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The article derives necessary and sufficient optimality conditions for regular functioning mecha-
nisms (i.e., mechanisms ensuring the fulfillment of planned targets) of a two-level active sys-
tem on a set of mechanisms with fixed objective function and a fixed incentive system under con-
ditions of complete information at the center. The results constitute a generalization of previous-
ly derived sufficient conditions.

1. The description of a "fanning-out" active system with independent state selection by the elements
includes the following concepts [1]:

1) system state indexes y = {yij ljedi, iEI}, where Jj is the set of state components of element i,
I={iti=1, 2, ..., n} is the set of all the elements in the system;

2) target indexes x = {xijleJi, i€I} in cases when all the components of state y have planned targets;

3) the set of feasible states of the system YEH Y., where Yj is the set of feasible states of element i;
{&I
4) the set of feasible system targets X;H X;, where Xj is the set of feasible targets of element i;

el

5) the functioning mechanism of system I, which includes the objective function of the system %, the
system of incentives for the elements f = {filiEI} (where f; is the objective function of element i), and a
planning procedure 7 used to formulate the target x; ]

6) the set of locally optimal states of independent elements P(f, x) = {y€ YIfj(xi, vi) =2 fi(x, zj), zj¢Yi,
iel};

7) an efficiency criterion of the functioning mechanism K(Z) = min &(x, y) over Y€R(Z), where R(Z) =
{vly =x, if x€ P(f, x), else y€P(f, x)} is the set of solutions of a game played by the elements, assuming
friendliness and locally optimal behavior;

8) the set of feasible functioning mechanisms Gy.

In the theory of active systems, the optimal synthesis of functioning mechanisms involves determining a
mechanism ¥ which satisfies the additional constraints £¢ Gx2 and ensures maximum functioning efficiency of
the system on a given set of functioning mechanisms Gz8 C G in the sense of the criterion K(Z) [1]:

K@= mang =, = EGE N G;- @
2&;6'2
Since the functioning mechanism of a system includes several omponents, it is meaningful to consider
the synthesis of one or two components, while keeping all the others fixed. A number of studies have dealt
with optimal synthesis of planning procedures in a system with independent elements [1-7). In problems of
this type Gy8 C G;, where Gy is the set of functioning mechanisms with a fixed objective function of the system
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% and a fixed incentive system of the elements f. Since on the set Gy the planning procedure is the only vari-
able component of the functioning mechanism, we use for K(£) and R(Z) the simpler notation K(x) and R(x),
respectively, where x is the target generated by the planning procedure 7y. The following planning procedures
were considered in detail:

AP0 (z, z) - max, reX<Y,

nOPP: K (2) - max, z€X,

J?PC:(D (z,x) - max, z=X(18S,

where S = {xImax fj(xj, yj) = fi(xi, xi) over yj€ Yi, xi€Yi, i€l} is the set of perfectly consistent realizable
targets. The three planning procedures listed above are respectively termed optimal planning (OP), optimal
planning with state prediction (OPP), and optimal perfectly consistent planning (OPC). The main property of
perfectly consistent planning procedures is that each element is assigned a target in which it is actively inter-
ested. Therefore, assuming rational behavior of the elements, perfectly consistent plans will always be ful-
filled. Functioning mechanisms ensuring target attainment are termed regular. We denote by éz the set of
regular mechanisms. In this case the OPC procedure is a solution of problem (1) for Gy& C Gg and Gy9 = ég

Optimal synthesis of incentive systems satisfying additional constraints, such as the condition of limited
penalties, were also considered {1].

In the forthcoming cycle of articles, we consider the optimal synthesis of planning procedures and incen-
tive systems which maximize the system functioning efficiency and satisfy certain additional constraints. These
constraints may include the requirement of unconditional attainment of the targets in all or in some of the com-
ponents, the requirement of exceeding the targets, etc. The first requirement is the basis of the principle of
perfect consistent planning [1]. The consistent planning principle also makes it possible to introduce 2 number
of additional constraints. We will derive necessary and sufficient optimality conditions on various sets of func-
tioning mechanisms. The results obtained for the case of complete information at the center are generalized
to the case of partial information at the center regarding the possibilities and the interests of the subordinate
elements,

In this article, we derive necessary and sufficient conditions for the optimality of regular functioning
mechanisms on G,. These results generalize the sufficient conditions previously derived in [1, 5-7]. Ina
certain sense they substantiate the principle of perfectly consistent planning for the case of complete informa-
tion at the center.

2. Consider a system of independent elements with planned targets for all the state components of the
elements (the technique which can be used to extend the results to the case of partial planning will be found in
[1). We assume that the system incurs a penalty if the state y deviates from the target state x:

Oy, y)=0(z,y) (2)

onthe set X x Y. 1t is further assumed that the elements are friendly toward the central authority and select
their states from the set of locally optimal states. We denote by XOPP the set of targets generated by the OPP
procedure, XOPP = Arg max K(x) over x€X; 2OPC and 2OPP are functioning mechanisms with procedures
OPC and OPP, respectively: X(x) ={zlz = x}, if x€ R(x), else z€X. Consider the following conditions:

1°. K(zOPP =K(ZOPC);

2°. XOPPAS#g;

3°. HzeXOPP: R(z)NXNS+*g;

4°. dze=XO% 2eR(2)NX: Vy<Y, il : fi(z, 2) =fi(z0 ¥i);

5°. HzeXOPP zeX(x)NY: Vy, y'sY, il .
1z y) Hilx, y) <f: (24 2:) +fi(zi, 2.) ;

6°. HzeXOPP zeX(z)NY: VyeY, o, p=0, iel:
afi(zi' yi)+ﬁf((xiy y()<af.-(z,v, Zi)+ﬁfc($i, Z).

THEOREM 1. Conditions 1°-6° are equivalent.

The proof is given in the Appendix.

3. Let us discuss the results of the theorem. The nonemptiness of the intersection XOPFPNS = ¢ directly
implies that the OPP targets include at least one perfectly consistent realizable target.



*

The requirements imposed on incentive systems are incorporated in conditions 1°-6° in implicit form.
In particular, conditions 3°-6° include the set XOPP, which is determined both by the incentive system of the
elements f and by the objective function of the system ®. It is therefore fairly difficult to apply the conditions
1°-6° in the analysis of incentive systems and especially in synthesis problems. The natural way out of this
difficulty is by devising relatively simple constructive sufficient conditions in order to restrict as far as pos-
sible the set of optimal regular functioning mechanisms. Successively simplifying the conditions 3°-6°, we
can derive a whole set of sufficient conditions.

In order to eliminate the dependence of conditions 3°-6° on the form of the objective function of the sys-
tem &, we replace the requirement dx€ XOPP py a stronger requirement ¥x€X. The resulting conditions,
in general, are not necessary, but they depend only on the objective functions of the elements (although implic-
itly as before),

We represent the objective functions of the elements fj, i€I, in the form fj(xi, ¥i) = hi(yi) — xiXi, ¥i),
where hj(yi) = fij(yi,» yi)» xi(Xi» ¥i) is the penalty function for failure to achieve the target.

Conditions 3°~6° now can be rewritten in the form
3%a. VzeX: R(z)NXNS+¢;
4%a. VzeX  HzeR(z)NX : Vy=Y, i<]:
X (20 40 Zho(g) ~ha(2);
5°%a. VzeX: dzeX(2)NY : Vy, y'<Y, il:
ho(y) ~ha(y! ) 2k (2:) F(2s, 2) i (20 ¥) ez 4¢) 5
6°a. VzeX, zXnY, yevy, isl:
Bi(y) <xulzy, y) —x:(0, 2) s (20 ¥3) 5 H:(@ar ys) 205

where
—oo, if yiEth Y,
Ai(yi) = { .
max ki(y)— max h(z), if yeEXNY.
i€y 5 e NY;

Sufficiency of conditions 3°, 4°a, and 5°a is obvious. Let us prove sufficiency of condition 6°a. Suppose
that 6° does not hold, while 6°a is satisfied. Then ¥x€XOPP, z¢X(x)NY :dAy€Y, o, g =0, i€l:

afi(ziy y() +5fi($h ys) >af¢(zi, z;) +Bf:(x, ). 3)

Inequality (3) is a fortiori true if we replace ¥xt¢XOPP with Hx€X. From the constraint ¥x€X, y€Y,
z€XNY, i€l: Ag(yl) = xi(xi, ¥i) — vi{Xj, zj) in condition 6°a, we have that ¥x€X :R(x)NX # ¢. Take z€ R(x)"X,
then VyeY, i€I:fi(xj, yi) = fi(xi, 2i), and the strict inequality in (3) holds only if Hi€I:¥y€Y we have the strict
inequality fj(zj, zj) < fj(zj, yj). If this is so, then inequality (3) also holds for ¢ = —f # 0. Comparing the
inequality obtained from (3) with the inequality in 6°a, we obtain an obvious contradiction. Thus, 6° implies 6°.

Further simplifying conditions 3°a, 4°a, and 6°a, we obtain the previous sufficient conditions of maximum
consistency, "strong penalties, " and strong consistency respectively [1]:
3°v. S= | R(z)=X;

xeX

4’b. Vz,yetY<X, iel:
X (s, ¥2) Zha(y:) —he(2:) ; )
6°b. VzekX, z,ys¥Y<X, isl:
O<yi{, ys) <ts (25, Y1) Tx:(21, 24) .
4. The set of all optimal regular functioning mechanisms defined by conditions 1°-6° in general is wider
the set of functioning mechanisms defined by any of the sufficient conditions. To prove this statement, consider

a simple example. Take an incentive system which does not satisfy the strong consistency condition 6°, but
which nevertheless may be used to construct an optimal regular functioning mechanism.

Consider a simple two-level system consisting of the central authority and one subordinate element. The
objective function of the system has the form & (x, y) =y. The objective function of the element is

He, y)=h(y)—x(z, y),
where h(y) = 2yc — y?® and
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( )__k{(y—ac—b)z—b2 for y<z,
KAy (y—z+8)*—b* for y=z.

To fix ideas, let Y =X = [0, ¢] and 0 < ¢ = a. The penalty function y is a strictly convex function which
for these Y and X does not satisfy condition 6°b {1]. The penalty function is shown graphically in Fig. 1.

Application of the OPP procedure yields XOPP = 4. Seeing that the set of perfectly consistent realizable
targets has the form S = [max(c —b, 0), min (¢ + b, a)], we can apply condition 2° of the theorem to derive a
condition of optimality of the regular functioning mechanism for the given incentive system: b =a — c.

APPENDIX

Proof of Theorem 1. If condition 1° implies condition 2°, we write 1° => 2°. The equivalence of the con-
ditions for 1° => 2°, 3° => 2°, 5° => 3°, 6° => 3° is proved 2y contradiction.

1°=>2°. Let XOPPNg=¢. Since the mechanism ZOPC exists, we have SX # ¢. From the definition
of 2OPP ye have

K(EOPP = max K(z) = K(zY),

=X
where x!¢ XOPP, Since ¥x?¢(S7X)\ XOPP - gnx, we have the inequality K(ZOPP) >K(x%. Therefore,

K(EOPY) > max K(z)= K(zOPC),

x=8NX
which contradicts 1°.

2° =>1°, Let x'¢XOPPNS., Then we can write the following chain of equalities:
K@EOP) = max K(z)= K(+') = max K(z)=K(EOPC),

xeX xeS1X

which proves the implication.

2° =» 3°, Take an arbitrary x€ XOPP: .S, From the definition of the set S it follows that x€ R(x) and so
condition 3° is satisfied.

3° =»2°. Let XOPPng- ¢. Using this assumption and condition 3°, we can write that ax!€¢ XOPP; gx2¢
Rix)8 "X and x%€X \ XOPP, Now we can write two chains of inequalities:

K(z?) <K EOPP),
KEOPY) = K{zt)= min O(z!, y) < O(z!, z%) < O(z?, %) = K(a?).
yeR(x!)
Here we have used the property (2) of the objective funetion of the system. The resulting contradiction
proves the implication.

3° => 4°, Since for some x¢ XOPP :R(x)1X"S = ¢, we have that 3 z€ R(x)""X*S. From the definition of
the set S it follows that ¥y€Y :fj(zi, zj) =fj(zj, yi), which proves the implication.

4° =>3°. By 4°, ¥x€XOPP  (Rx)NXNS = ¢. Hence Ix€XOPP;:VvzeR(x)\X:dy€Y, i€l:f(zi, zi) < fi(zi,
¥i),» which contradicts 4°.

4° =>5°. Since ax€XOPP, 26 R)NXCYX(x): Vy'eY, i€I, we have fi(xi, yi") = fi(xi, zi). Comparing
this inequality with 4°, we obtain 5°,

5° =» 3°. Then ¥x€tXOPP:R(x)NSNX = ¢. In this case Vz€X(x)1Y:zfR(x)S. This implies that either
2£R(x) or z£S or both. In this case, these conditions lead to an inequality which contradicts the inequality in
5°. The contradiction establishes condition 3°.



The implications 4° => 6° and 6° => 3° are proved along the same lines as 4° => 5° and 5° => 3°, respec-

tively. Q.E.D.
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