Automation and Remote Control, Vol. 56, No. 7. 1995

AN EFFICIENT ALGORITHM FOR SOLVING A SPECIAL CASE OF THE GENERALIZED
PROBLEM OF STONES

V. N. Burkov!, S. I. Dzyubko!, and A. A. Yagupov? UDC 519.854.2

An effictent method for solving a special case of the classic “problem of stones” is considered. The
problem is the division of n different objects (stones) into m groups (piles) so that, wherever possible,
the total volumes of all groups are equal. Consideration is given to the case where the volumes are
ordered so that the volume of the jth object is described by a polynomial of degree a. For the case
of n =0 (mod 2m®), an algorithm with compuiation lime estimaled as O(n) is proposed and some
generalizations of the problem are discussed.

INTRODUCTION

This work considers one of the classic problems of scheduling theory and discrete programming, the so-called
“problem of stones.” which has numerous applications to programming, operations research, and control [1,2]. The
algorithm proposed here can prove useful in optimal scheduling of identical units of equipment or of computing
facilities, for packing repetitive lots of products of different volume into identical containers, as well as for solving
any other problem which yvields to it.

1. FORMULATION OF THE PROBLEM

In formal terms, the problem is as follows: given are n different objects (stones) and the set of their volumes
{v;}, 7 = L,n, and it is needed to divide the entire totality of stones into m parts (piles) so that, wherever possible,
the total volumes of all parts are equal. The complexity of the problem is due to its discreteness (the stones cannot
be broken), that is. it is required to find the set of variables {z;;}, j = T,n and k = T, m, such that zjx = | if the
Jth stone is placed into the kth pile, or ;5 = 0 otherwise. Now we have the following model:

[[> = =1,
J ok

mkaxz vjTjx — min.
J
The above problem of discrete programming belongs to the class of computationally complex NP-complete
programs (1, 2. It is known [3] that for each particular problem a polynomial

()

f(@) =daz® +do_ 12V + ...+ dy 2)
exists such that all volumes can be ordered so that

v =f(7), i=TLn ()
here, the coefficients do,ds—1, ..., dy can be any real numbers and a can be an integer.

The special case considered below differs from the general problem in that the following condition must be
satisfied:

n=0 (mod2m*®). (4)
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2. DESCRIPTION OF THE METHOD OF SOLUTION

First, we consider the case where the condition Vj = j* is satisfied and for this purpose introduce the function
of distribution of volumes (3, k), where i is the internal number of the stone in the pile and & is the number of the
pile. In the case under consideration, each pile has the same number of stones, denoted by Q. Let the jth-in-order
stone be the ith in the kth pile; then (i, k) = ;.

The values of the functions can be determined explicitly for & = 1 or inductively for a > 1.

For a = 1, we consider a sequence of any 2 stones. Then we have Q@ = 2, 1} = j, and the kth pile will have
stones with numbers k and 2m — k + 1. Therefore,

(1, k) =k,
o(2,k) =2m -k + 1.

We prove that, for this distribution, the total volumes of all piles are equal.
Indeed, according to the distribution, the total volume V; of the kth pile is

Vi = o(1, k) + (2, k);

then,

(%)

2
Vi=Viri =) o(i k) =Y el b+ 1) =k+2m—k+1~(k+1) - (2m~k) =0, | (5)

i=1 i=1

and the total volumes of all parts are equal because k is arbitrary.

To determine the distribution function in the general case, we need the parameter u, which will appear in
each addend in the left side as an additional addend. Then, it follows from (5) that

Y el k) +u) = S ol b+ 1)+ u] = 0

i=1 i=1

for any value of u.

It follows from the last equality that the form of the distribution function is independent of the reference
point and, therefore, for n > 2m the problem can be solved independently for any sequence of 2m volumes, and the
satisfaction of the condition (4) suffices for getting the precise solution.

Now we prove by induction the existence of such a function for any arbitrary a. To this end, we assume that

for any positive integer degree o there exists a function similar to the function for the degree a = 1, that is, that the
following expression holds:

0 .
Z{[y;(i,k)%-u}a— [¢(i,k+1)+u]a}:0, (6)
i=1
where () is the minimal number of stones in one pile required for « if (6) is satisfied. It follows from (6) that
Q a
ZZ 0‘3"@ 0% (i, k) — o° zk+1]—ZC"B°BZ;zk (k—}-l)]
i=1 =0

Let now

Q
(B) = Ca™ Y _[¢°(i. k) — P (i, k + 1))

We note that f(0) = 0. Then, with due regard for the last notation, we get that

24

Y urmdf(3) = 0. ‘ (7)

A=1
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We note further that since by assumption the last equality is equal tu zero for any u. it must ais be equal
to zero for u = . that is,

> f(3)=0 ‘& (8)

is valid.
We prove that the next assertion follows from the assumption (7).
Assertion [:

f(3)=0, 3=Toa. )]
Proof. This assertion is proved by contradiction. Indeed, let there be 8 such that

£(3) £ 0. \ (10)

We note that. since the values of the functions f(3) are the differences of some subsets of volumes, the
lnequality

1£(3)] > 2 (11)

can always be satisfied by multiplying the volumes by the same sufficiently large number.

We note that the property (3) holds here for all volumes and the form of (4, k) is as before. Next, we
note that if there is only one nonzero addend, (7) cannot be satisfied. Therefore, some addends in this case must be
positive and some negative, that is, if 4 is the set of all nonzero addends, it follows that |4]| > 2. Let Ax C 4 be a
subset of addends for which f(8) < 0 and 4, C A be a subset where f(8) > 0 for each element. Then. 4, U 4y = 4.

Proceeding from the assumption (10), the sum of the absolute values of all negative addends must be equal
here to that of all positive addends, that is,

Y w3 = Y uemlp(B) (12)

8e Ao BEA,

must hold true.
Since (9) must be satisfled for any u by assumption, it must also be valid for u = max f3(3). Now, let

2 = max fA(3)and u=f2_..
We note that the sum of the terms of the geometric progression S, with denominator u equals [4]
| — uotl
Sa = Z ut™" = l—u
and, thus, we have
utt =1 4 Sy(u—-1),
but then the inequality

uetl > g,

holds for any u > 2. From the last inequality we get

2a—-3

200 -2
max > Z max -
We also note that

Zlf(ﬂ o Z fra

B=2

and
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2a-3

Z P > Z o524,

because of all the addends in the left side only the odd ones are available in the right side. Therefore, f?,f;xz >

PRI frz\(::c—a). but then
p=2

wHAD) > D ur P £(8).

8=2

This means that, on the strength of the assumption (10), one can always find a sufficiently large u such
that one of the addends will be greater than the sum of the absolute values of the rest of the addends, but here the

equality (12) cannot be satisfied; therefore, the assumption (10) is not true and Assertion 1 is valid, which is what
we set out to prove.

Next we note that it follows from Assertion 1 that
Q P
fB) = Ce= 3 [P (i, k) — ¢ (i k+ 1)) =0, B=T,a, (13)
i=1]
but C2% > 0 for 3 = T, a; therefore the totality of the equalities (13) can be valid only if the following takes place:

Q
DGk ~ PGk + 1)) =0, VB=Ta. (1)

i=1

Now we consider (6) for the degree o + 1:

Me

{Mi»k) +u] " - el k+ 1) + u]"“} =

i=1
Q Q
— an B-H M B+1 [soﬁ(i,k)—épj(i,k—f- 1)} + Z[S&'aﬂ(i: /c) _ cpaH(i,/c—f- 1)]’

i=1 i=1

and since (14) holds, the last expression is equal to

Q
DR = ik 4 1),

i=1

which is independent of u. Therefore, if for the degree o there exists a function ¢*(i, k) such that all differences
between the total volumes can be constructed to be equal to zero, its application to the problem of degree a + 1

gives the same set of differences for any sets of numbers that are necessary for solving the problem of degree a.
If now

Q
Alkoa+ 1) =Y [+, k) — (i b+ 1)),

=1

we get
=1y =A(l,a + 1),
12— Ta= A2+ 1),
‘k—‘kH ...... ( ka+1)
‘m— l. -‘m —_A(m B 1 a + 1)
or

1014



Vit =V +A(m—1l.a+1).

Then, by enumerating m times the numbers of parts so that each time the part number is incremented by
Lif k < m or by assuming it to be equal to | if k = m, we determine the total volume of the kth part

Vi = i {\fm +mi Al o+ 1)] +Z[Vm +r§A(]’,a+ 1)] =

g=k+1 i=q g=1 ji=gq
m m—1 m m-—1
:Z{x;ﬁzAu,aH)} =min+Y Y AG,a+1),
g=1 j=q 9=1j=q
which is independent of k. Therefore, the total volumes of all parts are V] = V5 = ... = |}, and all differences are

zero.

Thus, having the function ¢*(i. k) for the degree o and using it for m-fold solution of the problem of degree
o + 1 with cyclic change of the part numbers we construct the functions p®*!(i, k) for solution of the problem of
degree o + 1, which is what we set out to prove.

The minimal number of stones required for solution of the problem of degree o + 1 is m@. but since 2m
stones are required for o« = 1, it follows that 2m® stones are required for the degree a, that is, the condition (4) must
be satisfied.

3. DESCRIPTION OF THE ALGORITHM

[t will be assumed in the description of the algorithm that the condition (12) is satisfied. the set of volumes
{v;} is determined from (2), and {A;} and {P;} are the sets of auxiliary variables required for determination of the
indices.
Algorithm 1

Input o, m, n, {v;}, V=0, k=1m,i=1,n, S=0.
i=k=0,g=r=1,8=0a, ;=4;=0,j=12m=
7=0.
j=j+1.

i=i+ 1l k=k+1.

If P; < m,then P; = I’; + 1; otherwise P; = 1.
A, =P

A=5+P h=54+2m—-P; + 1.

9. 2 =1, zpe = L.

10. Vi = Vi 4+ vy + vy

1. Ifk=m, thenk=0,5 =5+ 2m.

12. If j < g, then proceed to Step 4.

13. r=r+1.

14. If r < m, then proceed to Step 3.

5. k=0,a=a—-1,¢g=mq, r=2, Pj:Aj,j:—,E.
16. If @ > 0, then proceed to Step 3.

I7. =3, n=n—-2m°".

18. If n > 0, then proceed to Step 2.

19. Output {z;;}, {V;},i=1,n,j =1 m.

20. End.

Q0 =3 O T AW DY —
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We note that upon solving a problem of degree a by Algorithm 1, all problems of lower degrees are solved
automatically. Thus, the problems of all degrees are solved independently. We also note that the distribution is
independent of the polynomial constants because all volumes are incremented here by the same number. Therefore,
if all volumes are ordered before applying Algorithm 1 so that the condition (3) is satisfied, then it guarantees the

global optimal solution and the computation time is estimated as O(n) because the algorithm handles each volume
only once.

Therefore, the following theorem is valid.
THEOREM 1. For the generalized problem of stones (1) and the conditions (3) and (4), one can always
distribute the stones using Algorithm 1 with time estimate O(n) so that the total volumes of the piles will be equal

Vi=1l=...=V,.

Ezample. Let v; = 12 — 10i + 25, m = 2, and the minimal n = 2m? = 8.
After distributing the first four volumes using Algorithm 1, we have

=1 wy=1 zpp=1 =z3=I,
i=vy 4+ =16+1=17,
12=1v94+v3=9+4=13.

Finally. after distributing the remaining volumes we have

Ter =1, zr1 =1, z50=1, zga=1,
Vi=1T+v+vr = 174+ 1+4=22,
Vo=134+us+vs=13+0+9=22.

4. DISCUSSION

The above method is applicable to other problems. Let us discuss one of them. Let a polyvnomial of degree
« be defined over the interval [a, b]. It is required to divide the interval into m domains so that the areas bounded by
the polynomial be equal for all domains. To solve this problem, we decompose the interval into 2m® equal segments.
The area bounded by the polynomial can be shown to be a polynomial function of the number of the segment of
degree . The problem is solvable by the above algorithm. Interestingly, the solution is independent of the form of
the polynomial only if its degree does not exceed a.

We consider another generalization. Let it be required to distribute the stones between k piles so that,
wherever possible. the relations of pile volumes be close to the given relations a;:as: ... : ag. To solve the problem,
we find the least common multiple g of all numbers a;, determine

a’l
m:E —,

=1

and solve the problem of division into equal piles. If the number of stones is m = 0 (mod 2m®), it is solved by the
above algorithm. This and other problems will be discussed in more detail in the paper to follow.
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