
Intelligent Control of Industrial Processes 

 

Stanislav N. Vassilyev, Dmitry A. Novikov, Natalia N. Bakhtadze 


V.A. Trapeznikov Institute of Control Sciences, 

65 Profsoyuznaya, Moscow 117997, Russia 

(Tel.: +(7)(495)3349201, e-mail: snv@ipu.ru) 

 

Abstract: The paper analyzes the problems of intelligent production control subject to world economy 

trends. It discusses the evolution of the problem of integrated plant floor and plant logistics control and 

overviews the state-of-the-art control theory methods and the ways to apply them in production control. 

Keywords: Intellectual control, Intelligent control, Network control, Organizational control, Unified 

control, Model-based predictive control, Knowledge-based models, Data mining 

 

1. INTRODUCTION 

Intelligent control of production processes is a rapidly 

growing field of research with a promising potential of 

theoretical results and applications in both integrated 

production control systems and specialized control systems at 

various plant levels. 

Control theory and methods show a clear trend to further 

convergence with artificial intelligence (AI) techniques. This 

is happening against the background of the increasing 

penetration of information and control technologies into 

various fields of human activities. In particular, the science 

intensity of production control is increasing in the 

“knowledge economy”. 

Much as the political weight of a state, company’s 

compatibility is increasingly determined not only by the 

availability of material, energy, and financial resources but 

by intensive employment of intelligent resources as well. 

High-tech product does not obey matter and energy 

conservation laws, has no physical limits and its buildup 

increases the benefits of the related resources, products and 

services, also in planning, management, and control 

(Velikhov et al., 2007). Science intensity of products has 

been growing: by 2 orders of magnitude per 1 kg of weight 

for vehicles, 4 orders for aircraft, and 6 orders for VLSI 

circuits as against their material cost. The cost of avionics 

may amount up to 60% of a military airplane’s price. 

Apparently, the success of production modernization 

depends, in particular, on the institutional environment in the 

country. Innovation management is an important part of a 

national economic policy in market-economy countries. For 

example, the overcoming of innovation management 

challenges, quality development, standardization, 

informatization programs are by 50% or more sponsored by 

USA government, because they lie beyond the scope of any 

specific industry or territory. The government has created the 

preferential tax and crediting systems, public financing of 

innovative design, effective antimonopoly law, public grant 

system for R&D and scientific information. 

The term Creative Economy (Howkins, 2001) has been 

gaining popularity within the research community. A lot of 

publications appeared, and international conferences are 

being convened (Tairan and Florida, 2006). This economic 

development stage follows such ones as: 

 postindustrial, featuring the prevailing development of 

human services 

 informational, where the economic development is 

driven mainly by information systems and technologies 

 knowledge economy, where intangible assets and 

intellectual property play the key role. 

At the present-day creative stage of economic development, 

information and knowledge generate creative ideas, whose 

implementation (innovations) result in significant benefits 

within the global system. Specific economic development 

models may be utterly different, like, e.g., in China as against 

European Union countries. 

The switch from cost management strategy to result 

management strategy based on project management is also 

apparent. In developed countries, national scientific and 

technological development strategies have been created. 

National institutes for development and state-private 

partnership are evolving, which contribute to national 

industry, science, and education embedding into the global 

labor division system created by knowledge economy 

leaders. The predominance of national companies or 

industries in the world market becomes the criterion of 

success. 

By control intellectualization one understands today the 

process of increasing automation coverage and extending its 

application scope combined with ensuring the guaranteed 

control quality, in particular, with respect to such criteria as 

cost-effectiveness, reliability, durability, etc. 



Computer technologies play the paramount role in the 

automation of human individual’s professional activities and 

labor productivity increase. The basic trends in this area as 

per the viewpoint of key analysts (Gartner, Inc., 2008) look 

as follows: 

 Virtualization and fabric computing 

 Cloud computing and web platforms 

 Web mashups 

 Ubiquitous computing 

 Contextual computing 

 Augmented reality. 

Low-power electronics, high resolution LCD screens, mobile 

and wireless communicators, positioning systems (GNSS, 

UWB, ultrasonic) make the framework of ubiquitous 

computing in the organizational and technological provision 

of networked manufacturing instead of conveyor lines. 

Instead of tailoring commercial solutions to custom 

requirements, the strategy of product multi-functionality 

(“Swiss army knife”) under decreasing product lifecycle is 

gaining popularity (Vassilyev and Sabitov, 2012). 

Ubiquitous and pro-active computing open up a new era of 

production computerization. As the PCs in 1970s-80s, 

wireless systems today increasingly overcome the skepticism 

of industrial users. More attention is paid to MODELWARE 

(models for control) and USEWARE (HMI). 

As far as human cognitive and sensorimotor abilities have not 

changed much over the several recent millennia, the new 

generation control systems should focus on the human 

individual and his abilities without requiring significant 

adjustment of these abilities to any technologies (such 

adjustment looks hardly attainable and not at all necessary). 

This picture is supplemented by the fact that the philosophy 

of automated control systems as computer-integrated 

manufacturing of the 1980s with its unmanned ideal has not 

been implemented so far because of the extreme complexity 

of effective planning and management systems for present-

day production complexes. The pioneer philosophy of the 

1990s is lean production (Toyota) based on network (rather 

than hierarchical) organization of cooperating self-organizing 

work teams instead of conveyors with strictly regulated 

personal responsibility. 

The key attributes of the present-day production 

innovativeness (along with the degree of scientific and 

technical novelty determined by intellectual property 

including innovations in control techniques) are technological 

advantages and application benefits. Instead of attaining near-

term control goals, new tasks arise, which should be 

accomplished under possible quick correction of conditions 

and constraints and prediction of situation evolution scenarios 

rather than single factors.  

In the innovative modernization environment, the success 

will be determined by the following: 

 Model development and control decision generation as 

well as result verification and analysis in control systems 

of production complexes should be done subject to the 

information (both historical and real-time) about the 

operation of production complex’s elements, that is, the 

control should be executed on the basis of the unified 

information space. 

 Control, identification, and simulation algorithms should 

rest on the knowledge generated and updated on the 

basis of process data analysis in the form of revealed 

regularities. 

Algorithmization of the switch from observation to 

prediction has been running under various titles: 

empirical prediction (EP), pattern recognition (PR), 

machine learning (ML), intelligent analysis of data 

(IAD), data mining (DM), cognitive computation (CC), 

etc. (Finn, 2004) 

 At each moment, a certain strategy comprising possible 

changes of not only the parameters but the system 

structure as well should be implemented instead of a 

specific control algorithm. 

One should allow for the increasing network control trend 

both for control system and communication channels, as 

well as the novelty of the arising multilevel control tasks. 

This promotes intensive development of network, multi-

modal, group and multi-agent methods for production 

process control. 

2. PRODUCTION PROCESS CONTROL SYSTEMS: 

STATE-OF-THE-ART SOLUTIONS 

Competitive advantages in the present day turbulent market 

look hardly attainable without ensuring maximum possible 

information transparency and making optimal managerial 

decisions. Production process control should be optimized in 

a flexible and integrated manner, i.e., the optimization should 

comprise all business processes: production planning and 

resource management, operative-logistic production control, 

process control and marketing.  

The systems comprising the full production cycle are listed 

below: 

ERP – Enterprise Resource Planning 

EAM – Enterprise Asset Management  

APS – Advanced Planning and Scheduling  

SSM – Sales and Service Management 

CRM – Customer Relationship Management 

SCM – Supply Chain Management  

MOM – Manufacturing Operations Management 

APC – Advanced Process Control 

P&PE – Product and Process Engineering 

MES – Manufacturing Execution Systems 

LIMS – Laboratory Information Management Systems 



DCS – Distributed Control System 

SCADA – Supervisory Control and Data Acquisition 

Industrial PLC – Programmable Logic Controller. 

It seemed obvious in 1980s-90s that the integrated interaction 

of these systems or their functional fragments would provide 

comprehensive real-time surveillance of all problem areas 

and eventually improve production process efficiency as a 

whole. 

The diagram in Fig. 1 shows the segmentation of production 

control. 
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Fig. 1. Production control segmentation 

The concept of computerized integrated manufacturing, 

which presumed not only the employment of computer 

technologies for process and operations automation but also 

the development of an integrated information system to 

control the production as a whole was offered (Mizyun, 

2011). It became clear already then that informational 

integration of process (plant floor) and business levels is hard 

to attain without creating plant’s unified information space.  

Today this does not look enough – multifunctional 

architecture is needed for an integrated modular control 

system with specific requirements to its functions (rather than 

to hardware components), validation of requirements, 

implementation and verification, as, e.g., in integrated 

modular avionics. 

However, a number of challenges were detected on the path 

to integrated production control systems. The first one 

seemed a most difficult but surmountable: no industrial 

automation market participant could offer products or 

services covering the whole range of control decisions 

(Bakhtadze et al., 2007). Control engineers were mainly 

updating hard-/software platforms of legacy systems or 

equipping new plants. On the other hand industrial ERP 

vendors had not enough expertise in plant floor automation 

because their products were focused mainly on accounting, 

finance and documentation management. 

Moreover, the development of the unified information space 

required a special approach for specific enterprises. 

Information Control Systems at various production levels 

operated with vast volumes of heterogeneous data.  

Despite significant advances in creating hi-tech hard-

/software such as high-capacity data storages, visualization 

tools, situation monitoring and decision-making support 

tools, corporate databases, etc., more challenges had to be 

overcome for developing a unified information-control 

structure. First and foremost is the lack of correct data 

exchange between heterogeneous applications that could 

ensure reliable mobile integration of all subsystems. Also, the 

standards meeting new realities had to be developed. 

Today, one can assert that the unified information space 

(Yakovis, 2013) does exist at a number of industrial 

enterprises and companies, in particular where corporate 

databases, monitoring systems, and DCS are available. For 

example, in the Russian DCS market such internationally 

acknowledged vendors as Emerson, Honeywell, Invensys, 

Siemens and Yokogawa are among the most popular. Their 

users are typically major plants. For small plants, a real 

challenge is posed by the prevalence of IT development rate 

over the equipment renewal rate that may be caused by 

purely commercial priorities. The answers to these challenges 

are standardization, middleware and global industrial servers, 

cloud technologies. 

Still, it seems too early to speak about integrated control 

systems for both production levels (plant floor and plant 

logistics) altogether. As to production management, the 

market offers a number of systems integrating the control at 

various layers of plant logistics level. Analysts argue about 

the controlling as a special type of financial and economic 

activity of plant management. It is used for making short-

term and strategic decisions subject to the whole plant’s 

current status. 

Process automation for various plants (even manufacturing 

the same product) shows individual features where unified 

solutions are hardly applicable. The same about design 

processes (CAD): for each enterprise, especially in 

instrument-making and machine-building, automation and 

control require individual approaches. Only the control of 

design of specific types of products may be generic in such 

systems. 

Today, the combination (based on a unified monitoring 

system) of ERP, process control, CAD, supervisory control 

and MES make some kind of integrated production control 

systems with MES as a core. 

Plant’s unified information space enables not only the 

monitoring of production status but the operation of software 

aimed at various tasks: analysis, prediction, control, etc. 

(Bakhtadze et al., 2008). Algorithms and models can be 

adjusted in real time using both on-line data, including other 

process models or their fragments, as well as historical data. 

Software systems aimed at model design and tuning based on 

real-time data are called inferential models, or soft sensors 

(Albertos and Goodwin, 2002). 



Typically, the term “soft sensor” is related with the plant 

floor. In process operations, inferential models describe the 

relationship between a process variable (typically, a product 

quality), which cannot be measured at the plant directly, with 

other process variables measured directly (Kern, 2007). 

Using real-time models for control at higher production 

levels looks reasonable, but the correct implementation of 

such approach requires the revision of the whole of integrated 

control methodology. 

In recent years, model(-based) predictive control (MPC) 

became the most popular tool for addressing strongly 

interrelated multi-variable processes with a lot of constraints 

and big dead times (Qin and Badgwell, 2003). MPC is based 

on using a pre-designed process model in the control loop. A 

wider term Advanced Process Control (APC) is well-known; 

this comprises MPC as well as some other control 

technologies such as traditional (non-model-based) advanced 

controls (TAC, also called advanced regulatory controls –

ARC), soft sensors, adaptive regulatory controllers, etc. Soft 

sensors play a key role in most of MPC solutions, as they 

provide the only cost-effective tool for on-line control of 

product qualities. 

In 1970s, a concept of a process control system with an 

identifier in the control loop was developed. Such control 

systems were named “Automatic Systems with Identifier” 

(ASI; Rajbman, 1976). The model in such systems enables 

real-time adaptive parameter tuning. Industry first ASI was 

successfully implemented in mid 70s at a tube-rolling mill. 

Process model building for continuous and semi-continuous 

(batch) processes requires parameter identification based on 

small samples. In such case, the choice of identification 

algorithms should be based on the time to steady state in the 

identifier and, moreover, low sensitivity to the initial estimate 

accuracy. These conditions along with the quasi-stationarity 

requirements hamper the implementation of such systems 

(Bunich, 2005). 

High reliability is an important requirement for many critical 

applications. High capacity of such plants implies significant 

losses in case of failures. In some cases, insufficient 

information about the process requires robust control that 

ensures plant operation within constraints (Torgashov, 2005). 

Therefore, further investigating the capabilities of robust 

control theory and techniques in process control systems 

looks promising. 

Now we return to the 2
nd

 global challenge on the way to 

integrated production control systems. Tightening 

requirements in speed, accuracy and controllability under 

uncertainty conditions and various types of disturbances in 

control systems demonstrate the limitations of traditional 

approaches to automatic control system design. The attempts 

to apply “black box” approach for controlling complex 

multivariate plants were unsuccessful. The results of massive 

R&D are embodied mainly in systems of more or less scanty 

functionality with add-ins implementing various heuristic 

approaches. 

The capabilities of classical artificial intelligence techniques 

are insufficient for handling a number of process control 

tasks as well as supervisory production control. For most of 

such techniques, it is typical that human intelligence serves as 

a prototype for developing an artificial one. However, the 

application of the results of further research in the field of AI 

shows that some approaches not underpinned by human 

mental architecture look more successful in certain tasks as 

against the abilities of human mind. 

Both academia and industry came to conclusion that full 

automation of an industrial plant as of a socio-technical 

system should rest on an utterly different basis. A new 

methodological approach (by now, appealing to the 

participation of human intelligence in production control) 

effective in uncertainty and subsystem failure conditions is 

required. Mechanisms for timely changing of operation 

targets, quality criteria and constraints are needed (Popper, 

1992, Gabbay and Smets, 2000). 

3. INTELLIGENT CONTROL 

To develop a new platform for integrated control of 

production process as a whole, we address the available bank 

of control theory results. 

Along with automatic control under multicriteriality, 

uncertainty and risk conditions, which showed significant 

advances in the recent years, intelligent control techniques is 

making great strides. Under intelligent control (Vassilyev and 

Sabitov, 2012) we understand the capability of a hard-

/software system to automatic development of control actions 

based on formalized expert knowledge and experience, 

mathematical and informational modeling to attain a target 

set by a human individual. This definition refers to control 

systems at both plant floor and plant logistics levels. 

Intellectual control techniques is aimed at the automation of 

target setting as well as a real-time revision of quality criteria 

and constraints (Vassilyev and Sabitov, 2012, Vassilyev et 

al., 2000a, Finn, 2009, Anshakov and Gerdely, 2010, 

Benthem, 2007). 

Intelligent and intellectual control (Fig. 2) combined with 

control hardware miniaturization, decentralized control in 

multi-agent systems and present-day computer technologies 

underlie state-of-the-art production control systems. 

Control plant

6. Intellectual control (with target setting), target and 

control performance criteria revision, strategic interaction 

with other control systems 

5. Intelligent control (no target setting, reconfiguring, action 

planning, 3D scene analysis, learning, reflection and 

cooperative behavior)

4. Adaptive and predictive control

3. Robust control

2. Point-to-point control

1. Programmed control

Environment

Сontrol Levels

 

Fig. 2. Control level hierarchy 

Multi-agent systems (MAS) exemplify the application of 

intellectual control methods and concepts. The hierarchical 



structure of MAS agents at a certain extent correlates with 

control concept and level hierarchy shown in Fig. 2. 

At the lower MAS levels, such as stabilization, etc., point-to-

point, robust and adaptive control principles are used; 

intelligent control occupies tactical and strategic levels, while 

intellectual control with target setting (actually used today 

only in interactive man-machine systems) lie on strategic and 

upper levels. 

For intellectual control level, internal sub-hierarchy (Fig. 3) 

is often typical, e.g., the combination of neuro-reactive, logic-

reactive (with production rules and perhaps with situation 

proximity estimation procedure) and logical levels of 

intellectual control (Vassilyev, et al. 2003). 

Intellectual control tools are compared in Fig. 3. 
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Fig.3. Intellectual control levels 

Various artificial intelligence tools such as neuron networks, 

evolutionary, logical, etc., can be used for mission planning 

problems. Each of these classes features its own merits and 

drawbacks, especially against real-time requirements (Table 

1). 

Today, the tools are mainly selected heuristically. Maximum 

mitigation of drawbacks inherent to specific tools and the 

development of generic procedures of their combination for 

specific tasks is a global objective (Vassilyev et al., 2000). 

Choosing standard and management solutions optimal (or 

rational) in specific situations is a base for experience 

systematization at upper control levels. 

Table 1. Artificial intelligence (AI) tools  

AI Tools Typical Merits Typical Drawbacks 

I. Neuron 
networks 

1. Applicable in multi-
factor problems with 

poor formalizability of 

patterns 

2. High granularity of 

parallelism and speed 

3. Learning ability 

1. The need for learning 
information: a 

representative set of “input/ 

output” examples (“rather 
eye than brain”). 

2. Slow learning 

II. 

Evolutionary 
(genetic) 

1. High granularity of 

parallelism and speed 

1. Application efficiency 

unknown a priori 

2. Rather self-organization 

of elements than a 

constructive process. 

III. 
Production 

1. Capability of 
representing 

descriptive-constructive 

knowledge and 
reflection 

2. Naturalness of rules 

(IF… THEN…). 

1. Difficult to execute large 
production bases, 

insufficient structurization 

2. Difficult to ensure 
correctness 

IV. Object-

oriented 
(semantic 

networks, 

frames, etc.) 

1. Good structurization 

2. High speed of 
property inheritance and 

other mechanisms 

1. Complexity of 

programming (abandoning 
AI ideals) 

2. Insufficient expressive 

power 

V. Logical 1. High expressive 
power 

2. Correctness 

3. High complexity of 

off-line tasks 

1. Insufficient speed, 
traditional applications are 

off-line 

2. Traditionally poor 

compatibility with 

heuristics and experience 

3. Unsolvability of rich 

logics 

4. Insufficiency of a single 
logic 

VI. Object-
logical 

1. Combine the merits 
of object-oriented and 

logical models 

1. Drawback of logical 
models 

2. Complexity of 

programming 

VII. Multi-

agent 
architectures 

1. Allow for reflection 

and self-organization 

1. Correctness and 

effectiveness of operation 
require to develop a 

relevant theory 

 

As soon as the number of possible situations is huge, a priori 

generation and storage of all situations is impossible and 

hardly practical – one should point out the sets of “similar” 

situations and apply the same solutions to the situations from 

the same set. In control theory, such approach was named 

unified control (Novikov, 2013), and the related control 

solutions – case-based reasoning. 

It is clear that a priori limitation of a class of possible 

controls, on the one hand, decreases the control effectiveness, 

and on the other hand enables the reduction of information 

load on the control subject and the opportunity for it to 

maximize both its own and other experience in a new 

situation. 

The application of typical control decisions is the most 

effective in certain management tasks as well as in 

computerized training systems for process operators and 

engineers. 

A class of automatic control systems based on DA+КBS 

(Data Analysis and Knowledge-Based Systems) technology, 

i.e., data analysis, knowledge revelation, representation, and 

processing, has been developing rapidly. Application 

efficiency of such systems in control tasks at all levels results 

from the ability to compensate for the lack of a priori 

information about the control object in case of poorly 

formalized input signals and system structure as well as when 

nonlinear models are required. 



Generally, knowledge management is defined as a process of 

systematic and purposeful development, dissemination and 

application of knowledge (information) critical for 

enterprise’s strategy and goals (Nonaka and Tackeuchi, 

1995). Knowledge management comprises of 2 components: 

organizational and technological. The organizational part is a 

variety of managerial procedures, which allow the 

organization to store, structure, and analyze the information 

for its effective current and future application in production 

process control. 

Knowledge management in process control systems enables 

the application of control techniques with intelligent 

predictive models (automatic control or managerial decision-

making support) as well as of network, multi-agent, and 

multimodal techniques. 

The operation of Knowledge-Based Manufacturing Systems 

(KBMS) can be represented as the interaction of basic 

elements (e.g., agents). The implementation of a specific 

interaction between elements at a current instant is 

determined by elements’ response to environment change 

(Mizyun, 2011). The co-ordination of concurrent operation of 

elements in an integrated system is based on the development 

of flexible associative relations, which form a distributed 

associative environment of the informational interrelation. 

The class of knowledge used today in production process 

control systems is more extensive than the expert knowledge 

class (Bakhtadze et al., 2012a). In KBMS, artificial 

intelligence operating with process knowledge along with 

expert knowledge are widely used. The term “process 

knowledge” means formalized process operation regularities 

obtained by means of DA. 

In process of control system development and its adaptive 

tuning during real-time operation, procedural knowledge are 

iteratively transformed into declarative (non-procedural) 

ones, and vice versa. For such systems, application of fuzzy 

logic and fuzzy control algorithms, genetic algorithms, 

neuron networks and hybrid technologies is typical. 

The associative search method based on virtual model 

development (Bakhtadze et al., 2012b) exemplifies the 

DA+KBS technology. The associative search procedure 

builds a model of operator’s prediction process for making a 

control decision based on knowledge and experience. In the 

model, operator’s knowledge is replaced with the patterns 

retrieved form historical and on-line data using data mining 

techniques and associations. Instead of dynamic object’s time 

approximation the associative search aims at building a new 

predictive model at each time step (a virtual model) using a 

set of historical data (associations) generated at the learning 

stage. Clustering, i.e., “learning without teacher” is an 

effective technique to generate associations. A control 

decision-maker may be a process operator, a supervisor or a 

plant manager dependent on the decision-making level.  

The development of associative search algorithms can 

employ fuzzy logic techniques based on production-type 

models. However, the application of fuzzy techniques 

notwithstanding all their clear advantages significantly 

reduces the computing speed – the factor critically important 

for the efficiency of many industrial processes. This fact 

along with principal non-formalizability of a number of 

factors justifies the need for algorithms combining the 

advantages of the fuzzy approach and associative search 

algorithms. 

It looks reasonable to employ wavelet analysis in 

identification tasks, in particular, for building predictive 

models using associative search techniques. Such approach 

may be relevant under non-stationary conditions either for 

non-stationary input signal or in case of unmodeled plant’s 

dynamics. 

4. NEW PRODUCTION CONTROL STRUCTURES 

Multi-agent and network control structures are gaining 

increasing popularity as alternatives to traditional integrated 

systems. The effectiveness of production control on the basis 

of network interaction is caused on the one hand by the 

capability to execute various tasks (with different 

effectiveness) for different functional elements of production 

systems and on the other hand the ability of flexible 

adjustment of such structure to dynamic changes of operating 

conditions. 

The examples are: 

 project management tasks where the same set of 

contractors can implement various job packages, and the 

employees of functional departments may manage 

projects during their implementation; 

 corporate management tasks where temporary role 

allocation among departments varies dependent on the 

order secured by the enterprise subject to complex 

supply chains and product customization to customer 

requirements. 

A network structure is actually a set of initially equal agents 

where temporary hierarchical or other structures may arise 

dependent on the tasks executed by the system. The 

orderliness of interaction and the control mechanism 

(hierarchy) in a network structure result from the need in 

specialization enabling effective solution of partial problems. 

Important results in the control of complex dynamic systems 

with network structures were obtained by Fradkov's school 

(Fradkov et al., 2009). In particular, adaptive controllers were 

synthesized, which do not use any information about network 

objects' parameters and are applicable under uncertainty 

conditions. 

In recent years, the need for control systems implementing 

cross-system and/or interregional integration on the basis of 

multi-agent technology is emphasized (Dave et al., 2011). A 

number of specialists consider this approach as able to 

combine the capabilities of a global control system to 

reasoning and analysis of production situation and generating 

control decisions on that basis. The modeling of complex 

control systems based on multi-agent approach is called 

Agent-Based Modeling (ABM). 

At an early stage of multi-agent control system development, 

a knowledge-based agent paradigm rested upon the 

traditional logical approach. However, such approach soon 



demonstrated its limitation due to a number of problems, 

such as: 

 non-resolvability of the first-order predicate calculus 

underlying the approach 

 the difficulty of inference search (hence, the heuristic 

search as the framework of AI problem solving 

methodology) 

 problems incapable of algorithmic solutions; the need for 

decision-making in the situations where getting optimal 

or precise answers is impossible or too laborious 

 pointing out significant qualitative characteristics of a 

situation, in which an agent is operating 

 the need for accepting solutions based on inaccurate, 

insufficient or ill-conditioned information 

 the need for using meta-level knowledge for more 

perfect decision-making control strategies 

 the difficulty of logic-physical interface design, 

etc. (Luger, 2004). 

Furthermore, such agent’s mental features as preferences, 

persuasions, wishes, intentions, commitments to other agents, 

etc., cannot be expressed in classical logic terms. New 

toolkits such as values logic, special variants of constructive, 

nonmonotonic, inductive and modal logics turned out to be 

more successful (Vassilyev et al., 2000, Finn, 2009, 

Anshakov and Gerdely, 2010) from realizability viewpoint. 

Here, the combination of deduction with production, analogy 

and abduction procedures synthetically developed in the JSM 

method is used. 

New decision-making techniques under multicriteriality, 

uncertainty and risk conditions are increasingly used as well 

as the methods for teaching an agent another agent’s 

preferences for communication with the latter one. Artificial 

neuron networks (ANN) and various pattern recognition 

techniques are combined with logical and other AI methods 

to facilitate the logic-physical interface and other 

applications. 

Multi-agent system architectures implemented in modern 

control systems can be categorized as follows: 

 Deliberative agent architectures, i.e., architectures based 

on AI concepts and techniques 

 Reactive agent architectures, i.e., architectures based on 

the behavior and the response to external events, in 

particular, the ones using game theory, scenario-based 

virtual world models, etc. 

 Hybrid agent architectures. 

The present-day trend in both multi-agent system and game 

theories as well as in the AI (the two latter fields are aimed at 

higher levels of agent’s architecture) shows a tendency to 

their integration. Here, the game theory (within the so-called 

algorithmic game theory) is evolving “top-down”: from a 

generic game description to its decentralization and the 

investigation of the opportunity of autonomous realization of 

behavior mechanisms and equilibrium implementation (Nisan 

et al., 2009). On the contrary, the MAS theory is moving 

“bottom-up”, i.e., in a parallel but, due to the localization of 

scientific communities, different way and strives more and 

more to allow for strategic behavior and develop standard test 

problems and scenarios (Shoham, 2008). The need for the 

latter ones is caused by the fact that in most cases specific 

heuristic algorithms (whose number is growing rapidly due to 

the popularity of multi-agent research area) are used at the 

tactical level; these algorithms need to be compared with 

each other per complexity, efficiency, etc. Therefore, the 

hierarchy of the agent’s structure and the variety of tasks 

accomplished at each level require the usage of a hierarchy of 

different (heterogeneous) interrelated models (Novikov, 

2012) as well as the interpenetration of methods, for example, 

the AI and the game-theoretical ones (Vassilyev et al., 

2000b). 

Network structures are implemented as “agency” without any 

permanent interrelations, while the links between them 

appear (e.g., as a linear or an array structure) for the time 

needed to accomplish the task faced by the system; then the 

links disappear until a new task arises, etc. (Novikov and 

Novikov, 2013). In other words, the variety of tasks 

engenders temporary hierarchies in a degenerate structure. 

Such approach on the one hand demonstrates utmost 

flexibility and efficiency under changing conditions. On the 

other hand a well-developed set of models and optimization 

techniques for hierarchical technical-organizational structures 

can be applied to solve structural synthesis problems. 

The application of the bounded rationality concept is 

frequently observed: under the lack of time, opportunity or 

necessity, feasible pseudo-optimal controls (“anytime 

controls” (McCarthy, 2007)), are searched (often 

heuristically), justified by the common sense and applied 

instead of the optimal ones. 

A switch is imminent from the so-called “c-cube” paradigm, 

where control, computing, and communication problems are 

solved simultaneously, to the “c in the fifth” concept, which 

presumes the above mentioned problems to be solved subject 

to cost (in a broad sense) considerations over the whole of the 

system’s lifecycle including the concurrent design of both the 

control system and the plant (Novikov, 2013). 

Finally, for heterogeneous, hierarchical intellectual control 

models, the following generic problem classes can be 

identified. First, intrinsic difficulties relevant to the employed 

mathematical tools arise for each level models. Second, the 

set of “seamed” models inherits all negative properties of 

each component. For example, if at least one model in a chain 

does not enable analytical treatment, then the whole chain is 

doomed to simulation only. The computation speed will align 

with the worst result over all levels. The need arises for 

estimating the comparative efficiency of solving aggregated 

problems, etc. As a whole, one can foresee the shift of the 

focus in control theory and practice from hierarchies and 

networks to heterogeneous network hierarchies and hierarchy 

networks of production control systems. The control is 

getting situational (contextual (Popper, 1992)), and a broader 

understanding of rationality is being used (Bernays, 1974).  



5. CONCLUSIONS 

Control system integration at different levels of production 

process should rest on a novel methodology allowing for new 

types of manufacturing organization and the advanced 

development of information technologies as against the 

automation and technical re-equipment of industrial plants. 

Intellectual control based on state-of-the-art knowledge 

management techniques provides such methodology. 

Application of AI, network, multimodal, group, and multi-

agent production control techniques looks the most 

promising. 

The development of new generation integrated flexible 

intelligent control systems employing the wide range of AI-

based knowledge, simulation, optimization, and game-

theoretical models and methods poses a challenge to the 

modern control theory and applications. 

REFERENCES 

Albertos, P. and G.C. Goodwin (2002). “Virtual sensors for 

control applications”, Annual Reviews in Control, vol. 

26, no 1, pp. 101-112. 

Anshakov, Yu.M. and T. Gerdely (2010). Cognitive 

Reasoning, Springer, Heidelberg. 

Bakhtadze, N., Lototsky, V., and E. Maximov (2012a). 

“Associative Search Method in System Identification”, 

Proc. of the 14
th
 International Conference on Automatic 

Control, Modeling & Simulation (ACMOS '12), Saint 

Malo & Mont Saint-Michel, France. 

Bakhtadze, N., and V. Lototsky (2012b). “Associative Search 

and Wavelet Analysis Techniques in System 

Identification”. Proc. of the 16
th

 IFAC Symposium on 

System Identification, Brussels, Belgium. 

Bakhtadze, N., Lototsky, V., Maximov, E., and B. Pavlov 

(2007). “Associative Search Models in Industrial 

Systems”, Proc. of IFAC Workshop on Intelligent 

Manufacturing Systems, Alicante, Spain. pp. 156-161. 

Bakhtadze, N., Maximov, E., and R. Valiakhmetov (2008). 

“Fuzzy Soft Sensors for Chemical and Oil Refining 

Processes”, Proc. of the 17
th

 IFAC World Congress, 

Seoul, Korea, pp. 4246-4250. 

Benthem, J. (2007). “Logic and Reasoning: do the facts 

matter?”, Studia Logica, vol. 88, no 1, pp. 67-84. 

Bernays, P.I. (1974). “Concerning Rationality”, In: P.A. 

Schilpp (Ed.), pp. 597-605. 

Bunich, A.L. (2005). “Degenerate problems of designing the 

control system of a linear discrete plant”, Automation 

and Remote Control, vol. 66, no. 11, pp. 1733-1742. 

Dave, Saraansh, Sooriyabandara, Mahesh, and Mike 

Yearworthy (2011). “A Systems Approach to the Smart 

Grid”, Proc. of the First International Conference on 

Smart Grids, Green Communications and IT Energy-

aware Technologies, pp. 130-134, Venice/Mestre, Italy. 

Finn, V.K. (1999). “The Synthesis of Cognitive Procedures 

and the Problem of Induction”, Nauchno-Tekhnicheskaya 

Informaciya, Ser. 1, no. 12, pp. 8-45. (in Russian) 

Finn, V.K. (2009). “The Synthesis of Cognitive Procedures 

and the Problem of Induction”, Aut. Doc. Math. 

Linguist., vol. 43, no. 3, pp. 149-195. 

Finn, V.K. and M.A. Mikheyenkova (2002). “On the Logical 

Means of the Conceptualization of Opinion Analysis”, 

Nauchno-Tekhnicheskaya Informaciya, Ser. 2, vol. 6, pp. 

4-22. (in Russian) 

Fradkov A., Junussov I., and R. Ortega (2009). 

“Decentralized adaptive synchronization in nonlinear 

dynamical networks with nonidentical nodes”, Proc. of 

18
th

 IEEE Intern. Conf. on Control Applications, Part of 

2009 IEEE Multi-conference on Systems and Control, 

St. Petersburg, pp. 531-536 

Gabbay, D.M. (1982). “Intuitionistic basis for non-monotonic 

logic” Proc. of the 6
th

 Conference on Automated 

Deduction, ed. by D.W. Loveland, Springer, Heidelberg, 

vol. 138, pp. 260-273,  

Gartner, Inc. (NYSE: IT). “Top Ten Disruptive Technologies 

for 2008 to 2012” (2008). 

http://www.gartner.com/newsroom/id/681107. 

Howkins, John (2001). “The Creative Economy”, Penguin, 

London. 

Kern, A.G. (2007). “Summiting with multivariable predictive 

control”, Hydrocarbon Processing, vol. 86, no 6, pp. 63-

64.  

Luger, G.F. (2005). “Artificial Intelligence: Structures and 

Strategies for Complex Problem Solving” (5
th

 Edition), 

Addison -Wesley, Boston, USA, 928 p. 

McCarthy, J. (2007). “From here to human level”, Artificial 

Intelligence, vol. 171, pp. 1174-1182. 

Mizyun, V.A., Yarygin, O.N., and A.G. Sultanov (2011). “A 

Research methodology for system dynamics of business 

processes using intelligent information technologies”, 

Audit and financial analysis, no 5, pp. 134-155. (in 

Russian) 

Muscettola, N., Nayak, P., Pell, B. and B.C. Williams (1998). 

“Remote Agent: to boldly go where no AI system has 

gone before”, Artificial Intelligence, vol. 103, no. 1, pp. 

5-47. 

Nisan, N., Roughgarden, T., Tardos, E., and V. Vazirani 

(Eds.) (2009). Algorithmic Game Theory, Cambridge 

University Press, New York. 

Nonaka, I., and H. Tackeuchi (1995). The Knowledge-

Creating Company, Oxford University Press, New York. 

Novikov, A., D. Novikov (2013). Research Methodology, 

CRC Press, Amsterdam. 

Novikov, D. (2012). “Collective Learning-by-Doing”, Proc. 

of IFAC Symposium on Advances in Control Education, 

Nyshny Novgorod, pp. 408-412,  

Novikov, D. (2013). Theory of Control in Organizations, 

Nova Science Publishers, N.Y. 

Popper, K. (1992). “The Logic of the Social Sciences", in: 

Popper Karl R. In Search of a Better World. Lectures 

and Essays from Thirty Years, Routledge, London, pp. 

64-81. 

Qin, S. Joe, Badgwell, Thomas A. (2003). “A survey of 

industrial model predictive control technology”, Control 

Engineering Practice, no 11, pp. 733-764. 

Rajbman, N.S. (1976). “The Application of identification 

methods in the U.S.S.R. – A survey”, Automatica, vol. 

12, no 1, pp. 73-95. 

Rao, A.S. and M.P. George (1995). “BDI agents: From 

theory to practice”, Proc. of the International 

http://www.gartner.com/newsroom/id/681107


Conference on Multi-Agent Systems (ICMAS-95), San 

Francisco, California, USA. 

Shoham, Y. and K. Leyton-Brown (2008). Multiagent 

Systems: Algorithmic, Game-Theoretic, and Logical 

Foundations, Cambridge University Press, N.Y, USA. 

Smets, Ph. (2000). “The transferable belief model for 

quantified belief representation”, In: Gabbay, D.M., 

Smets, Ph. (Eds.), Handbook of Defeasible Reasoning 

and Uncertainty Management Systems, Kluwer, 

Dordrecht, vol. 1., pp. 267-301. 

Tairan, L., and R. Florida (2006). Talent, Technological 

Innovation and Economic Growth in China, 

www.creativeclass.com. 

Torgashov, A., Park, K.Ch., and N.S. Kang (2005). “Robust 

decentralized control of reactive distillation process in 

demethylacetamide production”, Proc. of the 16
th

 World 

Congress of IFAC, Prague, Czech Republic, Paper Tu-

A03-TP/17. 

Vassilyev, S.N. (2000). “Intelligent control of dynamic 

systems”, Physical and Mathematical Literature Publ., 

Moscow, 352 p. (in Russian) 

Vassilyev, S.N. and R.A. Sabitov (2012). “Knowledge 

Economy and Intelligent Control”, Proc. of the 10
th
 

International Chetaev Conference “Analytical 

Mechanics, Stability and Control, Kazan, Russia, vol. 4, 

pp. 47-61. 

Vassilyev, S.N., Cherkashin, E.A., and A.K. Zherlov (2000). 

“A System for Automatic Theorem Proving”, Proc. of 

Intern. Conf. on Artificial and Computational 

Intelligence for Decision, Control and Automation in 

Engineering and Industrial Applications (ACIDCA), 

Tunisia, vol. IM, pp. L10-L18. 

Vassilyev, S.N., Davydov, A.V., and A.K. Zherlov (2008). 

“Intelligent Control via New Efficient Logics”, Proc. of 

the 17
th

 IFAC World Congress, Korea, Seoul, pp. 13713-

13718. 

Vassilyev, S.N., Smirnova, N.V., Doganovsky, S.A., and 

Edemsky V.M., (2003). “To the intelligent control of arc 

steel furnaces”, Automation in Industry, no 3, pp. 39-43. 

(in Russian) 

Vassilyev, S.N., Sukonnova, A.A., Smirnova, N.V., and 

A.Yu. Shvarts, (2011). “Methods of knowledge 

representation and processing in control of intelligent 

tutoring systems”, Management and Production 

Engineering Review, vol. 2, no 3, pp. 71-84. 

Vassilyev, S.N., Zherlov, A.K., (2002). “Game-theoretical 

semantics of positively produced formulae”, Proc. of the 

8
th

 National AI Conference, Kolomna, vol. 1, pp. 51-59. 

(in Russian) 

Velikhov E.P., Betelin V.B., and A.G. Kushnirenko (2010). 

Industry, innovations, education, and science in Russia, 

Nauka, Moscow, 141 p. (in Russian) 

Yakovis, L.M. (2013). “From unified information space to 

unified manufacturing control”, Automation in Industry, 

no 1, pp. 20-26. (in Russian) 

http://www.creativeclass.com/

