order 

necessary optimality condition has the form ( )
2

,
1 .

k α δ δ
α α

∂
= −

∂
 The 

equation 1 – δ/α 2 = 0 possesses the unique positive solution α δ=  for 
( ]0,1δ ∈  (which is the case under 0α > , 0β > ). The function ( ),k α δ  

reaches its minimum in α at the point α δ= : 

( ]
( ) ( ) ( )

0,1
min , , 2 1k k

α
α δ δ δ δ δ

∈
= = − . 

It remains to demonstrate that any point ( )0 0,kδ  belonging to this 
domain is an image of some point of the unit square. 

3. Let us prove that  
[ ] [ ] ( )

[ ] [ ] ( ) ( )
0 0 0 0 0 0

0 0

0,1 , 0,1 : 2 1 1

0,1 , 0,1 : , , , .

k k

k k

δ δ δ δ

α β δ δ α β α β

∀ ∈ ∈ − ≤ ≤ −

∃ ∈ ∃ ∈ = =  
If 0 0δ = , the desired values of α and β are α = 0 and 01 kβ = − . For 

0 0δ > , we have 0α > , so long as ( )0 1δ α β= − . Multiply formula (14) 

by α to get ( )2
0 02 0kα α δ δ− + + = . In the case 0 0δ >  and 

( )0 0 02 1 kδ δ− ≤ , this equation possesses two positive roots:  

( ) ( )( )
( ) ( )( )

2
1 0 0 0 0 0

2
2 0 0 0 0 0

1 2 2 4 ,
2
1 2 2 4 .
2

k k

k k

α δ δ δ

α δ δ δ

= + + + −

= + − + −
 

Moreover, [ ]1 0,1α ∈  and [ ]2 0,1α ∈  provided that 0 01k δ≤ − . By 

choosing 0
1 2

1

1 1δ
β α

α
= − = −  and 0

2 1
2

1 1δ
β α

α
= − = − , we finally arrive 

at ( )0 1 1, ,δ δ α β= ( )0 2 2,k δ α β= . • 
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The attainability set can be constructed for an arbitrary smooth dis-
tribution function F(x) using the following statement (see Fig. 14). 

Assertion 5.6. A point x ∈ [0, 1] belongs to the set of attainable 
equilibria of a distribution function F(⋅) ∈ C[0, 1] if and only if either 
F(x) = 0, or   

(15) 
( )
( )

( ) ( )

( )

2

2

11 2 1

1
1 2

x
F x F xF x

x
F x

F x

     + − −   ′    ⋅ − <
  
 − 
  
 

. 

(If F(x) = 1/2, the parenthesized expression should be comprehended 
as an appropriate finite limit, and condition (15) takes the form 2 x (1 –
 x) F′ < 1.) 

Proof of Assertion 5.6. Recall that the belonging of a point to the at-
tainability set means the existence of a pair ( ) [ ] [ ], 0,1 0,1α β ∈ ×  such that 

( ),F x xα β =  (the equilibrium condition) and ( ), 1F xα β′ <  (the equilibrium 

stability condition), where ( ),F xα β  is transformation (10) of the function 

( )F x . In other words, a point belongs to the attainability set if and only 
if  

[ ] [ ]{ }
( )

,
,0,1 , 0,1 : ( )

min 1
F x x

F x
α β

α β
α β∈ ∈ =

′ <  

and the set [ ] [ ]{ },0,1 , 0,1 : ( )F x xα βα β∈ ∈ =  appears nonempty. 

The derivative ( ),F xα β′  has the form  

( ) ( ) ( ), ,F x k F xα β α β′ ′=  
and hence 

[ ] [ ]{ }
( )

[ ] [ ]{ }
( ) ( )

, ,
,0,1 , 0,1 : ( ) 0,1 , 0,1 : ( )

min min ,
F x x F x x

F x k F x
α β α β

α β
α β α β

α β
∈ ∈ = ∈ ∈ =

′ ′= ⋅ = ( ) ( )min 'k x F x , 

  
where ( )

[ ] [ ]{ }
( )

,
min

0,1 , 0,1 : ( )
min , .

F x x
k x k

α βα β
α β

∈ ∈ =
=  

Rewrite the constraint ( ),F x xα β =  as  

( ) ( ),  + , ( ) .k F x xδ α β α β =  



Consider separately the case ( ) 0F x = . The smoothness of the di

tribution function dictates ( ) ( ), 0F x F xα β
′ ′= = . Furthermore, the co

straint is satisfied under xα = , 0β = , since ( ),0x xδ = . This means 

that, if ( ) 0F x = , the point x belongs to the attainability set. 

For ( ) 0F x > , draw the constraint on the plane δ k (see Fig
tually, it represents a straight line passing connecting 

( )
0, x

F x
 
  
 

 and ( ),0x . 

 

 
Fig. 14. Design procedure of attainability set: an illustration

 
Clearly, for any x and F(x), the minimum value ( )mink x

at the intersection point of this line and the curve (2 1δ δ−

by ( )max xδ  the abscissa of the intersection point. Then we have 

 ( ) ( )( ) ( ) ( )( )max max max
1 2 1 .x x x x

F x
δ δ δ− = −  

For any x and F(x), this equation possesses a unique root within the 
segment [0, 1], i.e.,  
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. The smoothness of the dis-

. Furthermore, the con-

x x= . This means 

Fig. 14). Ac-
connecting the points 

 

attainability set: an illustration 

k x  is achieved 

)2 1δ δ− . Denote 

e have  

, this equation possesses a unique root within the 
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 ( )
( ) ( )

( )

2

max 2

11 2 1

.
1 2

x
F x F x

x

F x

δ

  
 + − −     =

 
−  

 

 

By evaluating ( ) ( ) ( )( )min max
1k x x x

F x
δ= −  and expressing ( ),F xα β′  

through this minimum value, we naturally arrive at formula (15). • 
Assertion 5.7. A point x ∈ [0, 1] belongs to the attainability set of a 

distribution function F(⋅) ∈ C[0, 1] if and only if it belongs to its set of 
attainable equilibria and  
(16) 

[ ]
( ) ( ) ( )( )max min0,

min 0
y x

x k x F y yδ
∈

+ − ≥ , 

where  

( )
( ) ( )

( )

2

max 2

11 2 1

1 2

x
F x F x

x

F x

δ

  
 + − −    =

 
− 

 

, ( ) ( ) ( )( )min max
1k x x x

F x
δ= − . 

Proof of Assertion 5.7. Recall that the belonging of a point to the at-
tainability set means the existence of a pair ( ) [ ] [ ], 0,1 0,1α β ∈ ×  such that 

( ),F x xα β =  (the equilibrium condition) and ( ), 1F xα β′ <  (the equilibrium 

stability condition), and 
[ ]

( )( ),0,
min 0
y x

F y yα β∈
− ≥ , where ( ),F xα β  is trans-

formation (10) of the function ( )F x . 

We have earlier demonstrated that, under ( ) ( )max, xδ α β δ=  and 

( ) ( )min,k k xα β = , the stability of an equilibrium is equivalent to the 
belonging of the point x to the set of attainable equilibria. For rigorous 
proof, it suffices to show that exactly under ( ) ( )max, xδ α β δ=  and 

( ) ( )min,k k xα β =  the function ( ),F yα β  is maximized at any point of the 
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segment [0, x] over all ,α β  bringing to a stable equilibrium at the point 
x. 

Suppose that, for certain values ( )1 max xδ δ≠  and ( )1 maxk k x≠  im-

plementable under some α  and β , we have ( )1 1k F x xδ + =  and 

( )1 1k F x′ < . Our intention is to argue that, whenever y x≤ ,  

( ) ( )max min 1 1 .k F y k F yδ δ+ ≥ +  

Rewrite this inequality as ( ) ( )max 1 min 1 0.k k F yδ δ− + − ≥  

Using the equilibrium condition ( ) ( )1 1 max mink F x k F x xδ δ+ = + = , 

express ( )min 1k k−  and substitute the result into the inequality to obtain  

( ) ( )
( )max 1 1 0.

F y
F x

δ δ
 

− − ≥  
 

 

In the case y x≤ , the desired inequality follows from 
implementability of 1 maxδ δ<  and monotonicity of a distribution func-
tion.• 

Example 5.5. The paper [13] and Section 3 explored real social net-
works Facebook, Livejournal and Twitter, demonstrating that F(x) can be 
approximated by a function from the family  

(17) ( )
( )( ) ( )
( )( ) ( )

arctg arctg
, ,

arctg 1 arctg
x

F x
λ θ λθ

θ λ
λ θ λθ

− +
=

− +
. 

Here the parameter θ characterizes a phenomenon occurring in a 
network and causing conformity behavior with the binary actions; this 
parameter is independent of the network structure. On the other part, the 
parameter λ characterizes the connection graph of a social network, being 
independent of the above phenomenon. The best approximation of the 
parameter λ: λF ≈ 13 has been found above. Fig. 15 illustrates the rela-
tionship between the CBE and the actions of the two Principals. 

According to Fig. 15, the attainability set is not the segment [0, 1]. In 
other words, far from any state of Facebook can be implemented as the 
CBE in the game of the two Principals. 
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Fig. 15. The values of x*(α, β) in Model I for social network Facebook 
(θ = 0.5, λF = 13) under the distribution function (17) 

 
Introduce the notation ( ) ( ){ }, ,, : for , ,V x x V F xλ

α β α βθ θ λ= ∈ , 

( ) ( ){ }, ,, : for , ,W x x W F xλ
α β α βθ θ λ= ∈ , where F(x, θ, λ) is defined by 

(17). For different values of λ, Fig. 16 and Fig. 17 show these sets con-
structed during the numerical experiments. 

According to the definition of ,W λ
α β , the attainability set of the social 

network described by (17) represents a section of the set 13
,Wα β  under 

fixed θ. From Fig. 17 corresponding to Facebook with λ = 13 and 
θ = 0.5, we find Wα,β ≈[0, 0.4) ⋃ (0.8, 1]. This result agrees with Fig. 15. 
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5
,Vα β  13

,Vα β  

100
,Vα β  1000

,Vα β  

 
 

Fig. 16. The set ,V λ
α β  under different λ (in grey color). 

 

 

5
,Wα β  13

,Wα β  

100
,Wα β  1000

,Wα β  

 
 

Fig. 17. The set ,W λ
α β  under different λ (in grey color). 
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Now, consider informational confrontation within the framework of 

Model II, i.e., add k provokers and l immunizers (the sets K and L, re-
spectively) to the set N of conformists. Then the probability that an 
arbitrarily chosen agent has a threshold not exceeding x < 1 comprises the 
probabilities of two independent events, namely, 

1) the probability that the chosen agent is a provoker (
k

k l n+ +
); 

2) the probability that the chosen agent is a conformist and his 

threshold does not exceed x < 1 ( ( )n F x
k l n+ +

). 

Introduce the following notation for the proportions of provokers 
and immunizers in the total number of the agents:  

(18) ; .k l
k l n k l n

α β′ ′= =
+ + + +

 

Obviously, 1α β′ ′+ < . In some sense, the quantities α′ and β′  match the 
probabilities α and β in Model I of the informational confrontation be-
tween the two Principals (see the beginning of this subsection). The 
probability α that an arbitrarily chosen agent is excited (in Model I) 
equals the probability that an arbitrarily chosen agent appears an external 
“provoker” (in Model II). The similar analogy exists between the proba-
bilities β and β′. 

Recall that the threshold of an arbitrarily chosen agent is surely 
smaller than 1. Therefore, we have obtained the new set N ∪ K ∪ L of the 
agents whose thresholds form independent identically distributed varia-
bles with the following distribution function matching Model II:  

(19) ( ) ( ) ( )1 , 0 1,
, ,

1, 1.KL

F x x
F x

x
α α β

α β
′ ′ ′ + − − ≤ <′ ′ = 

=
 

The distribution functions (10) and (19) differ; accordingly, Models 
I and II of the present subsection are not equivalent. 

Assertion 5.8. In Model II, the attainability set is WKL = (0, 1]. If 
F(0) = 0, then WKL = [0, 1]. 

Proof of Assertion 5.8. The point 1 is attained due to (19). 



70 

Let ( )1 0,1x ∈ . In the case ( ){ }1 : 0x x F x∈ = , for the equality 

( )1 1 1 1, ,KLF x x′ ′α β =  to hold true it is necessary and sufficient that 1 1x′α =

and 1
′β  is any value satisfying 1 1 1′ ′α +β < . The left-hand derivative of the 

function ( )1 1, ,KLF x′ ′α β  exists owing to monotonicity of the distribution 

function, taking the value ( )1 0KLF x+
′ =  at the point 1x . In other words, 

the curve ( )1 1, ,KLF x′ ′α β  crosses the bisecting line “from left and top.” If 

( ){ }: 0x F x = = ∅ , then the point 1 0x =  is unattainable, since 1′ ′α +β <
. 

Under ( )1 0F x > , it is possible to choose a small value 0ε >  so that  

1 0x − ε ≥ ,
( )1

1

11 1 0,x
F x

 
− + ε − ≥  

 
 ( )1

1 0
F x

ε
− >  and ( ) ( )1 1F x F x+

′ε < . 

 Set 1 1 0x′α = −ε ≥ , see the first inequality above, and solve the 

equation ( )1 1 1, ,KLF x x′ ′α β =  for ′β . This gives 

( )1 1
1

11 1x
F x

β β ε
 ′′ = = − + − 
 

. 

The above system of inequalities implies 0′β ≥  and 1′ ′α + β < . 

Therefore, we have constructed the distribution function ( )1 1, ,KLF x′ ′α β  

that crosses the bisecting line at the point 1x  “from left and top.” • 
Fig. 18 demonstrates the equilibria in Model II of social network 

Facebook (θ = 0.5, λF = 13) under the distribution function (17). 
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Fig. 18. The equilibria in Model II of social network Facebook (θ = 0.5, 
λF = 13) under the distribution function (17): k provokers and l immuniz-

ers added to n = 100 agents. 
 
The analysis results of the simultaneous “opposite” impacts on a 

network structure, viz., equilibria monotonicity in the control actions 
(Assertions 5.3 and 5.4) and the structural properties of the attainability 
sets (Assertions 5.5–5.7) will be used for the game-theoretic study of 
informational confrontation models in Section 10. 

Thus, we have suggested a macrodescription (in terms of Section 3) 
for the threshold behavior of a mob affected by control actions. An essen-
tial advantage of such stochastic models is a simple analytical form of the 
relationship between the distribution functions of the agents’ thresholds 
(ergo, the equilibrium mob states) and the control actions applied. This 
“simplicity” allows posing and solving control problems (mob “excita-
tion” and “immunization”), as well as analyzing the informational con-
frontation between the subjects performing mob control. Two types of 
control have been considered, namely, control of the agents’ thresholds 
and staff control. In the elementary case, the derived control models are 
equivalent, yet differing appreciably in the case of confrontation. 
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Among promising lines of further research, we mention the follow-
ing. 

First, identification of the typical distribution functions of the 
agents’ thresholds (by analogy with expression (17), the results in Exam-
ple 5.5 and so on) and analysis of the corresponding typical control 
actions. 

Second, the development of collective behavior models where the 
agents’ thresholds and their threshold behavior involve more general (yet, 
practically interpretable) assumptions. 

And third, reduction of the informational confrontation problem in 
mob control to a game-theoretic setting, in order to apply the whole 
arsenal of modern game theory to this important class of problems. 

 
 

6. GAME-THEORETIC MODELS OF MOB CONTROL  
 
This paper studies models of centralized, decentralized and distribut-

ed control of excitation in a network of interacting purposeful agents 
[73]. 

Problem description. Consider a set of interconnected agents hav-
ing mutual influence on their decision-making. Variations in the states of 
some agents at an initial step accordingly modify the state of other agents. 
The nature and character of such dynamics depend on the practical inter-
pretation of a corresponding network. Among possible interpretations, we 
mention the propagation of excitation in biological networks (e.g., neural 
networks) or in economic networks [49, 54], failure models (in the gen-
eral case, structural dynamics models) in information and control systems 
and complex engineering systems, models of innovation diffusions, 
information security models, penetration/infection models, consensus 
models and others, see an overview in [48]. 

The control problem of the purposeful “excitation” of a network is to 
find a set of agents for applying an initial control action so that the net-
work reaches a required state. This abstract statement covers informa-
tional control in social networks [8, 48], collective threshold behavior 
control, etc. 

Network. Let N = {1, 2, ..., n} be a finite set of agents; they form an 
ANS described by a directed graph Г= (N , E), where E ⊆ N × N denotes 
the set of arcs. Each agent is in one of two states, “0” or “1” (passivity or 
activity, being unexcited or excited, respectively). Designate by 
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xi ∈ {0; 1} the state of agent i (i ∈ N) and by x  = (x1, x2, …, xn) the 
vector of the agents’ states. For convenience, the transition from passivity 
to activity is called the “excitation” of an agent. 

Behavior of agents. Assume that, initially, all agents appear passive 
and the network dynamics is described by a mapping Φ: 2N → 2N. Here 
Φ(S) ⊆ N indicates the set of agents having state “1” at the end of the 
transient process caused by network “excitation.” In this section, such 
excitation represents a variation (switching from passivity to activity) in 
the states of agents from a set (coalition) S ⊆ N that takes place at the 
initial step. By assumption, the control actions are applied one time. 

Concerning the mapping Φ(⋅), suppose that it enjoys the following 
properties: 

A.1 (reflexivity). ∀ S ⊆ N: S ⊆ Φ(S); 
A.2 (monotonicity). ∀ S, U ⊆ N such that S ⊆ U: Φ(S) ⊆ Φ(U). 
A.3. (convexity). ∀ S, U ⊆ N such that S ∩ U = ∅: 

Φ(S) ∪ Φ(U) ⊆ Φ(S ∪ U). 
For a given mapping Φ(⋅), it is possible to define a function Ĝ

: {0; 1}n → {0; 1}n  that associates the vector x  of the initial states of the 
agents with the vector of their final states: 

ˆ
iG ( x ) = 

1, if ({ | 1})
0, otherwise.

ji j N x∈Φ ∈ =



 

Similarly, we easily define the states of agents “excited indirectly”: 

Gi( x ) = 
ˆ1, if ( ) 1and 0
0, otherwise,
i iG x x = =




, i ∈ N. 

The section is organized as follows. Subsection 6.1 poses the cen-
tralized control problem of network excitation, focusing on a special case 
with the threshold behavior of the agents. Subsection 6.2 gives a formal 
statement of the decentralized control problem where the agents make 
independent decisions on their “excitation.” Moreover, the 
implementability of the efficient or given states of a network is investi-
gated from the game-theoretic view. The problem of mob control serves 
as a possible application. And finally, we study a model of the informa-
tional confrontation of subjects that apply control actions to the network, 
being interested in its certain states. 
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6.1. Centralized Control Problem 
 
Consider given functions С: 2N → ℜ1 and H: 2N → ℜ1. The former 

characterizes the costs C(S) of the initial variation in the states of agents 
from a coalition S∈ 2N, while the latter describes the income H(W) from 
the resulting “excitation” of a coalition W ∈ 2N. The subjects incurring 
these costs depend on a specific statement of the problem. 

The goal function of a control subject (Principal) is the difference 
between the income and the costs. For the Principal, the centralized 
control problem lies in choosing a set of initially excited agents to max-
imize the goal function v(S): 
(1) v(S) = H(Φ(S)) – C(S) → max

S N⊆
, 

In this setting, the Principal incurs the costs and receives the income. 
In the general case (without additional assumptions on the properties 

of the functions С(⋅) and H(⋅), and on the mapping Φ(⋅)), obtaining a 
solution S* ⊆ N of the discrete problem (1) requires exhausting all 2n 
possible coalitions. The design of efficient solution methods for this 
problem makes an independent field of investigations (we refer to [42, 
74], etc. for several successful statements of optimization problems for 
system’s staff employing rather simple algorithms). The ANS state S* 
maximizing the goal function (1) will be called efficient. 

A special case engages the cost function and income function being 
additive with respect to the agents: 
(2) u(S) = 

( )
i

i S
H

∈Φ
∑  – j

j S
c

∈
∑ , 

where (сi, Hi)i∈N are known nonnegative constants. For the time being, we 
deal with the additive case (2) for simplicity. 

In the centralized control problem, the agents (network nodes) are 
passive in some sense. Notably, the Principal “excites” the agents from a 
set S, and then this excitation propagates according to the operator Φ(⋅). 

Alternative formulations of the control problem are possible, e.g., 
income maximization under limited costs (the so-called knapsack prob-
lem if the cost function and income function enjoy the additive property 
with respect to the agents) or costs minimization for a given income. 

The discrete problems of form (1) suffer from a high computational 
complexity for the large ANSs (i.e., the networks with very many agents). 
Therefore, in such cases, the networks are treated as random graphs with 
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specified probabilistic characteristics and the control problem is stated in 
terms of expected values (e.g., optimization of the expected number of 
excited agents). 

An example is threshold behavior. Imagine agents in an ANS having 
mutual influence on each other. Arc (i, j) from node i to node j corre-
sponds to the influence of agent i on agent j (no loops are admissible). 
Denote by Nin(i) = {j ∈ N | ∃ (j; i) ∈ E} the set of “neighbors,” i.e., the 
agents having an influence on agent i (“initiators”). By analogy, let 
Nout(i) = {j ∈ N | ∃ (i; j) ∈ E} designate the set of agents (“followers”) 
being influenced by agent i, with nout(i) = |Nout(i)| and nin(i) = |Nin(i)|. 

The process of collective decision-making by the agents can be de-
scribed through different models (see the surveys in [48, 56, 86], de 
Groot’s consensus model [33]). Consider a special case of threshold 
behavior adopted by the agents: 

(3) t
ix  = 

1

( )
1

11,
1
, otherwise

in

t
j i

j N i
t
i

x
n
x

θ−

∈

−

 ≥ −



∑ . 

Here t
ix  is the state of agent i at step t, and θi ∈ [0, 1] represents the 

threshold of this agent, t = 1, 2, … The initial conditions are given: 0
ix

 = xi, i ∈ N. Model (3) presupposes that, being once excited (by a control 
action or under the impact of excited neighbors), an agent never becomes 
“passive.” Obviously, any graph Г with dynamics (3) enjoys the follow-
ing properties. The number of active agents forms a nondecreasing func-
tion of time, the transient process terminates at most after n steps, the 
correspondence between the initial and final states meets A.1-A.3. 

It seems interesting to study a special case of the threshold behavior 
with unity thresholds (θi = 1, i ∈ N). In other words, an agent becomes 
excited from, at least, one of his initiators. The corresponding mapping 
Φ(⋅) is “linear”: ∀ S, U ⊆ N such that S ∩ U = ∅ we have 
Φ(S) ∪ Φ(U) = Φ(S ∪ U), i.e., Φ0(S) = 0 ({ })

i S

i
∈

Φ∪ . Function (2) appears  

superadditive, viz., ∀ S, U ⊆ N such that S ∩ U = ∅ we obtain 
u(S ∪ U) ≤ u(S) + u(U).  

Let the graph Г be acyclic and the specific costs of the initial excita-
tion of any agent make up c. For each agent i ∈ N, find the set Mi of all 
his “indirect followers,” i.e., the agents (including agent i) connected to 
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this agent via paths in the graph. Evaluate hi = 
i

j
j M

H
∈
∑ , which is the 

payoff from the excitation of agent i. Owing to the acyclic property of the 
graph and the homogeneous costs, a reasonable strategy lies in the excita-
tion of the agents having no initiators (denote the set of such agents by 
M ⊆ N). Then problem (1) acquires the form 

i
i S

j
j M

H

∈

∈
∑
∪

 – с |S| → max
S N⊆

. 

Despite a series of simplifying assumptions (threshold behavior, unit 
thresholds, homogeneous costs and acyclic graph), the resulting central-
ized control problem still admits no analytical solution and requires 
exhausting all subsets of the set M. It is possible to apply different heuris-
tics, e.g., believing that the “optimal” excitation covers the agents whose 
payoff exceeds the costs: S* = {i ∈ M | hi ≥ c}. Another approach is to 
sort the agents from the set M in the descending order of hi, adding them 
to the desired set starting from agent 1 (until the corresponding increase 
in the “payoff” becomes smaller than the specific costs). 

Therefore, the centralized control problems of network excitation 
have simple solutions merely in some cases. Now, we concentrate on 
possible statements and solution methods of the decentralized control 
problems where the agents make independent decisions on their “excita-
tion.” 
 
6.2. Decentralized Control Problems 

 
Consider a given mechanism (decision-making procedure [59, 74]) 

σ = {σi(G( x )) ≥ 0}i∈N of payoff allocation among the agents. According 
to the mechanism σ, additional payoffs can be received only by the 
agents excited at the initial step. Allocation concerns the “payoff” from 
the indirect excitation of other agents. 

Suppose that the agents represent active subjects in the following 
sense. Under the known mechanism σ, at the initial step they simultane-
ously and independently choose their states (activity or passivity). Further 
dynamics of the agents’ states is still described by the operator Φ(⋅). 

The goal function of agent i (denoted by fi( x )) makes the difference 
between his payoff and costs: 
(4) fi( x ) = σi(G( x )) + (Hi – ci) xi, i ∈ N. 
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If an agent decides to be excited, he incurs the excitation costs and 
obtains the payoff Hi plus an additional incentive from the Principal 
(according to the payoff allocation mechanism). Self-excitation is the 
profitability of agent’s excitation regardless of the payoff allocation 
mechanism. It follows from (4) that, if Hi > ci, then agent i self-excites. In 
the sequel, we believe that ci > Hi, i ∈ N, to avoid the “self-excitation” of 
the active agents (except other conditions are clearly stated). 

There exist different payoff allocation mechanisms for the agents. 
Typical examples are balanced mechanisms (the total agents’ payoff 
equals the Principal’s payoff from “indirect excitation”), namely, the 
uniform allocation mechanism 

(5) σi(G( x )) = 
( )j j

j N
i

j
j N

H G x
x

x
∈

∈

∑
∑

, i ∈ N, 

the mechanism of costs-proportional allocation 

(6) σi(G( x )) = 
( )j j

j N
i i

k k
k N

H G x
c x

c x
∈

∈

∑
∑

, i ∈ N, 

and the mechanism of limit contribution-proportional allocation 

(7) σi(G( x )) = 
[ ( ) ( ,0)]

( )
[ ( ) ( ,0)]

j j j j i
j N j N

j j i
j Nk j j j j k

k N j N j N

H G x H G x
H G x x

x H G x H G x

−
∈ ∈

∈−
∈ ∈ ∈

−

−

∑ ∑
∑∑ ∑ ∑

, i ∈ N. 

According to expressions (4)-(7), the Principal reallocates the payoff 
from the indirect excitation of other agents by the initially excited agents 
among the latter. Moreover, indirect excitation causes no costs. 

Equilibrium and efficient states of network. By definition, a vec-
tor *x  is a Nash equilibrium [64] in the agents’ game if 
(8) σi(G( *x )) + (Hi – ci) *

ix  ≥  
≥ σi(G( *

ix− , 1 – *
ix )) + (Hi – ci) (1 – *

ix ), i ∈ N. 
In a Nash equilibrium, the active agents benefit nothing by switching 

their state to passivity (provided that the other agents keep their states 
unchanged), whereas the passive agents benefit nothing by switching 
their states to activity. In other words, the active agents (i.e., the agents 
i ∈ N such that *

ix  = 1) obey the inequality 
(9) σi(G( *x )) + Hi ≥ ci, 
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On the other hand, the passive agents (i.e., the agents i ∈ N such that 
*
iy  = 0) obey the inequality 

(10) σi(G( *
ix− ,1)) + Hi ≤ ci. 

Write down and analyze conditions (9)-(10) for mechanism (5). Un-
der the uniform allocation mechanism, in the equilibrium the active 
agents and the passive agents satisfy the conditions 

(11) 

*

*

( )j j
j N

j
j N

H G x

x
∈

∈

∑
∑

 + Hi ≥ ci, 

and 

(12) ci ≥ 

*

*

( ,1)

1

j j i
j N

j
j N

H G x

x

−
∈

∈

+

∑
∑

 + Hi, 

respectively. 
What is the connection between the solution set of the centralized 

control problem and the set of Nash equilibria? When is it possible to 
implement the efficient state of the network (see criteria (1) and (2)) by 
centralized control? Which hypotheses are true: (a) an efficient state 
forms a Nash equilibrium, (b) at least, one equilibrium state appears 
efficient? Consider two simple examples showing that the sets of efficient 
states and Nash equilibria have nontrivial connection and both hypotheses 
generally fail. 

Example 6.1. There are three agents with unit thresholds (see (3)). 
Their costs and payoffs are presented below. 

 
Agent 1 

c1 = 1, H1 = 1 
Agent 2 

c2 = 2, H2 = 2 

Agent 3 
c3 = 3, H3 = 6 

 

 



79 

The list of the efficient state vectors comprises (0; 1; 0), (1; 0; 0), 
and (1; 1; 0). Regardless of the payoff allocation mechanism, the Nash 
equilibria are the rest nontrivial state vectors. Therefore, all four Nash 
equilibria appear inefficient and all efficient states are nonequilibrium 
states. • 

Example 6.2. Within the framework of Example 6.1, we modify the 
costs and payoff of agent 3 as follows: 

 
Agent 1 

c1 = 1, H1 = 1 
Agent 2 

c2 = 2, H2 = 2 

Agent 3 
c3 = 6, H3 = 3 

 
 

Again, the efficient state vectors are (0; 1; 0), (1; 0; 0), and (1; 1; 0). 
The Nash equilibrium–the vector (1; 1; 0)–is unique and efficient. • 

And so, the choice of the payoff allocation mechanisms for the de-
centralized implementation of efficient network states remains unsettled 
in the general case. 

Mechanisms (5)-(7) are balanced, i.e., the Principal allocates the 
whole (!) payoff from “indirect network excitation” among the initially 
active agents. Such mechanisms can be called motivational control 
mechanisms (see [74])–the Principal stimulates the agents to choose 
certain states as the equilibria of their game. An alternative approach lies 
in stronger institutional control [74], where the Principal establishes 
certain constraints and norms of the agents’ activity. We examine a 
corresponding model in the network excitation problem. 

Institutional control. Let the goal functions of the agents have the 
form 
(13) fi( x ) = si( x ) + (Hi – ci) xi, 
where si( x ) ≥ 0 is an incentive paid by the Principal to agent i (i ∈ N). 
Generally, this incentive depends on the state vector (action profile) of all 
agents. Following [59, 74], the structure s( x ) = {si( x )}i∈N will be termed 
the vector-form incentive function of the agents from the Principal. The 
dependence of the agents’ incentives on the action profile of all agents is 
a special case of the above payoff allocation mechanism. 
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Fix some set V of agents. Consider the following “institutional con-
trol” problem. Find the minimal vector-form incentive function (in the 
sense of the Principal’s total costs) that “excites” the given set V of agents 
as a Nash equilibrium *x (s(⋅)) in their game. Formally, this problem 
admits the following statement: 

(14) 

*

( )

*

*

( ) min

( ( )) 1, ,
( ( )) 0, .

i si N

i

j

s x

x s i V
x s j V

⋅
∈

 →

 ⋅ = ∈
 ⋅ = ∉

∑
 

At the first glance, problem (14) seems complicated; however, it has 
a rather easy solution using the decomposition theorem of the agents’ 
game. Consider the following vector-form incentive function: 

(15) * + , if and 1
( )

0, otherwise
i i i i

i

c H i V x
s x

ε− ∈ =
= 


, 

where εi (i ∈ V) are arbitrarily small strictly positive constants. If we 
nullify these constants, the agents become indifferent between activity 
and passivity, and all conclusions below remain in force under the hy-
pothesis of benevolence [74].  

Clearly, if the Principal applies mechanism (15), the unit actions 
chosen by the agents from the set V (and only by them!) forms a unique 
dominant strategies’ equilibrium in the agents’ game with the goal func-
tions (13).  

Moreover, mechanism (15) represents the εV-optimal solution of 
problem (14), where εV = i

i V
ε

∈
∑ . 

We make an important terminological remark. Formally, problem 
(14) is a motivational control problem; nevertheless, its solution (15) can 
be interpreted as institutional control. The Principal establishes rather 
strict norms of activity for the agents: any deviation from the assigned 
behavior causes penalties (their incentives vanish). 

The Principal’s goal function F(⋅) is the difference between the pay-
off from exciting the set Φ(V) of agents and the total costs (15) to imple-
ment the excitation of the agents from the set V (see formula (2)). In other 
words, 
(16) F(V) = 

( )
i

i V
H

∈Φ
∑  – *( )j

j V
s y

∈
∑  = 

( )
i

i V
H

∈Φ
∑  + j

j V
H

∈
∑  – i

i V
c

∈
∑  – εV. 
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The comparison of expressions (16) and (2) brings to the following 
conclusion. Under sufficiently small values of εV (see the discussion 
above), one obtains the condition F(V) ≥ u(V). It would seem that the 
decentralized control problem is completely solved! Really, we have 
constructed a partial solution of this problem, since in mechanisms (5)-(7) 
the Principal does not explicitly specify the actions expected from the 
agents. Thus, the agents can play their game “independently” (the basic 
idea of control decentralization consists in designing a certain procedure 
of the autonomous interaction of agents that leads to the choice of the 
most efficient action vector in the sense of some centralized criterion). 
“Mechanism” (15) explicitly states the actions expected by the Principal 
from different agents. Furthermore, the Principal still has to solve the 
centralized control problem (1). Notably, knowing his optimal payoff 
(16) (in the sense of the minimal costs to motivate the excited agents), the 
Principal has to define a coalition for initial excitation: 
(17) F(V) → max

V N⊆
. 

Therefore, a positive side of the decentralized mechanisms is that the 
agents may possess incomplete information (they do not have to compute 
the Nash equilibrium (8) or solve the discrete optimization problems (1) 
or (17)). And a drawback is the complexity (or even infeasibility) of 
constructing an efficient decentralized mechanism. 

Among the advantages of the centralized mechanism, we mention 
that all “cognitive” (informational and computational) costs belong to the 
Principal; however, these costs may appear appreciably high. 

As an example, let us consider the mob control problem. 
An example: mob “excitation.” In the previous sections, we have 

explored a model of mob control where the agents make decisions 
(choose between their activity or passivity) depending on the number of 
active agents. The Principal’s efficiency criterion has been the number (or 
proportion) of active agents. In terms of the model analyzed below, the 
problem of mob control admits the following statement: choose a set of 
the initially excited agents to maximize (to minimize, etc.) the number of 
the indirectly excited agents so that the costs of control satisfy a given 
budget constraint С0: 

(18) 
0

| ( ) | max,

( ) .
S N

S

C S C
⊆

Φ →


≤
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Let the behavior of the agents be described by expression (3); more-
over, assume that the communication graph of the agents is complete. 
Renumber the agents in the ascending order of their thresholds: 

θ1 ≤ … ≤ θn. Denote by 1( ) { : }iP x i N x
n

θ= ∈ <  the distribution function 

of the agents’ thresholds and by 0{ }t tx ≥  the sequence of the proportions of 
active agents (in discrete time, where t indicates current step). 

Suppose that we know the proportion x0 of the agents acting at step 
0. The proportion of the agents whose thresholds do not exceed x0 makes 
up P(x0). And so, at step 1 we have 1 0 0max { ; ( )}x x P x= . At the next step, 
the proportion 2x  of active agents is defined by 2 1 1max { ; ( )}x x P x=  (the 

thresholds of these agents are not greater than 1x ). Arguing by analogy, 
one easily obtains the following recurrent formula for the behavioral 
dynamics of the agents (see (2.7)): 
(19) 1 max { ; ( )}k k kx x P x+ = . 

The equilibria in system (19) are determined by the initial point x0 
and the intersection points of the curve P(⋅) with the bisecting line of 
quadrant I: P(x) = x. The potential stable equilibria are the points where 
the curve P(⋅) crosses the bisecting line, approaching it “from above.” 
Fig. 19 shows an example of the distribution function of the agents’ 
thresholds in the continuous-time case (see the lower fragment of the 
figure). The points *

2x  and *
4x  are stable. 
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*
2x = x*(x0) 

*
3x  *
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c(x) 

Cmin(x) 

x0 

 
 

Fig. 19. The distribution function of agents’ thresholds and cost functions 
 
Designate by Ψ(P(⋅)) ⊆ [0,1] the set of roots of the equation P(x) = x 

(nonempty, since one of the roots is 1). Next, define 
x*(x0) = min {y ∈ Ψ(P(⋅)): y > x0}. For instance, the point x0 in Fig. 19 
satisfies the condition x*(x0) = *

2x . It follows from (19) and the equilibri-
um stability conditions that 

(20) Φ(x0) = 0 0 0
*

0 0 0

, if ( ) ,
( ), if ( ) .
x P x x

x x P x x
≤

 >
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Let a nondecreasing function с(x0) specify the initial excitation costs 
of a given proportion x0 ∈ [0, 1] of the agents (within the framework of 
our collective behavior model, excitation first applies to the agents with 
smaller thresholds). By virtue of (20), problem (18) acquires the form 

(21) 0
0 [0,1]

0 0

( ) max ,

( ) .
x

x

c x C
∈

Φ →


≤
 

Set x+ = max {x∈ [0, 1]: c(x) ≤ C0}. Owing to the nondecreasing 
property of function (20), the solution procedure of problem (21) seems 
obvious: the Principal should implement the maximum admissible action 
x+ under the existing budget constraints. If, in addition, costs minimiza-
tion is required, then the optimal solution *

0x  is 

(22) *
0x  = 

, if ( ) ,
max { ( ( )) : },if ( ) .

x P x x
y P y x P x x

+ + +

+ + +

 ≤


∈Ψ ⋅ < >
 

We can solve the inverse problem, i.e., find the minimal costs 
Cmin(x) of an initial excitation such that the final proportion of excited 
agents in the mob is not smaller than a given level x ∈ [0, 1]. See Fig. 19 
for an example of its solution. 

By assumption, the Principal seeks to maximize the number of excit-
ed agents. If the goal lies in mob activity minimization, the corresponding 
problems are posed and solved by analogy, since the analysis of the 
stables states and their dependence on the model parameters (see Fig. 19) 
allows characterizing the relationship between the resulting and initial 
states. 

Informational confrontation. Recall the informational confronta-
tion conditions adopted in subsection 5.3.  

Let us state a game-theoretic model of informational confrontation in 
network excitation control. There are Principals 1 and 2 exerting control 
actions at the initial step one-time, simultaneously and independently 
from each other, modifying the initial states of the agents from sets 
S1 ⊆ N and S2 ⊆ N, respectively. Assume that we know the relationship 

1 2( , )S SΦ
)

 between the final network state and these control actions. The 
goal functions of the Principals represent the differences between their 
payoffs and costs: vi(S1, S2) = Hi( 1 2( , )S SΦ

)
) – Ci(Si), i = 1, 2. 

This statement yields a normal-form game of the Principals. If one 
of them has the right of first move, we obtain a Stackelberg game (or 
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game Г1) which can be interpreted as “attack-defense” or “informational 
influence-counteraction.” Possible formulations and solutions of such 
problems in mob control are postponed to Section 10. 

Therefore, we have considered the general statement of the network 
“excitation” problem, establishing the nontrivial character of the decen-
tralized implementation of an efficient equilibrium and suggesting an 
efficient mechanism of institutional control. 

It is possible to identify several directions of promising research. 
First, the matter concerns analyzing the influence of certain properties of 
the communication graph of the agents and their decision-making princi-
ples on the properties of optimal solutions in control problems. In this 
section, both these factors (the structure of agents’ communication and 
the models of their cooperative behavior) are “embedded” in the operator 
Φ(⋅). Explicit formulations and exploration of special cases (acyclic 
graphs, concrete threshold models and other models of agents’ decision-
making) may yield nontrivial results with practical interpretations. 

Second, as far as the standard triad of control types [74] comprises 
institutional control, motivational control and informational control (the 
first and second types have been mentioned above), certain interest 
belongs to analysis of informational control models in network excitation 
problems. 

Third, the presence of a network of agents making strategic deci-
sions suggests involving some results from the theory of cooperative 
games on graphs (a communication graph restricts the capabilities of 
coalition formation and interaction among the agents [6, 28, 65, 77]). 
However, in network excitation problems, communication graphs are 
connected with the agents’ ability to influence other agents (i.e., commu-
nication graphs define the goal functions of the agents, ergo the charac-
teristic function of the corresponding cooperative games), rather than 
with the feasibility of forming certain coalitions. 

Fourth, it is necessary to study in detail the payoff allocation mecha-
nisms of form (5)-(7), including their analysis within the framework of 
social choice theory (e.g., see [59, 62]). Here we mean the characteriza-
tion of their classes possessing given properties (for instance, implemen-
tation of the efficient states as an important property). 

And finally, fifth, many prospects are associated with further decen-
tralization of the network “excitation” problem. The approaches of algo-
rithmic game theory [4, 85] and distributed optimization [16, 17, 78] 
prompt the following idea. We should endeavor to find simple procedures 
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of the local behavior of agents, leading to the optimal state within the 
initial problem of form (1) and (17), which has very high algorithmic or 
computational complexity. 

 
 

7. DYNAMIC MODELS OF MOB CONTROL 
IN DISCRETE TIME 

 
Written jointly with I.N. Barabanov, this section formulates and 

solves the mob excitation control problem in the discrete-time setting by 
introducing an appropriate number of “provokers” at each step of control 
[9]. 

The earlier paper [25] and Section 5 formulated and solved the static 
problem of mob excitation control by introducing an appropriate number 
of “provokers” that was chosen one-time and fixed for the whole time 
horizon. 

Below we involve the basic discrete-time model of mob excitation 
[25] assuming that the number of “provokers” can be varied at each step. 
Further exposition has the following organization. Subsection 7.1 states 
the mob control problem proper, and subsection 7.2 analyzes the models 
with constraints on the number of introduced provokers varying in dis-
crete time. Subsections 7.3 and 7.4 consider the continuous models in the 
proportion of provokers and the probabilistic models of provokers detec-
tion, respectively. 

 
7.1. Mob Control Problem 

 
Suppose that the number of agents is large and the agents are homo-

geneous in the sense of rule (1). The thresholds θi represent the realiza-
tions of a same random variable. Denote by F(⋅): [0, 1] → [0, 1] the 
distribution function of the agents’ thresholds, a nondecreasing function 
defined on the unit segment (the set of admissible thresholds) that is left-
continuous and possesses the right-hand limit at each point of its domain 
of definition. 

Assume that we know the proportion xk of the active agents at step k, 
where k = 0, 1, … Further behavior of the agents obeys the following 
recurrent expression (see (2.7)): 
(1) xl+1 = F(xl), l = k, k + 1, … . 
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According to the results of Section 5, adding m0 provokers to the 
mob yields a new set of agents whose thresholds form independent 
identically distributed random variables with the distribution function 

(2) ( ) ( )0 0
0

0 0

ˆ , 1m mF x m F x
m n m n

 
= + − + + 

. 

Denote by x*(m0) the collective behavior equilibrium of the dynamic 
system (1) corresponding to the distribution function (2).  

Consider a fixed time horizon, i.e., the first K steps. Assuming that, 
generally, the number of provokers mk at different steps 
k = 0, 1, … , K - 1 may vary, use expressions (1) and (2) to construct a 
dynamic controlled system that describes the proportion of active agents:  

(3) xk = ( )1 1
1

1 1

1k k
k

k k

m m F x
m n m n

− −
−

− −

 
+ − + + 

,  k = 0, 1, … , x0 = 0. 

Here the role of control at step k is played by the number of intro-
duced provokers 1km − . 

Within the framework of the dynamic system (3), one can formulate 
and solve different control problems, thereby studying dynamic models of 
mob excitation control (see below). 

 
7.2. Models with Constraints on the Total Number of Provokers 

 
Begin with the elementary case where at each step the number of 

provokers satisfies the constraint  
(4) 0 ≤ mk ≤ M, k = 0, 1, …, K - 1, 
while the efficiency criterion is defined as the proportion of active agents 
at step K. Then the corresponding terminal control problem takes the 
form  

(5) 
( ) max,

(3), (4).
K m

x m →



 

Assertion 7.1. The solution of problem (5) is given by mk = M, 
k = 0, 1, …, K - 1.  

Proof of Assertion 7.1. Consider the right-hand side of expression 
(3). By the properties of the distribution function F( ⋅ ), monotonicity of 

u
u n+

 in u N∈  and the fact that u
u n+

 ≤ 1 for any ,u n N∈ , the expres-
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sion ( )1u u F v
u n u n

 + − + + 
 is monotonically increasing in u N∈  and 

v ∈ [0, 1]. 
Take step k = K – 1. The maximum of xK is achieved under the max-

imum possible values of xK-1 and mK-1 = M. By analogy, consider sequen-
tially all preceding steps 0 ≤ k < K - 1 to establish that the optimal choice 
is also ml = M. • 

Corollary If m = (m0, …, mK-1) is a nondecreasing sequence, then 
xk(m) is a nondecreasing sequence, as well.  

Denote by ˆ ˆ( , ) min { 1,..., | ( ) }kl x m k K x m x= = ≥  the first step when 
the proportion of active agents achieves a required value x̂  (if the set 

ˆ{ 1,..., | ( ) }kk K x m x= ≥  appears empty, just specify ˆ( , )l x m  = +∞). 
Within the current model, one can pose the following performance prob-
lem:  

(6) 
ˆ( , ) min,

(3), (4).
m

l x m →



 

Assertion 7.2. The solution of problem (6) is given by mk = M, 
k = 0, 1, …, K-1. 

Proof of Assertion 7.2. Fix an arbitrary step k, 0 < k ≤ K, and an arbi-
trary step k’, 0 ≤ k’ < k. It follows from (7) and the proof of Assertion 7.1 
that  

' ': ( , , , , ) ( , , , , ).k k k km M x M m M x M M M∀ < ≤… … … …  • 
Problems (5) or (6) have the following practical interpretation. The 

Principal benefits most from introducing the maximum admissible num-
ber of provokers into the mob at the initial step, doing nothing after that 
(e.g., instead of first decreasing and then again increasing the number of 
introduced provokers). This structure of the optimal solution can be easily 
explained, as in models (5) and (6) the Principal incurs no costs to intro-
duce and/or keep the provokers. 

Let us make an obvious observation concerning M, i.e., the maxi-
mum admissible number of provokers. If M satisfies the condition 

ˆ ˆ/ (1 )M nx x≥ − , then the performance problem is solved at one step. 
Otherwise, there exists a passive mob (a distribution function ( )F ⋅ ) such 
that the value x̂  is not achievable in a finite number of steps. 

This lower estimate of the maximum number of provokers required 
seems rather rough, yielding large values in case of large x̂ . In particular, 
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for ˆ 0.5x ≥  we have M n≥ , implying that the number of provokers must 
exceed the total number of agents in the mob. Formally, the constructed 
model allows an arbitrary (including arbitrary large) number of provok-
ers. At the same time, clearly, a large number of provokers should be 
introduced into an almost degenerate mob in the sense of excitability (i.e., 
when the threshold distribution function is close to zero almost every-
where on [0, 1]). 

Now, consider possible statements of the control problems taking in-
to account the Principal’s costs. 

Models with the Principal's control costs. Under a known 
nondecreasing cost function с(m), a more general than (5) problem is the 
following integer dynamic programming problem with MK alternatives 
totally:  

(7) 
( ( )) ( ) max,

(3), (4).
K m

H x m c m− →



 

Given a fixed “price” λ ≥ 0 of keeping one provoker per unit time, 
the Principal’s costs are defined by  

(8) c(m) = λ 
1

0

K

k
k

m
−

=
∑ . 

A possible modification of problems (7)--(8) is the one where the 
Principal achieves a required proportion x̂  of active agents by step K 
(the cost minimization problem):  

(9) 

( ) min,

ˆ( ) ,
(3), (4),(8).

m

K

c m

x m x

→
 ≥



 

The forthcoming subsection studies these problems in detail. 
 

7.3. Continuous Control 
 

Let M and n be large. Introduce the notation δk = k

k

m
m n+

, λ0 = λ n. 

Then condition (4) acquires the form δk ∈ [0, ∆], k = 0, 1, …, K - 1, 

where ∆ = 
M

M n+
, and costs (8) can be rewritten as  
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(10) c(δ) = λ0 
1

0 1

K
k

k k

δ
δ

−

= −∑ , 

where δ = (δ0, δ1, …, δK-1), δk specify real numbers, k = 0, 1, …, K – 1. 
According to the accepted notation, the dynamic system (3) admits 

the representation  
(11) xk(δ) = ( ) ( )1 1 11k k kF x− − −δ + − δ , k = 0, 1, … , x0 = 0. 

We endeavor to explore the properties of the attainability set  

: 0 , 0, 1

( ) [0;1]
k

K
k K

D x
δ δ

δ
≤ ≤∆ = −

= ⊆∪ . 

By analogy with the proof of Assertion 7.1, it is possible to show that 
xK(δ) enjoys monotonicity in δk, k = 0, 1, …, K – 1. If this relationship is 
continuous, then (11) defines a continuous monotonic mapping [0, ∆]K 
into [0, 1] (monotonicity in the sense of cone). That is, we have the 
following result. 

Assertion 7.3. If the distribution function F(·) is continuous, then 
D = [0, xK(∆, …, ∆)].  

In the sense of potential applications, a major interest is attracted by 
the case of unified solutions ˆ ( ,..., )δ ρ ρ= . Here the Principal chooses a 
same proportion of provokers ρ ∈ [0, ∆] at all steps. Let 
D0 = 

[0; ]

( ,..., ) [0;1]Kx
ρ

ρ ρ
∈ ∆

⊆∪  be the attainability set in the unified case. 

Since ( ,..., )Kx ρ ρ  is a monotonic continuous mapping of [0, ∆] into [0, 1] 
such that (0,...,0) 0Kx = , then D0 = D and we get 

Assertion 7.4. If the distribution function F(·) is continuous, then for 
any admissible sequence δ there exists an equivalent unified solution δ̂ , 
i.e., an admissible δ̂  such that xK(δ) = xK( δ̂ ).  

As a matter of fact, Assertion 7.4 means that the Principal may con-
fine itself to the unified solutions subject to the attainability set. 

Assertion 7.4 appears nonconstructive, as merely stating the exist-
ence of an equivalent unified solution without methods to find it. In a 
series of special cases (including Example 7.1), it is possible to obtain an 
explicit expression for the proportion of active agents at step k, as well as 
the equivalent unified solution. 

Example 7.1. Consider the uniform distribution of the agents’ 
thresholds, i.e., ( )F x x= . Take an arbitrary step : 0 1l l K≤ ≤ −  and an 
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arbitrary time increment :s l s K+ ≤ . Using inductive proof, one can 
demonstrate that  

(12) 
1

0

1 ( 1) (1 )
s

l s l l j
j

x x δ
−

+ +
=

= + − −∏ . 

Choose ρ from the condition  

(13) 
1

0

(1 ) (1 )
s

s
l j

j

ρ δ
−

+
=

− = −∏ , 

i.e., (1 – ρ) is the geometric mean of the values ( )1 l jδ +− . Then the initial 

state lx  yields the same final state l sx +  under the control sequence 

{ }1, ,l l sδ δ + −…  and , ,
s

ρ ρ
  
 
  

…14243 . As step l  and the time increment are 

arbitrary, in this fashion one can replace the whole sequence of the con-
trol actions δ with the sequence of identical control actions. 

If F(x) = x, then (12)-(13) with x0 = 0 directly give  

(14) xk(δ) = 
1

0

k

i
i

δ
−

=
∑  - 

1

, 0

k

i j
i j
i j

δ δ
−

=
≠

∑  + 
1

, , 0

k

i j l
i j l
i j l

δ δ δ
−

=
≠ ≠

∑  - 
1

, , , 0

k

i j l s
i j l s
i j l s

δ δ δ δ
−

=
≠ ≠ ≠

∑  + … . • 

Example 7.2. Let K = 2 and F(x) = x. It appears from (14) that 
x1 = δ0, x2 = δ0 + δ1 – δ0 δ1. Choose H(x) = x and the costs defined by (10). 
In this case, problem (7) acquires the form  

0 1

0
0 1 0 1

1
0 ,

0 1

  max
1

 
1

 – 
δ δ

δ δ
δ λ

δ δ
δ δ δ

≤∆

 
− + → − − 

+
. 

Its solution is described by  

 

3
0

3 3
0 1 0 0

3
0

0, if 1 0,

1 , if 0 1 ,

, if 1 .

λ

δ δ λ λ

λ

 − ≤
= = − < − < ∆
 ∆ − ≥ ∆

 

In other words, the solution depends on the price of keeping one 
provoker per unit time. For a high price, the introduction of provokers 
becomes even unprofitable. • 

Example 7.3. Just like in Example 7.2, choose F(x) = x. Consider the 
costs minimization problem (9) with achieving a given value x̂  in K 
steps: 
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0 1

0 1

0 1

0 , ,
0 1

min ,
1 1

ˆ) (1 1 1  )(
K

K

K

K x

δ δ

δ δ
δ

δ δ
δ −

−

≤ ≤∆
−

−

 + + → − −
 − ≥− −

…
L

L
 

There exists a solution of this problem if the set of variables in goal 
function minimization is nonempty. This imposes the constraints 

ˆ1 1K x∆ ≥ − −  on the problem parameters, illustrating that for goal 
achievement the Principal needs a sufficient number of provokers at its 
disposal. 

Due to monotonicity of the goal function in each variable, the con-
straint holds as equality. On the other hand, the problem has symmetry 
and the minimum is achieved for the same values iδ . Therefore, the 
solution is given by 0 1 ˆ1 1K

K xδ δ −= = = − −… . • 
Problem (7)-(8) with the continuous variables takes the following 

simple form:  

(15) 
( ( )) ( ) max,

(10), (11), [ ]; .0  
K

k

H x c
δ

δ

δ δ− →

∈ ∆




 

Problem (15) can be solved numerically under known payoff func-
tions, cost functions and threshold distribution functions. In particular, 
Assertion 7.3 leads to a two-step method where step 1 is to find  

 

C(z) = 
: [0; ], ( )

min
k Kx zδ δ δ∈ ∆ =

 
1

0 1

K
k

k k

δ
δ

−

= −∑ , z ∈ [0, xK(∆, …, ∆)], 

and step 2 is to solve the scalar problem  

z* = arg 
[0; ( ,..., )]

max
Kz x∈ ∆ ∆

 [H(z) – λ0C(z)]. 

Another alternative statement of the mob excitation control problem 
with H(x) = x is  

(16) 

1

0
0

( ) ( ) max,
1

(14 0), [ .; ]

K
k

K k
k k

k

x x
δ

δ

δ

δ δ λ
δ

−

=

  
+ − →  −

∆
  
 ∈

∑  

The goal function in problem (16) structurally differs from its coun-
terpart in the terminal problem (15), incorporating the sum of the propor-
tions of active agents at all steps. 
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Write the Bellman equation for problem (16) with costs (10) and 
H(x) = x (which is assumed in further exposition):  

(17) B(x, w) = w + (1 – w) F(x) – λ0 1
w

w−
 → 

[0; ]
max
w∈ ∆

. 

Denote by 

(18) w(x) = max {min {∆; 01
1 ( )F x

λ
−

−
}; 0} 

the interior maximum in problem (17) yielded by the first-order optimali-
ty conditions.  

Owing to monotonicity of the distribution function, w(x) represents 
an nonincreasing function. 

The calculation of B(x, w(x)) = 1 + λ0 – 2 0(1 ( ))F xλ −  shows that 
the solution of problem (17) has three possible “modes” (two boundaries 
of the segment [0, ∆] or the internal point (18)):  
(19) w*(x) = arg 

{0; ( ); }
max

w w x∈ ∆
 B(x, w). 

The qualitative analysis of solution (19) depending on the parameter 
λ testifies to the following (recall that this parameter describes the price 
of keeping one provoker per unit time). For very large values of λ, the 
optimal solution is the zero number of provokers (w = 0); for very small 
λ, the maximum possible number of provokers (w = ∆). If λ takes “inter-
mediate” values, then the optimal solutions belong to the interval (0, ∆).  

Designate by δ* the solution of problem (16). The dynamic system 
(11) has the following property. 

Assertion 7.5. If the inequality  
(20) F(x) ≥ 1 – (1 - x)2 / λ0, 
holds for all x ∈ [0, x*(∆)], then xk(δ*) is a nondecreasing sequence in k.  

Proof of Assertion 7.5. Substituting expression (18) into (11) gives 
the monotonicity condition  

1 - 0

1 ( )F x
λ

−
 + 0

1 ( )F x
λ

−
 F(x) ≥ x, 

After trivial transformations, we arrive at (20). • 
Assertion 7.6. Assume that for all , , [0;1] :α β γ α β∈ ≥ , γ ≤ x*(∆), 

the distribution function satisfies the condition  
(21) (1 ) ( (1 ) ( )) (1 ) ( (1 ) ( ))F F F Fβ β α α γ α α β β γ+ − + − ≤ + − + − . 
Then there exists an optimal nondecreasing sequence δ*. 
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Proof of Assertion 7.6. Let ∃ l: 0 < l < K – 1 and * *
1l lδ δ +> . 

If it is possible to find δl ∈ [0, ∆] and δl+1 ∈ [0, ∆] such that  
(A1) δl ≤ δl+1, 
(A2) xl+2(xl, δl, δl+1) = xl+2(xl, * *

1,l lδ δ + ), 
(A3) c(δ*) ≥ c( * * * *

0 1 1 2 1,..., , , , , ...,l l l l Kδ δ δ δ δ δ− + + − ), 
then * * * *

0 1 1 2 1,..., , , , , ...,l l l l Kδ δ δ δ δ δ− + + −  also gives the solution of problem 
(15). 

Choose * *
1 1 1,l l l lδ δ δ δ ε+ + += = + , where * *

1[0; ]l lε δ δ +∈ − . As a result, 
(A1) holds. Condition (A3) is satisfied due to the monotonicity of the cost 
function, while expression (A2) yields  

* * * *
1 1 1 1(1 ) ( (1 ) ( )) (1 ) ( (1 ) ( ))l l l l l l l l l lF F x F F xδ δ δ δ δ δ δ δ+ + + ++ − + − = + − + − , 

i.e.,  

(A4) 
* * * * *

1 1 1
* *

1 1

(1 )[ ( (1 ) ( )) ( (1 ) ( ))].
1 ( (1 ) ( ))

l l l l l l l

l l l

F F x F F x
F F x

δ δ δ δ δ
ε

δ δ
+ + +

+ +

− + − − + −
=

− + −
 

Note that, for F(x) = x, * *
1l lε δ δ +≡ − . 

 
It follows from (A4) that 0ε ≥ , and the condition * *

1l lε δ δ +≤ −  can 
be rewritten as  

* * * * * * * *
1 1 1 1(1 ) ( (1 ) ( )) (1 ) ( (1 ) ( ))l l l l l l l l l lF F x F F xδ δ δ δ δ δ δ δ+ + + ++ − + − ≤ + − + − . 

By xl ≤ x*(∆) and condition (21), the last inequality holds. 
The above reasoning shows that the decreasing segment of the two 

neighbor elements in the control sequence δ can be replaced with an 
“equivalent” nondecreasing one, still retaining the values of x and the 
optimality condition. It suffices to argue that, using this operation a finite 
number of times, we make the whole sequence δ nondecreasing. Really, 
let *

mδ  be the minimum value from the whole sequence. Apply the de-
scribed procedure a finite number of times (at most, K) to move this value 
to the zero position in the new sequence. Next, find the second minimum 
value and move it to the first position via at most (K - 1) permutations, 
and so on. Therefore, the number of permutations is bounded above by 

( 1) 1 ( 1) / 2K K K K+ − + + = +… . • 
The class of distribution functions with (21) is nonempty. For in-

stance, it includes F(x) = x2 with γ ≤ 2 1− , i.e., ∆ ≤ 0.388. In the case 
of the uniform distribution (F(x) = x), condition (21) becomes an identity. 
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Apparently, a result similar to Assertion 7.6 takes place for the “con-
cave” distribution functions (with inverse inequality of type (21)). How-
ever, for these functions the nonzero CBE is achievable for arbitrarily 
small control actions (see models in Section 5). In the sense of applica-
tions, this case seems less interesting. 

Concluding subsection 7.3, consider the “asymptotics” of the prob-
lems as K = +∞. Suppose that (a) the threshold distribution function F(·) 
is continuous with a unique inflection point and F(0) = 0, (b) the equation 
F(x) = x has a unique solution q > 0 on the segment [0, 1] so that 

(0; ) : ( ) , ( ;1) : ( )x q F x x x q F x x∀ ∈ < ∀ ∈ > . Several examples of F(·)  
satisfying these assumptions are the functions obtained by the identifica-
tion of a series of real online social networks, see [13]. The Principal 
seeks to excite all agents with the minimum costs. 

By the above assumptions on F(·), if for some step l we have xl > q, 
then the sequence xk(δ) is nondecreasing for all k > l, δk ≡ 0 and, further-
more, lim 1kk

x
→+∞

= . This property of the mob admits the following inter-

pretation. The domain of attraction of the zero equilibrium without con-
trol (without introduced provokers) is the half-interval [0; q). In other 
words, it takes the Principal only to excite more than the proportion q of 
the agents; subsequently, the mob itself surely converges to the unit 
equilibrium even without control. 

Denote by δl the solution of the problem  
 

(22) 
1

: [0; ], ( )0

min
1 k l

l
k

x qk k
δ δ δ

δ
δ

−

∈ ∆ >
=

→
−∑ . 

Calculate Ql = 
1

0 1

ll
k

l
k k

δ
δ

−

= −∑  and find l* = arg 
1,2,...

min
l=

 Ql. 

The solution of problem (22) exists under the condition  
[0, ] (1 ) ( ) ,x q F x x∀ ∈ → ∆ + − ∆ >  

which can be rewritten as  
(23) ∆ > 

[0; ]
max [ (1 ) ( )]
x q

x F x
∈

− − ∆ . 

Let *∆  be the infimum of all ∆ satisfying (27). In fact, the quantity 
*∆  represents the minimum value of the proportion of provokers required 

for the mob to “cross” the unstable equilibrium q, moving subsequently 
to the stable equilibrium with all excited agents. This quantity depends on 
the shape of F(x) on the segment [0, q], representing a quantitative char-
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acteristic of the mob’s small excitability under few provokers. In this 
sense, *∆  reflects the mob “inertia.” 

Assertion 7.7. *

[0, ]

( )max
1 ( )x q

x F x
F x∈

−
∆ =

−
. 

Proof of Assertion 7.7. Take an arbitrary value ∆ satisfying (23), i.e., 
(1 ) ( ) 0.F x x∆ + − ∆ − >  Rewrite this inequality in the form  

( )(1 ( )) 0
1 ( )
x F xF x

F x
 −

− ∆ − > − 
. Here the first factor is positive and there-

fore  
( )[0, ]

1 ( )
x F xx q

F x
−

∀ ∈ → ∆ >
−

, 

which implies  

[0, ]

( )max
1 ( )x q

x F x
F x∈

−
∆ ≥

−
 

In other words, the value 
[0, ]

( )max
1 ( )x q

x F x
F x∈

−
−

 is the lower bound of the 

values ∆ satisfying (23). On the other hand, for all 0ε >  the value 

[0, ]

( )max
1 ( )x q

x F x
F x

ε
∈

−
+

−
 is not the lower bound, since for the smaller value 

[0, ]

( )max
1 ( ) 2x q

x F x
F x

ε
∈

−
∆ = +

−
 condition (23) holds: 

[0, ]

( )(1 ( ))
1 ( )

( ) ( )(1 ( )) max
1 ( ) 2 1 ( )

(1 ( )) 0 [0, ].
2

x q

x F xF x
F x

x F x x F xF x
F x F x

F x x q

ε

ε

∈

 −
− ∆ − = − 

 − −
= − + − ≥ − − 

≥ − > ∀ ∈

 

And so, by the definition of infimum,
 

*

[0, ]

( )max
1 ( )x q

x F x
F x∈

−
∆ =

−
. • 

Owing to the above assumptions on the properties of the distribution 
function, the optimal solution to the problem is characterized as follows.   

Assertion 7.8. If condition (23) holds, then  
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* * * *

*0 1 1
( 0; 0; ... ; 0; 0; 0; ...)l l l l

l
δ δ δ δ

−
= > > > . 

Assertion 7.8 implies that, in terms of excitation costs minimization 
for the mob satisfying the above assumptions, the control action calculat-
ed by (23) must be nonzero only at the first l* steps (including the zero 
step). 

 Example 7.4. The paper [13] and Section 3 constructed the two-
parameter threshold distribution function with the parameters a and b 
describing in the best way the evolvement of active users in the Russian-
language segments of online social networks LiveJournal, FaceBook, and 
Twitter. This function has the form (also, see expression (3.17)) 

(24) Fa,b(x) = 
arctg( ( )) acrtg( )
arctg( (1 )) acrtg( )

a x b ab
a b ab

− +
− +

, a ≈ [7, 15], b ∈ [0, 1]. 

Choose a = 13 that corresponds to Facebook and b = 0.4. In this 
case, q ≈ 0.375 and *∆  ≈ 0.169. • 

Note that we have considered the controlled mob withdrawal from 
the attraction domain [0, q) of the zero point. A mob can “self-excite” 
owing to the appropriate realizations of the random variables (agents’ 
thresholds) with a theoretical distribution function F(·). The models 
describing such effects via the framework of large deviations were con-
sidered in [27, 80, 81]. 

 
7.4. Probabilistic Models of Provokers Detection 

 
Let us modify the model in the following way. At step k, the Princi-

pal chooses some proportion of provokers δk, and then another subject 
(for convenience, called Metaprincipal) observes the current situation, 
detecting the presence of provokers with a probability p(δk). Here ( ) :p ⋅
[0;1] [0;1]→  is a nondecreasing function such that p(0) = 0. If the pro-
vokers are detected, the game “stops,” and the proportion of active agents 
is zero at all the subsequent steps. If the Metaprincipal detects no provok-
ers, the proportion of active agents is defined by (11), the Principal 
chooses δk+1, and so on. 

The probability that the provokers are not detected till step K makes 
up  

(25) PK(δ) = 
1

0

(1 ( ))
K

k
k

p δ
−

=

−∏ . 
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The control problem solved by the Principal admits, e.g., the follow-
ing statement:  

(26) 

( ) max,

ˆ( ) ,
(11), [0; ],

K

K

k

x

P P
δ

δ

δ
δ

→
 ≥
 ∈ ∆

 

where P̂ is a given probability that at step K the mob contains active 
agents. Formally speaking, problem (25)-(26) represents an analog of 
problem (15) and can be solved numerically in each special case. Howev-
er, in some situations, it is possible to say something about the structure 
of the optimal solution. For instance, the next assertion states that, if the 
agents’ thresholds obey the uniform distribution, then the unified solution 
is optimal (in this solution, the proportion of provokers introduced at each 
step is fixed, see Assertion 7.4). 

Assertion 7.9. If F(x) = x and p(ρ) = ρ, then there exists the optimal 
unified solution ρ* of problem (25)-(26):  
(27) ρ* = min {∆; 1 - 1/ˆ( ) KP }. 

Proof of Assertion 7.9. As xK(δ) and PK(δ) do not decrease and in-
crease, respectively, in all components of the vector δ, in the optimal 
solution the constraint PK(δ) ≥ P̂  becomes an equality. 

According to Assertion 7.4, for any sequence δ there exists an equiv-
alent unified solution (in terms of the terminal proportion of active 
agents). 

Assume that in the sequence δ there exists l such that 0 < l < K – 1 
and 1 [0; ]l lδ δ +≠ ∈ ∆ . Now, demonstrate that for p(ρ) = ρ we have  

( )KP δ  = 0 1 1 1 2 1( ,..., , ( , ), ( , ), ,..., )K l l l l l l KP δ δ ρ δ δ ρ δ δ δ δ− + + + − . 
Really, using expression (25), it can be easily verified that (1 –

 δl) (1 – δl+1) ≡ (1 - ρ(δl, δl+1))2.  
Formula (27) follows from the unified character of the optimal solu-

tion and expression (25). • 
And finally, note another probabilistic model of provokers detection 

that proceeds from the following assumption. Being detected by the 
Metaprincipal at step k, at the next step the provokers are eliminated 
(their number is nullified) and the “game” resumes for the Principal and 
the residual proportion of provokers (∆ - δk). 



99 

Consequently, this section has studied different mob excitation prob-
lems in discrete time based on Granovetter’s model, on the finite and 
infinite horizons. For a series of problems with given mob characteristics, 
the optimal solutions (in a certain sense) have been obtained or reduced 
to well-known numerical optimization problems. 

 
 

8. DYNAMIC MODELS OF MOB CONTROL IN 
CONTINUOUS TIME 

 
This section written jointly with I.N. Barabanov is dedicated to the 

continuous-time models of mob control [10]. We formulate and solve the 
mob excitation control problem in the continuous-time setting by intro-
ducing an appropriate number of “provokers” at each moment of control. 

The mob model proper is imported from [1, 79], actually represent-
ing a generalization of Granovetter’s model to the continuous-time case 
as follows. Suppose that we know the proportion x0 ∈ [0, 1] of active 
agents at the initial (zero) moment. Then the evolution of this proportion 
x(t) in the continuous time t ≥ 0 is governed by the equation 
(1) ( )x F x x= −& , 
where F(·) is a known continuous function possessing the properties of a 
distribution function,  F(0) = 0 and F(1) = 1. Actually, this is the distribu-
tion function of the agents’ thresholds. Just like in [25], as well as Sec-
tions 5 and 7 above, by applying a control action u(t) ∈ [0, 1] (introduc-
ing provokers), we obtain the controlled dynamic system 
(2) ( ) (1 ( )) ( )x u t u t F x x= + − −& . 

This section is organized in the following way. Subsection 8.1 stud-
ies the attainability set and the monotonicity of the system trajectories in 
the control action. Next, subsection 8.2 is focused on the case of constant 
controls according to the above classification. Subsection 8.3 considers 
the models where control excites the whole mob. And finally, subsection 
8.4 deals with the case of positional control. 

 
8.1. Attainability Set and Monotonicity 

 
First, we formulate a lemma required for further analysis. 
Consider functions 1( , )G x t  and 2 ( , )G x t : 0[ , )R t R× +∞ →  that are 

continuously differentiable with respect to x and continuous in t. By 
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assumption, the functions G1 and G2 are such that the solutions to the 
Cauchy problems for the differential equations ( , )ix G x t=& , 1,2i = , with 
initial conditions 0 0 0( , ),t x x R∈ , admit infinite extension in t. Denote by 

0 0( ,( , )), 1,2ix t t x i = , the solutions of the corresponding Cauchy problems. 
Lemma 8.1. Let 0 1 2, ( , ) ( , )x R t t G x t G x t∀ ∈ ∀ ≥ → > . Then 

0 1 0 0 2 0 0( , ( , )) ( , ( , ))t t x t t x x t t x∀ > → > . 
Proof of Lemma 8.1. By the hypothesis, 1 0 0 2 0 0( , ) ( , )G x t G x t> , i.e., 

0 0

1 0 0 2 0 0( , ( , )) ( , ( , ))
t t t t

d dx t t x x t t x
dt dt= =

> . And so, there exists a number 

0ε >  such that 0 0 1 0 0 2 0 0( , ] ( , ( , )) ( , ( , ))t t t x t t x x t t xε∀ ∈ + → > , implying 
that on the whole half-interval 0 0( , ]t t ε+  the curve of the solution to the 
first Cauchy problem lies higher than its counterpart in the second Cau-
chy problem. We will demonstrate that this geometric relationship holds 
for all 0t t≥ . 

Prove by contradiction, supposing that 

1 0 0 2 0 0
ˆ ˆ ˆ ˆ: ( , ( , )) ( , ( , ))t x t t x x t t x x∃ = = . Without loss of generality, let t̂  be 

the first moment when the curve x2 reaches the curve x1, i.e., 
{ }0 1 0 0 2 0 0

ˆ inf : ( , ( , )) ( , ( , ))t t t x t t x x t t xε= > + = < +∞ . Obviously, 

0 0t̂ t tε≥ + >  and 0 1 0 0 2 0 0
ˆ( , ) ( , ( , )) ( , ( , ))t t t x t t x x t t x∀ ∈ → > . Hence, for 

0
ˆ[0, )t tτ ∈ −  we have 

1 0 0 1 0 0 2 0 0 2 0 0
ˆ ˆ ˆ ˆ( , ( , )) ( , ( , )) ( , ( , )) ( , ( , ))x t t x x t t x x t t x x t t xτ τ− − > − − , 

since the second terms in both sides of this inequality coincide with x̂ . 
Divide both sides of the inequality by τ−  (reversing its sign) and proceed 
to the limits as 0τ → . As a result, the derivatives of the solutions x1 and 

x2 at the point t̂  satisfy 1 0 0 2 0 0
ˆ ˆ

( ,( , )) ( ,( , ))
t t t t

d dx t t x x t t x
dt dt= =

≤ , whence it 

appears that 1 2
ˆ ˆˆ ˆ( , ) ( , )G x t G x t≤ . This inequality contradicts the condition 

of Lemma 8.1, and the conclusion follows. • 
Note that, for validity of this lemma, one should not consider the in-

equality 1 2( , ) ( , )G x t G x t>  for all x R∈ . It suffices to take the union of 
the attainability sets of the equations ( , )ix G x t=& , 1,2i = , with the chosen 
initial conditions 0 0( , )t x . 
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Designate by xt(u) the proportion of active agents at the moment t 
under the control action u(·). The right-hand side of expression (1) in-
creases monotonically in u for each t and ∀ x ∈ [0, 1]: F(x) ≤ 1. Hence, 
we have the following result. 

Assertion 8.1. Let the function F(x) be such that F(x) < 1 for 
x ∈ [0, 1). If 0 1 2( ) ( )t t u t u t∀ ≥ → >  and x0(u1) = x0(u2) ( 0 1x < ), then 

0t t∀ > : xt(u1) > xt(u2). 
Really, by the premises, for all t and x<1 we have the inequality 

1 1 2 2( ) (1 ( )) ( ) ( ) (1 ( )) ( )u t u t F x x u t u t F x x+ − − > + − − ,  
as the convex combination of different numbers (1 and F(x)) is strictly 
monotonic. The point x=1 forms the equilibrium of system (1) under any 
control actions u(t). And so, it is unattainable for any finite t. Using 
Lemma 8.1, we obtain xt(u1) > xt(u2) under the same initial conditions. 

Suppose that the control actions are subjected to the constraint 
(3) u(t) ≤ Δ, t ≥ t0, 
where Δ ∈ [0, 1] means some constant. 

We believe that t0=0, x(t0)=x(0)=0, i.e., initially the mob is in the 
nonexcited state. 

If the efficiency criterion is defined as the proportion of active agents 
at a given moment T > 0, then the corresponding terminal control prob-
lem takes the form 

(4) ( )
( ) max,

(2), (3).

T u
x u

⋅
→




 

Here is a series of results (Assertions 8.2-8.4) representing the ana-
logs of the corresponding assertions from Section 7. 

Assertion 8.2. The solution of problem (4) is given by u(t) = Δ, 
t ∈ [0, T]. 

Denote by ˆ ˆ( , ) min { 0 | ( ) }tx u t x u xτ = ≥ ≥  the first moment when the 
proportion of active agents achieves a required value x̂  (if the set 

ˆ{ 0 | ( ) }tt x u x≥ ≥  is empty, just specify ˆ( , )x uτ  = +∞). Within the current 
model, one can pose the following performance problem: 

(5) ( )
ˆ( , ) min,

(2), (3).
u

x uτ
⋅

→



 

Assertion 8.3. The solution of problem (5) is given by u(t) = Δ, 
t ∈ [0, τ]. 
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By analogy with the discrete-time models (see Section 7), problem 
(4) or (5) has the following practical interpretation. The Principal benefits 
most from introducing the maximum admissible number of provokers in 
the mob at the initial moment, doing nothing after that (e.g., instead of 
first decreasing and then again increasing the number of introduced 
provokers). This structure of the optimal solution can be easily explained, 
as in models (4) and (5) the Principal incurs no costs to introduce and/or 
keep the provokers. 

What are the properties of the attainability set D = 
( ) [0; ]

( )T
u t

x u
∈ ∆
∪ ? 

Clearly, [0;1]D ⊆ , since the right-hand side of the dynamic system (2) 
vanishes for x = 1. 

In the sense of potential applications, a major interest is attracted by 
the case of constant controls (u(t) = v, t ≥ 0). Here the Principal chooses a 
same proportion v ∈  [0, ∆] of provokers at all moments. Let 
xT(∆) = xT(u(t) ≡ Δ), t ∈ [0, T], and designate by D0 = 

[0; ]

( ) [0;1]T
v

x v
∈ ∆

⊆∪  

the attainability set under the constant control actions. According to 
Assertion 8.1, ( )Tx v  represents a monotonic continuous mapping of 
[0, ∆] into [0, 1] such that (0) 0Tx = . This leads to the following.  

Assertion 8.4. D0 = [0, xT(∆)]. 
Consider the models taking into account the Principal’s control 

costs. Given a fixed “price” λ ≥ 0 of one provoker per unit time, the 
Principal’s costs over a period τ ≥ 0 are defined by 

(6) cτ(u) = λ 
0

( )u t dt
τ

∫ . 

Suppose that we know a pair of monotonic functions characterizing 
the Principal’s terminal payoff H(·) from the proportion of active agents 
and his current payoff h(·). Then problem (4) can be “generalized” to 

(7) 

 

0

( ( )) ( ( )) ( ) max,

(2), (3).

T

T T u
H x u h x t dt c u


+ − →





∫  

Under the existing constraints on the Principal’s “total” costs C, 
problem (7) acquires the form 



103 

(8) 0

( ( )) ( ( )) max,

(2), ( ) .

T

T u

T

H x u h x t dt

c u C


+ →


 ≤

∫  

A possible modification of problems (4), (5), (7), and (8) is the one 
where the Principal achieves a required proportion x̂  of active agents by 
the moment T (the cost minimization problem): 

(9) 

 

( ) min,

ˆ( ) ,
(2).

T u

T

c u

x u x

→
 ≥



 

The problems of form (7)-(9) can be easily reduced to standard op-
timal control problems. 

Example 8.1. Consider problem (9) where F(x) = x, x0 = 0 and the 
Principal’s costs are defined by (6) with 0 1λ = . This yields the following 
optimal programmed control problem with fixed bounds: 
       (1 ),x u x= −&  
       ˆ(0) 0, ( ) ,x x T x= =  
(10) 0 ,u≤ ≤ ∆  

        
[0, ]

0

( ) min .
T

u
u t dt

∈ ∆
→∫  

For problem (10), construct the Pontryagin function 
( )(1 )H u x uψ= − − . By the maximum principle, this function takes the 

maximum values in u. As the function enjoys linearity in u, its maximum 
is achieved at an end of the interval [0, ]∆  depending on the sign of the 
factor at u, i.e., 

(11) ( )( )( )1 1 1 .
2

u sign xψ∆
= − − +  

That the Pontryagin function is linear in the control actions actually 
follows from the same property of the right-hand side of the dynamic 
system (2) and functional (6). In other words, we have the result below. 

Assertion 8.5. If the constraints in the optimal control problems (7)-
(9) are linear in the control actions, then the optimal programmed control 
possesses the structure described by (11). That is, at each moment the 
control action takes either the maximum or minimum admissible value. 
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The Hamilton equations acquire the form 

(1 ),Hx u x
ψ

∂
= = −

∂
&  .H u

x
ψ ψ

∂
= − =

∂
&  

The boundary conditions are imposed on the first equation only. For 
0u = , its solution is a constant; for u = ∆ , the function

( ) ( )0
0( ) 1 1 ( ) .t tx t x t e−∆ −= − −  

The last expression restricts the maximum number of provokers re-

quired for mob transfer from the zero state to x̂ : 
1 1log .

ˆ1T x
∆ ≥

−
 

And there exists the minimum time min
1 1log ,

ˆ1
t

x
=

∆ −
 during which 

the control actions take the maximum value ∆, being 0 at the rest mo-
ment. Particularly, a solution of problem (10) has the form 

(12) min

min

,
,

0,
t t

u
t t T

∆ ≤
=  < ≤

 

when the Principal introduces the maximum number of provokers from 
the very beginning, maintaining it during the time mint . 

The structure of the optimal solution to this problem (a piecewise 
constant function taking values 0 or ∆) possibly requires minimizing the 
number of control switchovers (discontinuity points). Such an additional 
constraint reflects the situations when the Principal incurs extra costs to 
introduce or withdraw provokers. If this constraint appears in the prob-
lem, the best control actions in the optimal control set are either (12) or 

min

min

, [ , ],
0, .

t T t T
u

t T t
∆ ∈ −

=  < −
 • 

 
8.2. Constant Control 

 
In the class of the constant control actions, we obtain cτ(v) = λ v τ 

from formula (6). Under given functions F(·), i.e., a known relationship 
xt(v), problems (7)-(9) are reduced to standard scalar optimization prob-
lems. 

Example 8.2. Choose F(x) = x, T = 1, x0 = 0, H(x) = x, and h(x) = γ x, 
where γ ≥ 0 is a known constant. It follows from (1) that 
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(13) xt(u) = 1 – exp (- 
0

( )
t

u y dy∫ ). 

For the constant control actions, xt(v) = 1 – vte− . 
Problem (7) becomes the scalar optimization problem 

(14) 
[0; ]

( 1) maxv

v
e v

v v
γ γ λ−

∈ ∆
− − − → . 

Next, problem (8) becomes the scalar optimization problem 

(15) 
[0; ]

( 1) maxv

v
e

v v
γ γ−

∈ ∆
− − → . 

And finally, problem (9) acquires the form [0;1]
min ,

ˆ1 .
v
v

v

e x
∈

−

→


− =
 Its solution 

is described by v = 1ln( )
ˆ1 x−

. • 

 
8.3. Excitation of Whole Mob 

 
Consider the “asymptotics” of the problems as T → +∞. Similarly to 

the corresponding model in Section 7, suppose that (a) the function F(·) 
has a unique inflection point and F(0) = 0, (b) the equation F(x) = x has a 
unique solution q > 0 on the interval (0, 1) so that 

(0; ) : ( ) ; ( ;1) : ( ) .x q F x x x q F x x∀ ∈ < ∀ ∈ >  Several examples of the 
functions F(·) satisfying these assumptions are provided in Section 3. The 
Principal seeks to excite all agents with the minimum costs. 

By the above assumptions on F(·), if for some moment τ we have 
x(τ) > q, then the trajectory xt(u) is nonincreasing and lim ( ) 1tt

x u
→+∞

=  even 

under u(t) ≡ 0 t τ∀ > . This property of the mob admits the following 
interpretation. The domain of attraction of the zero equilibrium without 
control (without the introduced provokers) is the half-interval [0, q). In 
other words, it takes the Principal only to excite more than the proportion 
q of the agents; subsequently, the mob itself surely converges to the unit 
equilibrium even without control. 

Denote by uτ the solution of the problem 

(16) 
0

( )u t dt
τ

∫  → 
: ( ) [0; ], ( )

min
u u t x u qτ∈ ∆ >

. 
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Calculate Qτ = 
0

( )u t dt
τ

τ∫  and find τ* = arg 
0

min
τ ≥

 Qτ. 

The solution of problem (16) exists under the condition 

(17) ∆ > *∆  = 
[0, ]

( )max
1 ( )x q

x F x
F x∈

−
−

. 

For practical interpretations, see the previous sections. 
Owing to the above assumptions on the properties of the distribution 

function, the optimal solution to the problem is characterized as follows. 
Assertion 8.6. If condition (17) holds, then uτ(t) ≡ 0 for t > τ.  
Example 8.3. The paper [13] (see also Section 3) constructed the 

two-parameter function F(·) describing in the best way the evolvement of 
active users in the Russian-language segments of online social networks 
LiveJournal, FaceBook and Twitter. The role of the parameters is player 
by a и b. This function has the form 

(18) Fa,b(x) = 
( ( )) ( )
( (1 )) ( )

arctg a x b acrtg ab
arctg a b acrtg ab

− +
− +

, a ≈ [7; 15], b ∈  [0; 1]. 

Choose a = 13 that corresponds to Facebook and b = 0.4. In this case, 
q ≈ 0.375 and ∆* ≈ 0.169; the details can be found in [9]. • 
 
 
8.4. Positional Control 

 
In the previous subsections, we have considered the optimal pro-

grammed control problem arising in mob excitation. An alternative 
approach is to use positional control. Consider two possible statements 
having transparent practical interpretations. 

Within the first statement, the problem is to find a positional control 
law ( ) :[0,1] [0,1]u x →%  ensuring maximum mob excitation (in the sense 
of (4) or (5)) under certain constraints imposed on the system trajectory 
and/or the control actions. 

By analogy with expression (3), suppose that the control actions are 
bounded: 
(18) ( )u x%  ≤ ∆, x ∈ [0,1], 
and there exists an additional constraint on the system trajectory in the 
form 
(19) ( )x t δ≤& , t ≥ 0, 
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where δ > 0 is a known constant. Condition (19) means that, e.g., a very 
fast growth of the proportion of excited agents (increment per unit time) 
is detected by appropriate authorities banning further control. Hence, 
trying to control mob excitation, the Principal has to maximize the pro-
portion of excited agents subject to conditions (18) and (19). The corre-
sponding problem possesses the simple solution 

(20) * ( )( ) min ; max 0;
1 ( )

x F xu x
F x

δ  + − = ∆  
−   

% . 

owing to the properties of the dynamic system (2), see Lemma 8.1. The 
fraction in (20) results from making the right-hand side of (1) equal to the 
constant δ. 

Note that, under small values of δ, the nonnegative control action 
satisfying (19) may cease to exist. 

Example 8.4. Within the conditions of Example 8.3, choose  
δ = 0.35. Then the optimal positional control is illustrated by Fig. 20 
(dashed lines indicate the bisecting line (blue color) and the curve F(·) 
(red color), while thin solid line shows the upper bound appearing in 
(20)). • 

 

 
 

Fig. 20. Optimal positional control in Example 8.4. 
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The second statement of positional control relates to the so-called 
network immunization problem, see Section 5. Here the Principal seeks to 
reduce the proportion of active agents by introducing an appropriate 
number (or proportion) of immunizers–agents that always prefer passivi-
ty. 

Denote by w ∈ [0, 1] the proportion of immunizers. As shown above, 
the proportion of active agents evolves according to the equation 
(21) (1 ) ( )x w F x x= − −& , x ∈ [0, 1). 

Let ( ) :[0,1] [0,1]w x →%  be a positional control action. If the Principal 
is interested in reducing the proportion of active agents, i.e., 
(22) ( ) 0x t ≤& , t ≥ 0, 
then the control actions must satisfy the inequality 

(23) ( )w x%  ≥ 1 - 
( )
x

F x
. 

The quantity ∆min = 
[0;1]

max
x∈

 (1 - 
( )
x

F x
) characterizes the minimal re-

strictions on the control actions at each moment when system (21) is 
“controllable” in the sense of (22). 

Example 8.5. Within the conditions of Example 8.4, the lower bound 
(23) of the positional control is shown by Fig. 21, see thick line. Again, 
dashed lines indicate the bisecting line (blue color) and the distribution 
function F(·). 
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Fig. 21. Minimal positional control in Example 8.5. 

 
Here the quantity ∆min is approximately 0.385. • 
This section has described the continuous-time problems of mob ex-

citation control using the introduction of provokers or immunizers. 
A promising line of future research is the analysis of a differential 

game describing the informational confrontation of two control subjects 
(Principals) that choose in continuous time the proportions (or numbers) 
of the introduced provokers u and immunizers w, respectively. The corre-
sponding static problem [79] can be a “reference model” here. The con-
trolled object is defined by the dynamic system 

 (1 ) (1 2 ) ( )x u w u w uw F x x= − + − − + −& . 
Another line of interesting investigations concerns the mob excita-

tion problems with dynamic (programmed and/or positional) control, 
where the mob obeys the transfer equation of the form  

(24) ( ) ( ) ( )( ), (1 ) , 0p x t u u F x x p x t
t x

∂ ∂
+  + − −  = ∂ ∂

. 

In this model, at each moment the mob state is described by a proba-
bility distribution function p(x, t), instead of the scalar proportion of 
active agents. 

 
 

9. MICROMODELS OF INFORMATIONAL 
CONFRONTATION 

 
To characterize the informational confrontation problems solved at 

level 5 of the ANS description (see the Introduction), one needs simple 
results in the fields of informational interaction analysis and information-
al control of the agents.  

The first class of the models with a complete chain between the low-
er and upper levels was the models of ANSs described in terms of the 
micromodel, i.e., the “consensus problems” (or the so-called Markov 
models). As a matter of fact, this advancement facilitated the develop-
ment of the corresponding game-theoretic models of informational con-
frontation [46] considered in this section. Within these models, the play-
ers exert certain impact on the elements of an ANS, being interested in its 
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specific states. And the ANS proper is described by the micromodel 
taking into account the individual actions of the agents. 

The second fruitful example is the design approach to the game-
theoretic models of informational confrontation that are “superstructed” 
over the threshold macromodels of a mob, the approach cultivated in the 
next section.  

A common feature of both approaches consists in a natural aspira-
tion for “superstructing” a game-theoretic model (characterizing the 
interaction among the control subjects) over the model of an ANS. The 
current section is intended to demonstrate the feasibility of such symbio-
sis (more specifically, the feasibility of reducing the problems of informa-
tional control analysis in the ANSs to some classical problems of game 
theory). Further exposition has the following structure. Subsection 9.1 
describes the model of an ANS, the model of informational control and 
game-theoretic model of informational confrontation, respectively. Then, 
subsections 9.2–9.5 provide illustrative examples with different concepts 
of game equilibrium, viz., dominant strategies’ equilibrium, Nash equilib-
rium, “contract equilibrium” (being Pareto efficient), Stackelberg equilib-
rium, informational equilibrium, and secure strategies’ equilibrium. 

 
9.1. Micromodel and Informational Control 

 
Consider an ANS composed of n agents. The opinion of agent i  at 

step t  represents a real value t
ix , i ∈ N = {1, 2, …, n}, t = 0, 1, 2, … . 

Following the tradition of Markov models [31, 33, 48, 78], let us reflect 
the mutual informational impact of the agents by a nonnegative confi-
dence matrix A = ||aij|| being stochastic in rows; here aij indicates the 
confidence level of agent i in agent j (i, j ∈ N). Suppose that the vector 
x0 = ( 0

ix )i ∈ N of the initial opinions of the agents is given. Moreover, at 
each step agent i changes his opinion considering the opinions of those 
agents he trusts (including his own opinion):  
(1) t

ix  = 1t
ij j

j N
a x −

∈
∑ , t = 1, 2, … , i ∈ N. 

Assume that the agents interact for a sufficiently long time so that 
the vector of the final (“equilibrium”) opinions is estimated by  
(2) x = A∞ x0, 
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where A∞ = [ lim
t→∞

 (A)t]. The corresponding convergence conditions can be 

found in [31, 78]. 
In the sequel, we will believe that each agent trusts (at least, a bit) 

the rest agents, that is, aij > 0, i, j ∈ N. As shown in [48], under this 
assumption 

– all rows of the matrix A∞ are identical (denote rj = ija∞  > 0, 
i, j ∈ N), while the matrix elements can be interpreted as the impact levels 
of the agents; 

– the final opinions of all agents coincide (denote X = xi, i ∈ N, 
X ∈ ℜ1),  
i.e., expression (2) takes the form  
(3) X = 0

j j
j N

r x
∈
∑ . 

Note that similar result holds for the models of social networks where the 
confidence level is defined by the reputation of the agents, see above. 

Among other things, informational control in the ANSs lies in a 
purposeful impact exerted on the initial opinions of agents, in order to 
ensure the required values of the final opinions (desired by the control 
subject). 

Consider two players being able to influence the initial opinions of 
some agents. Let F ⊆ N be the set of agents whose opinions are formed 
by the first player (the impact agents of the first player), and S ⊆ N be the 
set of the impact agents of the second agent, where F ∩ S = ∅. Assume 
that informational control is unified [74] in the following sense: the initial 
opinion u ∈ U (v ∈ V) is formed for all agents belonging to the set F (S, 
respectively), with U and V representing intervals on ℜ1. 

Denote rF := i
i F

r
∈
∑ , rS := j

j S
r

∈
∑ , X 0 := 0

\( )
k k

k N F S
r x

∈ ∪
∑ ; then formula (3) 

is reduced to  
(4) X(u, v) = rF u + rS v + X 0. 
Hence, the final opinion of the ANS members depends linearly on the 
control actions u and v with the weights rF > 0 and rS > 0, respectively, 
where rF + rS ≤ 1. These weights are determined by the total impact level 
of the impact agents. 
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Making a digression, note that a different situation is when the im-
pact agents fix their opinions: aij = 0, j ≠ i, i ∈ F S∪ . Also, see the 
influence models of mass media in [48]. 

Using relationship (4) between the final opinion of the agents and 
the control actions, one can suggest a game-theoretic interaction model of 
the agents performing these actions. To this end, it is necessary to define 
their goal functions. Suppose that the goal functions of the first and 
second agents, fF(u, v) = HF(X(u, v)) – cF(u) and fS(u, v) = HS(X(u, v)) –
 cS(v), are calculated as the difference between their “income” that de-
pends on the final opinion of the agents and the control costs. 

The aggregate Г = {fF(u, v), fS(u, v), u ∈ U, v ∈ V} composed of the 
goal functions and feasible action sets of the two agents specifies the 
family of games. The distinctions among these games are induced by the 
awareness structure of the players and the sequence of functioning (see 
[74]). 

Imagine that the description of the game Г and formula (4) are the 
common knowledge of the agents choosing their actions one-time, simul-
taneously and independently. In this case, a normal-form game arises 
naturally, and further analysis can be focused on calculation of the corre-
sponding Nash equilibria, their efficiency in the Pareto sense, etc. By 
fixing the sequence of actions choice for the players, one obtains a certain 
hierarchical game. On the other hand, rejecting the hypothesis of com-
mon knowledge yields a reflexive game [75], and so on–see several 
special cases below. With just a few exceptions, their practical interpreta-
tions are omitted due to obviousness. Many examples can be found in 
[48], as well. 

 
9.2. “Antagonistic” Game 

 
Choose the zero opinions of the agents (X 0 = 0) as the “status quo.” 

Suppose that the first player is interested in final opinion maximization 
(HF(X) = X), whereas the second player seeks to minimize it (HF(X) = –
 X). Both players have identical “control resources” (U = V = [d, D], d < –
1 ≤ 1 < D) and identical cost functions (cF(u) = u2 / 2, cS(v) = v2 / 2). 

The goal functions of the players, 
(5) fF(u, v) = rF u + rS v – u2 / 2 
and 
(6) fS(u, v) = – rF u – rS v – v2 / 2, 
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are separable in the corresponding actions. Hence [74], under the simul-
taneous independent choice of the players’ actions, there exists a domi-
nant strategies’ equilibrium (DSE) (ud, vd), where ud = rF and vd = – rS. 

A Pareto point is the vector (uP, vP) that maximizes the sum of the 
goal functions of the players, where uP = 0 and vP = 0. 

The DSE is Pareto inefficient:  
fF(ud, vd) + fS(ud, vd) = – [(rF)2 + (rS)2] /2 < fF(uP, vP) + fS(uP, vP) = 0, 

while the Pareto point appears unstable against the unilateral deviations 
of the players. 

For the first (second) player, define the penalty strategy as his worst 
action for the opponent: u p = D, v p = d. Within the framework of this 
model, the dominant strategies of the players are guaranteeing. Calculate 
the guaranteed payoffs of the players:  

MGR
Ff  = fF(ud, vp) = (rF)2 /2 + rS d, MGR

Sf  = fS(up, vd) = (rS)2 /2 – rF D. 
Assume that a third party controls how the players fulfill their com-

mitments [59, 74] and the following contracts are concluded (the “non-
aggression pact”):  

(7) 
0, 0

ˆ( )
, 0p

v
u v

u v
=

=  ≠
, 

0, 0
ˆ( )

, 0p

u
v u

v u
=

=  ≠
. 

Then the players benefit from executing these contracts if  

(8) 
2

2

( ) 2 0,
( ) 2 ,
F S

S F

r r d
r r D

 + ≤


≤
 

which leads to the stable implementation of the Pareto point. The same 
result can be achieved using the penalty strategy in repeated games. 
According to condition (8), the “contract equilibrium” is implementable 
if the impact levels of the first and second players differ slightly. Fig. 22 
demonstrates the hatched domain 0AB that satisfies condition (8) with 
d = – 1 and D = 1. 
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rF 

rS 

A 

B 

 
 

Fig. 22. The “weights” of impact agents ensuring  
the existence of “contract” equilibrium. 

 
9.3. “Nonantagonistic” Game 

 
Consider a normal form game differing from the one described in the 

previous subsection only in the “income” functions of the agents. That is, 
let HF(X) = X – 2 X 2 and HS(X) = X – X 2, meaning that the first and 
second players seek for obtaining the final opinions XF = 0.25 and 
XS = 0.5, respectively. 

The goal functions of the players,  
(9) fF(u, v) = (rF u + rS v) – 2 (rF u + rS v)2 – u2 / 2 
and 
(10) fS(u, v) = (rF u + rS v) – (rF u + rS v)2 – v2 / 2, 
are no more separable in the corresponding actions. Therefore, we evalu-
ate Nash equilibrium  
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(11) u* = 
1)(2)(4

)(2
22

2

++
−

SF

SFF

rr
rrr

, v* = 
1)(2)(4

)(2
22

2

++
+

SF

FSS

rr
rrr

. 

Fig. 23 shows the parametric set of the Nash equilibria for rF = 0.1 
and rS ∈ [0, 0.9]. 

 

 
Fig. 23. The set of Nash equilibria 

 
The relationships between the equilibrium actions of the players and 

the proportions of the impact agents (equivalently, the total reputations rS 
and rF of the impact agents) are shown by Fig. 24. The left-hand graph 
characterizes the general form of this relationship, while the right-hand 
counterpart illustrates the relationship on the admissible ranges of rS and 
rF. Particularly, it can be observed that, the greater is the total reputation 
of the impact agents of the second player, the smaller is the equilibrium 
control action of the first player (on the one part) and the larger is the 
equilibrium control action of the second player (on the other part). That 
is, the first (second) player seeks for obtaining the smaller (greater, 
respectively) opinion. 
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 rS rS 

rF rF 

 
Fig. 24. 3D graphs of u* and v* 

 
Now, consider a hierarchical game of the type Г1 where the goal 

functions of the players are defined by (9) and (10) and the first player 
moves first. 

Let us analyze the move made by the second player. At this step, the 
second player knows the opponent’s action u and maximizes his own 

payoff by choosing the action 
2

2
2( ) 1
S S F

S

r r r u
r
−

+
. Actually, the choice set of the 

second player represents a singleton. The guaranteeing strategy of the 
first player in the game Г1 and his strategy in the Stackelberg equilibrium 
are defined by 

u* = 
1)(4)(4)(4

)(2
242

2

+++
−

SSF

SFF

rrr
rrr ; v* = 

1)(4)(4)(4
)1)(2()(2

242

23

+++
+−

SSF

SFS

rrr
rrr . 

 
9.4. Reflexive Game 

 
Consider the goal functions that differ from the ones explored in the 

previous subsection in the cost functions of the players: cF(u) = u2 / (2 qF), 
and cS(v) = v2 / (2 qS), where qF = 1 and denote the “efficiency levels” of 
the players. By assumption, each player knows his efficiency level, the 
first player believes that the common knowledge is qS = 1, while the 
second player knows this fact and the real efficiency of the first player. 
The described reflexive game [75] has the graph 2 ← 1 ↔ 12. 
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According to expression (11), the first player chooses 

u* = 
1)(2)(4

)(2
22

2

++
−

SF

SFF

rr
rrr . Consequently, the second agent selects his best 

response v* = 
)1)(2)(4)()(1(

))(21)()(21(5.0
222

22

+++
++

SFS

SFS

rrr
rrr . These actions lead to the 

final opinion X = 
)1)(2)(4)()(1(

)(5.0)()(
222

242

+++
++

SFS

SSF

rrr
rrr  of the ANS; in the 

general case, it does not coincide with the opinion 

X1 = 
1)(2)(4

)()(
22

22

++
+

SF

SF

rr
rr  expected by the first player. This means that the 

resulting informational equilibrium is unstable [75]. For this reflexive 
game graph, the informational equilibrium enjoys stability only in two 
situations: (1) the belief of the first agent about the opponent’s efficiency 
level is true, or (2) the total reputation of the impact agents of the second 
player makes up zero (however, the reputation is assumed strictly posi-
tive). 

 
9.5. Secure Strategies Equilibrium 

 

Consider the game where HF(X(u, v)) = 
ˆ0,

ˆ0,
Fh X X

X X

 > ≥


<
, 

HS(X(u, v)) = 
ˆ0,

ˆ0,
Sh X X

X X

 > <


≥
, cF(u) = u, and cS(v) = v, with 

U = V = [d, D], d < –1 ≤ 1 < D, hF > D, and hv > |d|. In a corresponding 
practical interpretation, the first player is interested in the adoption of a 
certain decision, which requires that the opinion of the ANS members 
exceeds the threshold X̂ ; in contrast, the second player seeks for block-
ing this decision. 

Let rF D + rS d + X 0 > X̂  for definiteness. There exists no Nash 
equilibria in this game, but it is possible to evaluate a secure strategies’ 
equilibrium (SSE) [50, 51, 52] in the form (( X̂  – rS d – X 0) / rF + ε; 0) 
where ε is an arbitrary small strictly positive constant. A practical inter-
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pretation of the SSE lies in the following. The first player ensures the 
adoption of the required decision, and the second player (even choosing 
the maximum possible absolute values of the actions) is unable to modify 
the result. 

In this section, we have analyzed a series of specific examples illus-
trating the applicability of game theory to the description of informational 
confrontation in ANSs, both in terms of the process and result. Despite its 
simplicity, the stated model shows the diversity of possible game-
theoretic formulations (dominant strategies’ equilibrium, Nash equilibri-
um, “contract equilibrium,” Stackelberg hierarchical games and hierar-
chical games of the type Г1, reflexive games, secure strategies’ equilibri-
um). Generally speaking, any specific model of informational 
confrontation should be developed taking into account, first, the features 
of an associated practical problem and, second, the identifiability of a 
modeled system (i.e., ANS parameters, the admissible actions of the 
players, as well as their preferences and awareness). 

Note that the game-theoretic models of informational confrontation 
over ANSs have several applications, namely, information security in 
telecommunication networks, counteraction to the destructive informa-
tional impacts on the social groups of different scale, prevention of their 
massive illegal actions, and others. 

As for the promising directions of further investigations, we mention 
the design and study of the game-theoretic models of informational 
confrontation in ANSs under the following conditions: 

– the sequential choice of the players’ actions under the observed 
dynamics of the ANS state (the “defense-attack” games with the descrip-
tion of opinion dynamics (the distribution of informational epidemic or 
viruses within an ANS)); 

– the repeated choice of the players’ actions under incomplete in-
formation on the actions of the opponents and the ANS state. 

 
 

10. MACROMODELS OF INFORMATIONAL 
CONFRONTATION 

 
Within the stochastic models of mob control (see Section 5), we ex-

plore the game-theoretic models of informational confrontation when the 
agents are simultaneously controlled by two subjects with noncoinciding 
interests regarding the number of active agents in an equilibrium state. 
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And the ANS is described by the macromodel with the proportion of 
active agents as the main parameter. 

This section is organized as follows. In subsection 10.1, we treat in-
formational confrontation within the stochastic models of mob control. 
And subsections 10.2–10.5 provide original analysis results for the game-
theoretic models of informational confrontation in terms of the normal-
form games (including a characterization of Nash equilibria and secure 
strategies’ equilibria), hierarchical games and reflexive games. Numerous 
examples show in the analytical form how these equilibria depend on the 
model parameters. 

 
10.1. Model of Informational Confrontation 

 
Consider a mob as an object controlled by two subjects, i.e., Princi-

pals. The behavior of the dynamic system (2.7) describing the evolution 
of the proportion of active agents is determined by the distribution func-
tion F(⋅) of the agents’ thresholds. And so, we will analyze the control 
actions that change this distribution function. 

Note that Sections 4 and 5 have defined the set (proportion) of the 
initially excited agents or/and the distribution function of their thresholds 
that implement a required equilibrium. Within the framework of the 
models studied below, the agents are excited “independently.” 

Designate by Λ(x) = {(δ, γ) ∈ 2
+ℜ  | x*(δ, γ) = x} the set of the control 

pairs implementing a given value x ∈ [0, 1] as the CBE, see Model II in 
Section 5. 

To explore the game-theoretic models of interaction between the 
Principals, we need a result that is proved similarly to Assertions 3 and 4 
in the paper [25]. 

Assertion 10.1.  In Model II, the CBE x*(δ, γ) has the following 
properties: 

1) monotonic (nonstrict) increase in δ; for strict monotonicity, a suf-
ficient condition is F(1 – 0) < 1 or γ > 0; 

2) monotonic (nonstrict) decrease in γ; for strict monotonicity, a suf-
ficient condition is F(0) > 0 or δ > 0.  

Example 10.1. Consider the uniform distribution of the agents’ 
thresholds, i.e., F(x) = x. Here x*(δ, γ) = δ / (δ + γ) and 
Λ(x) = {(δ, γ) ∈ 2

+ℜ  | γ / δ = (1 / x – 1)}. • 
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As a digression, note an important feature of the socioeconomic and 
organizational systems with several subjects interested in certain states of 
a controlled system (e.g., a network of interacting agents) and applying 
control actions to it (systems with distributed control [43, 59, 74]). In 
such systems, just like in our case, there exists an interaction between the 
subjects, which is termed informational confrontation when they exert 
informational impacts on the controlled object. 

In what follows, we consider a series of the game-theoretic models 
of interaction between the Principals whose informational impacts on a 
mob are defined by expression (5.10) (in Model I) or by expression (5.19) 
(in Model II). 

 
10.2. Normal-Form Game 

 
Model I. Two Principals exert an informational impact on a mob by 

playing a normal-form game. That is, Principal 1 and Principal 2 choose 
their strategies α ∈ [0, 1] and β ∈ [0, 1], respectively, one-time, simulta-
neously and independently from each other. The goal functions of Princi-
pals 1 and 2 have the form  
(1) fα(α, β) = Hα(x*(α, β)) – сα(α), 
(2) fβ(α, β) = Hβ(x*(α, β)) – сβ(β), 

Moreover, the payoff Hα(·) of Principal 1 is an increasing function, 
as he seeks for maximizing the number of the excited agents, while the 
payoff Hβ(·) of Principal 2 is a decreasing function (his interests are quite 
the opposite). Both cost functions cα(·) and cβ(·) are strictly increasing and 
cα(0) = cβ(0) = 0. 

The described game belongs to the class of the normal-form ones, 
and several typical questions of game theory arise immediately. What is 
the Nash equilibrium (α*, β*) in the agents’ game? For which strategy 
profiles is the Nash equilibrium dominating the status quo profile, i.e., the 
CBE without control (i.e., when does the condition fα(α*, β*) ≥ fα(0, 0), 
fβ(α*, β*) ≥ fβ(0, 0) hold)? What is the structure of the set of Pareto effi-
cient strategy profiles? When does a dominant strategy equilibrium 
(DSE) exist? And so on. 

Denote by f(α, β) = fα(α, β) + fβ(α, β) the utilitarian collective utility 
function (CUF) [62]. The pair of strategies ˆˆ( ; )α β  = arg 

2( , ) [0;1]
max

α β ∈
 f(α, β) 

will be called the utilitarian solution. 
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The results obtained in Section 5 and Assertion 10.1 are crucial for 
our game-theoretic analysis, as explained below. The goal functions (1) 
and (2) of the Principals depend on their strategies (α and β, or δ and γ) 
and on the CBE, which is by-turn dependent on these strategies. The 
monotonic dependence of the CBE on the strategies of the Principals (if 
necessary, its continuity can be checked in a specific case), as well as the 
implementability of the whole unit segment as the CBE via the appropri-
ately chosen strategies allow “translating” the properties of the goal 
functions and cost functions on the dependence of these parameters 
directly from the strategies of the Principals. For instance, if Hδ(x*(δ, γ)) 
is an increasing function of x*, then by Assertion 10.1 the payoff of 
Principal 1 is an increasing function of his strategy, and so on. 

An elementary case is the antagonistic game: Principal 1 seeks for 
maximizing the number of the excited agents, while Principal 2 pursues 
the opposite interests. Assuming cα(·) ≡ 0 and cβ(·) ≡ 0 (no control costs), 
the expressions (1) and (2) yield  
(3) α̂f (α, β) = x*(α, β), β̂f (α, β) = 1 – x*(α, β). 

Clearly, f(α, β) ≡ 1. As x*(α, β) does not decrease in α and increase in 
β, we naturally arrive at Assertion 10.2. Just like its “analogs” for Model 
II (see Assertions 10.3 and 10.4 below), this result seems trivial in some 
sense, following directly from the monotonicity of the goal functions of 
the agents in their actions. On the other hand, Assertion 10.2 proves the 
existence of the DSE and assists in its calculation in the degenerate cases. 

Assertion 10.2. In Model I described by the antagonistic game with 
the zero control costs, there exists the DSE αDSE = 1, βDSE = 1.  

Note that, in this equilibrium, the distribution function of the agents’ 
thresholds coincides with the initial distribution function, i.e., 
F1,1(x) ≡ F(x). Hence, the CBE remains invariable, “matching” the status 
quo profile. 

Example 10.2. Choose F(x) = x, then  

(4) xI*(α, β) = (1 )
2

α − β
α + β − αβ

. 

Evaluate  
I*( , )x∂ α β
∂α

 = 
2

(1 )
( 2 )

β − β
α + β − αβ

, 
I* ( , )x∂ α β
∂β

 = 
2

(1 )
( 2 )

α − α
−

α + β − αβ
, 

which shows that xI*(α, β) is increasing in the first argument and decreas-
ing in the second argument for any admissible values of the other argu-
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ment. Therefore, under the zero control costs, the DSE in the Principals’ 
game with the goal functions (3) is the unit strategies αDSE = 1, βDSE = 1. 
Naturally, this point also represents the Nash equilibrium (NE) in the 
Principals’ game. In the current example, we have W = [0, 1]. The DSE 
implements the same mob state as in the absence of control. • 

Now, consider the case of nonzero control costs. 
Assertion 10.3. In Model I with W = [0, 1], F(0) > 0 and F(1 – 

0) < 1, let x*(α, β) be a continuous function, the payoff functions of the 
Principals be bounded, linear or concave in their strategies and the cost 
functions be convex. Then there exists a Nash equilibrium in the Princi-
pals’ game.  

The trivial Assertion 10.3 (and its “analog” for Model II, i.e., Asser-
tion 10.6) directly follows from the well-known sufficient conditions of 
Nash equilibrium existence in the continuous games, see [64]. 

The example below admits a unique Nash equilibrium. 
Example 10.3. Choose F(x) = x, Hα(x) = x, Hβ(x) = 1 – x, 

cα(α) = - ln(1 – α), and cβ(β) = – λ ln(1 – β). The first-order optimality 
conditions yield β = (1/λ) α. Under λ = 1, we obtain α* = ¼ and β* = 1/4. 
In this case,  

xI*(α*, β*) = 1/2, fα(α*, β*) = fβ(α*, β*) ≈ –0.2. 
Interestingly, in the equilibrium both Principals have smaller values 

of the goal functions than in the “status quo” profile (0; 0) (since 
fα(0, 0) = 1 and fβ(0, 0) = 0). Here the utilitarian solution is also the zero 
strategy profile. • 

Model II. Consider the goal functions of Principals 1 and 2 of the 
form (1) and (2), respectively, except that α is replaced by δ, and β by γ. 

Assertion 10.4. In Model II described by the antagonistic game with 
the zero control costs, there exists no finite DSE or NE in the Principals’ 
game.  

Assertion 10.4 is immediate from boundedness of the admissible 
strategy sets of the Principals and from monotonicity of x*(δ, γ) in both 
variables (see Assertion 10.1). In addition, these properties guarantee the 
following result. 

Assertion 10.5. In Model II described by the antagonistic game with 
the zero control costs, let the admissible strategy sets of the Principals be 
bounded: δ ≤ δmax, γ ≤ γmax. Then there exists the DSE δDSE = δmax, 
γDSE = γmax in the Principals’ game.  

Consider the case of nonzero control costs. 
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Assertion 10.6. In Model II satisfying the conditions of Assertion 
10.1, let x*(δ, γ) be a continuous function, the payoff functions of the 
Principals be bounded, linear or concave in their strategies and the cost 
functions be convex with the zero derivatives at the zero point and infi-
nite growth as the argument tends to infinity. Then there exists a finite 
Nash equilibrium in the Principals’ game.  

Assertion 10.6 holds true, since under its conditions the goal func-
tions of the Principals are concave in their strategies and take nonnegative 
values on the bounded value set of the arguments, i.e., a Nash equilibrium 
exists in this continuous game by the sufficient conditions [64]. 

Example 10.4. Choose F(x) = x, Hδ(x) = x, Hγ(x) = 1 – x, cδ(δ) = δ2, 
and cγ(γ) = λ2 γ2. According to Example 10.1, the CBE is 
x*(δ, γ) = δ / (δ + γ). The goal functions of the Principals have the follow-
ing form:  
(5) fδ(δ, γ) = δ / (δ + γ) – δ2, 
(6) fγ(δ, γ) = 1 – δ / (δ + γ) – λ2 γ2. 

The goal functions (5) and (6) are concave in δ and γ, respectively. 
The first-order optimality conditions yield the Nash equilibrium 

δ* = 1
2 1
λ

+ λ
, γ* = 1 1

12 + λλ
.  

In this case, the CBE is x*(δ*, γ*) = 
λ

1+λ
, and in the NE the goal 

functions are fδ(δ*, γ*) = 
2

λ(1+2λ)
2(1+λ)

, fγ(δ*, γ*) = 
2

λ+2
2(1+λ)

. 

The utilitarian CUF f(δ, γ) = fδ(δ, γ) + fγ(δ, γ) achieves its maximum 
(takes the unit value) on the zero strategy profile. The NE value of the 

utilitarian function is f(δ*, γ*) = 1 – 
2(1 )

λ
+ λ

, i.e., the quantity 
2(1 )

λ
+ λ

 

characterizes how “worse” is the NE value of the utilitarian CUF than its 
optimal value. • 

 
10.3. Threshold Goal Functions 

 
For practical interpretations, an important case concerns the thresh-

old goal functions of the Principals, i.e.,  
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(7) Hα(β)(x) = 
( )

( )

, if ( ) ( ),

, otherwise,

H x

H

+
α β α β

−
α β

 ≥ ≤ θ θ



 

where ( ) ( )H H+ −
α β α β> . That is, Principal 1 obtains a higher payoff when 

the proportion of active agents is not smaller than a threshold θα ∈ [0, 1], 
while Principal 2 obtains a higher payoff when the proportion of active 
agents exceeds a threshold θβ ∈ [0, 1]. Denote by x̂  the CBE in the 
absence of the Principals’ control actions: x̂  = x*(0, 0). Make a pair of 
assumptions as follows. 

Assumption A.1. The attainability set W is the unit segment, 
x*(α, β) is a strictly monotonic continuous function of its arguments, and 
the cost functions of the Principals are strictly monotonic. See the corre-
sponding sufficient conditions above or check these conditions in each 
specific case. 

Assumption A.2. Under the zero strategy of Principal 2, Principal 1 
can independently implement any CBE from [ x̂ , 1]; under the zero 
strategy of Principal 1, Principal 2 can independently implement any 
CBE from [0, x̂ ]. 

The structure of the goal functions of the Principals and Assump-
tions A.1 and A.2 directly imply the following. For Principal 1 (Principal 
2), it appears nonbeneficial to implement the CBE exceeding the thresh-
old θα (being strictly smaller than the threshold θβ, respectively). 

Model I. Define the Nash equilibrium (α*, β*):  

 
* * * * * *

* * * * * *

[0; 1] ( ( , )) ( ) ( ( , )) ( ),
[0; 1] ( ( , )) ( ) ( ( , )) ( ).

H x c H x c
H x c H x c

α α α α

β β β β

∀α∈ α β − α ≥ α β − α
 ∀β∈ α β − β ≥ α β − β

 

First, consider the special case θβ = θα = θ. 
Introduce the notation α(θ) = min {α ∈ [0, 1] | x*(α, 0) = θ}, 

β(θ) = min {β ∈ [0, 1] | x*(0, β) = θ}. 
Define the set  

(8) Ωα,β(θ) = {(α, β) ∈ [0, 1]2 | x*(α, β) = θ, 
cα(α) ≤ H H+ −

α α− , cβ(β) ≤ H H+ −
β β− }, 

which includes the pairs of strategies implementing the CBE θ with the 
following property: each Principal gains not less than by using the strate-
gy that modifies his payoff (7). By analogy with [59, 74], set (8) will be 
called the domain of compromise. 
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By definition, if the domain of compromise is nonempty, then im-
plementing the CBE θ in terms of the utilitarian CUF guarantees a payoff 
to the agents that is not smaller than in the case preserving the status quo 
profile x̂ . Moreover, the Principals obviously benefit nothing by imple-
menting any CBE (perhaps, except x̂  or θ). 

Assertion 10.7. If θβ = θα = θ and Assumption A.1 holds, then there 
may exist NE of the two types only: 

1) (0; 0) is the NE under  
(9) x̂  ≤ θ and cα(α(θ)) ≥ H H+ −

α α−  
or  
(10) x̂  ≥ θ and cβ(β(θ)) ≥ H H+ −

β β− ; 
2) the set of NE includes the set Ωα,β(θ) if the latter is nonempty. 
If, Assumption A.2 also holds, then 
(α(θ); 0) is the NE under  

(11) x̂  ≤ θ and cα(α(θ)) ≤ H H+ −
α α− ; 

 
(0; β(θ)) is the NE under  

(12) x̂  ≥ θ и cβ(β(θ)) ≤ H H+ −
β β− . 

Now, we explore the connection between the domain of compromise 
and the utilitarian solution. Denote by  
(13) C(θ) = 

,( , ) ( )
min

α βα β ∈Ω θ
 [cα(α) + cβ(β)] 

the minimum total costs of the Principals that are incurred by implement-
ing the CBE θ. In the case under consideration, the utilitarian solution 
satisfies the following conditions: 

– if x̂  ≤ θ, then f ˆˆ( ; )α β  = max { H H− +
α β+ ; H H+ +

α β+  – C(θ)];  

– if x̂  ≥ θ, then f ˆˆ( ; )α β  = max { H H+ −
α β+ ; H H+ +

α β+  – C(θ)].  

And so, if for x̂  ≤ θ we have C(θ) ≤ H H+ −
α α−  and, for x̂  ≥ θ, 

C(θ) ≤ H H+ −
β β− , then the domain of compromise includes the utilitarian 

solution. 
The example below demonstrates the crucial role of Assumption A.2 

for the NE structure. 
Example 10.5. Choose Пусть F(x) = x, θ = 1/2, H −

α  = H −
β  = 0, H +

α

 = H +
β  = 1, cα(α) = - ln(1 – α), and cβ(β) = - ln(1 – β). Clearly (see Exam-
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ple 10.3), the zero strategy profile is not an NE. According to the results 
of Example 10.2 and expressions (8)–(13),  

Ωα,β(1/2) = {(α, β)∈[0, 1]2 | (1 )
2

α −β
α +β − αβ

=1/2, ln(1–α)≥–1, ln(1–β) ≥ –1}, 

i.e., Ωα,β (1/2) = {(α, β) ∈ [0, 1]2 | α = β, 0 < α, β ≤ 1 – 1/e}. In this exam-
ple, the ε-optimal utilitarian solution is the Principals’ strategy profile 
(ε, ε), where ε ∈ (0, 1 – 1/e]. • 

Next, consider the general case when the Principals’ thresholds ap-
pearing in the payoff functions (7) are different. In terms of applications 
(informational confrontation), the most important relationship between 
the thresholds is described by  
(14) θβ < x̂  < θα. 

Define the following functions:  
 Сα(x, β) = 

*{ [0;1]| ( , ) }
min ( )

x x
cα

α∈ α β =
α , Сβ(x, α) = 

*{ [0;1]| ( , ) }
min ( )

x x
cβ

β∈ α β =
β . 

(whenever minimization runs on the empty set, we believe that a corre-
sponding function is + ∞). 

Since the cost functions are nondecreasing and the payoff functions 
have form (7), the Principals do not benefit by implementing the CBE 
from the interval (θβ, θα) in comparison to the status quo profile x̂ . Intro-
duce another assumption actually relaxing Assumption A.2. 

Assumption A.3. Under the zero strategy of Principal 2, Principal 1 
can independently implement the CBE θα; under the zero strategy of 
Principal 1, Principal 2 can independently implement the CBE θβ.  

The result below is immediate from the definition of Nash equilibri-
um and the properties of the Principals’ goal functions.   

Assertion 10.8. Under Assumptions A.1, A.3 and condition (14), the 
Nash equilibria in the Principals’ game have the following characteriza-
tion: 

– (0; 0) is the NE under  

(15) 
( ( )) ,
( ( )) ;

H c H
H c H

+ −
α α α α
+ −
β β β β

 − α θ ≤
 − β θ ≤

 

– (α(θα); 0) is the NE under  

(16) 
( ( )) ,

( , ( ));
H c H

H H C

+ −
α α α α

− +
β β β β α

 − α θ ≥
 ≥ − θ α θ

 

– (0; β(θβ)) is the NE under  
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(17) 
( ( )) ,

( , ( )).
H c H

H H C

+ −
β β β β

− +
α α α α β

 − β θ ≥
 ≥ − θ β θ

 

Model II with the threshold payoff functions of the Principals is de-
signed by analogy to Model I: just replace α by δ, and β by γ. Let us 
illustrate Assertion 10.8 using an example for Model II. 

Example 10.6. Choose F(x) = 1/3 + 2x2/3, θγ = 0.4, θδ = 0.6, H −
δ

 = H −
γ  = 0, H +

δ  = H +
γ  = 1, cδ(δ) = δ2, and cγ(γ) = λ2 γ2. Here we calculate 

x̂  = 1/2, γ(θγ) ≈ 0.1, and δ(θδ) ≈ 0.07. For λ = 2, all conditions (15)–(17) 
fail and, hence, the NE does not exist. 

For λ = 20, conditions (15) and (17) fail, but condition (16) holds. 
Therefore, (0.07; 0) is the NE. • 

Example 10.7. Within the conditions of Example 10.6, choose 
θγ = θδ = θ = 0.4, and λ = 20. Then we obtain  

Ωδ,γ(0.4) = {δ ∈ [0, 1], γ ∈ [0, 0.05] | γ = 0.1 + 1.5 δ} = Ø. 
The condition (15) takes place, i.e., (0; 0) is the NE. • 

If there exist no Nash equilibria, an alternative approach is to find 
and analyze the equilibria in secure strategies (ESS). This concept was 
originally suggested in the paper [50] as the equilibria in safe strategies 
and then restated in a simpler form (see [51, 52] for details). The ESS 
proceeds from the notion of a threat. There is a threat to a player if an-
other player can increase his own payoff and simultaneously decrease the 
payoff of the given player via a unilateral deviation. An equilibrium in 
secure strategies is defined as a strategy profile with the following prop-
erties: 

– all the players have no threats; 
– none of the players can increase his payoff by a unilateral devia-

tion without creating a threat to lose more than he gains. 
Under Assumptions A.1 and A.2, define the following functions:  

Сδ(x, γ) = 
*{ 0| ( , ) }

min ( )
x x

cδ
δ≥ δ γ =

δ , Сγ(x, δ) = 
*{ 0| ( , ) }

min ( )
x x

cγ
γ≥ δ γ =

γ . 

Again, if minimization runs on the empty set, we believe that a corre-
sponding function is + ∞. 

Using the definition of ESS (see above and the papers [51, 52]) and 
the properties of the Principals’ goal functions, we establish the following 
result. 

Assertion 10.9. Let Assumptions A.1 and A.2 hold in Model II. Then 
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1) the equilibrium point (δESS; 0) is the ESS if there exists a mini-
mum nonnegative value δESS such that  

*
ESS

ESS

ESS

( ;0) ,
( ) ,

( , ) ;

x
H c H

H C H

δ
+ −
δ δ δ

+ −
γ γ γ γ

 δ ≥ θ
 − δ ≥
 − θ δ ≤

 

2) the equilibrium point (0; γESS) is the ESS if there exists a mini-
mum nonnegative value γESS such that  

*
ESS

ESS

ESS

(0; ) ,
( ) ,

( , ) .

x
H c H

H C H

γ
+ −
γ γ γ

+ −
δ δ δ δ

 γ ≤ θ
 − γ ≥
 − θ γ ≤

 

Example 10.8. Within the conditions of Example 10.6, choose λ = 2, 
which yields no Nash equilibria in the game. From the first system of 
inequalities in Assertion 10.9 we find that δESS ≈ 0.816 implements the 
unit CBE. And the second system of inequalities appears infeasible, i.e., 
the above ESS is unique. • 

Note that the choice of the thresholds in the payoff functions of the 
Principals and the payoffs proper can be treated as meta control. Really, 
under a known relationship between the equilibrium of the Principals’ 
game and the above parameters, it is possible to analyze three-level 
models (metalevel–Principals–agents), i.e., to choose the admissible 
values of the parameters in the Principals’ game that lead to an equilibri-
um implementing the desired CBE in the agents’ game. We give an 
illustrative example. 

Example 10.9. Within the conditions of Example 10.6, set λ = 20 
and consider the following problem. It is required to choose the values of 

δH +  and +
γH  under which the zero strategy profile becomes the NE in the 

Principals’ game. By condition (15), it suffices to decrease +
δH  to 4.9·10-

4. 
Under the same conditions, the next problem is to choose the values 

of +
δH  and +

γH  that implement the CBE θγ = 0.4. According to the ex-

pression (17), it suffices to choose +
δH  ≤ 0.029 and +

γH  ≥ 4. • 
In addition to the standard normal-form games, we will study their 

“extensions,” namely, hierarchical (subsection 10.4) and reflexive (sub-
section 10.5) games between two Principals. As a matter of fact, the 
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examples below merely demonstrate how the corresponding classes of the 
game-theoretic models of informational confrontation can be described 
and analyzed. Their systematic treatment is the subject of further re-
search.  

 
10.4. Hierarchical Game 

 
In mob control problems, the players (Principals) often make deci-

sions sequentially. Here the essential factors are the awareness of each 
player at the moment of decision-making and the admissible strategy sets 
of the players. A certain hierarchical game can be “superstructed” over 
each normal-form game [74]. Moreover, it is necessary to discriminate 
between two settings as follows: 

1) One of the Principals chooses his strategy and then the other does 
so, being aware of the opponent’s choice. After that, an informational 
impact is exerted on the agents. As a result, the distribution function of 
the agents’ thresholds takes form (6) or (9). We will study this case 
below. 

2) One of the Principals chooses his strategy and exerts his informa-
tional impact on the agents. After that, the other Principal chooses his 
strategy and exerts his informational impact on the agents, being aware of 
the opponent’s choice. 

In Model I, both settings are equivalent, as yielding the same distri-
bution function (6) of the agents’ thresholds. However, they differ within 
the framework of Model II. 

In the games Г1 (including the Stackelberg games), the admissible 
strategy sets of the Principals are the same as in the original normal-form 
game, and the Principal making the second move knows the choice of the 
opponent moving first. The corresponding situations can be interpreted as 
control and “countercontrol” (e.g., under a given value of α, choose β, or 
vice versa). If the original normal-form game allows easy analysis, yield-
ing an explicit relationship between the equilibria and the model parame-
ters, then the corresponding game Г1 is often explored without major 
difficulties. 

Consider several examples of hierarchical games for the first setting 
of Model I with the threshold payoff functions of the Principals. 

Example 10.10. Within the conditions of Example 10.5 with θ = 1/3, 
Principal 1 chooses the parameter α and then Principal 2 chooses the 
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parameter β, being aware of the opponent’s choice (the so-called game 
Г1(α, β)). It follows from expressions (4) and (10) that  

 Ωα,β(θ) = {(α, β) ∈ [0, 1]2 | β = (1 )
2

α − θ
α + θ − αθ

, 0 < α, β ≤ 1 – 1/e}. 

If Principal 1 chooses the strategy αS, the best response of Principal 2 
has the form  
βS(αS) = arg 

[0;1]
max
β∈

 [Hβ(x*(αS *(α, β)) – cβ(β)] = 

= arg 
[0;1]

max
β∈

 [
*1, if ( , ) ,

0, otherwise,

Sx α β ≤ θ



 + ln(1 – β)] = 2
1

α
α +

. 

In other words, Principal 2 benefits from choosing the minimum value of 
β implementing the CBE θ under the given αS. The goal function of 
Principal 1 can be rewritten as *( ( , ( ))) ( )S S S SH x cα αα β α − α  = 1 –
 α (α )Sc , where 0 < α ≤ 1 – 1/e. Therefore, the ε-optimal solution (αS*, βS*) 
of the game Г1(α, β) is the pair of strategies (ε, 2 /( 1)ε ε + ) yielding the 
Principals’ payoffs 1 + ln(1 – ε) and 1 + ln(1 – 2 / ( 1)ε ε + ), respectively. 
(Here ε represents an arbitrary small strictly positive quantity.) Note a 
couple of aspects. First, this solution is close to the utilitarian solution, 
since both Principals choose almost zero strategies. Second, the Principal 
moving second incurs higher costs. • 

Example 10.11. Within the conditions of Example 10.10, Principal 2 
chooses the parameter β and then Principal 1 chooses the parameter α, 
being aware of the opponent’s choice (the so-called game Г1(β, α)). It 
follows from expressions (4) and (10) that  
Ωα,β(θ) = {(α, β) ∈ [0, 1]2 | α = / (1 2 )θβ −β−θ+ βθ , 0 < α, β ≤ 1 – 1/e}. 

In this case, the ε-optimal solution of the game Г1(β, α) is the pair of 
strategies (( / (2 )ε −ε , ε) yielding the Principals’ payoffs 1 + ln(1 –
 / (2 )ε −ε ) and 1 + ln(1 – ε), respectively. Again, this solution is close to 
the utilitarian analog and the Principal moving second incurs higher 
costs. • 

Based on Examples 10.10 and 10.11, we make the following hy-
pothesis, which is well-known in theory of hierarchical games and their 
applications. The solutions of the games Г1(α, β) and Г1(β, α) belong to 
the domain of compromise (if nonempty), and the Principals compete for 
the first move: the Principal moving first generally compels the opponent 
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“to agree” with a nonbeneficial equilibrium. This property appears in 
many control models of organizational systems (e.g., see [74]). 

Now, consider the games Г2 where the Principal moving first pos-
sesses a richer set of admissible strategies: he chooses a relationship 
between his actions and the opponent’s actions and then reports this 
relationship to the latter. Using the ideology of Germeier’s theorem, one 
can expect the following. If the domain of compromise is nonempty, the 
optimal strategy of Principal 1 (first choosing the parameter α, i.e., in the 
game Г2(α(·), β)) has the form  

(18) αG*(β) = 
* *, if ,

1, otherwise.

S Sα β = β



 

In a practical interpretation, strategy (18) means that Principal 1 
suggests the opponent to implement the solution (αS*, βS*) of the game 
Г1(α, β). If Principal 2 rejects the offer, Principal 1 threatens him with the 
choice of the worst-case response. The game Г2(α(·), β)) with the strategy 
(18) leads to the same equilibrium payoffs of the Principals as the game 
Г1(α, β). 

The game Г2(β(·), α)), as well as the hierarchical games for Model II 
are described by analogy. 

 
10.5. Reflexive Game 

 
It is also possible to “superstruct” reflexive games [75] over a nor-

mal-form game where the players possess nontrivial mutual awareness 
about some essential parameters. Assume that the distribution function 
F(r, x) incorporates a parameter r ∈ Y describing the uncertainty. Follow-
ing the paper [75], denote by r1 and r2 the beliefs of Principals 1 and 2 
about the parameter r, by r12 the beliefs of Principal 1 about the beliefs of 
Principal 2, and so on. 

Example 10.12. In Model II, choose F(r, x) = r + (1 – r) x, r ∈
 Y = [0, 1], Hδ(x) = x, Hγ(x) = 1 – x, cδ(δ) = δ, and cγ(γ) = λ γ. The corre-
sponding CBE is x*(δ, γ) = (δ + r) / (δ + γ + r), yielding the Principals’ 
goal function  
(19) fδ(δ, γ) = (δ + r) / (δ + γ + r) – δ, 
(20) fγ(δ, γ) = 1 – (δ + r) / (δ + γ + r) – λ2 γ. 
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If the parameter r ∈ [0, 1] is common knowledge [75] between the 
Principals, expressions (19) and (20) give the parametric NE of the Prin-
cipals’ game:  

(21) δ* = 
2

21
λ 

 + λ 
 - r, 

(22) γ* = 
2 2

1
(1 )+ λ

 

And these strategies implement the CBE  

(23) x*(δ*, γ*) = 
2

21
λ
+ λ

. 

Interestingly, the equilibrium strategy (22) of Principal 2 and the 
corresponding CBE (23) are independent of the parameter r ∈ [0, 1] 
under common knowledge. The situation completely changes without the 
common knowledge about this parameter. 

Let r1 = r12 = r121 = r1212 = …, i.e., Principal 1 possesses some (gen-
erally, incorrect) information r1 about the uncertain parameter r, suppos-
ing that his beliefs are true and form common knowledge. Also, choose 
r2 = r21 = r212 = r2121 = … = r, i.e., Principal 2 is aware of the true value of 
r, considering it as common knowledge. In other words, Principal 2 does 
not know that the beliefs of Principal 1 possibly differ from the reality. 

Using expressions (21) and (22), we calculate the informational 
equilibrium [75] of the Principals’ game  

δ* = 
2

21
λ 

 + λ 
 – r1, γ* = 

2 2

1 ,
(1 )+ λ

 

which implements the CBE  

(24) x*(δ*, γ*) = 
2 2 2

1
2 2 2

1

( )(1 )
1 ( )(1 )

r r
r r

λ + − + λ
+ λ + − + λ

. 

Clearly, in the general case the CBE depends on the awareness of the 
Principals and, under common knowledge (r1 = r), expression (24) ac-
quires form (23). By implementing informational control as meta control 
(e.g., by modifying the beliefs of Principal 1 about the value of the uncer-
tain parameter), one can accordingly change the CBE. • 

Example 10.13. Within the conditions of Example 10.12, Principal 2 
possesses adequate awareness about the opponent’s beliefs (i.e., he 
knows that the beliefs of Principal 1 can differ from the truth): 
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r21 = r212 = r2121 = … = r1. Then in the informational equilibrium Principal 

1 still prefers the strategy δ* = 
2

21
λ 

 + λ 
 - r1, whereas Principal 2 chooses 

γ*(r1, r) = 
2

12

1
1

r rλ  − + λ + λ 
 + r1 – r – 

2

2 2(1 )
λ

+ λ
, 

which implements the CBE  

x*(δ*, γ*(r1, r)) = 
2 2 2

1
2

2 2
12

( )(1 )

(1 )
1

r r

r r

λ + − + λ
λ

λ + λ − + + λ 

. 

Obviously, in the case of common knowledge (r1 = r), we have 
x*(δ*, γ*(r1, r)) = x*(δ*, γ*). 

Therefore, the current example shows that, in the reflexive games, 
the equilibria also appreciably depend on the mutual awareness of the 
players, i.e., the beliefs about the opponents’ awareness, the beliefs about 
their beliefs, and so on [75]. • 

And finally, we emphasize another important aspect: the nontrivial 
mutual awareness of the Principals may cover not only the parameters of 
the distribution function of the agents’ thresholds, but also the parameters 
of the payoff functions and/or cost functions of the Principals, and so on. 

Example 10.14. Within the conditions of Example 10.12, Principal 1 
possesses inadequate awareness about the parameter λ in the opponent’s 
cost function; by-turn, Principal 2 knows the true value of this parameter, 
believing that Principal 1 possesses adequate awareness. 

Choose λ1 = λ12 = λ121 = λ1212 = …, i.e., Principal 1 has some (gener-
ally, incorrect) information λ1 on the uncertain parameter λ, supposing 
that his beliefs are true and form common knowledge. And set 
λ2 = λ21 = λ212 = λ2121 = … = λ, i.e., Principal 2 knows the true value of 
the parameter λ, considering it as common knowledge. Using the expres-

sions (21) and (22), we obtain the CBE x* = 
2
1

22
2 1
1 2

1
1

λ

 + λ
λ +  + λ 

 implemented 

in the corresponding informational equilibrium. In the common 
knowledge case (λ1 = λ), it becomes the CBE (23). • 

Let us outline the main result of this chapter. It has been demonstrat-
ed how the stochastic model of mob control [25] (also see Chapter 5) can 
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be supplemented by “superstructing” different game-theoretic models of 
interaction between the control subjects that exert informational impacts 
on a mob for their personal benefit. The relatively “simple” model of the 
controlled object (a mob) allows using the rich arsenal of game theory, 
namely, normal-form games, hierarchical games, reflexive games and 
other games. 

A promising direction of future investigations lies in the identifica-
tion and separation of the typical distribution functions of the agents’ 
thresholds. This would yield the templates of control actions and solu-
tions to informational control problems, as well as models of informa-
tional confrontation. 
 

 
11. MODELS OF MOB SELF-EXCITATION 

 
In the previous sections of this book, the proportion of active agents 

has evolved according to the difference or differential equations of type 
(2.7), (3.12), (7.1), (8.1), etc., with the distribution function of the agents’ 
thresholds in their right-hand sides. If the agents’ thresholds represent 
independent identically distributed random variables (i.e., there is a 
probabilistic uncertainty about the threshold values, then it is possible to 
consider the events of system exit from a given state set (i.e., the so-
called spontaneous mob excitation or “self-excitation”), including the 
calculation of their probabilities. Generally, the theory of large deviations 
[34] is a common tool here; e.g., see the asymptotical results obtained in 
[27, 80]. In Section 11, we refine the theoretical large deviations-based 
estimates using the numerical estimates yielded by statistical testing. The 
derived results allow assessing the reliability of mob nonexcitability in 
the case when the events have extremely small probabilities for their 
statistical testing [81]. 

Model of mob behavior. Consider a finite set {1, 2,..., }N n=  of 

agents. Each agent has some threshold [ ]0,1iθ ∈ , i N∈ . At step  k, agent 

i N∈  chooses one of two states { }0,1ikω ∈ . At step (k + 1), the agent’s 
state is defined by the rule 
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(1) ( )1

11, 0,

10, 0.

jk i
j

i k

jk i
j

n

n

+

 ω − θ ≥ω = 
 ω − θ <


∑

∑
 

According to rule (1), the agent acts if the system state 
1

k ik
i

x
n

= ω∑  

is not smaller than his threshold. The system state dynamics obeys the 
recurrent expression 
(2) ( )1k n kx F x+ = , 
where 

(3) ( ) ( )
1

1 n

n i
i

F x x
n

χ θ
=

= ≤∑ , 

and ( )χ ⋅  denotes the indicator of a set. 
The papers [27, 80] considered the case with an uncertainty in the 

right-hand side of expression (1), namely, a sequence ( ) ( )1 , ..., nθ ω θ ω  
of independent identically distributed random variables with a distribu-
tion ( )F ⋅  on a probability space ( ), ,Ω PF , instead of known thresholds 
of the agents. Such a situation occurs, e.g., when the thresholds are uncer-
tain, but the agents are chosen randomly from the agent set with a given 
threshold distribution. 

In this case, the empirical distribution function of the agents’ thresh-
olds has the form 

(4) ( ) ( )( )1,n i
i

F x x
n

ω χ θ ω= ≤∑ . 

Under fixed F and x0, the expression 

(5) 

( ) ( )

( ) ( )( )

( ) ( )( )

1 0

1

1

, ,
...

, ,

...

,

n
n

n
k n k

n
K n K

x F x

x F x

x F x

ω ω

ω ω ω

ω ω ω

−

−

=

=

=
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defines a sequence of random finite sequences 
( ){ }1( ( ),..., ( ))n n n

Kx x xω ω ω= , i.e., system trajectories each obeing some 

distribution Pn on the space Kℜ  given by ( ) ( ){ }:n
nP x AA ω ω= ∈P . In 

other words, formula (5) describes stochastic threshold behavior. 
For the distributions of the system trajectories, the paper [80] estab-

lished the asymptotics 

(6) ( ) ( )1liminf log infnn U
P U H y

n→∞
≥ −  

for any open set ( )U S∈ B , and ( ) ( )1limsup log infn Cn
P C H y

n→∞
≤ −  for any 

closed set ( )C S∈B , where 

(7) 
( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1
11

1 1 1
10 1 1

1
11

1 1 2
10 1 1

1 2

1ln ln 1 ln , ,
1

11 ln ln ln , ,
1

, ,

K
k k K

k k K
k k k K

K
k k K

k k K
k k k K

y yy yy y y y y Y
F y F y F y F y

H y yy yy y y y y Y
F y F y F y

y
F y

y Y Y

−
+

+
= − −

−
+

+
= − −

− − + − + − ∈ − −= −− − + − + ∈ − −
+∞ ∉ ∪

∑

∑
 

with the notation 0 0:y x= , ( )0 ln 0 : 0⋅ = , and 

[ ]{ }1 0 1 2 10,1 : ... ...K
m m KY y y y y y y y+= ∈ < < < < = = , { }0,...,m K∈ , 

[ ]{ }2 0 1 2 10,1 : ... ...K
m m KY y y y y y y y+= ∈ > > > > = = , { }0,...,m K∈ . 

Note that this asymptotics is widespread in the theory of large deviations 
[34]. 

In Section 3 (see expression (3.17)) we have described the identifica-
tion results for the distribution functions of real online social networks. 
The parameter ( )0,λ∈ +∞ , called the “heterogeneity coefficient,” charac-
terizes the difference between the distribution function from the uniform 
one, while the parameter [ ]0,1θ ∈  (the “common relative threshold”) 
characterizes the decision process within the network. 

Let us study the probability of an event A∈F  that the random pro-
cess (5) with a given initial condition (e.g., 0 0.2x = ) exceeds at some 
step the “exit point” exit 0.5x =  (e.g., when the mob is excited or 

exit[ ,1] : ( , , )x x F x xθ λ∀ ∈ ≥ , i.e., further dynamics of process (2) leads to 
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the excitation of the whole mob) under different numbers n of agents in 
the system. Formally, this event is defined by 
(8) ( ){ }: ,n n

k exitA k x xω ω= ∈Ω ∃ ∈Ν > . 
In the sequel, the event An is called the exit from domain for the mob 

composed of n agents. The exit probability in the model depends only on 
the theoretical distribution function ( )F ⋅  of the agents’ thresholds and the 
number of agents n. For the distribution functions from the two-parameter 
family (3.17), denote this probability by 
(9) ( ) { },n

exit
nAP θ λ ω ∈= P , ( ) ( ), ,F x F x θ λ= . 

The asymptotic estimate (6) of the probability acquires the form 

(10) ( ) ( )( )1lim log , inf , , ,
n

n
exit

y A
P H F y

n
θ λ θ λ

∈
= − ⋅ . 

Exit probability estimation. Estimate (10) can be rewritten as  

(11) ( ) ( )
( )( )inf , , ,

, , , ny A
n H F y

n
exitP c n e

θ λ

θ λ θ λ ∈
− ⋅

= , 
where, for all θ and λ, the value ( ),c θ λ  satisfies  

(12) ( )log , ,
lim 0
n

c n
n

θ λ
→∞

= . 

And so, its rate of change is “smaller than exponentially in n.” Without 
the “constant” ( ), ,c n θ λ , calculation of the probability ( ),n

exitP θ λ  with 
required accuracy becomes impossible. For this simple reason, the formu-
las of type (10) are also termed “rough logarithmic asymptotics.” 
Asymptotics (10) can be applied for the numerical estimation of the 
probability ( ),n

exitP θ λ  only under additional information about the con-
stant ( ), ,c n θ λ . In [81], this constant was approximately defined using 
the statistical testing-based estimate ( ),n

exitP θ λ%  illustrated by Fig. 25 and 
Fig. 26. For a detailed description of the statistical testing algorithm, we 
refer to the paper [81]. 
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Fig. 25. Dependence of the exit probability ( ),n
exitP θ λ  on parameters θ 

and λ yielded by statistical testing with n = 50 

 
 

Fig. 26. Dependence of the exit probability ( ),n
exitP θ λ  on parameters θ 

and λ: the graph in Fig. 25 projected on the plane (θ, λ) 
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Fig. 27 shows the contour lines of ( ),n

exitP θ λ%  defined as the func-
tions ( )1

nλ θ , ( )2
nλ θ , and ( )3

nλ θ  satisfying 

(13) ( )( ) 2
1, 10n n

exitP θ λ θ −=% , ( )( ) 3
2, 10n n

exitP θ λ θ −=% , ( )( ) 4
3, 10n n

exitP θ λ θ −=% . 
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Fig. 27. Contour lines of exit probability for 1 50n = , 2 100n = , and 

3 200n = . 
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Using numerical optimization, the paper [81] calculated the estimate 

( )ˆ ,I θ λ  of the function ( ) ( )( )f ,, in , ,
nAy
H F yI θ θ λλ

∈
= ⋅ . Next, the constant 

( ), ,c n θ λ  was estimated by the formula 

(14) ( ) ( )
( )( )inf , , ,

ˆ ,
ˆ ,

y nA

n
exit

n H F y

P
c

e
θ λ

θ λ
θ λ

∈
− ⋅

= , 

with n = 200. For n making the statistical testing-based estimation of the 
exit probability impossible, expression (14) yields the exit probability  
estimate 

(15) ( ) ( )
( )( )inf , , ,

ˆ, , y nA
n H F y

n
exitP c e

θ λ

θ λ θ λ ∈
− ⋅

= . 
We emphasize that this estimate actually unites the analytic result 

(10) and the numerical calculations. 
Using the estimated probabilities of type (15) for the undesired 

events, one can pose and solve the corresponding control problems, e.g., 
choose the control parameters to minimize this probability, or minimize 
the costs of making this probability not greater than a given threshold, 
etc. 

Reliability of active network structures. Consider an active net-
work structure (a mob, a social network) with the stochastic threshold 
behavior (5). As shown in [27], this system comes to an “equilibrium” at 
most in n steps (i.e., the actions of the agents become invariable). Due to 
the randomness of the agents’ thresholds, the system state corresponding 
to this equilibrium (the resulting state) is random. 

We have earlier estimated the probability that the resulting system 
state leaves a given domain for different heterogeneity coefficients and 
common relative thresholds. The exit probability from a given domain, 
see above, generally depends on the system parameters. 

Consider the ANS reliability problem [81], supposing that the exit 
probability p is a known function of the basic system parameters: 

( ) ( ), ,, n
exitp p n P λθ λ θ= ≡ . 

Let the agents’ thresholds be realized (ergo, yielding the equilibri-
um) repeatedly at regular time intervals τ called “fast time.” Then, in 
“slow time” t, the equilibrium is attained [ ]/m t τ=  number of times, 

where [ ]⋅  denotes the integer part operator. 
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Define the reliability of an ANS as the probability that its basic pa-
rameters stay within an admissible domain (for a mob, the admissible 
domain corresponds to its nonexcitation). For the ANS, the basic observ-
able parameter is the mean action of the agents (the proportion of actie 
agents). And the admissible domain forms the interval [ )exit0, x . Since the 
equilibrium is attained repeatedly, the reliability of the system depends on 
the time interval under consideration. Designate by R(t) the survival 
function, i.e., the probability that the system never leaves the admissile 
domain in time t. According to the definition of reliability, the survival 
function is the reliability of the system on the time interval t. 

Introduce the random variable { }0,1iξ ∈  obeying the Bernoulli dis-
tribution, which is 1 if the system leaves the admissible domain at the 
moment mt m τ=  and 0 otherwise. The probabilities of these events are 
p and (1 - p), respectively. The survival function can be rewritten as 

( ) [ ]( )1 2 /... 0tR t τξ ξ ξ≡ = = = =P , 

which gives 

(16) ( ) ( )1
t

R t p τ
 
  = − . 

Under small p such that [ ]1 / 1 / /p m t τ<< = , formula (16) admits 
the approximate representation 

(17) ( ) 1 tR t p
τ

 = −   
. 

The reliability control problem of the ANS is to find the set of its pa-
rameter values making the system reliability not smaller than a specified 
threshold δ for given time  T.  

Consider an illustrative example with 0.99δ =  for an ANS of 
710n =  agents on a time interval such that 310tm

τ
 = =  

. The solution 

of this problem includes the following steps. 
1) Substitute the data into equation (16) and calculate the maximum 
admissible probability p. In the current example, we can use the ap-
proximate representation (17) taking the form 1 pmδ = − . As a re-

sult, 
2

5
3

1 10 10
10

p
m

δ −
−−

= = = . 
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2) Solve the equation ( )
( )( )inf , , ,

ˆ , nAy
n H F y

c e p
θ λ

θ λ ∈
− ⋅

=  and find the corre-
sponding contour line ˆ( )λ θ  in the parameter space ( ),θ λ . The pa-
rameter domain ( ),θ λ  making the system reliability not smaller 
than δ is above this controur line, as shown by Fig. 28. 

 
Fig. 28. Contour line ˆ( )λ θ  and parameter domain ( ),θ λ  making system 

reliability not smaller than δ 
 
And finally, we underline that the reliability control problem of an 

ANS (keeping it within a required state set) calls for estimating the prob-
abilities of rare events. In many cases, these probabilities are so small that 
their statistical testing-based estimation becomes impossible. However, 
the exact analytic estimates and measure replacements can be inapplica-
ble due to the complex structure of the models. As demonstrated above 
and in [81], the rough logarithmic asymptotics involving large deviations 
can be applied for the numerical estimation of the probabilities of rare 
events using “calibration” of the estimate by statistical testing on the 
parameter set allowing such estimation. 

 
CONCLUSION 

ˆ( )λ θ
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The book has considered several (deterministic and stochastic, static 

and dynamic) models of mob control. Interestingly, there exists some 
“balance” between the simplicity and detailed description of agents’ 
individual interaction that are inherent in the micromodels (on the one 
part) and the complexity and aggregated description of ANSs that are so 
characteristic to the macromodels (on the other part). Really, the ANS 
control problems are solved analytically either for the linear micromodel 
(recall the expressions (3.1), (9.1) and their analogs) or for the nonlinear 
macromodel (2.7). This observation is illustrated by Fig. 29. 

 
 
 

 

State space dimension 

Degree of consideration of local 
interactions and their structure 

MICROMODELS 

MACROMODELS 

Adequacy 
problem 

 
 

Fig. 29. Micro- and macromodels of ANSs 
 
The current and future research can be focused on the following is-

sues that seem promising: 
1) closer interpenetration of mathematical modeling, psychology and 

sociology of mob; 
2) accumulation of an empirical descriptive base for ANSs, devel-

opment of general identification methods; 
3) development of simulation agent-based models of mob control; 
4) development of analytic models of mob control, particularly: 
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- involvement of the results and methods of ANS dynamics analysis 
(particularly, threshold dynamics analysis) in different applications such 
as innovations diffusion, neural networks, genetic networks and others; 
see surveys in [20, 21, 48, 56, 73, 86]; 

- stochastic models of rare events (e.g., mob “self-excitation”), in-
cluding large-deviation theory (see Section 11 and [27, 80, 81]); 

- game-theoretic models of threshold collective behavior and their 
usage in a wide range of applications; 

- statement and solution of control problems for the ANSs described 
by Granovetter’s probabilistic model (8.24); 

- statement and solution of dynamic informational confrontation 
problems for ANSs.  
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