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We derive necessary and sufficient conditions for optimality of correct function-
ing mechanisms in the case when both the planning procedure for the states of the
active elements and the incentive system may be varied., Constructive sufficient
conditions of optimality are given for incentive systems ensuring that the plan

is met.

1. 1In [1] we presented a model which described the functioning of a two-level active
system and formulated the problem of optimal synthesis of functioning mechanisms ensuring
maximum functioning effectiveness of the system under the assumption of complete informa-
tion available to the central authority {(the headquarters). The effectiveness criterion of
the functioning mechanism was selected in the framework of modern game~theoretical studies
of hierarchic systems: This was the guaranteed estimate of the value of the system's ob-
jective function ¢ attained on the ratiopal choice set of the lower level active elements.
The solution of the optimal synthesis problem in [1] was sought among the so-called correct
mechanisms. The main feature of correct mechanisms is that the assoclated planning proce-
dures and incentive systems ensure that the elements choose precisely the same states as
those designated by the headquarters. Necessary and sufficient optimality conditions for
correct mechanisms on the set of mechanisms Gy with fixed system objective function ¢ and
fixed incentive system f were given in [l}. Constructive and easily verified sufficient
conditions of optimality of correct mechanisms were alsoc stated. These conditions were pre-~
sented in the form of constraints on the incentive system,

In this article we continue the study of optimal synthesis of correct functioning mech-
anisms., The determipation of optimality conditions for correct mechanisms considered in [1]
is extended to the more general case when both the planning procedure for the states of the
active elements and the incentive system for the active elements may be varied in the syn-
thesis problem. We derive necessary and sufficient optimality conditions for correct mech-
anisms on the set of mechanisms Gf o with a fixed system objective function ¢. Construc-
tive sufficient conditions of optimality are defined for incentive systems ensuring that the
plan is met.

2, The problem of optimal synthesis of correct functioning mechanisms on a given set
of mechanisms Cf,y has the form [1]

K(2)= max K(%), 3=6,.()0: (1)

TeEGy

Here and in what follows we use the notation introduced in [1]. We invariably assume
that max and min actually exist, It is also assumed that the set of feasible plans X depends
on the incentive system f and every plan from this set may be generated using an appropriate
planning procedure n. Therefore the expression E=<(0, f,n>=G; . 1in problem (1)} may be written
in the form j=7;, 2=X(f), where G;={f|<D, }, n>=6, ;}, and the mechanism E={®,f, n> may be
equivalently denoted as<®, f, z0.

Denote by A(Z) the set of efficient plans under the mechanism £. This is the set of
all plans which, when executed, are no less effective than the plan x under the functioning
mechanism Z=(Q, f, a>:
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AZ)=4=Y |0 (z,2)= min Oz, y)},
yeR{f,p
where R(f, x) is the set of solutions of the game that the elements play under the hypothe-
sis of locally optimal nonantagonistic behavior [1, 2]. Then the set A(G;.)= [] A(Z)} is

L

the set of all efficient plans with respect to the set of mechanisms Gg o We will also
use the sets Y(f, z)={s|z=z, 1if z=R(f, 2), else:z=Y¥} and S(f)={y<Y|/(y, v) =y, 2),2=7, iel},
where the latter is the set of perfectly coordinated plans under the incentive system f.

Let us now consider the conditions when the problem (1) has a solution.

THEOREM 1. The problem (1) has a solution if and only if any of the following equiva-
lent conditions holds.

1°. HfEG,:A(G;_,‘)ﬂS(f)ﬂX(f)a&gb;
2°, Uf=G,, icA(G, HNX{f) : Vyey, isl:

Fulg, 2y =h(E, )5 (2)

3%, dfeG, t=X(NNY:V/eG,, z=X(f): dz=R(f, z):Vy=Y, i=] the inequalities (2) and (3) :
are satisfied:
o by £)~— =
(£, £)-O (z, z)=0 3
4°, dfeQ, ieX(HNY:Vied,, r=X(f): Hz€¥(f, z) : Vy, y's¥, ie] the inequalities (3) and
(3") are satisfied:
Fulto &) ~Filw yd =i (2 9!V —Fi (20, 2.); (3")

5°, Af=G,, 2=X(f)0Y: VieG,, zeX(f): E{ze'Y(f, z):¥yeY, a, p=20, i=/ the inequalities (3)
and (3'") are satisfied
alfilds ¢~k y) 1281f: (@, ) —fi(zs, z)]. (3™

The proof is given in the Appendix.

Let us discuss the results of the theorem. Condition 1° is a set-theoretic form of the
problem (1), This condition indicates that the problem (1) has a solution 1if and only if
there is a feasible, perfectly coordinated, realizable plan which is no less effective than
the other plans. The separation of the properties of perfect coordination, feasibility, and
efficiency in condition 1° essentially simplifies the solution of the problem (1). 1In
general, using the principles of coordinated planning, we should start the solution of the
corresponding optimal synthesis problem by constructing a condition analogous to 1°,

Let us consider in greater detail the efficiency property.
LEMMA 1. In order to have A(G, ,)+¢,

a) it is necessary and sufficient that dieY:Vfed, r=X(f) : Hze=R(f, x), such that in-
equality (3) holds;

b) it is sufficient that the headquarters answer all the losses associated with the
deviation of the realizable state y from the plan x: Oy, y)=0(x,y) for z= X(H,y=UR
. )‘ea_f jeT

(f, x) (or on the entire set Y). !

The lemma is proved in the Appendix,

Condition b) was essentially utilized in the derivation of sufficient optimality con-
ditions for correct mechanisms on the set Gy [1, 2].

The set A(I) characterizes the commitment of the headquarters to the application of
correct mechanisms under the mechanism £. Clearly, if {(G:.)=¢, the headquarters is not
concerned about applying correct mechanisms.

The properties of the set of perfectly coordinated plans S{f) were studied by numerous
authors. The bibliography and a summary of the results are given in [2]. Let us present
one of the relevant results,

LEMMA 2, 1If the elements are penalized for failing to meet the plan:
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Va, y=Y, isl: (v, v =z, y), (4)
then §{f)#4.
The proof is given in the Appendix.

The conditions 2°-5° of Theorem 1 are alternative forms of the condition 1° which par=-
tially (conditions 2° and 3°) or fully (conditions 4° and 5°) recognize the defining in-
equalities of the sets introduced in condition 1°. This form is largely useful for the
derivation of constructive sufficient conditions and for explicit solution of the problem

1.

3. Let us consider some solutions of the problem (1). The form of the solutions
actually depends on the properties of the functioning mechanisms on the set Gf o, 1.,
in the final aralysis on the properties of the headquarters objective function, the incentive
system for the elements, and the model of system constraints [2]. Let us define some of the
most useful gdets of functioning mechanisms.

The set of mechanisms on which condition b) of Lemma 1 holds will be denoted by Gz'.
The sets defined using condition (4) will be denoted by G2, ={<O, {, D=G, .|R(f, 2) "X (}) *4,
J=G; , andcondition (4)) and Gl ={D, {, =G, |YSX(f) and condition (4)}. We moreover
denote Gix ={{Q, [, DS, |UisT,: V2eX()NY, y=Y, €11z, 2)—ilz, 5) = filan 2) —filz, ¥}

We also use the following notation G ={/|<D, {, 226, NG, Cﬁ={ﬂ<®,ﬂx>EGi,} for j =
2, 3, 4 and G,"=0C, NGy, ¢ =GN0 4, s=2, 3.
The solutions of the problem (1) for these particular sets of mechanisms are presented
by the following proposition.
COROLLARY. Conditions 1°-5° hold if one of the following conditions is satisfied.
11, VisG!, s=X(f)NY, yev¥, i=l:
fulty, 2)—F: (s, ) 20;
21 AfeG,*: Vi, yeYSX (D), iel:
fulgs, 2)—F:(2,, yY=n(a—i(y), O, 1) -0z, (1)),
where n={x|x{0, 00=0 and x{z—p, ¢)=20 for ¢=0, z, y=Y}, 2(y)=(41, -+ s ¥u-..,£,);
3, HfeG M VieG”, reX(H)NY, zeX()), ysY, isl:
flz, ) —=F: (2, 40 =filz, z) —fi(zi, y1);
4, YfeqG * VieX{(f)nY, yev¥, =l

' max max fi{z,y), I #=y,

!EE': xeX(f)

fll2ay)= | min min fi(z,y), il fF*y,

/Eaﬁf xeX(f

5t @ieG: VisX(ANY, yeV, iel:
max fi(i,y), U g=y,
jefiu
I
g = min fi(#;, y:), i gy
Jsl}';‘
The proof is given in the Appendix.

Remark 1. The results presented in the above Corollary remain valid if in conditions
1'-5" the set Gf® is replaced with Gf®. In this case, the expression Vi=X(H)NY should be
replaced with VieY. Some solutions of the problem (1) for the case with the set Gf® were
previously considered in [2].

Remark 2. The optimality conditions of correct mechanisms as derived in [1] for the
case (;'=G.=G:' 1in general are only necessary for the problem (1) considered in this
article. But if the problem (1) from [1] is solved for VG.=G, s then the resulting solu-
tions will include the solution of the problem (1) in this article. An example of such a
solution is provided by condition 1°.
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Using condition 2%, we can construct an optimal incentive system f in which the system
objective function ¢ is used as the "prototype." Note that if either of the conditions 1°
or 2! holds, then appropriate choice of the planning procedure ensures absolutely optimal
functioning of the system [2].

It follows from condition 4 than one of the optimal strategies of the headquarters is
the strategy which prescribes maximum incentives when the plan is met and minimum incentives
when the plan is not met.

Let us represent the objective functions of the elements Jo il in the form fi(z, ¥)}=
=h{y) —%:(xi, 4), =l for the incentive system f = (h, x) {2], where hi(yy) = fily{, vi),
xi{xi, vi) = hi(y1) — filx{, v{) is the penalty function for failure to meet the plan. Let

G2 (RYy={x| (k. x) =G} and Gi“(h)={xl(h,x)et—v'§“}- Consider the conditions 3*-5' for the case
when It is fixed. After appropriate transformations, we obtain

32, ST (h)  VySC(h), 2=X (b, DOY, 2=X(h, 5),
R ) yEIﬂiEI:ﬂ(ﬂ,m)kxﬂﬁe%)“XJiniﬂ;

42, dye=G (k) L VieX (b, g)NY, yeY, il

J 0, if £e=1,
)Z;(a':i, yeo) = max max ¥ (&, ), if &Y
[xl:t-";:(h! x= X (h )
2 ~ o ~

2T Ay, () VESX (L DY, y=Y, el

I)‘(t{i”yi): max )(:'(i"f,yi)-
Ief‘;‘(h_j
As in the Corollary, we may replace the set Exz(h) with the set §y®(h) in the condi-
tions 32%-5%,

The condition 3* may be considered as a generalization of the sufficlent condition of
strong coordination [2Z] to the case when only ¢ and h are fixed. If the function x is also
fixed, this condition reduces to the condition of strong cocrdination 4°b in {1].

Condition 5% implies that the optimal incentive system on the set Gx?“(h) is the one
with maximum degree of centralization [2].

Conditions 3%-5% may also be used in cases when h is variable. To this end it suffices

to ensure that the penalty functions %“iEI have an additional jump at the point z = ¥y with
the magnitude

YEY we¥

Aﬁ=1nax[ﬁdyj——hmyj]——nﬁn[ﬂ&y&--h&yd].

An appropriate penalty funetion in this case is

0, if t=ys;

¥ fi, )= -~ )
A (Eo g \xi(fi1yi)+a,-, i #ty

4. Let us consider an example of optimal synthesis of the penalty function for the ac-
tive element in a system which consists of the headquarters and a single element. Let the
state of the element be specified by the scalar y; the set of states by the setY={y|a<y=<t};
the plan by the scalar x; the set of feasible plans by the set X,={v|c,<z<d,}, where s is an
integer parameter of the penalty function yg. The set of penalty functions has the form

Gi(R)={(q9(z, y)—y)*—(q(z. y)—2)*| s=1,m, ye¥, 2=X,NY},

where q is some function with values in Xs+ The form of the function h does not affect the
solution of the synthesis problem,

We will solve our problem using the condition 3%. We define the set
G (R)={{q(z, ¥) =)~ (g(z, y)—2)"'=0) |s—1,m, y,z2eY=X.}.

We stipulate that G,''(k)7¢. This is possible if ¢, <a<<hb<<d, and yIst gz, y)<<d,, or if
cosq(z yy<z=<y for s = 1, m,

The function q is defined by the equality



(g(z, 1)y} —(g(z, y) —2)*=max [ (z—y) >~ (z—2)*].
IEXX
For x < 2 < yand y< z < x the x-derivative of (x = y)*% — (x — 2)?% for all z,
Y=Y has a constant sign. Therefore the function (x — ¥)?% — (x — 2)2?5 in this case attains
its maximum on the boundary of the set Xg, i.e., q(z, y) = {¢cg if v = z, otherwise dgl.
The solution of our problem is thus sought among penalty function having the form

Xu (Z, y)= Zchjqzs_j(z-, y) (-—1)j(yj—zj),
=0

where ¢, i—(26)1/j1(2s—j) L.

The optimal value of s depends on the choice of X5 and Y. Let us consider some al—
ternatives. Let

¢+ 1 = asthsid, — 1 . p= -'E-—-—i- (5}
Cy—p dotp s

Then we can show that %.(z, ¥)—%:-1(2, ¥)=0  for Vz. y=Y. if additionally c.<c.. and
d=d.-i-  Therefore, from the condition 3% it follows that the optimal value of s is s = m.

In this case condition (5) defines the appropriate family of sets of feasible plans Xg, s =
1, m.

< b=<id,. Then, conversely, % (z y)=x(3 y) for ¥z y=Y

Let c.<a=d,—

<e¢ T
d;+p-\ ¢ C—p

subject to the additional constraints e,=c¢.1 and d.<d..,.. As a result, the optimal s is

equal to 1,

These solutions in general do not exhaust all the possible solutions. We have not con-
sidered the case when the optimal value of s is attained on the boundary of the set I, m
and the case when s depends on z, y. The latter is the most general case, but the corre-
sponding penalty function is much too complex to allow a constructive approach and is there-
fore not considered here.

APPENDIX
If condition 1° implies 2°, we write 1° = > 2°.

Proof of Theorem 1.

(1) = »1°. Assume the contrary. Then /=G 4(G . )WSNX(N=9 or a¥eg, . visls:
ASINS(HnX(H=4. From the definition of A(Z) it follows that K(E) =K(3), if 4(Z)s4(3), and
K(Z'") > K(Z), if ACNAEY+*¢ for s, =6 a By assumption, any plan from X(f) may be adopted.
Therefore, take the optimal perfectly coordinated planning procedure (1, 2] which we denote

by 7. Then for $—(0, 7 %<0« we have A NSHIXT*%  But since AEISANX{ =¥, we obtain

AGAES ¢ and K(I) < K(E), which contradicts condition (1). Thus (1) implies 1°.

1° = >(1). Take the plan zeA(G;)NX(HAS(H. This is clearly an optimal perfectly coordi-
nated plan. Therefore 4@, 7 z))=4(G; )s4(¥) for YE=G;~ Hence it follows that EE)=K(3)
for vieGya Q.E.D. :

1° =>2°, Let <A{G,)0S(HdX({; then for Vyev, ic/ inequality (2) holds and z=4(G:. »)0X(H.
QED. .
2° = > 1°, Since 7<4(G,2)NX() and for vyev, il inequality (2) holds, x belongs to
both sets 4(G..)nX{) and S(E). Therefore A(G, )AX(INS(H~¢.
2° = >3°. Since z=A(G.,)NX(P), we obtain
©(z, )= min O(z,¥)

v R LX)

for v(0,f zeG.x  But for vi®,f, )eG . TzeR{f, x): O(z, 2)= min ].m(x, v).
e R (1, X

Substituting this equality in the previous‘inequality, we obtain (3) and thus the con-
dition 3°, '
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3° = >2°, Since :<R(f, 7)., inequality (3) gives

®(r,5)® Oz, )= min V)
yeR{f.x}

for v<¢,ﬁx>eGLQ- From the definition of the set A(F) and this inequality it follows that
Therefore condition 2° holds.

3° = >4°, Since z=R(}, ), we obtain Y¢'<Y, iel' fi(z. z)—filzi, y/)=0. Adding this inequality
te inequality (2), we obtain the missing inequality of condition 4° and thus prove the con-
dition itself.

4% = »3°, Assume the contrary. Then V?E@L zeX ()Y : 8fely, z€X(f) : vzeR({f, z) : Ay<F, iel,.
such that inequality (2) is violated. Since condition &4° holds for vy'eY, we takep =R(f, z)}
then for viel, »=X(f}), 22Y we have the inequality fi(z, y/}>filzs 2). Add this inequality with

the inequality %z, z)<f(z. 3, which follows from (2) in the light of our assumption. We ob-
tain }EA (G, a).

Tl 2 —Fiiza w)<filz, ¥ ) —Filzy z0).

This Inequality contradicts the second inequality of condition 4°, i.e., our assumption
regarding inequality (2) is not true. But then in condition 4° :zeR{}, ) and inequality (3)
alse should hold. QED.

The implications 3° = >5% and 5° = >3° are proved along the same lines as 3° = »4° and
4° = »3°, QED. -

Proof of Lemma 1. Consider the condition a).

Necessity. Since A(Gi«}#®, take z=4(6.s). Then

Oz, z)> min B(z,y)
ver(fx)

for v, §, 2=G;x or Vieh, z=X(f). But 9:eR{f, =), such that $(x, z) = min ¢(x, y) over
yefiff. ).  Substituting this equality in the previous inequality, we get the inequality (3)
and thus condition a).

Sufficiency. Assume the contrary., Then 4(G7,.)=¢. In this case, from the definition

of the set A(I) we obtain vzeY:dfe@;, z=X{()):¥z=RI(f, 2), guch that inequality (3) is viclated.
This contradicts condition a). The contradiction proves sufficiency.

Consider the sufficiency of condition b). Assume the contrary. Then, repeating the
first part of the preceding proof, we conclude that inequality (3) is a fortiori violated if
we replace /=Gy zeX{f}:VicR{f, z) with Ve U X(), :ze L f(f, 2) (or zeY) and take x = z. But

feG =G
i f
then we end up with a condition which contradicts condition b). The contradiction completes
the proof of sufficiency of condition b) and Lemma 1. QED.

Proof 6f Lemma 2. Assume the contrary. Then S()=% and from the definition of the set
S(f), Yze Y dicy;

max fi(zi, y4) > filer, yo).
ey

Take y'=R(f,z), then

max fi(z¢, yo) = filzs, 1) > fi (24, 26,
yEY

which contradicts the assumption of Lemma 2., QED,

Proof of Corellary.

1' = > 2°. Assume the contrary. Then V=@, ze4(G, onX(}):9yeY, icJ, such that inequality
(2) is violated. From condition b) of Lemma 1 it follows that for 6},=G:NG: . the set
A(Glx)*¢ and since by conditiom 1' X()n¥=¢, also 4G, )0X(/i*p. Therefore the inequality
is a fortiori violated if we replace ¥fe@, ze4(G, ) 0X(f§ with Af=¢,', zeX(finY. This is a con-
tradiction of condition 1%. QED.

2' = >3°, Assume the contrary. Then viel, reX(HnY:ajel, zeX(f):vieR(f, r):Ty=Y, iel, such
that one or simultaneously both inequalities in 3° are violated.

1462



Since in condition 2%, F=&.'% the system objegtive function ¢ satisfies the condition
b} of Lemma 1. Therefore it suffices to take z = x in order to verify that inequality (3}
holds.

Consider inequality (2). Take zcy, such that gz 7)-®(s, )20 for vz<¥. Using this and
condition b) of Lemma 1, we obtain o, »)=®(z(). () =0(z, 2(y)) for vy=Y. Hence N (z—z(z),

m&.})—du},}(wn);o, But by condition 2%, Ji(z, T)—filze ¥0=0 which contradicts our assumption
and proves sufficiency of 2%.

3! = 5%, Assume the contrary. Then ¥feg,, zeX(D0Y:dfed;, zeX(f) 1 VaeY(f, 1) TyeV, a p=0, icl:

aF By 7)) = T By w1 <B IS, (5 9) — 1, (240 2] 6

Since sufficiency of 3' is considered on the set Gg'?, the objective function ¢ satis—
fies condition b) of Lemma 1. Therefore the inequality (3) holds.

The strict inequality (6) should alsoc hold for ;eR({f 7). But then filz. z)=fi(zs ¥) and as

a result (6) implies that f,{#,3)<f, (3, ). In this case the inequality (6) is a fortiori true
if we take a=-f=0 But the resulting inequality contradicts the inequality in 3'. This con-
tradiction proves the sufficiency of condition 3%.

3' = »4', From the inequality of conditiom 3* we obtain
fi (Eil 21) _ii. [3i‘ .’)"1)}):2%11:3 z{;;ﬁ’) D“ (zin ‘7"{) _'fi (zi' yI)J (7)
for viex(f)ny, yev,ics. Clearly,

max max [/, {zi! 'r‘i)_fi (zi, yi)lg

fEC_;}3 =X ()
<1mx1mxﬁ@vg%—mm min f {(z., ¥.)
1618 =X fegls wex@

for viel. Comparing this inmequality with (7), we obtain the desired result.

3' = >5', Substituting the defining inequality of the set Gf* in (6}, we obtain the
desired result.

QED.
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