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We study models of collective “multi-threshold” behavior of agents mak-

ing binary decisions. The general analysis scheme of these models is applied 

to three control problems of ecological-economic systems, namely, the prob-

lem of individual penalties, the problem of individual and collective penalties, 

as well as the incentive problem of agents’ investments in environmental 

protection and/or restoration. 
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1. Introduction 

 

Since the classical works of M. Granovetter [15] and T. Schelling [22], 

much attention of researchers in the field of collective behavior models focus-

es on the following settings. While making binary decisions on their “activity” 

or “passivity,” agents observe the opponents’ action profile, i.e., the number of 

active or passive opponents/“neighbors” (see the survey [2]). In this case, a 

key characteristic of an agent is its threshold: the agent varies its behavior as 

the opponents’ action profile exceeds the threshold. Such models provide an 

adequate description to the effects of conformity and anticonformity behavior 

(both in terms of collective behavior theory and game theory [11]) and have 

many applications (social networks [1], mob control [12] and others [2]). 

The general modeling procedure is as follows. First, construct the goal 

functions of all agents using the practical interpretations of socioeconomic 

phenomena and processes in question. Second, find the best responses of the 

agents (the relationships between their actions maximizing the goal functions 

and the opponents’ actions). And third, perform transition to the discrete 
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dynamical system describing the evolution of the number or share of active 

agents (the right-hand side of this dynamical system is defined by the agents’ 

threshold distribution function). We refer to [2] for numerous examples. 

However, some real situations are hardly reflected by the simple model 

with a single threshold predetermining agent’s activity or passivity under a 

given opponents’ action profile. This leads to the need for extending the class 

of threshold behavior models owing to the assumption of multiple thresholds 

for each agent. For instance, an agent can demonstrate conformity under a 

small number of active opponents, whereas a large number of active oppo-

nents can cause its anticonformity. Moreover, it is desired to cover a wider 

class of situations when an agent decides to be active provided that the share 

of its active opponents belongs to a given set. 

Section 2 states the general design scheme of such “multi-threshold” 

models. The obtained results are then applied to formulate and study control 

problems of ecological-economic systems (Sections 3-5), where agents make 

decisions under penalties (incentives) for environmental protection and/or 

restoration. 

As a matter of fact, this paper extends the models of threshold behavior to 

the case of n thresholds considered by an agent in its decision-making. On the 

other hand, the results presented below can be treated as an extension of the 

optimization [7, 8, 9, 16, 23] and game-theoretic [5, 6, 9, 10, 13, 21] control 

models of ecological-economic systems, particularly, their control mecha-

nisms [14]. 

 

2. Models of collective “multi-threshold” behavior 

 

Consider a set N = {1, …, n} of economic agents making binary deci-

sions yi  {0; 1}. If an agent chooses “1,” we say that it is “active” (and “pas-

sive,” otherwise). Introduce the following notation: Y = 
j

j N

y , Yi = 
j

j i

y , 

y = (y1, …, yn), y-i = (y1, …, yi-1, yi+1, …,  yn) as the opponents’ action profile 

for agent i, x = Y / n as the share of active agents, and x-i = Y-i / n. 

Generally, the goal function fi(yi, y-i) of agent i depends on its own actions 

and the actions of other agents. Suppose that caeteris paribus an agent prefers 

being active. Direct comparison of the values fi(0, y-i) and fi(1, y-i) yields the 

best response of agent i to a given opponents’ action profile: 



 3 

(1) yi = BRi(y-i ) = 
1, if (1, ) (0, ),

0, if (1, ) (0, ).

i i i i

i i i i

f y f y

f y f y
 

Further analysis focuses on a class of collective behavior models, where 

the inequalities in the right-hand side are predetermined only by the number of 

active opponents of a given agent. Then the best response can be expressed in 

terms of the share of active agents: 

(2) yi = 
1, if ,

0, if ,

i i

i i

x A

x A
 

where Ai  [0; 1] is a subset of the unit segment found from (1). 

For instance, in threshold models of conformity behavior [3] we have 

(3) yi = 
1, if ,

0, if ,

i i

i i

x

x
 

where θi  [0; 1] indicates the so-called conformity threshold of the agent [2, 

3, 11, 15]. By virtue of (3), the empirical conformity threshold distribution 

function 
1

:n iF x i N x
n

 can be used to evaluate the share of 

active agents in a Nash equilibrium 
* * *: nx F x x  (for details, we refer to 

[3]). Assume that we know its theoretical counterpart F: [0; 1] → [0; 1] and 

the initial share x
0
  [0; 1] of active agents. Then for sufficiently many agents 

the share of active agents evolves according to the discrete dynamical system 

(4) x
k
 = F(x

k-1
), 

where k = 1, 2, … stands for time steps. 

In the case of the so-called anticonformity behavior [11], 

(5) yi = 
1, if ,

0, if ,

i i

i i

x

x
 

where φi  [0; 1] designates the anticonformity threshold of the agent. Simi-

larly to conformity behavior, the expression (5) implies the following. The 

knowledge of the empirical anticonformity threshold distribution function 

1
:n iG x i N x

n
 allows obtaining the share of active agents in a 

Nash equilibrium. Again, using its theoretical counterpart G: [0; 1] → [0; 1] 

and the initial share x
0
  [0; 1] of active agents, for sufficiently many agents 

we can calculate 
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(6) x
k
 = 1 - G(x

k-1
), 

If Ai = [θi; φi], i.e., agents demonstrate multi-threshold (more specifically, 

double-threshold) behavior, then 

(7) yi = 
1, if [ ; ],

0, if [ ; ].

i i i

i i i

x

x
 

Obviously, the number of active agents is described by the following discrete 

dynamical system: 

(8) x
k
 = F(x

k-1
) - G(x

k-1
). 

The sets {Ai} may have a more complex structure (e.g., be disconnected–

see formula (14) in Section 4). In such situations, the corresponding dynam-

ical system is constructed by analogy. 

Any of the discrete dynamical systems (4), (6) or (8), etc. being available, 

we can perform stability analysis, study how its equilibrium states depend on 

the model parameters and initial conditions, and so on. Consequently, it is 

possible to formulate and solve, e.g., parametric control problems (choose 

admissible values of control parameters ensuring required or almost required 

dynamics of the system). 

In Sections 3-5, we apply the described general design scheme of multi-

threshold collective behavior models to three control problems of ecological-

economic systems. 

 

3. Model of individual penalties 

 

Within the framework of the control problems of ecological-economic 

systems studied below, agents’ actions will be interpreted as investing (or not 

investing) fixed financial resources {ci} in environmental protection and/or 

recovery measures. 

Suppose that the goal functions of agents possess the form 

(9) fi(y) = Hi – ci yi –  Hi 
1 iy

N Y
 I(Y < Ŷ ), 

where Hi is the income of agent i gained by its business activity, I( ) means the 

indicator function,  Hi specifies the penalty imposed on the agent for not 

investing in environmental measures (the total number of such agents does not 

exceed some threshold Ŷ  ≤ N). Agents know this threshold for sure or have 

certain “probabilistic” beliefs about it (see below). The quantities γ ≥ 1 and 
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1

N Y
 can be interpreted as the “penalty strength” and “the audit probability” 

of an agent. 

By evaluating the best response of agent i, we arrive at the following re-

sult in terms of the shares x-i of active agents: 

(10) yi = 
ˆ1, if [1 ; ],

0, otherwise.

i ix x
 

Here x̂  = Ŷ  / N  [0; 1] and i = Hi / ci (agent’s “profitability”). 

The values 1 -  i  and x̂  represent the conformity and anticonformity 

thresholds of the agent. 

Let F(·) be the profitability distribution function of the agents and G(·) 

denote the distribution function of the agents’ beliefs about x̂ . By assumption, 

both functions form the common knowledge of all agents. According to (8), 

the share of agents investing their financial resources in environmental 

measures meets the condition 

(11) x
k
 = H(x

k-1
) = max {0; 1 - F(

11 kx
) - G(x

k-1
)}, 

where k = 1, 2, … are time steps. The initial share x
0
 of such agents is given. 

The role of control parameters in this model belongs to “the penalty 

strength”  and agents’ awareness about the threshold x̂ . 

Example 1. Set F(z) = z , G(z) = z, x
0
 = 0.1. Then the system (11) has 

the equilibrium 0.25 (see point А in Fig. 1 and Fig. 2). 
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Fig. 1. The right-hand side of the expression (11) 

in Example 1 under  = 3 and G(z) = z 
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Fig. 2. The trajectory of the system (11) in Example 1 

 under  = 3 and G(z) = z 

 

Now, suppose that the agents know the value x̂  = 0.8 for sure. Under 

 = 1, the system (11) admits the trivial equilibrium. As we increase the penal-

ty strength, the equilibrium also grows. For instance, in the case of  = 3 the 

equilibrium approaches 0.67 (see point А in Fig. 3 and Fig. 4). Interestingly, 

uncertainty reduction enlarges the share of active agents (we have initially 

hypothesized that, according to the agents’ beliefs, the parameter x̂  is uni-

formly distributed on the unit segment; now, we suppose that the agents know 

its value for sure). 

 

  

0 
0,1 
0,2 
0,3 

0,4 
0,5 
0,6 

0,7 
0,8 
0,9 
1 

0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5 0,55 0,6 0,65 0,7 0,75 0,8 0,85 0,9 0,95 1 

x 

H 

А 

 
Fig. 3. The right-hand side of the expression (11) 

in Example 1 under  = 3 and x̂  = 0.8 
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Fig. 4. The trajectory of the system (11) in Example 1  

under  = 3 and x̂  = 0.8 

 

Appreciably high “penalty strength” in this model seems unreasonable, as 

it causes the oscillatory mode (the trajectory of the system (11) under  = 6 is 

illustrated by Fig. 5).  
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Fig. 5. The trajectory of the system (11) in Example 1  

under  = 6 and x̂  = 0.8 

 

Example 2. Assume that agents’ profitabilities obey the Pareto distribu-

tion with an index α and a minimum possible value 0 (actually, this distribu-

tion is widespread in mathematical economics and admits simple identifica-

tion–see [17, 19]). Agents know the value x̂  for sure. Then the expression 

(11) acquires the form 
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(12) x
k
 = 

10
01
ˆ, if min{1 ; },

1

0, otherwise.

k

k
x x

x  

Select α = 2, x̂  = 0.8,  = 1, and 0 = 0.3. The right-hand side of (12) has 

the curve demonstrated by Fig. 8. 

 

 

А 

 
Fig. 6. The right-hand side of the expression (12) in Example 2 

 

Under any initial conditions x
0
  [0; 1], the dynamical system (12) has an 

equilibrium, see point A in Fig. 6.  

 

4. Model of individual and collective penalties 
 

Let us modify the goal function (9) as follows: 

(13) fi(y) = Hi – ci yi –  Hi 
1 iy

N Y
 - (1 – yi) δ Hi I(Y < Ŷ ), 

where δ ≥ 0 and the last term reflects agent’s losses due to bad environmental 

conditions (it can improve these conditions by individual actions or collective 

actions of other agents). 

By evaluating the best response of agent i, we easily obtain 

(14) yi = 
ˆ ˆ1, if [1 ; ] or max{ ;1 },

1

0, otherwise.

i
i i i

i

x x x x
 

The expression (14) implies that the share of agents investing their finan-

cial resources in environmental measures satisfies the condition 
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(15) x
k
 = max {0; 1 - F(

11 kx
) - G(x

k-1
) + F(

1

1

1

(1 )

k

k

x

x
)}. 

Here the control problem consists in choosing “the penalty strength” γ 

and δ (motivational control) and agents’ awareness, e.g., about the threshold 

x̂  (informational control), which guarantee the desired dynamics of the sys-

tem. 

Example 3. Set F(z) = z , G(z) = z
4
,  = 2, δ = 3, and x

0
 = 0.7. The curve 

of the right-hand side of the expression (15) and the corresponding trajectory 

are illustrated by Fig. 7 and Fig. 8. 

 

А 

 
Fig. 7. The right-hand side of the expression (15)  

in Example 3 under  = 2, δ = 3 

 

 
Fig. 8. The trajectory of the system (15) in Example 3 under  = 2,  = 3 

 

Under the parameters of Example 3 and γ = 1, we observe system stabili-

zation (see Fig. 9), but the equilibrium share of active agents is smaller than in the 

initial condition. 
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Fig. 9. The trajectory of the system (15) in Example 3 under  = 1,  = 3 

 

By choosing γ = 1, δ = 11, and x̂  = 0.9 (see Fig. 10), we obtain the sys-

tem dynamics shown in Fig. 11 (the equilibrium share of active agents in-

creases in comparison with the previous case).  

 

 

А 

 
Fig. 10. The right-hand side of the expression (15) 

in Example 3 under  = 1, δ = 11, and x̂  = 0.9 

 

 
Fig. 11. The trajectory of the system (15) 

in Example 3 under  = 1, δ = 11, and x̂  = 0.9 
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5. Incentive model of environmental protection 

 

Consider the goal function of agent i in the form 

(16) fi(y) = Hi – ci yi + yi Q0 I(Y  Ŷ ) / Y, 

where the quantity Q0 ≥ 0 can be comprehended as an incentive fund for 

environmental measures. This fund is allocated in equal shares among all 

agents investing in environmental measures (also see joint financing mecha-

nisms in [18, 20]). 

Calculate the best response of agent i: 

(17) yi = 
ˆ1, if [ ; / ] ,

0, otherwise.

i ix x c Q
 

where Q = Q0 / n means “the specific incentive.” 

According to (17), the share of agents investing their financial resources 

in environmental measures meets the condition 

(18) x
k
 = max {0; G(x

k-1
) - P(Q x

k-1
)}, 

where P( ) is the cost distribution function of the agents. 

Here the control problem lies in choosing “the specific incentive” Q and 

(like in the previous two models) in choosing agents’ awareness about the 

threshold x̂  and the value of this threshold. 

Example 4. Set P(z) = z
2
. The curve of the right-hand side of (18) and the 

corresponding trajectory are presented by Fig. 12 and Fig. 13. 
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Fig. 12. The right-hand side of the expression (18) 

in Example 4 under x̂  = 0.1, Q = 0.5 
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Fig. 13. The trajectory of the system (18) in Example 4 under x̂  = 0.1, Q = 0.5 

 

As we increase the threshold x̂  (i.e., toughen the conditions of funding), 

this mechanism ceases to be motivating–see Fig. 14. 
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Fig. 14. The trajectory of the system (18) in Example 4 under x̂  = 0.25, 

Q = 0.5 

 

Curiously enough from common sense, higher incentives for agents’ en-

vironmental measures can cause instable behavior of the agents (see Fig. 15) 

or even demotivate them (see Fig. 16).  

 



 13 

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0
1

x

 
Fig. 15. The trajectory of the system (18) in Example 4 under x̂  = 0.1, Q = 0.9 
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Fig. 16. The trajectory of the system (18) in Example 4 under x̂  = 0.1, Q = 1 

 

To assess the efficiency of incentive mechanisms of environmental activ-

ity, one can use the ratio of “investments” (the equilibrium costs of the agents) 

and the incentive fund. 

And finally, note that it seems interesting to analyze models, where in-

centive fund depends on the number or share of active agents. 

 

6. Conclusion 

 

In this paper, we have applied the general description of multi-threshold 

collective behavior to control problems of ecological0economic systems. 

The framework of the three studied models of incentives and penalties for 

environmental protection and restoration allows for proper consideration and 

exploration of the following phenomena: 



 14 

- higher “penalty strength” increases the share of agents investing their 

financial resources in environmental measures; 

- uncertainty reduction with respect to the institutional conditions of 

agents’ functioning increases the share of agents investing their financial 

resources in environmental measures; 

- penalty constraints have to be carefully specified, since otherwise the 

controlled system may demonstrate instability; 

- tougher conditions of agents’ funding for their environmental measures 

can make this incentive mechanism no more motivating; 

- higher incentives of agents (for environmental measures) can cause their 

instable behavior and even demotivate them. 

Generally speaking, we acknowledge that the above models enjoy all ad-

vantages of discrete nonlinear dynamical models (the feasibility of reflecting 

many qualitative effects, simple realization of numerical experiments, and so 

on), as well as suffer from all their drawbacks (complicated analytical study of 

equilibria and their uniqueness, system stability and the domains of equilibria 

attraction, strong dependence of equilibria on model parameters and initial 

conditions and others). 

In the context of control problems, this means the need for maximally ac-

curate identification of controlled objects and inevitable system response 

simulation (anticipating practical usage of control actions) depending on its 

parameters and initial conditions. 

Regarding the promising lines of theoretical studies, we mention design 

and analysis of general models of multi-threshold collective behavior. 
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