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2. INCENTIVE MECHANISMS FOR MULTI-AGENT ORGANIZATIONAL SYSTEMS 

 

Novikov D.A. 

(Trapeznikov Institute of Control Sciences, Russian Academy of Sciences, novikov@ipu.ru, 

+74953347569, Profsojuznaya st., 65, Moscow, 117997, Russia) 

 

This work considers game-theoretic models of incentive mechanisms for multi-agent organizational 

systems. Three main principles of optimal incentive scheme design for interacting agents are derived, 

namely, the principle of compensation, the principle of decomposition and the principle of aggregation. 

Models of agents’ self-coordination are explored in terms of side-payoff games. And finally, we study 

identification problems for agents’ preferences. 

 

An incentive means motivation of a subject to perform specific actions; in organizational systems, a 

Principal stimulates an agent by exerting an impact on its preferences (i.e., a goal function) [25]. 

Interests’ coordination between a Principal and agents is not a trivial problem. This fact was realized 

at the turn of the 1960-1970s, when theory of contracts appeared. Among the pioneering results, we men-

tion the Azariadis-Baily-Gordon (ABG) model [1, 3, 12] which intended to explain the difference between 

efficient (predicted by labor economics) and observed wage levels–see the survey [16]. 

The parallel and intensive development of mechanisms theory in the 1970-1990s, namely: 

–  contract theory (CT) by S. Grossman, O. Hart, B. Holmstrom, D. Mookherjee, R. Myerson [13, 15, 

22, 24, 31] and others, 

–  theory of active systems (TAS) by V. Burkov, A. Enaleev, V. Kondratjev, D. Novikov [5, 6, 7, 8, 

27] and others, 

–  theory of hierarchical games (THG) by Yu. Germeier, F. Ereshko, A. Kononenko, N. Kukushkin 

[10, 11, 17, 18] and others
1
, 

yielded the fruitful and diversified theory of mathematical models of incentives in organizations (see the 

overview [8], as well as the monographs and textbooks [4, 19, 21, 28, 31, 32]). 

This chapter describes in brief the state-of-the-art of the individual and collective incentive mecha-

nisms for multi-agent organizational systems (OSs). 

 

2.1. Individual Incentive Mechanisms 

 

Let N = {1, 2, …, n} be a set of agents, yi  Ai stand for an action of agent i, and ci (y) mean its costs. 

By assumption, costs functions are monotonic and nonnegative, ci (0) = 0– see the details below. Moreover, 

denote by i (y) a reward given by a Principal to agent i (i  N); accordingly, y = (y1, y2, …, yn) represents 

an action profile of all agents, y  A′ = 
Ni

iA . Suppose that the Principal gains an income H(y) from 

agents’ activity. Hence, the Principal’s goal function acquires the form 

( ( ), ) ( ) ( )i

i N

y H y y , (2.1) 

where 
1( ) ( ( ), ..., ( ))ny y  forms the vector of individual rewards and the goal function of agent i is 

                                                 
1
 In short, these three scientific schools differ in the following. TC analyzes incentives under stochastic uncertainty when an 

agent is risk-averse (i.e., has a concave utility function). In TAS, agents are typically considered risk-neutral, but much attention 

belongs to incentives’ compatibility and applications. And finally, THG focuses mostly on mathematical aspects and dynamic 

models. 

mailto:novikov@ipu.ru
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( ( ), ) ( ) ( )i i i if y y c y .  (2.2) 

If agent’s reward depends generally on the actions of all agents, the incentive scheme is called collec-

tive. Special cases include individual rewards ( ( )i i iy ) and uniform rewards (
0( )i iy ). 

An elementary extension of the basic single-agent model [28] concerns a multi-agent OS with inde-

pendent (noninteracting) agents. In this case, the incentive problem is decomposed into a set of correspond-

ing single-agent problems. 

Suppose that identical constraints are imposed on the incentive mechanism for all agents or a certain 

subset of agents. As a result, we derive the incentive problem in an OS with weakly related agents (dis-

cussed below). This problem represents a set of parametric single-agent problems, and it is possible to 

search for optimal parameter values using standard constrained optimization techniques. 

If agents are interrelated, viz., the costs or/and rewards of an agent depend on its actions and the ac-

tions of the rest agents, one obtains a “full-fledged” multi-agent incentive model. It will be studied in the 

present section. 

The solution procedures of the multi- and single-agent problems have much in common. At the be-

ginning, one has to apply the principle of compensation, i.e., to construct a compensatory incentive 

scheme [28] implementing a certain action (an arbitrary feasible action under given constraints). In fact, 

this is Stage 1 known as incentives’ compatibility analysis. Put forward the hypothesis of benevolence: if 

the agent is choice-indifferent, it chooses the action beneficial to the Principal. Then in single-agent OSs it 

suffices to verify that the maximum of the agent’s goal function is attainable by an implementable action. 

On the other hand, in multi-agent systems one should demonstrate that the choice of a corresponding action 

makes up an equilibrium strategy in the game of agents. Imagine that there exist several equilibria; in this 

case, we have to verify the hypothesis of rational choice for the action in question. In most situations, it 

takes only to accept the unanimity axiom (according to the latter, agents do not choose equilibria dominated 

by other equilibria in the sense of Pareto). Sometimes, the Principal has to evaluate its guaranteed result on 

the set of equilibrium strategies of agents, and so on. Further, it is necessary to equate the incentive and the 

costs and solve a standard optimization problem: find an implementable action to-be-rewarded by the 

Principal. Actually, this is Stage 2 known as incentive-compatible planning [6, 28]. Let us describe the 

above approach in detail. 

Incentives in OSs with weakly related agents. Let (a) agents’ goal functions depend only on their 

individual actions (the so-called separable costs), (b) the incentive of each agent depend on its individual 

actions exclusively, and (c) some constraints be imposed on the total incentive of all agents. The formulat-

ed model is an OS with weakly related agents. As a matter of fact, this is an intermediate case between 

individual and collective incentive schemes. 

Suppose that the individual rewards of agents are majorized by the quantities {Ci}i  N; in other 

words,  yi  Ai: i (yi)  Ci, i  N. In addition, the wage fund (WF) has an upper bound R: 
Ni

iС   R. 

Then the maximal set of implementable actions of agent i depends on the corresponding constraint R of the 

incentive mechanism: ( ) [0; ( )]i i i iP C y C , where 

( ) max { | ( ) }i i i i iy C y A c y C , i  N. 

Consequently, the optimal solution to the incentive problem in an OS with weakly related agents is 

defined as follows. One has to maximize the function 

1
{ ( )}

( ) max  ( ,  ..., )
i i i i N

n
y P C

G R H y y  

by an appropriate choice of the individual constraints {Ci}i  N satisfying the budget constraint 
Ni

iС   R. 

Apparently, this is a standard constrained optimization problem. 

For a fixed WF, the agent’s costs are not extracted from its income. At the same time, in the case of a 

variable WF, the optimal value R
*
 makes a solution to the following optimization problem: 

R
*
 = arg 

0
max

R
 [G(R) – R]. 

Incentives in OSs with strongly related agents. For agent i, designate by y–i = (y1, y2, …, yi–1,  

yi+1, …, yn)  A–i  = 
ij

jA  its opponents’ action profile. 
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In the incentive model (2.1)-( 2.2), the individual incentive and the individual costs of agent i to 

choose the action yi generally depend on the actions of all agents. 

Adopt the following sequence of moves in the OS. At the moment of their decision-making, the Prin-

cipal and agents know the goal functions and feasible sets of all OS participants. Enjoying the right of the 

first move, the Principal chooses incentive functions and reports them to the agents. Next, under known 

incentive functions, agents simultaneously and independently choose their actions to maximize appropriate 

goal functions. 

We make a series of assumptions on different parameters of the OS: 

1) for each agent, the set of feasible actions coincides with the set of nonnegative real values; 

2) the cost functions of agents are continuous and nonnegative; moreover,  yi  Ai : ci (y) does not 

decrease in yi and  y–i  A–i: ci (0, y–i) = 0 (i  N); 

3) the Principal’s income function is continuous with respect to all arguments and attains the maxi-

mum for nonzero actions of agents. 

In essence, Assumption 2 implies that (regardless of the actions of the rest agents) any agent can min-

imize its costs by choosing an appropriate (zero) action. 

The costs and incentive of each agent generally depend on the actions of all agents. Hence, agents get 

involved in a game, where the payoff of each agent depends on the actions of all opponents. Suppose that 

P( ) is the set of equilibrium strategies of agents under the incentive scheme ( ) (actually, this is the set of 

game solutions). For the time being, we do not specify the type of equilibrium, only presumming that 

agents choose their strategies simultaneously and independently. Thus, they do not interchange information 

and utility. 

The guaranteed efficiency (or simply “efficiency”) of an incentive scheme represents the minimum 

value (within the hypothesis of benevolence, the maximum value) of the Principal’s goal function over the 

corresponding set of game solutions: 

K( ) = 
( )

min
y P

  ( , y).  (2.3) 

Under a given set M of feasible incentive schemes, the problem of optimal incentive function/scheme 

design lies in searching for a feasible incentive scheme 
*
 which maximizes the efficiency: 

*
 = arg max

M
 K( ).  (2.4) 

In the special case of independent agents (i.e., the reward and costs of each agent get predetermined 

by its actions only), the compensatory incentive scheme [28] 

*

**

,0

,)(
)(

ii

iiiii

iKi
yy

yyyc
y , i  N, (2.5) 

appears optimal (to be correct, -optimal, where  =
Ni

i ). In the formulas above, { i}i  N designate arbi-

trarily small strictly positive constants (bonuses). Moreover, the optimal action y
*
, being implementable by 

the incentive scheme (2.5) as a dominant strategy equilibrium2 (DSE), solves the following problem of 

optimal incentive-compatible planning: 

y
*
 = arg max

y A
{H(y) – 

Ni

ii yc )( }. 

Suppose that the reward of each agent depends on the actions of all agents (this is exactly the case for 

collective incentives studied here) and the costs are inseparable (i.e., the costs of each agent generally 

depend on the actions of all agents, reflecting their interrelation). Then the sets of Nash equilibria3 

EN ( )  A′ and DSE yd  A′ acquire the form 

EN ( ) = {y
N 

 A |  i  N  yi  Ai , (2.6) 

i (y
N
) – ci (

Ny )  i (yi, 
N
iy ) – ci (yi, 

N
iy )}. 

                                                 
2
 Recall that a DSE is an action vector such that each agent benefits from choosing a corresponding component regardless of the 

actions chosen by the rest agents. 
3
 A Nash equilibrium is an action vector such that each agent benefits from choosing a corresponding component provided that 

the rest agents choose equilibrium actions. 
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By definition, 
di

y  Ai is a dominant strategy of agent i iff 

 yi  Ai,  y–i  A–i: 

i (
di

y , y–i) – ci (
di

y , y–i)  i (yi, y–i) – ci (yi, y–i). 

Imagine that a dominant strategy exists for each agent under a given incentive scheme. In this case, 

the incentive scheme is said to implement the corresponding action vector as a DSE. 

Fix an arbitrary action vector y
*
  A′ of agents and consider the following incentive scheme: 

i (y
*
, y) = 

yy

yyyyc

ii

iiiiii

*

**

,0

,),(
, i  0, i  N.  (2.7) 

It was shown in [29] that the vector y
*
 forms a DSE under the incentive scheme (2.7) applied by the 

Principal. Moreover, if i > 0, i  N, then y
*
 makes up a unique DSE. 

The collective incentive scheme (7) means that the Principal adopts the principle of decomposition. 

It suggests to agent i, “Choose the action *
iy , and I compensate your costs regardless of the actions chosen 

by the rest agents. Yet, if you choose another action, the reward is zero.” Using such strategy, the Principal 

decomposes the game of agents. 

Assume that the incentive of each agent depends implicitly on its action only. By fixing the oppo-

nents’ action profile for each agent, pass from (2.7) to an individual incentive scheme. Notably, fix an 

arbitrary action vector y
*

 A′ of agents and define the incentive scheme 

i (y
*
, yi) = 

yy

yyyyc

ii

iiiiii

*

***

,0

,),(
, i  0, i  N.  (2.8) 

In this case, we have the following interpretation. The Principal suggests to agent i, “Choose the ac-

tion *
iy , and I compensate your costs as if the rest agents would have chosen the corresponding actions 

*
iy . Yet, if you choose another action, the reward is zero.” Adhering to such strategy, the Principal also 

decomposes the game of agents, i.e., implements the vector y
*
 as a Nash equilibrium of the game. 

Interestingly, the incentive scheme (2.8) depends only on the action of agent i, while *

iy  enters this 

function as a parameter. Moreover, in contrast to the incentive scheme (2.7), the incentive scheme (2.8) 

provides each agent merely with indirect information about the action vector desired by the Principal. For 

the incentive scheme (2.8) to implement the vector y
*
 as a DSE, additional assumptions should be intro-

duced regarding the cost functions of agents, see [29]. This is not the case for the incentive scheme (2.7). 

It seems quite appropriate here to discuss the role of { i}i  N in the expressions (2.5), (2.7) and (2.8). 

If one needs implementing a certain action as a Nash equilibrium, these constants can be chosen zero. 

Imagine that the equilibrium must be unique (in particular, agents are required not to choose zero actions; 

otherwise, in evaluation of the guaranteed result (2.3) the Principal would be compelled to expect zero 

actions of agents). In this case, agents should be paid excess an arbitrarily small (strictly positive) quantity 

for choosing the action expected by the Principal. Furthermore, the parameters { i}i  N in formulas (2.5), 

(2.7) and (2.8) appear relevant in the sense of stability of the compensatory incentive scheme with respect 

to the model parameters. For instance, suppose that we know the cost function of agent i up to some con-

stant i  i / 2. Consequently, the compensatory incentive scheme (2.7) still implements the action y
*
, see 

[29]. 

The vector of optimal implementable actions y
*
, figuring in the expression (7) or (8) as a parameter, 

results from the following problem of optimal incentive-compatible planning: 

y
*
 = arg 

At
max {H(t) –  (t)},  (2.9) 

where v(t) = 
Ni

i tc )( , and the efficiency of the incentive scheme (2.7), (2.9) constitutes 

K
*
 = H(y

*
) – 

Ni

i yc )( *
 – . 

It was demonstrated in [29] that the incentive scheme (2.7), (2.9) appears optimal, i.e., possesses the 

maximum efficiency among all incentive schemes in multi-agent OSs. 
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An interested reader can find some examples of designing optimal collective incentive schemes for 

multi-agent OSs in the book [28]. 

We have finished the discussion of incentive mechanisms for individual results of agents’ activity. To 

proceed, let us describe some collective incentive mechanisms. 

 

 

2.2. Collective Incentive Mechanisms 

 

The majority of well-known incentive models consider two types of OSs. The first type is when a 

Principal observes the result of activity for all agents, being uniquely defined by their actions. The second 

type includes OSs with uncertainties, where the observed result of agents’ activity depends not only on 

their actions, but also on uncertain and/or random factors (e.g., see the survey and models in [21, 28]). 

The present section provides the statement and solution to the collective incentive problem in a multi-

agent deterministic OS, where a Principal possesses only some aggregated information about the results of 

agents’ activity. 

In an n-agent OS, let the result of agents’ activity z  A0 = Q(A′) be a certain function of their ac-

tions: z = Q(y). In this case, Q( ) is termed the aggregation function. The preferences of OS participants, 

i.e., the Principal and agents, are expressed by their goal functions. In particular, the Principal’s goal func-

tion makes up the difference between its income H(z) and the total incentive  (z) paid to agents: 

 (z) = 
Ni

i z)( . Here i (z) stands for the incentive of agent i,  (z) = ( 1(z), 2(z), …, n (z)), i.e., 

 (  ( ), z) = H(z) – 
Ni

i z)( .  (2.10) 

The goal function of agent i represents the difference between the reward given by the Principal and 

the costs ci (y): 

fi ( i ( ), y) = i (z) – ci (y), i  N.  (2.11) 

We adopt the following sequence of moves in the OS. At the moment of decision-making, the Princi-

pal and agents know the goal functions and feasible sets of each other, as well as the aggregation function. 

The Principal’s strategy is assigning incentive functions, while agents choose their actions. Enjoying the 

right of the first move, the Principal chooses incentive schemes and report them to agents. Under known 

incentive functions, agents subsequently choose their actions by maximizing the corresponding goal func-

tions. 

Imagine that the Principal observes the individual actions of agents (equivalently, the Principal can 

uniquely recover the actions using the observed result of activity). Then the Principal may employ an in-

centive scheme being directly dependent on the agents’ actions:  i  N: i
~ (y) = i (Q(y)). We refer to the 

previous section for the detailed treatment of such incentive problems. Therefore, our analysis focuses on a 

situation when the Principal observes merely the result of activity in the OS (which predetermines the 

Principal’s income). It is unaware of the individual actions of agents and cannot restore this information. In 

other words, aggregation of information takes place–the Principal possesses incomplete information on the 

agents’ action vector y  A′. It knows just some aggregated rate z  A0 (a parameter characterizing the 

results of agents’ joint actions). 

In the sequel, we believe that the OS parameters meet the assumptions from the previous section. 

Moreover, suppose that the aggregation function is a one-valued continuous function. 

By analogy to the aforesaid, the efficiency of incentive is comprehended as the minimum value (or 

the maximum value–under the hypothesis of benevolence) of the Principal’s goal function on the solution 

set of the game: 

K(  ( )) = 
( ( ))

min
y P

 (  ( ), Q (y)).  (2.12) 

The problem of optimal incentive function design lies in searching for a feasible incentive scheme 
*
 

maximizing the efficiency: 
*
 = arg 

( )
max  K(  ( )). (2.13) 
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The decomposition of the agents’ game in the previous section bases on the Principal’s ability to mo-

tivate agents for choosing a specific (observable!) action. Under unobservable actions of agents, direct 

application of the decomposition principle seems impossible. Thus, solution of the incentive problems 

(where agents’ rewards depend on the observed aggregated result of activity) should follow another tech-

nique. 

This technique is rather transparent. Find a set of actions yielding a given result of activity. Then sep-

arate a subset with the minimul total costs of agents (accordingly, with the minimum costs of the Principal 

to stimulate the agents under optimal compensatory incentive functions). Next, construct an incentive 

scheme implementing this subset of actions. Finally, choose the result of activity with the most beneficial 

outcome for the Principal. 

Now, let us give a formal description to the solution of the incentive problem in an OS with aggrega-

tion of information about agents’ activity. 

Define the set of agents’ action vectors leading to a given result z of activity: 

Y(z) = {y  A′ | Q(y) = z}  A′, z  A0. 

Recall that, under observable actions of agents, the minimum costs of the Principal to implement the 

action vector y  A′ equal the total costs of agents 
Ni

i yc )( . Similarly, we evaluate the minimum total costs 

of agents to achieve the result of activity z  A0: )(
~
z  = 

( )
min
y Y z

Ni

i yc )( , and the corresponding action set 

Y
*
(z) = Arg 

( )
min
y Y z

 
Ni

i yc )( , which attains the minimum. 

Fix an arbitrary result of activity x  A0 and an arbitrary vector y
*
(x)  Y

*
(x)  Y(x). We make a 

technical assumption as follows:  x  A0,  y′  Y(x),  i  N,  yi  Proji Y(x): the function cj (yi, y′–i) 

does not decrease in yi, j  N. It was demonstrated in [30] that: 

1) under the incentive scheme 

*
ix (z) = 

xz

xzxyc ii

,0

,))(( *

, i  N,  (2.14) 

the agents’ action vector y
*
(x) is implementable as a unique equilibrium with the minimum costs of the 

Principal to stimulate agents (these costs constitute )(
~
x  + ,  = 

Ni

i ); 

2) the incentive scheme (2.14) enjoys -optimality. 

Hence, Step 1 of solving the incentive problem (2.13) is to find the minimum incentive scheme (2.14) 

which (a) incurs the Principal’s costs )(
~
x  to stimulate the agents and (b) implements the agents’ action 

vector leading to the given result of activity x  A0. And Step 2 lies in evaluating the most beneficial (for 

the Principal) result of activity x
*
  A0 via resolving the problem of optimal incentive-compatible planning: 

x
*
 = arg 

0

max
x A

 [H(x) – )(
~
x ].  (2.15) 

And so, the expressions (2.14)–(2.15) provide the solution to the problem of optimal incentive scheme 

design in the case of agents’ joint activity. 

Next, we explore how the Principal’s ignorance (infeasibility of observations) of agents’ actions af-

fects the efficiency of incentives. By a natural assumption, the Principal’s income function depends on the 

result of activity in the OS. Consider two possible cases, namely, 

1. the actions of agents are observable, and the Principal motivates agents based on their actions and 

the result of collective activity; 

2. the actions of agents are unobservable, and the incentives depend on the observed result of collec-

tive activity (exclusively). 

The idea is to compare the efficiency of incentives in these cases. 

Under observable actions of agents, the Principal’s costs 1(y) to implement the agents’ action vector 

y  A' constitute 1(y) = 
Ni

i yc )( , and the efficiency of incentives is K1 = max
y A

{H(Q(y)) – 1(y)} (see the 

previous section). 
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The actions of agents being unobserved, the minimum costs of the Principal 2(z) to implement the 

result of activity z  A0 are defined by (see (2.14)-(2.15)): 2(z) = 
( )

min
y Y z

Ni

i yc )( . Accordingly, the efficien-

cy of incentives makes up K2 = 
0

max
z A

 {H(z) – 2(z)}. 

The paper [30] argued that K1 = K2. The described phenomenon can be called the principle of ag-

gregation or the perfect aggregation theorem for incentive models. Besides comparative efficiency estima-

tion, the phenomenon has an extremely important methodological sense. It turns out that, under a collective 

incentive scheme, the Principal ensures the same level of efficiency as in the case of a corresponding indi-

vidual incentive scheme!  

In other words, aggregation of information by no means decreases the operational efficiency of an 

organizational system. This sounds somewhat paradoxically, since existing uncertainties and aggregation 

generally reduce the efficiency of managerial decisions. The model considered includes perfect aggrega-

tion. In practice, the practical interpretation is that the Principal does not care what actions are selected by 

the agents: they must lead to the desired result of activity under the minimum total costs. The informational 

load on the Principal goes down, yet the efficiency of incentives remains the same. 

Therefore, the performed analysis yields the following conclusions. If the Principal’s income depends 

only on the aggregated indicators of agents’ activity, their usage is reasonable for agents’ motivation. Even 

if the individual actions of agents are observed by the Principal, an incentive scheme based on these actions 

does not increase the efficiency of control (but definitely raises the informational load on the Principal). 

Thus, the compensation principle [21, 28] is generalized to models with data aggregation in the fol-

lowing way. The minimum costs of the Principal to implement a given result of activity in an OS are de-

fined as the minimum total costs of agents compensated by the Principal (provided that the former choose 

an action vector leading to this result of activity). This idea is also used in the models of team building and 

functioning below. 

 

2.3. Incentives in Agents’ Self-Coordination 

 

Above we have considered hierarchical two-level systems, where the upper level corresponds to a 

Principal and the lower level is occupied by controlled agents. Now, consider an organizational system 

composed of n agents located on a single hierarchical level. Our intention lies in analyzing the capabilities 

of their coordinated interaction within the game-theoretic model. 

In the general case, the issue regarding the choice of agents with independent decision-making based 

on their individual interests remains open. If there exists a dominant strategy equilibrium (DSE), then 

researchers often believe that agents choose exactly dominant strategies [28]. A DSE being absent, a com-

mon approach is to consider a Nash equilibrium as the state of a system. Imagine that several Nash 

equilibria take place and some of them appear undominated by other equilibria in the Pareto sense. In such 

conditions, agents are assumed to choose undominated equilibria. 

Concerning their practical interpretations, the concepts of dominant strategy equilibria and Nash 

equilibria reflect the individual rationality of agents’ behavior. In the former case, there exists an optimal 

action independent from an opponents’ action profile, whereas in the latter case a unilateral deviation of 

any agent becomes nonbeneficial to it if all other agents follow the equilibrium actions [23, 28]. 

Unfortunately, in many situations individual rationality contradicts collective rationality (formally 

described by the Pareto axiom, i.e., a hypothesis that the state of a system must be efficient). This conflict 

consists in the following. On the one hand, the set of individually rational actions (e.g., a DSE or Nash 

equilibrium) can be dominated by another set of actions (where all agents obtain not smaller payoffs and 

some agents gain strictly more). On the other hand, there may be several collectively rational (Pareto effi-

cient) actions, and they can be unstable against the unilateral deviations of agents (there exists an agent 

who increases its payoff via an appropriate variation of the action). Furthermore, in cooperative games 

such behavior can be demonstrated by coalitions (groups of agents) and the solution of a game must enjoy 

stability against these deviations. Thus, the correlation of individual and collective rationality forms a key 

problem in game theory (see examples and references in [9, 10, 23]). 

It seems intuitively clear that, if there is a best behavioral line for all agents (in comparison with indi-

vidual rationality), one should design a penalty mechanism for those agents deviating from this line. Such 
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“penalization” can be performed by agents or a meta-player (a Principal). Note that a penalty mechanism 

turns out “external” to agents and is often dictated, e.g., by a Principal, or represents the subject of their 

negotiation (an extension of the game [10]). Let us clarify this statement. 

Suppose that several plays of a game are organized successively. By varying their actions, agents can 

penalize an agent in the current or future periods for its deviation in the preceding period. Such strategies 

are constructed in theory of repetitive games [9]. The things seem more complicated in the static mode (a 

single-play game), as the threat of future penalization by partners becomes pointless. 

However, the threat of penalization acquires a definite sense in the static mode if there is a third (ex-

ternal) subject with powers of authority, e.g., a Principal. By applying control actions, viz., stimulating 

agents, imposing penalties, etc., the Principal can make nonbeneficial their unilateral deviation from a 

collective optimum. In other words, the Principal guarantees the Nash stability of a Pareto optimal strategy. 

This is the first thing the Principal suggests to agents. The second effect from the Principal consists in 

reduced data processing by agents. Really, consider, e.g., Nash equilibrium “evaluation”; each agent must 

know the goal functions and admissible sets of all agents so that, again, each agent can independently solve 

the system of inequalities defining a Nash equilibrium. Now, assume that we incorporate the Principal into 

the system. Being aware of all relevant information on each agent (the mutual awareness of agents be-

comes unnecessary), the Principal easily calculates all equilibria, designs an incentive-compatible system 

of the so-called “side payments” (see the description of the incentive problem above) and provide the cor-

responding information to agents. The stated control problem can be solved by an agent (the initiator of 

interests’ coordination), or agents simply choose their representative. An alternative is when agents invite a 

third party for interests’ coordination (an analyst, a consulting company, etc.). 

Consider the case without the explicit presence of a Principal and describe the corresponding problem 

of horizontal interests’ coordination. 

Fix a vector x  A’ and study the following system of side payments: 

ij(x, yj) = 
jj

jjij

xy

xyxs

,0

),(
, i, j  N.  (2.16) 

Here ij( )  0 denotes the payment of agent i to agent j (i, j  N). Naturally,  x  A’: sii(x) = 0, i.e., an 

agent pays itself nothing, i  N. Hence, the system of payments (2.16) is defined by (n
2
 – n) numbers. 

Now, express the condition that x forms a Nash equilibrium in the agents’ game: 

Nk

ki xs )(   
ii Ay

max  fi(yi, x-i) – fi(x), i  N.  (2.17) 

In this formula, we believe that any agent pays other agents regardless of its own action. 

Note that our analysis ignores an important issue as follows. How can one force agents to pay each 

other under the assumption that an appropriate compulsion mechanism does exist? (otherwise, a certain 

agent may disagree to pay other agents after receipt of their payments). A possible compulsion mechanism 

is to introduce a Principal in the system–a higher-level representative in the hierarchy with the power of 

imposing penalties on agents refusing to fulfill their obligations. Such behavior (opportunistic behavior) is 

explored in contract theory [16, 19, 31]. 

Suppose that there exists a vector u = (u1, u2, ..., un) restricting agents’ payoffs–the so-called reserved 

utility. The quantity ui specifies the guaranteed payoff of agent i from participation in an organizational 

system, i  N. Reserved utility can be evaluated from a Nash equilibrium in the absence of interests’ coor-

dination: ui = fi(y
N
), or as the guaranteed payoff ui = 

ii Ay
max  

ii Ay
min  fi(yi, y-i), or by another method. 

Then the individual rationality condition of agent i (the condition of its participation in the interests’ 

coordination procedure) can be formulated as 

fi(x) + 
Nk

ki xs )(  – 
Nj

ij xs )(   ui, i  N.  (2.18) 

Therefore, agent’s payoff in a new equilibrium must be not smaller than its reserved utility after the pay-

ments of all agents. 

And finally, sum up inequalities (2.18) over all agents (in this case, “internal” payments get compen-

sated) to arrive at the following result. By side payments, one can pass to a system state, where the total 

payoff of all participants is not less than in the initial state. 
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The set of incentive-compatible plans in this model comprises plans such that there exists a system of 

side payments (2.16) meeting the conditions (2.17) and (2.18): 

S = {x  A’ |  sij(x), i, j  N: (2.17), (2.18)}.  (2.19) 

Consider an example. Linear organizational systems are the ones, where the goal function of each 

agent linearly depends on the strategies of all agents: 

Hi(y) = i0 + 
Nj

jij y . (2.20) 

The quantities { ij} and { i0} are known constants and, without loss of generality, let Ai = [0; 1], i  N. In 

linear systems, each agent has the dominant strategy D

iy  = Sign( ii), where Sign(z) = 
0,0

0,1

z

z
. 

Denote j = 
Ni

ij , 0 = 
Ni

i0 . Then the total payoff of all agents makes up 

(y) = 0 + 
Nj

jj y . (2.21) 

The following action of agent i is Pareto optimal and maximizes the expression (2.21): 
P

iy  = Sign( i), i  N.   (2.22) 

If  i  N: Sign( ii) = Sign( i), then the DSE enjoys Pareto efficiency. If  i  N: 

Sign( ii)  Sign( i), then interests’ coordination is required for agents. 

We endeavor to establish conditions when the plan y
P
 becomes incentive-compatible, i.e., there exists 

a corresponding system of agents’ mutual payments satisfying inequalities (2.17) and (2.18). For simplicity, 

set n = 2: 

f1(y) = y1 – 2 y2,  f2(y) = – 3 y1 + y2. 

The dominant strategy of each agent is choosing the unit action: y
D
 = (1; 1). And the agents’ payoffs 

constitute f1(y
D
) = -1, f2(y

D
) = -2. 

The maximum sum of the goal functions is achieved under the action vector y
P
 = (0; 0) which leads 

to the agents’ payoffs f1(y
P
) = f2(y

P
) = 0. 

Zero actions are beneficial to both agents (such choice dominates the DSE in the Pareto sense). How-

ever, this is not a Nash equilibrium, as any agent easily increases its own payoff by a nonzero action (sim-

ultaneously decreasing the opponents’ payoff). 

As reserved utility, choose the agent’s payoff in the DSE: ui = fi(y
D
), i = 1, 2. 

Then the system of inequalities (2.17) acquires the form 

s12(y
P
)  1, s21(y

P
)  1; 

and the system of inequalities (2.18) gets reduced to 

s12(y
P
) – s21(y

P
)  -2, s21(y

P
) – s12(y

P
)  -1. 

The sum of the mutual payments of agents is minimized under 

s12(y
P
) = 1, s21(y

P
) = 1. 

Interestingly, each agent pays the opponent exactly the amount received from it: in fact, payments are 

pointless, the only important thing is the agreement about the conditions of such payments! 

On the one hand, the difference (y
P
) – (y

D
) = 3 can be treated as the effect owing to interests’ co-

ordination. On the other hand, this quantity estimates the maximum beneficial payments of agents to an 

external arbitrator (e.g., a Principal) so that it establishes and guarantees observance of game rules. 

Consequently, the necessity and feasibility of efficient interests’ coordination among interacting 

agents explain hierarchies’ occurrence in organizational systems. 

 

2.4. Problems of Agents‘ Preferences Identification 

 

Motivation represents a key function of organizational control and consists in stimulating controlled 

subjects to choose actions desired by a Principal. Competent selection of an incentive scheme calls for 

predicting possible responses of subordinates to certain variations in the forms and amounts of wages. 

Accordingly, it is desired to know its preferences regarding these factors. Description of controlled subjects 

(agents) within motivation problems and incentive problems [1, 28] lies, first, in defining their preferences 
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regarding the forms and amounts of wages, viz., possible responses (variations in labor supply) to varia-

tions in an incentive scheme [26]. 

Rather complete (theoretical and experimental) investigations of labor demand and supply have been 

conducted mostly in countries with advanced market economy. According to the modern circumstances in 

Russia, the experience and data of domestic research seem insufficient, whereas unadapted usage of foreign 

experience appears unreasonable. On the other hand, the experimental studies of labor supply performed by 

foreign researchers par excellance proceed from analysis of actual data on incomes and working time 

acquired via polling (e.g., Panel Study of Income Dynamics). The average curve of labor supply is con-

structed using actual earned incomes gained by respondents and their actual working time. Applying such 

approach to Russian economy would yield a paradoxical result: labor supply (measured as the actual work-

ing time) is almost independent from wages (see the discussion in [26]). Furthermore, if we are interested 

in the motivational role of financial incentives (the influence on an agent depending on other primary char-

acteristics such as sex, age, education level, etc.), then averaged indices may appreciably distort “the real 

picture.” Notably, panel or other “averaged” statistical data make it impossible to explore the individual 

strategies of labor supply comprehended as the relationship between the desired working time of an indi-

vidual and a wage system and its parameters (wage rates, etc.). 

Taking into account the above grounds, the book [26] focused on individual questioning: a respond-

ent models its behavior in different conditions and fills an electronic questionnaire. This approach seems 

advantageous, as it allows drawing the labor supply curve averaged over actual data (including comparison 

with the results of other types of questioning) and examining
4
 the relationship between individual prefer-

ences and the forms and amounts of wage. That is, the approach enables analyzing the relationship between 

the individual strategies of labor supply and the individual characteristics of respondents. 

Suppose that the strategy of an agent as the labor supply side is the choice of working time under a 

given wage and working conditions. For simplicity, we believe that the only alternative to working time is 

leisure time.
5
 Hence, labor supply appears equivalent to leisure demand [14, 20]. In addition, assume that 

the maximum admissible working time in a day makes up T = 16 h (at least, 8 h must be allocated to sleep-

ing, eating, etc.), i.e., working time   [0; 16]. If t designates free time (leisure activities), then  + t = T. 

Again, for the sake of simplified exposition, we hypothesize that the total income is proportional to work-

ing time (if there is no clear provision for the opposite). This means that labor market admits only propor-

tional incentive schemes (time wages) with fixed wage rates independent from the total working time and 

other sources of income are absent. All results can be generalized to the case of arbitrary wage systems, see 

[28] for details. 

Under the stated assumptions, the alternative costs of 1-h leisure equal the wage rate (and vice ver-

sa)–the extra earnings owing to working within this period of time. Let us analyze agent’s behavior on 

labor market, i.e., its preferences in the “labor-leisure” dilemma. Here labor supply is characterized by 

agent’s desired working time. 

According to labor economics, individual labor supply is defined by the income effect and the substi-

tution effect [14, 20]. 

The income effect gets manifested in the following. For a fixed wage rate  (wage per unit time), the 

desired working time goes down as the total income grows. Imagine that an agent aims at maintaining a 

certain level of the total income. Then the income effect reduces the desired working time in case of in-

creasing the wage rate. And conversely, for maintaining a fixed level of the total income, an agent has to 

raise working time under a reduced wage rate. 

The substitution effect leads to the following. Wage rate growth increases the desired working time , 

i.e., the alternative costs of 1-h leisure go up and an agent prefers working more time. 

                                                 
4
 No doubt, it may happen that the answers of respondents mismatch the reality: in real-life conditions, respondents can choose 

other actions than they report during questioning. A separate issue concerns the truthfulness of their answers. Being active, 

respondents can demonstrate strategic behavior and manipulate information. For instance, if agents know that managerial deci-

sions affecting their interests will be made based on their answers, they can report untrue information to guarantee most benefi-

cial decisions. Analysis of deliberate and purposeful manipulation of procedures makes the subject of separate (perhaps, ex-

tremely promising) research, but goes beyond the scope of this work. 
5
 This simplifying assumption eliminates from further consideration the problems of agent’s decision-making on hiring, firing, 

job hopping and hunting, etc. Moreover, in most real situations an employee is unable to choose working time independently or 

selects it from a short range. 
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Thus, under the income effect, an agent responds to wage rate growth by reducing labor supply; dom-

ination of the substitution effect brings to labor supply increase. 

Suppose that the preferences of a given agent on the set of admissible incomes and working time (or 

leisure time) are described by its utility function u(q, t). Here q denotes the total (e.g., daily, monthly, etc.) 

income, and t  [0; T] specifies leisure time. 

Further exposition focuses on the case of a fixed wage rate. If unearned incomes are absent, working 

time  yields the wage q( ) =  ( ) to the agent. 

Assume that agent’s preferences are defined as follows. First, the agent has the right to choose any 

daily working time under a fixed time wage. Second, we know the relationship between the desired work-

ing time  and the wage rate . Which decision rule is adopted by the agent in such choice conditions? 

Agent’s decision-making principle (reflected by the function ( )) will be called its strategy. 

The list of possible strategies includes income maximization, free time maximization, ensuring daily 

working time above a certain threshold, and so on [26]. Consider the following hypothetical example illus-

trated by Fig. 1. 

On the plane ( , ( )), draw the isoquant curves corresponding to the total income q1  q2  q3  q4. 

These values can be interpreted as the subjective norms of total income. For instance, the minimum income 

value q1 means the living wage, q2 is the average income of a social group this agent belongs to, q3 gives 

the total income desired by the agent at the current moment under existing external conditions, q4 indicates 

the total desired income unachievable under existing external conditions (as it corresponds to a higher level 

of welfare), and so on. 
 

 

( ) 

T 

0 

q1 

q2 

q3 

q4 

1 0 2 3 4 5 

 
 

Fig. 1. A combination of individual strategies 

 

In Fig. 1, individual strategies are marked by heavy line. Let us analyze the characteristic segments of 

wage rate values. Within the segment [0; 1], all available time is dedicated to working, but this yields a 

smaller income than q1. The free time maximization strategy dominates on the segment [ 1; 2] under a 

constant income q1 (the income effect takes place). The segment [ 2; 3] is remarkable for additional “acti-

vation” of the strategy “working not less than 0 h daily.” Having reached the income level q2, the agent 

strives for increasing the total income to the new “norm” q3 following wage rate growth. In other words, 

the curve goes up on the segment [ 3; 4] (the substitution effect), and within the segment [ 4; 5] the 

agent is quite satisfied with its new total income (the curve moves along the isoquant curve q3). As wage 

rate exceeds 5, the agent observes the feasibility of achieving a higher level of welfare (the curve again 

demonstrates growth, which answers the substitution effect). Interestingly, the curve in Fig. 1 meets the 

income monotonicity condition [26]: as wage rate raises, the agent prefers working time such that its total 

income is not decreasing. 

The book [26] described the results of verification experiments for the hypothesis on the existence of 

the following agents’ typology. According to the hypothesis, the types of labor supply agents depend on 

their response to wage rate variations. The experiment yielded 5541 correctly filled questionnaires. The 

author acquired information corresponding to the following indicators: 
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– primary social indicators: sex, age, family status, family structure (the number of co-residing de-

pendents–children and pensioners), education level, current learning (type of educational institution), posi-

tion at the principal place of business; 

– primary economic indicators: the actual total income of a person at the principal place of business, 

the actual daily mean working time at the principal place of business, the actual average per capita income 

of a family (taking into account all working members), the minimum monthly wage for which a respondent 

is willing to work daily for a given time (from 1 to 16 h), the desired daily working time under a given 

wage rate within a defined range. 

Different individual labor supply strategies lead to certain relationships between the desired working 

time  and the wage rate . Experimental data testify to an important feature: by analyzing the real curves 

( ) and performing expertise (!), one can identify five qualitatively different types of agents (the corre-

sponding actual data illustrating this thesis are provided below): 

- type 1: the desired working time is independent or almost independent from the wage rate starting 

from some threshold 
0
 (an agent disagrees to work under smaller wage rates), see Fig. 2; 

- type 2: the desired working time increases monotonically with the wage rate exceeding the “mini-

mum” threshold 
0
, see  

Fig. 3; 

- type 3: the desired working time monotonically decreases with the wage rate exceeding the “mini-

mum” threshold 
0
, see Fig. 4; 

- type 4: the desired working time increases with the wage rate exceeding the “minimum” threshold 
0
, and decreases for   max, see  

Fig. 5; 

- type 5: the desired working time has nontrivial behavior with wage rate variation (e.g., possesses a 

minimum or even several minima, etc.), see  

Fig. 6. 

The results of this expert classification fully agree with the results of automatic classification of labor 

supply curves obtained in [26]. 

 

 

 
0
 

( ) 

0 

I = 1 

 

Fig. 2. Type 1 of agents 

 

 
0 

( ) 

0 

I = 2 

 
 

Fig. 3. Type 2 of agents 
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0
 

( ) 

0 max 

I = 4 
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Fig. 4. Type 3 of agents 

 

Fig. 5. Type 4 of agents 

 

 

 
0
 

( ) 

0 max 

I = 5 

 
 

Fig. 6. Type 5 of agents 

 

The corresponding indicator I which reflects agent’s type (predetermines its individual labor supply 

strategy) and takes values {1; 2; 3; 4; 5} is called the type of individual labor supply strategies or simply 

agent’s type. 

The suggested typology of agents was tested [26] using the results of a similar questioning of more 

than 400 respondents in 1999. Almost the same sample size was selected for the study performed in 2003. 

Recall that in 2009 the sample size exceeded 5000 respondents. The time-invariable distribution of re-

spondents by their types is demonstrated in Fig. 7. 

I

25%

II

10%

III

8%

IV

16%

V

41%

 
Fig. 7. The distribution of respondents by their types (I) 

 

Therefore, the existence of five different “type” values allows claiming the presence of five gen-

eral types of agents, which are defined by common classes of their individual labor supply strategies. 

The experimentally established five types of agents can be described from the viewpoint of individual labor 

supply strategies introduced in [26] based on a series of hypotheses. Moreover, the book [26] posed and 

solved the problem of finding statistically significant relationships between the primary characteristics of 

agents and the types of their individual labor supply strategies. 

It is possible to explain the existence of the five types of individual labor supply strategies in differ-

ent ways. By proceeding from agent’s decision-making criteria (income maximization and free time maxi-

mization), we obtain that type 1 corresponds to the following situation. An agent works a common fixed 
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time without income/free time maximization. Next, type 2 is when income maximization dominates free 

time maximization, type 3 describes the opposite case. If an agent makes decisions based on both criteria 

equally, we observe type 4 or type 5. Choosing other grounds for agent’s decision-making or accepting 

some typology of its personal qualities, one can suggest other interpretations for the types of individual 

behavior strategies. 

In conclusion, we discuss how the results of such experiments may serve for identification of the 

above game-theoretic incentive models. 

The knowledge of the relationship ( ) allows constructing the functions ( ), q( ) =  ( ) and 

q( ) =  ( ). Imagine that the agent’s action is the choice of the working time y =  (in this case, the in-

centive ( ) and the Principal’s income H( ) both depend only on its working time). Then it is necessary to 

evaluate the optimal working time from the Principal’s viewpoint: 
*
 = arg 

];0[
max

T
 {H( ) – q( ) }. If agent’s 

working time has a more complicated dependence on its action, e.g., y = G( ) (but the Principal and an 

operations’ researcher know it), then the minimum stimulation costs of implementing the action y make up 

(y) = 
})(|0{

min
yG

q( ). The optimal implementable action y
*
 is the action maximizing the Principal’s goal 

function, i.e., the difference between the Principal’s income function H(y) and the minimum stimulation 

costs: y
*
 = arg 

Ay
max  {H(y) – (y)}. 

Recall that the game-theoretic framework characterizes agent’s preferences (see above) by its goal 

function f( ), i.e., the difference between its incentive and costs: f(y, ) = (y) – c(y), where y  A denotes 

agent’s action. In macroeconomic models, agent’s preferences are specified by a utility function u(q, t) 

defined on the “income  free time” set or by the relationships ( ) (the desired working time  as a func-

tion of the wage rate ) or ( ) (the minimum wage rate as a function of the working time). 

We have emphasized that the variables of the utility function and the goal function possess a simple 

interconnection: y  ,  = T – t,   q, A  [0; T]. Under the proportional incentive scheme, we have 

q( ) =   (in the general case, q( ) = ( )). 

Establishing interconnections between different models implies exploring the following problem. In-

formation on the individual preferences is specified in one of the four ways (see [26] and references there-

in): 

I. We know the utility function u(q, t); 

II. We know the minimum time wage rate ( ) for which an agent agrees to work  h; 

III. We know the relationship ( ) between the desired daily working time  and the time wage rate 

; 

IV. We know the goal function f( , ). 

For each of the four descriptions (under a given relationship), is it possible to “restore” other relationships 

and how should this be done? As a matter of fact, solution of this problem was introduced in [26]. 
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