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Abstract—An organizational system is considered, namely, an aggregate of certain elements
that are hierarchically connected for fulfilling a collection of functions. It is assumed that the
result of the work of the system depends on its structure. For a set of various structures (graphs
of the organization), expenditures on the operation of the system and on the restructurization
are defined. An optimal control of structural changes in a finite time interval involves the choice
of the sequence of structural transformations that maximize the total profit. An optimal control
enables balancing the expenditures for the operation (effectlveness) and for the restructurization
(the stability to external actions).

1. INTRODUCTION

The great majority of the available models of an organizational system presupposes the struc-
ture of a specified system or examines a few versions of it. The two-level organizational system
of the general form (the center and subordinate elements) is thoroughly studied in the theory of
active systems. One of the approaches to the study of a multilevel system involves its decompo-
sition into a number of two-level systems, which affords studying the system with the invariable
structure. However, the retention of the effectiveness of the system under changes of the external
medium {environment) sometimes requires its structural reconstruction, which is not described in
the framework of two-level systems [1]. In the subsequent discussion, we examine a model that
enables us to compare the effectiveness of various controls of structural changes.

We will consider an organizational system over the course of T units of time. The parameters
corresponding to a unit time ¢ will be provided with the upper index ¢, t =1, T.

We assume that the system receives a profit as it turns out some products out of the prescribed
collection Iy, . .., I, defining the field of activities (the branch). The composition of output products
can change with time, but the entire collection Iy, .. ., I, of products of the branch will be considered
to be invariable in the entire time interval under study.

We will denote the volume of products I} put out in the unit time t by yL > 0, and the vector

of volumes by y* = (¢t,... ,yq) The price of a product I for the unit time will be denoted by p,c
and a maximum volume of products that the system can sell at the market will be denoted by vf.

The pertinent vectors will be designated as pt = (p!, ..., pq) = (vi,..., <t1)

We consider that the parameters p!,...,p7 and vt,..., v are defined by the external medium
and are independent of the control of the system The collectlons of vectors p* = {p! oo ..,p'} and
vt = {vl,...,v!} are thought to be known by the unit time ¢. The parameters yi ..., yT are

controlldble they can be chosen with due regard for constraints 0 < yf < vk, k=1,q,t=1T.

The array of operations (elementary jobs) necessary for the output of all products will be des-
ignated as ey, ...,e;. We assume that the array ej,...,e, does not contain auxiliary operations
involved with the organization of the system (control, accounting, etc.) and depends on the tech-
nology.
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Let us prescribe the matrix W = {wy ;} of technological coefficients, where wy ; > 0 is the
number of units of an elementary job e; required for the output of the unit of a product I,
k =1,q, j = 1,7. We assume that the array ej,...,e, and the matrix W are identical for all
organizations of the given branch and invariable parameters of the external medium in the entire
time interval under examination.

For a length of the unit time ¢, the system has available a certain set of performers A* =
{a%,...,al.}, who can do elementary jobs ey, ..., e,. By the next unit time, there is a possibility of
dismissing some performers from A* and engage performers from the set A?. Thus, by controlling
the system, it is possible to select the set A* C A*=1 U A'1 ¢t = T, T, where A° is the initial set
of performers and A? = @. The sets A°, ﬁl, .., AT depend on the external medium and are
independent of the control. By the unit time ¢, the array of sets At = {Zl, eer, ﬁt‘l} is known,
i.e., the information on the labor market in the past.

We will denote by s;j(a) the amount of an elementary job e; that the performer can carry out
in the unit time. The vector s(a) = (s1(a), ..., s,(a)) of the productivity of the performer is taken
to be constant in the entire time interval under consideration (disregarding changes of s(a), for
example, in the training or degradation).

Let us denote by 0 < xz-(a) < 1 a share of the unit time ¢ that the performer a spends to
accomplish the elementary job e;. The work intensity of the performer a will be designated as
z4a) = ¥ zf(a). The plan of jobs of the performer a for the unit time ¢ will be designated as

j=1r
x'(a) = (z{(a),...,2L(a)). By controlling the system, it is possible to select x*(a) with due regard
for the constraint z¢(a) < 1. To perform the amount of jobs that is necessary to turn out products,
the following relations must be met: 3} ylwg; < Zt 85 (a)m§. (a), 7 = 1,r. If all inequalities are
k=1,q acA
met, then the plan y* of the output and the plans x*(a) of jobs, a € At, will be called correct.

The expenditures for the accomplishment of jobs by the performer a in accordance with the
plan x'(a) result from the technology (necessary materials, energy, etc.) and are independent of
the interaction of performers. We assume that the control does not affect the wage (the fixed or
the piece one that depends on x*(a)). Thus, the total expenditures p(a,x!(a)) for the upkeep of
the performer a depend on the performer himself and on the plan of his jobs. It the plans x*(a) of
jobs are defined, then the expenditures will be designated as p‘(a) = p(a, x*(a)).

2. THE GRAPH OF ORGANIZATION OF THE SYSTEM

To turn out products, it is necessary to organize the interaction of performers, each of which
performs a share of elementary jobs.

Definition 1. Any nonempty subset f C A%, t = 1,T, will be called a group. The set of all
groups for the unit time ¢ will be denoted by F* = 24° \ {@}. The cardinality of the group f will
be called the number of performers |f| contained in it.

The distribution of jobs zf(a)s;(a),...,zL(a)s,(a) completed by the performer a for the output
of some or other products determines his participation in the output of each of the products. Thus,
a certain subset f C A* of performers takes part in the output of products Iy, in which case f = @
at yi = 0, otherwise f € F*.

Consequently, to turn out products in volumes y* for the unit time ¢, it is necessary to organize
the array of groups f* = {ff,..., ft,}, m* < g. According to the plans y* of the output and the
plans x*(a) of jobs, generally speaking, the array f* is defined ambiguously. We will call the array
correct if it corresponds to a certain distribution of jobs accomplished by performers over products.
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Fig. 1. Examples of organization graphs.

The control of the system determines one of the.correct arrays of groups. On fixing the unit time,
we will omit the index ¢ later on in this item and the subsequent ones.

Definition 2. We will call the oriented graph G = (V, E) the graph of the organization of groups
fiy-+ oy fn if it satisfies the following conditions:

(a) the vertices correspond to the groups, i.e., VCF, f1,..., fm € V;
(b) ECV xV and g C h is fulfilled for any edge (g,h) € E;

(c) for an arbitrary vertex g € V, we denote by Q(g) = {h : (h,g) € E} the set of vertices from

which edges extend into g. Then A’ ¢ U h is fulfilled for any h' € Q(g). For any g # {a;},
heQ(g)\{h'}
i=In,wehaveg= U h Q{a;}) =2
heQ(g)

Thus, the edges entering into the group g € V'\ {a1},..., {a,} determine the array of subgroups
Q(g) that form this group. Each subgroup Q(g) is not covered entirely by the remaining subgroups
(otherwise, there is no point in using it for the formation of g). Edges do not enter into groups
{a1},...,{an} (there is no need to organize groups consisting of one performer). The graph defines
the order of the interaction of performers in organizing the groups fi,..., fm, i.e., the structure
of the system. Under organization will be understood the appropriate graph of the organization. "
Vertices (groups) of a cardinality of 1 will be called elementary and the nonelementary vertices
of G that are different from f1,..., f,, will be called intermediate.

From Definition 2 it follows that the organization graph is acyclic and |Q(g)| > 2 is fulfilled for
any g € V\ {a1},..., {an}.

Definition 3. The organization G = (V, E) will be called sequential if for any nonelementary
group g € V', we have Q(g) = {g \ {a}, {a}} for some a € A.

Definition 4. The organization G = (V, E) will be called the r-organization, r > 2, if |Q(g)| < r
for any group g € V.

Definition 5. The organization G = (V, E) will be called simultaneous if V' = {{a1},...,{an},
fiy- ooy f}, in which case Q(fi) C {{a1},...,{an}} fori=T,m

In the sequential organization, any nonelementary group is set up of two subgroups, although
at least one of them is elementary. Thus, the sequential organization is a particular case of the
2-organization. The simultaneous organization is unique. Examples of organizations are given
in Fig. 1.

At the left of Fig. 1, the simultaneous organization of the groups f; = {a1,a9,a3} and fo =
{a2,a3,a4} is shown, in which performers interact between themselves in the groups f1 and fa
without intermediate links. An example of the sequential organization of the groups fi and fo is
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given at the center. The performers a; and a3 interact with each other, forming an intermediate
group {az, a3} (the subdivision of the organization), which is used both for the organization of f;
and for the organization of fo. At the right of the figure, an example of the 2-organization of the
group f = {a1,...,a4} is shown. Here, f is formed from two intersecting intermediate subgroups.

Definition 6. The terminal vertex of the graph of the organization will be called the vertex from
which edges do not emerge.

Definition 7. An organization will be called an organization without intersections if the set Q(g)
does not contain intersecting groups for all nonelementary groups g € V.

Definition 8. The vertex g € V will be called the daughter node for the vertex f € V, f # g, if
in the graph G = (V, E) there exists a path from g to f.

The daughter node (group) is a certain subset of the parent node. We will prove an auxiliary
assertion that will be used later on.

Assertion 1. The organization of one group f without intersections, which contains the single
terminal vertez f, represents a tree with the root in f.

The proof is carried out by induction over the cardinality of f. If |f| = 1, then the organization
G = (V, E) consists of one vertex because, otherwise, there would exist a terminal vertex different
from f. Let the assertion be proved for all cardinal numbers that are less than k.

We assume that f = {a1,...,ax} is formed from subgraphs Q(f) = {91,...,9¢}, giNg; = @, for
i # j. Let G; be a subgraph of G, which consists of g; and its daughter nodes (subsets g;). Any
vertex h # f belongs to one of the subgraphs G;, i = 1,7, because f is the single terminal vertex.
If g€ G; and h € Gj, i # j, then (g,h) ¢ E, otherwise g C g; Ng; = 2.

By supposition, G; is a tree with the root in g;. Consequently, G consists of f into which edges
pass from the roots ¢ of independent trees, i.e., G is the tree with the root in f.

3. COST OF ORGANIZATION OF THE SYSTEM.
OPTIMAL ORGANIZATION

By Definition 2, edges from Q(g) = {g1,.--, 9%}, £ > 2, g = g1 U... U g enter into the
nonelementary vertex g of the graph of the organization. An arbitrary array of the subgroups
satisfying the above conditions will be called admissible. The joint work of subgroups gi,...,g
in the group g requires expenditures on the coordination of actions of the subgroups in the group
(control), the registration of results, and other overhead charges.

Let us consider an admissible array ¢y, ..., gr. We assume that the cost of the organization of the
joint work of the subgroups ¢1,...,gx € F in the group g = g1 U...U g for the unit time is defined
by the functional of the organization cost P(gj, ..., gx) > 0, which is preset on all admissible arrays
of the subgroups and does not change in the rearrangement of arguments.

To an arbitrary vertex g € V\{a1},...,{an} of the organization graph G = (V, E), we assign the
cost R(g) = P(g1,...,gk) of its organization from the subgroups Q(g), where {g1,...,9x} = Q(g).
The cost functional is defined on this array of subgroups in view of its admissibility.

Definition 9. The cost of operation of the organization G will be called the quantity P(G) =

> R(g) + Y p(a). The organization G* of groups fi,..., fm will be called optimal
gev\{al}!"'v{an} a€A
if P(G*) = min P(G), where the minimum is taken over all possible organizations of the groups

flv"?fm-

AUTOMATION AND REMOTE CONTROL Vol. 63 No. 8 2002



A MODEL OF OPTIMAL CONTROL ‘ 1333

Definition 10. The problem for an optimal organization will be called the problem of the search
for one of the optimal organizations.

The cost of operation (or simply the cost) of an organization represents a sum of the expenditures
for the organization of the joint work of performers in groups and the expenditures for the pay of
performers (the latter expenditures do not depend on G and increase the cost of all organizations
by a constant). An optimal organization minimizes the cost of operation of the system.

Definition 11. The cost functional will be called monotonic if the following conditions are met
for any admissible array of subgroups {g1,...,gr}:

(a) P(g1,---,9x) < P(g1,...,9k,9), where g is an arbitrary subgroup at which the array
{g1,--., 9k, g} is admissible.

(b) P(g1,---,9%) < P(g1,---,9i-1,9i+1,---,9k) for any i = 1,k and a subgroup g such that
9 C g and the array {g1,...,9i~1,9, gi+1,---,9x} is admissible.

Thus, in the case of the monotonic functional, the addition of one more subgroup or the extension
of one of the subgroups does not lead to a decrease in the cost of the organization.

Theorem 1. In the case of the monotonic cost functional, an optimal organization of one group
[ exists in the class of trees with the root in f.

Proof. Let G = (V,E) be an optimal organization of the group. We will remove terminal
vertices different from f, in which case the optimality will remain. We will construct an optimal
organization G* of the group, in which exactly one edge emerges from each vertex ¢ € VA{f}

Let g € V be the vertex of the highest cardinality, from which at least two edges emerge: one
into hy and the other into ¢;. From h; and #; there exist paths to f (there are no other terminal
vertices), i.e., two paths exist from g to f. We will denote their sections up to the first intersection
byg—hi—hy—...—hy, and g—¥€; — by — ... — Cny, where hy, = {,,. The groups hy,..., hy, 1,
{\,...,€n,—1 have a higher cardinality than g and, hence (by definition of g) exactly one edge goes
out of them to the next vertex of the path.

For any edge (¢, h) € E, the following reconstruction will be called the (¢, h)-simplification. We

will use the notation h' = U R". If b’ € V (in particular, at |Q(h)| = 2), then we will
R7eQhN\{€}
remove h and incoming edges. If A’ ¢ V, we will take away the edge (¢,h). In this case, h will

change to A’ (the group h’' can be set up of the array Q(h) \ {¢} in view of its admissibility). We
will call the vertex h’ the result of the (£, h)-simplification. It is obvious that 4\ A’ C ¢. In view of
the monotonicity of the functional, the (¢, h)-simplification does not increase the cost of the graph.

We will perform the (g, £;)-simplification and denote the result by £;. The cost of the graph did
not increase. We have ¢1\ ¢ C g. The edge (¢1,¢3) emerged from ¢;. We introduce the designation

ly = § h. If £ = {3, we obtained the organization G’ of the group f. Otherwise, we
he(@QUe2\{e1 Hu{er}
continue the reconstruction.

If &, € V, then we remove ¢2 and the edges entering into it. But if 0 C U h, we carry
: heQ(e2)\{41}
out the (¢1, £5)-simplification; otherwise, £} is formed from the admissible array (QUE\{G: Hu{e ).

As a result, instead of ¢2, in all cases ¢5 will be arranged. Also, on account of the monotonicity of
the functional, the cost of the graph does not increase. We have ¢\ ¢, C ¢\ ¢, C g.

If ¢ # €5, then in a similar way (accurate to the replacement of £, by ¢ and ¢y by £3), we
rearrange the graph without an increase in the cost. Instead of ¢3, we will organize 0, 63\ ¢5 C g,
and so on. If £, y is replaced by €,,_; # €p,1, then in view of £,,,_; \ -1 Cgand g C hy, 1 €
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Q(ln;) \ {€ny—1}, we have £, = £y,, ie., at a certain step, we will obtain the organization G’ of
the group f, P(G') < P(G).

We remove terminal vertices of G’ that are different from f. If g is not removed and more than
one edge emerges from it, then we carry out a similar operation with the graph G’ instead of G.
As a result, either we will remove g or exactly one edge will go out of g.

If in the obtained graph there are vertices from which more than one edge emerges, we will
perform the actions described above. In the course of reconstructions, edges are not added. As a
result, we obtain the desired organization G* = (V*, E*). From each elementary group {a} C f in
G* there exists exactly one path to f. For any nonelementary g € V* and any g1, g2 € Q(g), the
relation g, N g2 = & is fulfilled, otherwise two paths to f from the group {a} C g1 N g2 would exist.
Thus, G* is the optimal organization without intersections and terminal vertices different from f.
From Assertion 1 it follows that G* is a tree with the root in f.

Definition 12. The functional P will be called convex if for any admissible array of groups
{fi,.., fx}, k = 3, there exists a subarray {g1,...,9:} C {f1,.--, fx}, 2 < r < k, for which the
following inequality is met:

P(fla'”’fk) 2 P(glv”',gr) +P(g)h1’-”,hk—7‘)a (a)
where g = g1 U...Ugp, {h1,...,hx—r} = {f1,--., fc} \ {91,...,9r}. The functional P will be
called concave if there does not exist a subarray {gi,..., gr}, for which the inequality (a) is strictly

fulfilled, i.e., for any subarray {g1,...,9-} C {f1,.--,fx}, 2 < 7 < k, the following inequality is
met:

P(fl""yfk)_<..P(Qla---agr)+P(gah17'-')hk—r)' ) | (b)

In the case of the convex functional, instead of the combining of subgroups fi,..., fi into the
group f = fiU...U fi, it is possible, without increasing the cost, to organize initially some
subgraphs from fy,..., fr and then to combine the obtained group with the remaining subgroups
from fi,..., fx. In the case of the concave functional, if is impossible to reduce the cost in this
way.

Definition 13. Let us prescribe a certain set of admissible arrays of groups. If for any array of
the set, the inequality (a) of Definition 12 is met, then the functional P will be called convex on
the given set, and if the inequality (b) is met, the functional will be called concave..

Theorem 2. In the case of the convex functional of the cost, an optimal organization exists in
the class of 2-organizations. '

Proof. We will consider the optimal organization G = (V, E). Let k = max|Q(g)|, where the
maximum is taken over all nonelementary vertices of G. If k£ = 2, then an optimal 2-organization
is found.

Let k > 3. We will find f € V for which Q(f) = {f1,..., fx}. In view of the convexity of the
functional, there exists a subarray {g1,...,9-} C {f1,..., f}, 2 < r <k, for which P(fy,...,fx) 2
P(gl, vee agr)+P(ga hi,..., hk—r)’ where {hl’ ) hk—r} = {fly R 7fk}\{gl7 vee ,gr}, g = q1U...Ugr.
We will rearrange G. If g ¢ V, then we will supplement g, forming it from g;,...,g,. We will
change edges entering into f so that Q(f) = {g, h1,...,hk-r}. In view of the admissibility of the
arrays {g1,...,9r} and {g, h1,...,hx_r}, the reconstruction is possible (it is shown in Fig. 2 at
{91,---,9:} = {f1,--., f+}).- The obtained graph G’ is the graph of the organization of the same
groups as those of G, in which case P(G’) < P(G).
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Fig. 2. Reconstructioy of an optimal graph involved with a convex functional.
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Fig.3. Reconstruction of an optimal tree involved with a concave functional.

We have |Q'(f)] = k—r+1 < k, |Q(9)] = r < k, ie., no less than k edges enter into f
and g. The number of the vertices into which & edges enter decreased by unity. Performing similar
reconstructions, we will ultimately obtain an optimal organization for which k; = max |Q(g)| < k.
Ifky > 2, then we will repeat the discussion. As a result, we will arrive at an optimal 2-organization.

Cotpllary. In the case of the monotonic cost functional that is convez on the arrays of nonin-
tersecting groups, an optimal organization of one group f exists in the class of 2-trees with the root

in f.

Proof. By Theorem 1, there exists an optimal tree of the organization with the root in f. We will
take it as the graph G in proving Theorem 2. For any vertex f € V, the array QY ={fi,- -, fr}
does not contain intersecting groups. Consequently, to reconstruct G, it is sufficient to have the
convexity on the arrays of nonintersecting groups. After the reconstruction, we obtain a tree with
the root in f, which enables us to continue the discussion.

Theorem 3. In the case of the monotonic cost functional that is concave on the arrays of non-
intersecting groups, the simultaneous organization of one group is optimal.

Proof. By Theorem 1, there exists an optimal tree G = (V, E) of the organization of one group f.
If G does not contain intermediate vertices, than G is a simultaneous organization. Otherwise, we
will consider the intermediate vertex g € V of the highest cardinality. Let Q(g) = {g1,---,0 }-
Exactly one edge passes from g into f. Let Q(f) = {g,h1,...,hk,}. In the array Q'(f) =
{9,-- s 9ky Pty ..., iy}, there is no intersecting groups (G is a tree), i.e., Q'(f) is admissible
and the functional is concave on it: P(g1,..., gk, b1,y hry) < Plgiy .o, gk,) + Plg Ry ..y iy
We will remove g and organize f from the array Q'(f) (Fig. 3).

We will obtain an optimal tree of the organization of the group f that contains one intermediate
vertex less than G. Continuing these actions, we will prove the optimality of the simultaneous
organization of one group.

Definition 14. The cost functional will be called substantially convex if it is convex and for any
admissible array of nonelementary groups {gi, g2}, at least one of the two conditions is fulfilled:

(a) for any a € g1: P(gy,92) = P(91\ {a},92) + P((91 \ {a}) U g2, {a});

(b) for any a € gy: P(g1,g2) = P(g1,92\ {a}) + P(g1U (92 \ {a}), {a}),
in which case the functional is taken to be equal to zero if the associated array is inadmissible.
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Fig. 4. First version of reconstruction involved with a substantially convex functional.
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Fig. 8. Second version of reconstruction involved with a substantially convex functional.
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Fig.6. Third version of reconstruction involves with a substantially convex functional.

In other words, the functional is substantially convex if in the organization of two subgroups, it
is possible to remove an arbitrary performer from one subgroup and then to orgamze it with the
obtained group without increasing the cost.

Theorem 4. In the case of a substantially convez cost functional, an optimal organization exists
in the class of sequential organizations.

Proof. Let G = (V, E) be an optimal 2-organization that exists in view of Theorem 2. We will
call a vertex of the graph incorrect if it is arranged from two nonelementary groups. Otherwise,
we will call it correct. If the graph G does not contain incorrect vertices, then G is the sequential
organization. Otherwise, we will produce an optimal 2-organization G* in which the number of
incorrect vertices is less than in G by one. Thus, performing this operation the required number
of times, we will arrive at an optimal sequential organization.

Let g be an incorrect vertex such that all daughter nodes of which are correct. Let Q(g) =
{91,92}. Then, g; and g are nonelementary correct vertices and, hence, Q(g1) = {g1 \ {a'}, {d'}}
and Q(g2) = {g2 \ {a"},{a"}}. The functional is substantially convex. Let the condition (a) of
Definition 14 be met.

If the array {g1 \ {a}, g2} is inadmissible, then (g; \ {a’}) C g2 and, hence, go U {a'} = g,
{a’} ¢ go. We will arrange g from go and {a'} (Fig. 4). If (g; \ {a'}) U gs = g5 is met, the
inequality (a) takes the form P(gy,g2) > P(go, {a’ }) We obtain the sequential orgamzatlon G,
P(G") < P(G).

If the array {g1 \ {a’}, g2} is admissible, then we add the vertex gz = (g1 \ {a'}) U g2, forming
it from g, \ {a'} and go. In this case, if {a’} C g3, then g3 = g. We obtain the sequential
organization G’ (Fig. 5). In view of the inadmissibility of {(g: \ {a’}) U g2, {a’}}, the inequality (a)
assumes the form P(g1,g2) > P(g: \ {a’}, g2). Consequently, P(G’) < P(G).
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If {a’} ¢ g3, then we establish g from {a’} and g3. We produce the sequential organization G’
(Fig. 6). In view of P(g1,92) > P(g1 \ {a'}, g2) + P(g3, {a}), we have P(G') < P(G).

If the condition (b) of Definition 14 is met, then we reason in the same way, replacing ¢g; by go
and {a'} by {a"}. Thus, in all cases we obtained the optimal sequential organization G’ in which g
is correct. If G’ does not contain g or g3 is correct, then G’ has one incorrect vertex less than G,
i.e., the desired organization G* is established.

Let G’ contain the incorrect vertex gs. The cardinality of g3 is less than that of g and all daughter
nodes of g3 are correct. We will repeat the reconstruction, taking the graph G’ instead of G and the
vertex g3 instead of g, which will decrease again the cardinality of the incorrect vertex. Repeating
these actions, we will obtain G* at the next step or reach the instant at which the cardinality of g3
is equal to two. In this case, g3 is correct, i.e., the desired organization G* is built up.

4. EXAMPLES OF COST FUNCTIONALS

Let us assume that the complexities ¢§ > 0,...,c¢ > 0 of units of the elementary job (for

example, mean labor expenditures) are preset, which are dimensionless comparable indices.

Definition 15. We will define the complexity (potential) C(a) of the performer a as a maximum
of the complexity of the elementary job that the performer a is able to carry out in a unit time:
Cla) = max(c{si(a),...,cts(a)). The complexity (potential) of the group f will be given by the

«

quantity C(f) = (Z C(a)l/a> , where a € (0, +00).
acf

At a = 1, the potential of the group is equal to a sum of the potentials of performers who
comprise the group; for @ > 1, it is higher than this sum and for a < 1, it is lower. The cost
of the organization of subgroups depends on their some characteristics, for example, complexities.
Proceeding from possible substantive interpretations, the following versions of the cost functional
are suggested in [2]:

P(gy,...,9%) = [Clg1) + ...+ C(gr) — max(C(g1),..., Cgi))]; . (1)
Plg1,...,g1) = [Cg1) + -+ Cla)); (2)
Clg) s
Plow-o) = @, .l & (3)
Pgiy...,g1) = y_ (Clg) — Clau)), (4)
i=Lk )

where the group g = g1 U... U g is arranged from subgroups gi,...,gx, 8 € (0;+00).

It is obvious that the functionals (1) and (2) are monotonic, while the functionals (3) and (4)
are not monotonic. To prove the subsequent assertions, we use inequalities that are readily proved
by induction on n:

(@1+...+z)*>22f+...+2 forany z120,...,2n 20 for 22>1, (5)
(1 +...+z)* <ai+...+a; forany 2120,...,2, 20 for z2<1L (6)

Assertion 2. The functional (1) for 8 <1 is concave; for B > 1, it is convex; and for 3 > 1 and
aff > 1, it is substantially convex.
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Proof. We will consider an admissible array {f1, ..., fx} and an arbitrary subarray {91,.--,9r} C
{fh s 7fk}v 2<r< k. Let {hly""hk-—T} = {fl,-- -’fk}\{glv s ’gr}; [ g1Y...Ugp; o3 = C(gi)’
i =1,7; y; = C(hy), j = I,k —r; o = max(z:); and y = max(y;). We will denote by P; the left
side and by P, the right side in the inequalities of Definition 12: P = (X + Y — max(z,y))?,
Py = (X —z)?+(C(g)+Y — max(y, C(g)))®, whereX = z1+...+z, and Y = y1+... +yk—r. With
B < 1, in view of (6), Py > (X +Y +C(g) —z —max(y, C(9)))?. To prove the inequality Py < Py, it
remains to show that z-+max(y, C(g)) < C(g)+max(z,y). For y < C(g), the inequality is obviously
fulfilled. For y > C(g), the inequality will be rewritten in the form z+y < C (g9) + max(z,y), which
stems from z < C(g). Thus, P; < P, is met for § < 1, i.e., the functional (1) is concave.

Let 3 > 1. We denote z; = C(fi), ¢t = 1,k. Without the loss of generality, we assume that
€1 = max(zy,...,zx). Let us set {g1,92} = {f1, f2} and {h1,... hx_2} = {f3y..+, fr}. We have
P =(z2+... +$k)ﬂ and P, = a:g—{- (xz+... +23)8. In view of (5), P, > P, is met for 8 > 1, ie,
the inequality (a) of Definition 12 is valid; consequently, the functional (1) is convex.

Let 3> 1 and af > 1. We will consider an admissible array {g1,g2} of nonelementary groups.

Let C(g1) < C(g2). We denote by P; the left side and by P, the right side of the inequality (a)
of Definition 14: P, = P(g1,g2); for a € g1, P2 = P(g1 \ {a},92) + P((g1 \ {a}) U g2, {a}). I
g1\ {a} C g2, then P, = P(g2,{a}). If g1\ {a} & g2 but {a} C go, then P> = P(g1 \ {a},42). In
both cases, P, > P, on account of the monotonicity of (1). If g1 \ {a} ¢ g2, {a} € g2, then we
denote z = C(g1), y = C(g1 \ {a}), and z = C({a}). We have P, = 2P and Py = y? + 20. In view
of z = (y/® + z1/%)®, the inequality P; > P, has the form (y!/* + z1/®)28 > (yl/@)ef 4 (1/@)e8,
The last inequality is met in view of (5) with a3 > 1. In the case of C(g1) > C(g2), the fulfillment
of the inequality (b) of Definition 14 is proved in a similar way, accurate to the replacement of g;
by go2. Consequently, with 3 > 1 and af > 1, the functional (1) is substantially convex.

Assertion 8. The functional (2) is concave when 3 < 1 and when 3> 1 and a > 1, it is concave
on arrays of nonintersecting groups.

Proof. We will examine an admissible array {f1,..., fx} and an arbitrary subarray {g;,...,9,} C
{fi,-., fx},2<r<k. Let {h1,....~x—r} = {f1,-- -, fe}\ {g1,-. -9}, g =91 U... Ug,. Weput
X=C(g)+...+C(g-)and Y =C(y1) + ...+ C(yx—r). We denote by P, the left side and by P,
the right side in the inequalities of Definition 12: P; = (X+Y)? and P, = X#+(C(g)+Y)°. When
B < 1, in view of (6) we have P, < X# +Y? < P,. If among gi,...,g, there are no intersecting
groups, then C(g) = (C(g1)Y* + ... + C(g-)/*)®. For @ > 1, in view of (5) we have C(g) > X
and, hence, P, > (X + Y)? = Py, which thus proves the assertion.

Assertion 4. The functional (3) is substantially convez.

Proof. First, we will prove the convexity. Let us consider an admissible array {fy,..., fx} and
subarrays {g1,92} = {f1, f2} and {h1,...,hx_2} = {f3,..., fr}. Without the loss of generality,
we assume that C(f;) = max(C(f1),...,C(fx)). We denote ¢ = C(fiU...U fi); y = Clg),

where g = g U gz; 2 = C(f1); and Py and P, are the left and the right side, respectively, of the
inequality (a) of Definition 12. Then, 2 <y <z, Py =z/2—1,and P, =y/z~ 1+ z/y — 1, and
S0 we can write

PA-Py=z/z—1-y/z+1-z/y+1=(sy+yz—y’ —z2)/yz

We denote £(z) = zy + yz — y*> — zz. We will perform the differentiation: ¢/(z) = y —2 > 0in
view of y > z. Next, £(y) = y? + yz ~ y* — yz = 0 and, hence, for all z > y we have £(z) > 0, ie,
P, > P,. Thus, the functional (3) is convex.
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We will consider an admissible array {g1,¢2} of nonelementary groups. Let C(g;) < C(g2). We
denote x = C(g1 Uga); 2 = C(g2); and Py and P; are the left and the right side of the inequality (a)
of Definition 14. We have Py = P(g1,¢92) = z/z — 1. Let us consider a € g;, in which case
Py = P(gr \ {a},92) + P((91 \ {a}) U g2, {a}). If g1 \ {a} C g2, then P, = P(go,{a}) = 1. If
91\ {a} ¢ g2 but {a} C g2, then P, = P(g; \ {a},g2) = P1. If g1\ {a} € g2 and {a} & g2, then we
denote y = C((g1 \ {a}) Ug2). We have P, = y/2 — 1+ z/y — 1. It is shown above that P > Ps.
In the case of C(g1) > C(g2), the fulfillment of the inequality (b) of Definition 14 is proved in
a similar way to an accuracy of the replacement of g; by go. Consequently, the functional (3) is
substantially convex.

Assertion 5. The functional (4) is convez.

Proof. We will consider an admissible array {f1,..., fv} and subarrays {g1,g2} = {f1, fo} and
{hi,..., hg—2} = {f3,..., fr}. We introduce the designations: g = g1 U ga; y = C(9); ;i = C(f;),
i=1,k;z=C(fiV...Ufi); and P, and P, are the left and the right side of the inequality (a)
of Definition 12. Then, Py = kx — ) x;, Po =2y —z1 —a22+ (k- Dz —y — Y a;, and

i=1k i=3,k
Py — Py = x —y 2 0. Thus, the functional (4) is convex.

5. CONTROL OF THE ORGANIZATIONAL SYSTEM

In response to changes in the external medium, the system may undergo structural changes that
require expenditures for the reorganization. In [3], the cost p(G’, G") of the reorganization of the
graph G’ to the graph G” is defined, i.e., the cost of the rearrangement of the organization G’ to the
organization G” (in particular, the cost p(@, G) of the establishment of the organization G “from
zero”). The reorganization cost is estimated on the basis of the known quantities: p'(a, g), which is
the cost of the exclusion of the performer a from an arbitrary group g, a € g, and p”(a, g), which is
the cost of the inclusion of a performer in an arbitrary group g, a ¢ g. Then, G’ rearranges to G”
by way of the sequential exclusion and inclusion of performers. The reorganization cost p(G’, G")
is equal to a minimum total cost of all exclusions and inclusions (in greater detail, see [3]). If we
put p”(a,g) = C(a), then we obtain the complexity C(G) = p(&, G) of the organization G. In the
text presented below, we consider the notion of a control that determines the total profit on the
interval 1, 7.

We assume that the cost functional P is invariable. The aggregate of invariable parameters of
the external medium, which are given i the Introduction, namely, I,...,I,, e1,...,e,, W, and
the functional P will be denoted by E. The changing parameters of the external medium, which
are known before the beginning of the unit time ¢, t = 1, T are the following: the behavior of the
labor market, At = { A b, A t'l}, in the preceding periods of time and variations of the prices
and the volume of the demand, p* = {p!,...,pt}, vt = {v} ... vt}.

Before the beginning of the time ¢, ¢ = 1,7, the system has the set A*~! of performers organized
with the aid of the graph G!~!. If the interval 7" under examination is rigidly preset, then we put
G® = (@, @), which is an empty graph (it is necessary to create the initial organization beginning
with zero). But if we investigate a potentially infinite interval (T is much larger than the period

of oscillations of the external medium), then we put G® = G! (the initial organization is already
created).

Definition 16. The correct array of controllable parameters for the unit time ¢, t = 1,T will be
called the following: the array of performers A* C A*=1U A1 the plans y* and x*(a) for all ¢ € A?;
the correct array f* of groups; and the graph G* of the organization of groups of the array f?.
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By controlling the system, it is necessary to define the array of controllable parameters before
the beginning of a unit time, proceeding from the information F, At, p!, and v’ on the external
medium, the available structure G*~! and performers A*~!, the time t, and the length of the
interval T under examination.

Definition 17. The control of the organizational system will be called an arbitrary mapping of
U(E, At pt,vt, A1 Gt1 ¢, T) of its arguments into the correct array of controllable parameters.

Definition 18. The result of a control of the system will be called the quantity

R(B,AT,pT,vT,¥) = %g—f [(p,y") — P(GY) — p(G,0Y)],

where (p?, v') is the total gain of the system in the unit time ¢, p(G*~1, G*) are expenditures for
the reorganization of the structure G*~! to G*, and P(G!) are expenditures for operation of the
system with the structure G* for a unit time.

The result of a control of the system—the mean profit in the time interval 1, T—depends on the
control ¥ itself and on a change in the parameters E, AT, pT, and vT of the external medium.

Definition 19. An optimal control will be called a control
U = argmax R (E, AT pT VT, lIl') ,
where the maximum is taken over all controls ¥’.

If some of the trajectories of the parameters AT, pT, and vT of the external medium are un-
known, but their probability distribution is known, then we will redefine the optimal control.

Definition 20. An optimal control in the mean will be called a control
¥ = argmax R (E,AT,pT,vT,\II') ,

where the mean value is taken over those parameters of the external medium for which only the
probability distribution is known and the maximum is taken over all controls ¥’.

The problem on an optimal control is rather complex for an analytical solution. However, if
the control is estimated effectively, then the result of a control of the system with the prescribed
trajectory of parameters of the external medium can also be estimated effectively. The result of a
control in the mean can be replaced by the sample mean. Thus, if we consider an array of effectively
computable controls, then an optimal one can be found among them. If additional constraints on
the choice of a control are specified, then the controls that do not satisfy them can be excluded,
which will lead to a conditionally optimal control. For example, under constraints on a resource,
some controls that involve inadmissible losses at individual instants of time must be left out of
consideration even in the case of their optimality. We will define some kinds of controls.

Definition 21. A control will be called a control with the constant composition if 4] = Ay =
.= Ar = Ap is met.

Definition 22. A control will be called a control with the trivial planning if the correct plans y*
of the output and the correct plans x!(a) of jobs are defined proceeding from the maximization of
the “gross profit” (pf,y!) — 3 p(a,x!(a)) for the unit time ¢.

ac At
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If the expenditures p(a,x*(a)) depend linearly on components of the vector x*(a) = (z(a), ...,
zt(a)) of the plan of jobs, then, taking into account the linear constraints on y' and x'(a), the
determination of the trivial plan is the problem of linear programming.

The correct array f' of groups can be defined in the following way. We distribute the volume
s1(a)zi(a) of the job e; carried out by the performer a for the output of the first product, in the
case of the surplus, we distribute the volume of the job for the output of the second product, etc.
Then, we deal in a similar way with the volume of the job ey done by the performer a, etc. On
distributing all jobs of the performer a over products, we pass on to the next performer.

Definition 23. A control will be called a control with the trivial grouping if the correct array of
groups is specified by the foregoing method.

In the case of the complex investigation of the model in the foregoing statement, it is possible
to analyze the effect of all controllable parameters on the result of the control. If the aim of the
investigation is to control structural changes, then we can consider only the problem of the choice
of a structure. For example, we can give the following definition.

Definition 24. The control with the constant composition and the trivial planning and grouping
will be called the control of a structure.

The controls of a structure differ only in the choice of organization graphs G¢, t = 1,T. We can
give the following examples of the control of a structure.

The control of a minimum cost minimizes the mean operating cost | Y= P(G!) | /T, i.e., finds
t=1,T
an optimal organization at each t = 1,7T". If p(G’,G") = 0, then the control of the structure of a
minimumn cost is optimal.

The control of a minimum complexity minimizes the mean complexity > C(GY ] /T of an
t=1T
organization. The simultaneous organization has a minimum complexity among all organizations
of the prescribed array of groups (see [3]). Consequently, the control of a minimum complexity
exists if all organizations G, ..., GT are simultaneous.

6. CONCLUSIONS

The model is built up that enables us to compare the effectiveness of the various controls of
structural changes in the organizational system. In the case of an optimal control of the struc-

ture, we reach the best balance between the mean expenditures | ¥ P(G!) | /T for operation
t=1T

of the system and the mean expenditures [ > p(G*~1,G*) | /T for the reorganization (the latter
t=1,T

expenditures are defined by the ability of the structure to react in a flexible manner to changes

in the external medium). If the cost of the reorganization is zero, then it remains to minimize

expenditures for the functioning, which is achieved by means of a minimum cost control, for the

estimation of which it is necessary to solve the problem for an optimal organization.

For substantially convex functionals there exists an optimal sequential organization (see Theo-
rem 4), which can be found with aid of the algorithms constructed in [2], i.e., the proved theorem
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in combination with the algorithms [2] solves in the exhaustive manner the problem of an optimal
organization for substantially convex functionals.

For monotonic functionals there exists an optimal tree of the organization of one group (see
Theorem 1), which can be found by means of the algorithms constructed in [4]. If, apart from the
monotonicity, the functional displays the convexity on the arrays of nonintersecting groups, then
there exists an optimal 2-tree of the organization of one group (see the Corollary to Theorem 2),
so that the problem for an optimal tree is simplified (see the algorithms in [4]). If, apart from
the monotonicity, the functional displays the concavity on the arrays of nonintersecting groups,
then the simuitaneous organization of one group is optimal (see Theorem 3). These results in
combination with the algorithms in [4] solve the problem of an optimal organization of one group
for various. classes of functionals.

In this work, we cite examples of the cost functionals (1)-(4). We proved a substantial convexity
of the functional (1) for # > 1 and a8 > 1 (see Assertion 2) and of the functional (3) at any o (see
Assertion 4), which enables us to solve the general problem of an optimal organization. The next
results solve the question as to an optimal organization of one group for the functionals (1)—(3).

For the functional (1), the simultaneous organization of one group is optimal when 3 < 1 (in
view of its concavity, see Assertion 2); when 8 > 1, the sequential organization of one group is
optimal (see [2]), which is found in [4]. When 8 < 1 or when 8 > 1 and a > 1, the simultaneous
organization of one group is optimal for the functional (2) (in view of its concavity on the arrays of
nonintersecting groups, see Assertion 3); in the remaining domain, it is possible to find the optimal
organization of one group with the aid of the algorithms of the search for an optimal tree (in view
of the monotonicity of (2)). For the functional (3), the sequential organization of one group is
optimal (in view of its substantial convexity, see Assertion 4), which is found in [4].

Thus, the analysis of the belonging of a functional to various classes permits us to find, relying
on Theorems 1-4, the form of an optimal organization, which is illustrated by the examples of the
functionals (1)—(4) (see Assertions 2-5).

The modeling of an organizational system offers the possibility of analyzing the effect of various
parameters of the external medium on the effectiveness of a control of the structure. For example,

the calculation of the mean complexity [ 3> C(G?) | /T of an organization with various controls
t=1,T

from the prescribed array allows us to verify the regularity observed in practice: in the case of

rigid (intensive) external changes, a simple structure of the system (the simultaneous organization)

is optimal, which becomes more complicated as the external actions ease off. By the intensity of

external changes can be meant, for example, the Euclidean distance between price vectors p*~! and

p! or between demand volumes vi~! and v*.
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