ADAPTIVE FUNCTIONING MECHANISMS OF ACTIVE SYSTEMS.
III. LEARNING AND CONTROL

V. V. Tsyganov : UDC 62-506

We consider the design of adaptive functioning mechanisms for two-level active sys-
tems in which the current operating information provided by the active elements is
utilized to alter the functioning mechanism parameters and to achieve the head-
quarters objective. We pose the design problem and establish constructive suffici-
ent conditions for the existence of learning mechanisms in which headquarters learn-
ing overlaps the divisional planning and incentive stages. We also consider an ap-
proach to the design of dual mechanisms, which additionally optimize some control
performance criterion. Sufficient conditions of optimality are obtained.

1. Introduction

Adaptive identification and control of complex hierarchical systems must take into ac-
count the human factor or the active behavior of the system elements attributable to the
existence of their individual objectives [1-5]. A far-sighted active element (AE), or divi-
sion, in a system may predict the headquarters controls and choose its states so as to in-
fluence the outcome of the identification and control process while maximizing its own objec-
tive function (see formula (1) in [4]), which is dependent on the incentive procedures in
each period.

For instance, with standard learning and control procedures [6-9], the headquarters
uses the current operating information supplied by the divisions to alter the functioning
mechanism parameters and to achieve the headquarters objective. Specifically, the control
is established as a function of current learning — a recursive estimator of the active sys-
tem parameters (a): a=Ii(ai-y, y:), t=0,1,...,a-;=a’ . Here It is the learning procedure, /[ is
the AE state as observed by the headquarters in period t. The learning procedure is known
and the active element chooses its state from a set of solutions of a game [4, 5] so as to
maximize in some sense its own objective function. This state, in general, is different
from the state that would obtain without active behavior. Therefore, direct application
by the headquarters of adaptation and learning procedures developed for automatic systems
is ineffective. The problem is to construct functioning mechanisms = = (I, m, Q, f) with
learning (I), planning (w), control (Q), and incentive (f) procedures which ensure effective
adaptation in active systems.

In [3-5] we have examined the construction of adaptive mechanisms which ensure struc-
tural identification of a vector AE dependent on a scalar parameter — the potential p. For
the case of an AE with deterministic structure, we obtained the strong progressivity condi-
tion [3, 4], maximizing the convergence rate of the parameter estimator to the potential
(ag = p for any t 2 0). A weaker sufficient condition for a scalar AE was derived in [5].

The construction of the functioning mechanism of an independent scalar AE with nondeter-
ministic structure for the case of reference model adaptive control was considered in Chapter
4 of [3]). Sufficient conditions for effectiveness of the mechanism were obtained, including
constraints on identification and control procedures.

In this article, we examine the construction of adaptive functioning mechanisms (AFM)
for interdependent vector AEs with nondeterministic structure determined by a random vector
parameter, assuming various headquarters objectives. The notation is the same as in [4, 5].

2. The Solution of the Divisional Game

Consider an active system comprising N interdependent AEs. As previously, we denote
the state of the i-th AE in period t by y¢! = (yltl, ey ymtl), i = 1, N and the state of
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the system by y.=(y. ..., ¥*) . Let m = N and the headquarters observes only one component
of the state vector of each AE (the_divisional "output"). We denote the observed component
for the i-th AE by yi¢ = yitts 1 =1, N. The remaining divisional state components yjtl may
be interpreted as the decentralized resources allocated by the i-th AE to the j-th AE prior
to the beginning of the period t, i, j =1, N, i # j, yjti € [0, pjtl], where p;it!l is a ran-
dom parameter. The state yj observed by the headquarters is constrained by the i-th divi-
sion's own potential — the random parameter Pit', and also by the resources allocated to

the i~th AE by the other divisions,

~ i, : -1 i N
Yit = [01 W; (ll;)], U; :(y}.h < aey y:l 17 pji'h y:’,:ly e ooy yit)r (l)
where wti is a monotone increasing function of its arguments. Then the set of admissible
N

Ml

states of the i-th AE is }7(ub::[0,ﬂd(ub]><II[0,pﬂ . It is easy to see that W, (u,)<z/
i=1

Wi(p,') where z¢1l is the observed state of the i-th AE in period t without active behavior (in

short, the limiting state), ptl = (pi¢d, ..., Pyt1) is its potential, i = 1, N. The set of

feasible values of the composite parameter p,=~(p/,...,p") - the system potential in period

t — will be denoted by P;.

We assume that the system functions in the following sequence in period t. First the
headquarters, applying some preselected AFM to the past observations §f=(g”,“.,ng' » ¥
T < t, estimates the active system parameters ar., and assigns the target vector x, (the
norms for awarding incentives) and the control vector r. (thé allocation of centralized re-
sources). _Then, given the realization of the random parameter p. , the i-th AE chooses the
states ys¢l, i # j, 1 £ j £ N and communicates this information to the other AEs. Then it
selects its observed state yj¢, with full knowledge of the actual realization of W, (u’)
and collects the incentive ¢,/=f(x;, y.).

Let us now determine the solution of the divisional game. According to [5], the divi-
sions optimize their own objective functions with potential, state, and mechanism prediction.
The i-th AE uses its own predictors of the set of feasible system potentials Pj. (Pjr € P.)
and also predictors of the feasible choice sets of the k-th AE, Y. *(ul), k=1, N (pSPs, YiF(ud) <
YHuh)), v=t+1, t+T, i=1, N. From these predictors, the i-th AE calculates its guaranteed
payoff in system state yy:

i (2 y)=  min min Wi (@t - - o Gir)- (2)
PrEP;, T A4, 4T Y}:EYE'::v k=1, N

The solution of the divisional game is a Nash equilibrium. Specifically, the set of

solutions of the game, regarded as the set of system states maximizing the guaranteed out-
come for each division, has the form

R,(E, p¢)={y1‘ll;h"(rt, yt’)>l;2:"(x:, yt), YtkEth(utk), Iy k=1,—N} (3)

As in [3, 5], we assume that each AE extrapolates the relevant AFM to its far-sighted-
ness horizon (see (3) in [3]): a.=I,(ac., y.), Zep=n,0(ad), n=0.(a.), ¢./=f(z,, §.), 1=t, t+T.
The AE is moreover assumed to be friendly toward the headquarters: if R.(Z, p)=v,=(v.', ..., v,),
Vi'=(py', .. .. Piaat, 20y Pivt, ..., px)  , then yt* = v¢. This means that the AEs will not lower
their performance indexes if this is not beneficial for them. The vector vi is the state
of the i-th division without active behavior. Let us now investigate the design of adaptive
mechanisms under various assumptions regarding the headquarters objectives.

3. Design of a Learning Mechanism: the Problem

In a learning functioning mechanism, the headquarters in an active system overlaps
learning [6-8] with planning and awvarding of incentives to the active elements. Suppose
that the vectors p% are functions of the input stimulus r; observed by the headquarters,
corrupted by some random unobservable noise £t.- Then the AE limiting state z4! is also a
random function of r+. Assuming that all the divisions function in a stationary mode (or
normal operating mode) [8], let us consider an adaptive model of the i-th division con-
straints in the form

i . - ) Ny, N
z}::aiqq%rg,zt::(zh...,zt),a,::(ah...,at)Q (4)

*The prime denotes the transpose.
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where Eti is the limiting state estimator of the i-th AE in period t, ql is some function
of the observed input stimuli (external resources) ry chosen by the headquarters from more
general considerations; ati is a tunable parameter, i = 1, N. Suppose that while tuning

the parameter at the headquarters observes the limiting state z¢ = (z¢t, ..., th)' and its

objective is to minimize the mean losses Ji(a)=M{®:., =} , where the loss function ¢; =
®(et) is dependent on the error €t = 2t — 2, M is the expectation operator, ¢ is a convex
twice differentiable function. The corresponding parameter tuning procedure (or learning

procedure) has the form [6-8]
at=at—-1—A'YtVn(D:EIt(at—u Z), . (5)

where A is an operator which transforms the gains Yt into a diagonal matrix. Let J,(a,z!) =

t
1
—?-:EZQ%I&F4=8 be the empirical mean losses which characterize the learning performance,

=0
7'=(%,...,2:) . It is assumed that the optimal sample estimator of the vector parameter

a; converges in probability to the optimal estimator a*, . .
a; ==argmin J, (a, z*) — a* =— argmin J, (a). (6)
a a

If the divisions are active, the choose their states from the set of solutions of the

game (3). Therefore, instead of z , the headquarters actually observes the vector §;—(y“3,.
.++s YNt*), so that the parameter estimators
a,=I.(a;-, Y, (7)

obtained from the procedure (5) with the observations y. in general do not converge to the
optimal estimator (6).
The design of learning functioning mechanism (LFM) is thus posed as a problem of choosing

a mechanism £ = (I, n, f) with learning procedure I = {I+}, planning procedure 7 = {me}, and
incentive procedure f = {f{} such that a,=/l.(ary, y:"):~a", y,'sR(3, p) .

4. Design of a Learning Mechanism: the Solution

Consider the mechanism ¥ = (I, m, f) with the learning procedure (7) and the following
planning and incentive procedures: :

X 1=ay, (Pti=fti(xt, ;:) (8)
In what follows, as in [5],~we assume that fti is differentiable and monotone increasing
in each component of the vector y and decreasing in the components of x. Following [5],
we use the notation

dE:min—a——, DE:max—Q—, Qu=={v=1t,t + T; Pr € Pe,
2, 0% e, 173

1=14v; yieViul), k=T, N}, Vy=(dr,..., dz",
F¢i=—Yx,(Pvi, Gj,=d_fj,~Vx(Dv, H=VxVx(D\-,

E is the N x N identity matrix. Then we have
THEOREM 1. Let I = (I, 7, f) be defined by (7), (8) so that it satisfies the condition

T
D—;,(E):(dqw;‘wfl)(dgif:)_Fgg(D(p;Tu‘;)(E-~A7,H)“‘><A'Y,Gjt>0 for any i, j, t.
T 1

Then ¥ is a learning mechanism.

Theorems 1 and 2 are proved in the Appendix.

Substantively, this theorem establishes the progressivity conditions of an AFM [3, 4]
which ensure that the divisions choose the state yi* = vi¢ (i.e., do not lower their per-
formance indexes). This permits tuning the parameters of the AE constraint model. We can
similarly derive constructive progressivity conditions for other iterative procedures and
thus solve analysis and design problems for AFMs with standard learning procesures as sub-
systems (including identification, estimation, and classification procedures) [6-8, 10].

Let us consider, for example, the problem of optimal progressive learning or, briefly,
p-learning, which chooses the vectors y¢, t =0, 1, ..., satisfying the conditions of Theorem
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1 and minimizing J.(a, §*) . In general, this is a fairly complex nonlinear programming prob-
lem which cannot be solved analytically. 1In order to obtain an approximate quasioptimal
solution (y{P) assume that the norm of Yt is sufficiently small, Iyell << 1 [7)}. Then the
conditions of Theorem 1 take the form

D () =o'~ (Bsc', 1) =0,  op'=(dp:‘w:?) (dgit."),

4T
i i iy [ 5~ 0D Lonfi | @
l-))jt :t;;& (D(P“_Tu,‘t) [(dxlfg) <dy]‘(—9x—1t) 3oy (d-Tth) (dg,J aa;)ivt )]

Note that asyl 2 0, Bjti 2 0 due to the natural assumptions of monotonicity of wel, fii
used in [4, 5] and in this paper. The Kuhn—Tucker conditions for the determination of v¢P

have the form

N
VT (as y') + E MeBie—=0, . (10)

i, j=1

- N
B v <ode D (B v — @] 1 —0, 25> 0. (1D

i, j=1

From (10), using the technique developed in {7, Sec. 3.4], we can easily find that y{P =
Yt qopt ~ 8¢, where vyt qopt is the quasioptimal vector of gains without active behavior [7].

Yt qopt=[AV D,]" H; 4V, D, and 8, = [AV,D,H;* AV, D] x
N t

< Z }';tﬁ;t’ Hi= Z VZ(DT Iar—x*‘—’atul.

is=1 =1
_ Noting that AV,@¢ > 0 for gyl > 0, we obtain ¥¢P S yrqope. By (11), for Ajl = 0,
Dsp1(z) = ajtl—— (Bjtl, v¢) > 0, i.e., when the conditions of Theorem 1 are a priori satis-
fied, we have y{P = Ytqopt+ Conversely, for Ajtl > 0, y¢P > Ytqopt > i.e., the gains are
bounded. For instance, in the simple case when

m=N=1, @(e,)=¢> (12)

we have Yigopt = 1/t 2 v¢P = min(1/t, o¢/B¢) (the subscripts i, 3 = 1 have been omitted).
Substantively, this implies a bounded "step" in adaptive planning in (8). In other words,
when the planned targets are toc far from "the attained level," the AEs no longer have a
motivation to disclose their reserves. This result restricts the applicability of optimal
learning algorithms in automatic systems.

The p-learning algorithms may be implemented if they are convergent. Using the known
sufficient conditions for convergence of the original algorithm (5) [7] and Theorem 1, we
can obtain sufficient conditions for convergence of p-learning algorithms in the form of
constraints on the LFM (I), in particular on the incentive procedure (f).

For instance, when (12) holds, they are obtained from (9) in the form’E:yfzg/Zz(ayﬁg::

t=g t=0

w, If )§Z(aﬂﬁg<ioc » then the procedure (5) for v¢ = vtP in general is divergent. This
=

implies that in case of small incentives for state improvement (small a¢, see (9)) or high
penalties for plan underperformance (large f¢), a far-sighted division will find it advan-
tangeous to choose the limiting state only for very small Yt+P (i.e., a small adaptive plan-
ning "step'"), but then the learning procedure (5) does not converge.

5. Design of a Dual Mechanism: the Problem

So far, we have assumed that the external resources r, allocated to the active elements
(i.e., the headquarters controls) are independent of the information accumulated in the pro-

cess of learning.

With dual control, the headquarters combines learning with the control of the active
system [6, 9]. In this case, the optimal control is of dual nature: it optimizes a given
performance criterion while at the same time enhancing the accumulation of information about
unknown parameters. The solution of the dual control problem is extremely complex even for
simple automatic systems [6, 9]. TFor simplicity, we take N = 1 and drop the AE subscript
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(i = 1). Here Ji=y., u,=p; (see Sec. 2). Note that with dual control, the active element
should take into account the influence of its chosen state (y¢) not only on future parameter
estimators a. and targets x. (as in the case of learning mechanisms, see Sec. 3) but also
on future feasible state sets Y.(p)=[0, W.(p.)] which are dependent on the resource alloca-
tion — the headquarters controls r,, T > t. In order to investigate this influence, let

p.=(a., &)’ , where q.=(qu,...,qu) is a vector function of the resources te=(Fygy ooy Ta)
allocated by the headquarters to the division in periods 1=0, {—1: qu=q(x,,...,r.,), i=1,1; &,

is unobservable random noise, £t € B¢, 8¢ is a compactum. With dual control, the resource
allocations in their turn are assumed to be functions of the divisional parameter estimators
aq; r.=Q:(a)

The solution of the game is sought in the form (3), with (2) replaced by

Wy (X4, Y1) = min max —w (P, . . ., Geap). (13)
by, T=141, I+ T Y1€Y1(Pr)
Comparing (13) with (2), we easily see that in this case Yi.!'(p) is naturally replaced

by the set of divisional states Argmaxw, which maximize the divisional objective function
vEY ¢(py) “
on  Y.(p:) - This means that, when predicting its objective function (w(x, y)), the division

assumes that future optimal states will be chosen under unfavorable conditions (minimax
strategy of decision making under uncertainty).

A dual mechanism is the mechanism £ = (I, m, Q, f) such that the AE chooses the limiting
state (y¢ = zy) while at the same time extremizing some control performance criterion. As
the design of dual mechanisms spans a wide range of problems, we will demonstrate our ap-
proach for one example of mechanisms which use the Kalman—Bucy filter.

Suppose that the headquarters sees a divisional constraint model of the form
Zz=W(pt) =Hq:+§t7 qz+,=th+Brt,

where C, B, H are some matrices with nonnegative elements, £+ is a sequence of random vari-
ables with zero mean and known covariance. Let 4. be the desired value of the vector q. in
period t. The headquarters minimizes the performance criterion

b .
J(r)y=M; {2 (qrei1 — q3+1)'Kr (e — q’?+1) + l‘;:er'r} , ' (14)

r=0

where K;, N; are square matrices, [0, b] is the system functioning interval. In order to
obtain the estimator a, of the vector q, from the observations Zt, we apply a linear Kalman—
Bucy filter (see, e.g., [9, Sec. 7.3]). The estimator has the form

at.,.,:A;a,‘{‘Gizt. (15)
The control procedure takes the form X
I‘tZ—Lg(at-th)- (16)

The matrix elements of A¢, G, Lt are nonnegative and are determined by the problem
parameters. The procedures (15) and (16) minimize the performance criterion (14) in the
absence of active behavior, i.e., for y; = zt. However, active behavior, according to (3),
(13), may induce the division to choose a state yt, other than limiting (i.e., vt < Zt)°

Let us now consider the design of a dual functioning mechanism for a dynamic active
system with estimation and control algorithms (15), (16) such that the observed state of
the AE is equal to its limiting state (y¢ = z¢, t = 0, 1, ...) and at the same time the con-
trol performance criterion J(r) (14) is minimized. :

7
J

6. Design of a Dual Mechanism: the Solution

As the divisional plan vector, we take the estimator a.(x;=a:) . Then by (15), the plan-
ning equations have the form

Xz+1=AtXt+thz- (17)
s .0 0
Define the operators dE = min ——, Df=max —,
o 0 o 9

Q={v=t, ttT; p=P., t=t,v; pEYV(p:)}
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and let , ,
Ut:dy(p‘\’v V1=Dy(Pw Yx-:(dzi’ ey dzl) 3 Ft=—"y xPv.

We assume that dPowy 2 DPywy 2 0, t S 1 <vst+T, i.e., the value of the incentives
for the AE decreases over time. Then we have

THEOREM 2. The AFM I = (I, 7, Q, f) with learning procedure (15), planning procedure
(17), and control procedure (16) is dual if

T T—1
DE)y=U,— [F, -+ Z (F, +V,H Z CMBL,A"—‘) A,“l] G, > 0. (18)
T=3 =] .

The conditions (18) set constraints on the incentive procedure (given the divisional
structure and the planning and control procedures) which ensure that the AFM is progressive
and the AE does not lower its indexes. Note that this gives a solution of the design problem
of an optimal adaptive mechanism with stochastic optimal feedback control algorithms for a
linear system with known parameters, Gaussian noise, and quadratic performance criterion

[91.

Now, since progressivity implies higher divisional incentives for higher divisional
efficiency [1-3], we have to consider ways to minimize incentive costs in adaptive mechanisms.

Consider, for example, the class of progressive AFMs with given learning procedure (15),
planning procedure (17), and control procedure (16), and nonzero limiting penalties (F:>0):
G={2=(1a I, Qv f)lﬁg(2)20, Ft>0}' *

The design problem of the procedure f*, minimizing the guaranteed incentive costs in
the class of AFMs G is posed in the form

- 34{2) =max f; (x4, z) ——> min.
§teet =G

Here we have used the fact that yy = zy by Theorem 2,

The corresponding AFM 3* = (I, m, Q, f*) is called minimally progressive. We have the
following

Proposition.? The AFM is minimally progressive if De(2*) = 0, £t =0, 1, ... 1In this
case [ (x;, y:) is a linear function of its arguments.

The simple proof is omitted. The proposition establishes the minimum limiting incentives
(or the maximum limiting penalties) [5] for which a dual mechanism is realizable.

7. Discussion of Results

As we have noted above, Theorems 1 and 2 are constructive and enable us to solve the
analysis and design problems for AFMs with standard adaptation and learning procedures as
subsystems [6-9]. Two types of results can be identified. The first type is associated
with progressivity of standard learning procedures [6-8] for given planning and incentive
systems (see Sec. 3). The second type is associated with construction of adaptive planning
and incentive procedures which ensure progressivity of mechanisms using optimal estimation,
identification, and other algorithms (as we did in Sec. 4 on the basis of Theorem 2). The
results may be easily generalized to the case of learning and control by several independent
observable state indexes of a vector AE (m > N), i.e., when yu'<zw'=W, (p.), i=1, N, k=1,
N+1, ..., m. In this case, the total number of progressivity conditions increases from
N2 (see Theorem 1) to mN.

In conclusion note that [3-5] and the present study develop a certain direction in the
theory of active systems focusing on analysis and design of adaptive functioning mechanisms
in which the current information supplied by the active elements during the control process
is utilized in order to alter the parameters of the planning, control, and incentive subsys-
tems of the functioning mechanism so as to attain a certain, usually optimal, state of the
active system. The trends and prospects in this area are examined in [10].

Our results on analysis and design of progressive adaptative mechanisms play a central
role in development of principles and methods for improvement of applied sectoral planning

A similar proposition holds with nonzero limiting incentives (Ut > 0).
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and control systems [3, 10]. Indeed, the sectoral systems are usually based on essentially
adaptive procedurers of planning and resource allocation starting "from the attained level."
Moreover, these systems are meant to exploit the production capacity reserves, i.e., they are
expected to be ''progressive."

I would like to acknowledge the useful comments of V. N. Burkov.

APPENDIX

Proof of Theorem 1. Note that if y¢* = vy, then 7§, =z , and by (6) we have a;—sa,” .
3

Therefore, since the AEs are friendly toward the headquarters, it suffices to prove that
Rt(Z, pt) ES

Note that, by (7), (8), the planning procedure has the form
X=X —AY V20 (ye-21), ‘ ‘ (A.1)

which is characteristic of the recursive adaptive planning procedure (1) [5]. Therefore,
Lemma 2 [5] holds. Substituting (A.1) in (6), (7), [5], we obtain for t = 0, using the con-
ditions of Theorem 1, Djo1(z) = ﬁjol(z) 2 0. But then, by Lemma 2 [5], we have

Di = min min awtjayt >0,
0 _— . 0/ 50 = .
I pePr =57 y’éeYi‘: (p’T‘), k=L N (4.2)

Noting that Y@M eYsi(pr) for wi<pd and using the definitions (3) and (A.2), we can
easily show that Qol(xo, ya) is a nondecreasing function of viel, j = 1, N. Hence, noting
that y;'<Woi(uof) <zof, Wol(Itysoh yib<pje®, k+j, 1<k<N » we obtain wei(zo, vo)=wai (o, yo), yo=(Yol,...,¥o®) Vyole
Yo' (po') = Yol (uo!)

But then by (3), Ro(Z, py) ® v,. We can similarly show that Re(E, pp) o v, t = 1,

2, ..., whence follows the proposition of the theorem. Q.E.D.

Proof of Theorem 2. It suffices to show that yie¥ = Zz¢, £ =0, 1, ... We will prove
this by induction. Let c¢(yr, «.., ye41) = we(@, -++s @ t+7) and take some sequence of random
noise values &t = {£4, ..., Et4T}. For T =t + T we have 3c/dyr4T = (d9p 47wt )Ut 2 0 by (18)
(recall that under our assumptions all the terms in ﬁt(Z) except the first, are nonpositive).
Therefore colye, - Veer—ts WerrPesr))=e{ge, -, firr—1, Yitr) for any ger1=Y¥irr(pir) =[o, Weir(Pe+r) |
Now assume that for some v, E<v<t+ T ee (Y1, y, Wit (Bosr), .- ) =ee(ys, . .., Yv Yvity, Wera(Pvan), ...}, vt S<Wopi(Posy) s
and show that for y.<w.(p,)

Ce(yr. ..., Wy(py), Wott(Pvii), .. )= (v, .., Yvy Wypt(Pvi1),...). (A.B)
T T—1
Indeed, we have dey/oyv= (doy wy) (dy (pv)——(Dq)VMw;)F,Gg—-Z (Dew;) X [F,+VtH Zcf-vBL,AfH ]Ai—‘G, = (doy wy)
T=V+2 P==1
'D:(Z)>0 . The first inequality is obtained by the technique developed in the proof of Lemma

2 [5]. We have used the property of nonpositivity of all the terms (except the first one)
in the right-hand side. The second inequality holds since dPywy 2 DPrwy 2 0, T 2 p, while
the third is true by assumption. We thus have (A.3) for t £ v £ t + T. Hence, c{We(pe),...,
Witz (Ber)) (Yo, year) VySYe(po), v=t, t+7 for any sequence £t. But then by (3), (13) Ri (3,
P)2W.(p1)=2:, and by the friendliness principle yt* = z¢. Noting that the control (16)
also minimizes (14), we conclude that this mechanism is dual. Q.E.D.
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