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Abstract: Barberá, Massó and Serizawa (1998) provided full characterization for class of strategy-proof
social choice functions for societies where the set of alternatives is any full dimensional compact subset of
a Euclidean space and all voters have generalized single-peaked preferences. They proved that this class is
composed by generalized median voter schemes satisfying an additional condition, called the “intersection
property”. But according to their results in order to understand whether any generalized median voter
scheme satisfies intersection property for given set of alternatives or not it was necessary to check  all the
alternatives from the set of unfeasible alternatives -  addition of the set of feasible alternatives to minimal
Cartesian product range, containing this set. So the number of alternatives to be checked, was infinite. In
this paper it is proved, that it is enough to check finite number of alternatives from the set of unfeasible
alternatives and constructive algorithm to determine alternatives that should be checked is provided.

1. INTRODUCTION

For societies with n agents facing a set Z of alternatives, a
social choice function determines what alternative to choose
for each possible profile of preferences. One of the important
properties of social choice functions  is strategy-proofness –
when the best strategy for each agent is to report its
preferences truthfully. But, in general, this property is hard to
obtain – due to the Gibbard–Satterthwaite Theorem [see
Gibbard (1973) and Satterthwaite (1975)] all social choice
functions whose range contains more than two alternatives
are either dictatorial or manipulable if all possible
preferences over alternatives are admissible for all agents.
But, applying some restrictions for the domain of admissible
preferences, one can achieve existence of nondictatorial
strategy-proof social choice functions.  In this paper the
setting is considered when the set of feasible alternatives Z
is a full dimensional compact set in m-dimensional Euclidean
space m  and agent’s preferences - multidimensional single-
peaked with the added requirement that the unconstrained
maximal element of these preferences (agent’s top) belongs
to .Z

Due to Barberá, Massó and Serizawa (1998), any social
choice function in this setting is strategy-proof if and only if
it is a generalized median voter scheme (GMVS) satisfying
the intersection property for .Z  This result, initially proved
by Barberá, Massó and Neme (1997) for finite sets of
alternatives   follows those, obtained by Border and Jordan
(1983) for whole m  as the set of alternatives and Moulin’s
(1980) initial analysis of the one-dimensional case.

Structure  of  GMVS leads  to  the  fact,  that  the  result  in  each
dimension is determined independently. Thus there is exist
possibility, that the final outcome will be outside ,Z  but in
the minimal Cartesian product range ˆ( )B Z  containing this set

even if tops of all agents belong to .Z  In  other  words,  an
unfeasible alternative can be chosen as result of generalized
median voter scheme application.

Intersection property was offered as a tool for checking,
whether the GMVS respects feasibility for the set of feasible
alternatives or not. But in order to make sure that any GMVS
in hand satisfies intersection property for any set of
alternatives Z  it turns out, that all the unfeasible alternatives
from set ˆ( ) \B Z Z  must be inspected. This is quite
inconvenient, when one works with continuous setting
because there is infinite number of unfeasible alternatives to
be checked. According to  Bossert and Weymark (2006) and
Barberá  (2010),  this  results  can  be  treated  as  some  kind  of
frontline in solution of the problem considered. For finite
setting of alternatives Nehring and Puppe (2007) provided
alternative definition of intersection property that is more
simple that original one, but still all the unfeasible
alternatives from set ˆ( ) \B Z Z  must be inspected according
to their definition.

In this paper it is proved, that due to structure of a GMVS it
is enough to inspect the finite number of  unfeasible
alternatives from set ˆ( ) \B Z Z  in order to understand
whether this GMVS satisfies intersection property or not.
Moreover, insight of what the alternatives should be
inspected is provided. These results allow to characterize
constructive algorithm of feasibility verification for
generalized median voter schemes on compact ranges.

The paper is organized as follows. Section 2 contains
notations, definitions and some preliminary results. Section 3
introduces the notation of bricks – Cartesian product ranges,
in which any GMVS divides ˆ( ).B Z  In Section 4 notation of
“direction from an unfeasible alternative to a set of feasible
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alternatives” is introduced and intersection property is
reformulated, using this notation. In Section 5 main theorem
is proved, algorithm is provided illustrated by the example of
its application in Section 6.

2. PRELIMINARIES: GENERALIZED MEDIAN VOTER
SCHEMES AND INTERSECTION PROPERTY

We work with the setting, considered by Barberá, Massó and
Serizawa (1998). There are a set of agents {1,..., }N n=  and
a set of coordinates {1,..., }M m= , , 2n m ³ . mZ Ì  - a
set of feasible alternatives, which is full-dimensional
compact. Given k MÎ , denote projection of Z  on k -th
coordinate as kZ , the minimal box containing Z :

ˆ( ) [min ,max ]k k
k M

B Z Z Z
Î

= Õ .

Alternatives from ˆ( ) \B Z Z  will be called unfeasible.

Preference iu of each agent i NÎ  is continuous complete
preorder on alternatives and multidimensional single-peaked:

1. it has unique maximal element ( )iu Zt Î  -  the  “top”  of
iu

2. for any , mz z ¢ Î ,

[ ˆ({ , ( )})iz B z ut¢ Î  and z z ¢¹ ] Þ [ ( ) ( )i iu z u z¢ > ].
Let U  be domain of all preferences considered. Then social
choice function (SCF) F  is mapping from nU  to .Z  Let
SCF : nF U Z®  to be called manipulable on nU  if there is
exist 1( ,..., ) ,n nu u u U= Î i NÎ  and iu UÎ such that

( ( , )) ( ( ))i i i iu F u u u F u- ³ , where iu- - utility profile of all
agents except i . A SCF : nF U Z® is strategy-proof, if it is
not manipulable on nU .
According to Barberá, Massó and Serizawa (1998) set of all
strategy-proof SCF for the setting considered may be
characterized in following way:

A social choice function on the domain of multidimensional
single-peak  preferences is strategy-proof, iff it is a
generalized median voter scheme satisfying intersection
property.

In this statement there are two key notations, that we must
explain - generalized median voter scheme and intersection
property

Notation of generalized median voter scheme (GMVS)  was
initially introduced by Moulin (1980) for one-dimensional
setting. Here we use definition of GMVS in terms of families
of right (left) -coalition systems, introduced by Barberá,
Massó and Neme (1997).

A right (or left) -coalition system on [ , ]k k kZ a bº  is  a
correspondence kW  that  assigns  to  every k kz ZÎ  a
collection ( )k kW z   of coalitions of agents satisfying:

1) Voter sovereignty: ( , ]k k kz a b" Î  ([ , )k ka b ), ( ) ,k kW z ¹ Æ

( )k kW zÆ Ë  and ( ) 2 \N
k kW a = Æ  ( ( ) 2 \N

k kW b = Æ ).
2) Coalition monotonicity: if ( )k kW W zÎ  and W W ¢Ì Þ

( )k kW W z¢ Î .

3) Outcome monotonicity: if kz ¢ < (> ) kz  and

( )k kW W zÎ Þ ( )k kW W z ¢Î .
4) Upper semicontinuity: for any ,W NÎ  any k kz ZÎ and

any sequence { }t
k kz ZÌ  such that lim t

t k kz z®¥ = ,

[ , ( )] [ ( )]t
k k k kt W W z W W z" Î Þ Î .

A family R  of right-coalition systems on ˆ( )B Z  is  a
collection 1{ }m

k kR =  where each kR  is a right-coalition system
on kZ . Similarly a family L  of left-coalition systems on
ˆ( )B Z  is a collection 1{ }m

k kL =  where each kL  is  a  left
coalition system on kZ . For each dimension k , let

1( ,..., )n
k kt t  be  the  vector  of  tops  projected  into   this

dimension. Then any GMVS is a function ˆ: ( )nF U B Z® ,
induced by ( , )Z R or ( , )Z L  in following way:

,nu U" Î k M" Î

( ) max{ | { | } ( )}i
k k k k k k kF u z Z i N z R zt= Î Î ³ Î or

( ) min{ | { | } ( )}i
k k k k k k kF u z Z i N z L zt= Î Î £ Î

Given a right-coalition system kR  corresponding left-
coalition system *

kL is:

* ( ) { 2 | , ( ), }.N
k k k k k kL z W z z W R z W W¢ ¢ ¢ ¢= Î " > Î Ç = Æ

Coalition systems kR and kL induce same GMVS iff
*

k kL L= .

Due to  fact,  that  any GMVS is  defined on ˆ( )B Z  instead  of
Z  it is possible that result, returned by some GMVS for
some profile of preferences u UÎ   will be unfeasible -

ˆ( ) ( ) \F u B Z ZÎ .  A GMVS respects feasibility if  for  any
u UÎ  it  returns  feasible  result.  It  was  proved,  that  any
GMVS induced by ( , )Z R  respects feasibility (or satisfies
intersection property)  iff family of right-coalition systems
R has intersection property for :Z

A family 1{ }m
k kR R ==  of right-coalition systems on ˆ( )B Z

has the intersection property for Z if  for  any ˆ( ) \y B Z ZÎ

and any finite subset 1{ ,..., }Tz z ZÌ

1 ( , ) ( , )

( ) ( )
t t

T

k k k k
t k M y z k M y z

l y r y
+ -= Î Î

ì üé ù é ùï ïï ïï ïê ú ê úí ýê ú ê úï ïê ú ê úï ïë û ë ûï ïî þ
. (1)

for every ( ) ( )k k k kr y R yÎ  with
1

( , )
T t

t
k M y z-

=
Î and for

every ( ) ( )k k k kl y L yÎ  with
1

( , )
T t

t
k M y z+

=
Î , where



( , ) { : },k kM y x k M x y+ = Î >
( , ) { : }k kM y x k M x y- = Î < .

While in this definition it is necessary to check (1) for any
finite subset 1{ ,..., }Tz z ZÌ ,  it  was  shown  by  Barberá,
Massó and Neme (1997), that for any unfeasible alternative

ˆ( ) \y B Z ZÎ there is its own unique crucial set such that for
any family of right-coalition systems it is enough to check (1)
in every unfeasible alternative only for its crucial set.

Here we provide not the original definition of crucial set,
initially offered by Barberá, Massó and Neme (1997), but its
essential for us purposes properties.

 A finite subset S ZÌ  is crucial for ˆ( ) \y B Z ZÎ iff:

1. ,x z S" Î , x z¹  ether ( , ) ( , )M y x M y z+ +Ë  or
( , ) ( , )M y x M y z- -Ë

2. \z Z T" Î x S$ Î such that ( , ) ( , )M y x M y z+ +Í  and
( , ) ( , )M y x M y z- -Í .

Formally, these results provide full characterization of class
of strategy-proof SCFs for the setting considered. But they
are not constructive in following sense – definition of
intersection property demands to check each unfeasible
alternative. And there is infinite number of unfeasible
alternatives, because ˆ( ) \B Z Z  - continuous set.

3. “BRICKS”

The definition of GMVS in terms of families of right and left
coalition systems leads to following – in each dimension
k MÎ  there is exist finite set 1 2{ , , , }kW

k k k kz z z ZÌ ,
1
k kz Z= , kW

k kz Z=  of cardinality 2 1n
kW £ + , such that for

every 1 k kw W£ < :

1. 1( , )k kw w
k k kz z z +" Î 1( ) ( )kw

k k k kR z R z += , ( ) ( )kw
k k k kL z L z= ;

2. kw
k kz z" < ( ) ( )kw

k k k kR z R zÌ , ( ) ( )kw
k k k kL z L zÉ ;

3. kw
k kz z" > 1( ) ( )kw

k k k kR z R z +É , ( ) ( )kw
k kL z L zÌ .

Elements of these sets may be treated as one-dimensional
tops of “phantom” voters according to initial definition of
GMVS by Moulin (1980). These sets determined completely
by definition of right and left-coalition systems in
corresponding dimension. Let us denote

{W = 1( ,.., )kw w w= : k M" Î 1 k kw W£ < } . Then
Cartesian product of such ranges forms a brick:

1

1

[ , ]k k

m
w w

w k k
k

B z z +

=

= Õ .

Any GMVS, defined on ˆ( )B Z , induces on it a set of a bricks

{ }W w w WB B Î= , such that ˆ( )w
w W

B B Z
Î

= .

A brick w WB BÎ  is the border brick for Z if wB ZÇ ¹ Æ

and ˆ( ) \wB B Z ZÇ ¹ Æ .  Let us denote the set of all border
bricks for Z  via ( ( ))WB cl Z .

We will say, that GMVS satisfies intersection property for
Z in brick w WB BÎ  if it satisfies intersection property for

Z in any unfeasible alternative ˆ( ) \wy B B Z ZÎ Ç .
Usefulness of bricks for intersection property verification is
based on this simple, yet very important results.

Lemma 1. A family 1{ }m
k kR R ==  of right-coalition systems

splits ˆ( )B Z  in to set of bricks WB . Then if for any w WB BÎ ,
and any int wz BÎ  there are exist: finite set T Ì ,

,t tM M M+ - Í , t TÎ , ( ) ( )k k k kr y R yÎ , t
t T

k M +

Î

Î ,

( ) ( )k k k kl y L y*Î , t
t T

k M -

Î

Î such that

( ) ( )
t t

k k k k
t T k M k M

l y r y
- +Î Î Î

ì üé ùé ùï ïï ïê úê ú = Æí ýê úê úï ïê ú ê úï ïë û ë ûî þ
then wz B" Î  there are exist ( ) ( )k k k kr z R zÎ , t

t T

k M +

Î

Î ,

( ) ( )k k k kl z L z*Î , t
t T

k M -

Î

Î  such that:

( ) ( )
t t

k k k k
t T k M k M

l z r z
- +Î Î Î

ì üé ùé ùï ïï ïê úê ú = Æí ýê úê úï ïê ú ê úï ïë û ë ûî þ
.

Proof. It is obvious from the fact that
w W" Î , int wy z B" Î ( ) ( )R y R z= , ( ) ( )L y L z* *=  and

wx clB" Ì ( ) ( )R y R xÍ , ( ) ( )L y L x* *Í . Q.E.D.

Lemma 1 results in fact, that it is enough to inspect finite
number of alternatives (one from each brick) in order to
check whether a GMVS satisfies intersection property for a
set of feasible alternatives or not.

The problem that we should solve is which combination of
left and right coalitions should be explored for each brick. In
original definition of intersection property this combinations
was determined by crucial sets for each alternative to be
explored. But it is not quite clear, how crucial sets for
unfeasible alternatives from one block corresponds to each
other. In order to solve this problem we apply notation of a
direction, initially introduced in Korgin 2010a.

4. INTERSECTION PROPERTY IN TERMS OF
DIRECTIONS

Given m-dimensional Euclidean space m , several notations
can be introduced.

Direction – m -tuple 3Md Î where { 1,0,1}kd Î - , .k MÎ
Using this notation, it is natural to present a direction from
one alternative to another in terms to the left (-1), to the right
(1) and coincides (0).

Direction ( , )d y z  from my Î to mz Î  -  is  direction
where ( , ) 1kd y z =  if k ky z< , ( , ) 1kd y z = -  if k ky z> ,

( , ) 0kd y z =  if k ky z= .



Sometimes it will be useful to use notion ( , )kd y z-  - direction
from y  to z  in  all  dimensions  except k MÎ .  The  idea  of
directions can be expanded in order to determine relative
positions of a set of feasible alternatives and single unfeasible
alternative in same terms. Let us denote

ˆ( ) { : ( , ) }clZ y z clZ B z y Z z= Î Ç = .

Definition 1. Direction p  is direction from \my ZÎ  to
mZ Ì , if ( ) : ( , )z clZ y d y z p$ Î = and if

: 0
k

k M p$ Î = then ( ) :x clZ yØ$ Î

( , ) , ( , ) 0
k k k

d y x p d y x- -= ¹ .

It turns out, that according to this definition from an
unfeasible alternative there may be more then one direction to
Z .  That  is  why  let  us  denote set of directions from

\my ZÎ  to mZ Ì  - ( , ) { 3 :MD y Z p= Î p  is
direction from \my ZÎ  to mZ Ì } .

Shape of Z defines whether there is ˆ( ) \y B Z Z$ Î such that
# ( , ) 1D y Z >  or not.  Set of feasible alternatives Z is brick-

convex, if ,z z Z" Î ˆ({ , }) { , }B z z Z z zÇ ¹ . It is obvious,
that any convex compact set is also brick convex. It is quite
easy  to  show,  that ˆ( ) \y B Z Z" Î # ( , ) 1D y Z =  iff Z  is
brick convex.

Given any brick w WB BÎ  such that ˆ( ) \wB B Z ZÇ ¹ Æ , let
us denote the set of directions from wB  to mZ Ì :

ˆ( )\
( , ) { ( , )}

w
w y B B Z Z

D B Z D y Z
Î Ç

= .

We assume a brick w WB BÎ  such that ˆ( ) \wB B Z ZÇ ¹ Æ ,

to be bad brick, if ˆ( ) \wy B B Z Z$ Î Ç  such that
# ( , ) 1D y Z > .  Let  us  denote  the  set  of  all  bad  bricks  via

( )WBB Z

Using all this notations, definition of the intersection property
may be reformulated (in spirit of Nehring and Puppe (2007),
using only intersection and no unions) according to following
lemma

Lemma 2. A family 1{ }m
k kR R ==  of right coalition systems

on ˆ( )B Z  has the intersection property for Z  iff
ˆ( ) \y B Z ZÎ , ( ) ( )k k k kr y R y" Î , ( , )k M y Z-Î ,

( ) ( )k k k kl y L y*" Î , ( , )k M y Z+Î :

( , )( , )
( ) ( )k k

k M y Zk M y Z
l y r y

-+ ÎÎ

é ù é ù
¹ Æê ú ê ú

ê úê ú ë ûë û
, (2)

where ( , ) { : ( , ), 1}kM y Z k M d D y Z d+ = Î $ Î =  and

( , ) { : ( , ), 1}kM y Z k M d D y Z d- = Î $ Î = - .

Proof. See Korgin 2010(a).

This formulation of intersection property allows finding out
some additional regularities, which help to reduce complexity
of verification of the intersection property.

Lemma 3. (Intersection property monotonisity)
ˆ( ) \ :y B Z Z" Î # ( , ) 1D y Z = , if a family 1{ }m

k kR R ==  of

right coalition systems on ˆ( )B Z  has the intersection property
for Z in y , then it will have intersection property in any

ˆ( ) \ :x B Z ZÎ ( , ) ( , )d x y d y Z= , # ( , ) 1D x Z =

Proof. See Korgin 2010(a).

Lemma 3 results in fact, that for all brick-convex ranges it is
enough to inspect alternatives close to ( )cl Z  -  just  from
border bricks.

5. THE CONSTRUCTIVE ALGORITHM OF
FEASIBILITY VERIFICATION

All the results above allow formulating main theorem of this
paper:

Theorem 1. A family 1{ }m
k kR R ==  of right coalition systems

on ˆ( )B Z  has the intersection property for Z  iff
( ( )) ( )w W WB B cl Z BB Z" Î È  for any one arbitrary chosen

alternative int wy BÎ holds that:
( , )wD D B Z" Î ( ) ( )k k k kr y R y" Î , ( )k M D-Î ,

( ) ( )k k k kl y L y*" Î , ( )k M D+Î ,

( )( )
( ) ( )k k

k M Dk M D
l y r y

-+ ÎÎ

é ù é ù
¹ Æê ú ê ú

ê úê ú ë ûë û
, (3)

where
( ) { : , 1}kM D k M d D d+ = Î $ Î =  and

( ) { : , 1}kM D k M d D d- = Î $ Î = - .

Proof. See the Appendix.

This theorem results in fact that while number of unfeasible
alternatives is infinite, it is enough to check finite number of
alternatives for finite number of directions in order to
understand whether a GMVS satisfies intersection property
for a set of feasible alternatives or not. And the constructive
algorithm of feasibility verification based on this theorem is
following:
Step 1. Given GVMS to verify feasibility for set Z , it is
necessary to define the set of bricks WB , produced by this

GMVS on ˆ( )B Z .
Step 2. Define the set of border bricks ( ( ))WB cl Z .
Step 3. For each brick from the set of border bricks check,
whether given GMVS satisfies intersection property for Z in
this brick or not according to theorem 1. If there is exist

( ( ))w WB B cl ZÎ such that (3) is not true then the algorithm
stops – the GMVS under consideration does not satisfy
intersection property for .Z  In  other  case  algorithm goes  to
the next step.
Step 4. Define the set of bad bricks ( )

W
BB Z . If it is empty,



then algorithm stops – this GMVS satisfies intersection
property for .Z  In other case algorithm goes to the next step.
Step 5. For each brick from the set of bad bricks check,
whether given GMVS satisfies intersection property for Z in
this brick or not according to theorem 1. If ( )w WB BB Z" Î
(3) is true that this GMVS satisfies intersection property for

.Z

For all brick-convex sets of feasible alternatives set of bad
bricks will be empty, so the algorithm will stop on step 4.

6. EXAMPLE OF THE ALGORITHM APPLICATION

Let us illustrate algorithm’s application with following
example which can be characterized as “Problem of resource
allocation by voting”. There are three projects ( 3m = ), and
three agents ( 3n = ), that vote about how the limited amount

1C +Î  of resources should be allocated among this three
projects while no more than 3 / 5C amount of the resources
can be allocated to each project and it is not necessary to
spend all the resources available. Top of each agent is the
most preferable resource allocation from his point of view.
The set of feasible alternatives is (see fig. 1)

3
1 2 3 1 2 3{ { , , } | [0, ],Z z z z z z z z C+= = Î + + Î .

, [0, 3 / 5]}
k

k M z C" Î Î

Minimal box for this set will be
3

1

ˆ( ) [0, 3 / 5]
k

B Z C
=

= Õ .

Graphical representation of Z (hatched area) and ˆ( )B Z  is
presented on fig. 1.

ˆ( )B Z

Z

Fig. 1. The set of feasible alternativesZ  for example
considered and its minimal box ˆ( )B Z .

Let us see, if the GMVS ( ) :x p t=

3
( ) max{ [0, ] |

5
5

| #{ | } }
3

k k k

i k
k k

C
k M z

nz
i N z

C

p t

t

" Î = Î

Î ³ ³
,  (4)

respects feasibility or not for given Z . In case, when GMVS
(4) is feasible it turns out that it is the best virtual truthful
implementation (see Korgin 2010b) for SCF that calculate
mean value of agent’s tops ( )kz f t= :

k M" Î
1

1
( )

n
j

k k k
j

f
n

t t
=

= å .

Let us apply the algorithm developed for this example

Step 1. The GMVS (4) decomposes ˆ( )B Z  in  to  the  set  of
bricks { }W w w WB B Î=  where

{W = 1( ,..., )mw w w= : k M" Î {1,..., }
k

w nÎ }

1

1

[ , ]k k

m
w w

w k k
k

B z z +

=

= Õ , k M" Î t
kz = 3 1

5

C t
n
- .

For this GMVS there is following correspondence between
any brick’s index (denoted as w ) and structure of coalitions
that satisfies families of right and left-coalition systems (that
generate this GMVS) for any int wz BÎ :

int wz BÎ Û

Û ,k M" Î
( ) ( ) # ( )

( ) ( ) # ( ) 1
k k k k k k k

k k k k k k k

r z R z r z w

l z L z l z n w

ìï" Î ³ïïíï " Î ³ + -ïïî
(5)

For case of 3 agents and 3 projects set of bricks WB ,
generated by GMVS (4) consists from 27 bricks, and

k M" Î 1 0kz = , 2 /5kz C= , 3 2 /5kz C= , 4 3 /5kz C= .

Step 2. Set of border bricks ( ( ))WB cl Z  in our example
consists from bricks :w WB BÎ

1

k

m
w
k

k

z C
=

£å  and 1

1

k

m
w
k

k

z C+

=

³å .

It can be easily shown, that
1 2 3( ( )) {6,7}w WB B cl Z w w wÎ Û + + Î . The total number

of bricks in ( ( ))WB cl Z is 13. Graphical representation of
( ( ))WB cl Z (shaded bricks) is presented on fig. 2.

1

2

3

ˆ( )B Z

( ( ))WB cl Z

1 2 3z z z C+ + =

Fig. 2. The set of border bricks.

Step 3. In our example direction from any unfeasible
alternative  to Z  will be “to the left” in each dimension:

ˆ( ) \y B Z Z" Î ( , ) {( 1, 1, 1)}D y Z = - - - . Thus,
( ( ))w WB B cl Z" Î ( , ) {( 1, 1, 1)}wD B Z = - - - .  That  is

mean, that the GMVS considered satisfies intersection
property for Z in ( ( ))w WB B cl ZÎ  iff  for  any  one  arbitrary
chosen alternative \wy B ZÎ holds that:



( ) ( )k k k kr y R y" Î , k MÎ , ( )k
k M

r y
Î

é ù ¹ Æê úë û
. (6)

It  can  be  easily  shown  that  if  a  border  brick  has  index w
such that 1 2 3 7w w w+ + = , than it means that

\wy B Z" Î ( ) ( )k k k kr y R y" Î ,
k MÎ 1 1 2 2 3 3( ) ( ) ( ) 7r y r y r y+ + ³  resulting  in  fact  that  (6)
holds for this border bricks (for details see Korgin, 2010a)

If a border brick has index w  such that 1 2 3 6w w w+ + =
(6) is not true because wy clB" Î k M" Î

( ) ( )k k k kr y R y$ Î  such that # ( )k k kr z w=  and

1 1 2 2 3 3( ) ( ) ( ) 6r y r y r y+ + = . It is obvious, that in this case it
may be that 1 1 2 2 3 3( ) ( ) ( )r y r y r yÇ Ç = Æ

For example, let us consider unfeasible
alternative(7 /20,7 /20,7 /20)C C C . This alternative

belongs to (2,2,2)B : 1 7 2

5 20 5
C C C< < . This alternative may

be chosen by GMVS (4) if at least two agents “vote” for it in
each project. Let  the  tops  of  agent  be:

1 (7 /20,0,7 /20)C Ct = , 2 (7 /20,7 /20,0)C Ct = ,
3 (0,7 /20,7 /20)C Ct = . All this tops are feasible and

k M" Î #{ | 7 /20} 2i
ki N CtÎ ³ = .  That  is  why  the

result according to GMVS (4) is
( ) (7 /20,7 /20,7 /20)C C Cp t = .

That is why the GMVS (4) does not satisfy intersection
property for the set of feasible alternatives Z considered in
this example. That is why the decision rule, based on
strategy-proof multiciteria voting rule (4) is not applicable for
the problem considered.

Analyzing structure of the set of bricks, generated by the
GMVS (4)   it can easily be seen, that if the brick structure is
such that k M" Î 1 0kz = , 2 /15kz C= , 3 /3kz C= ,

4 3 /5kz C= ,  then  the  set  of  border  bricks  will  be

1 2 3( ( )) { : 7}W w WB cl Z B B w w w= Î + + ³ . If the
correspondence between brick’s indexes and conditions for
left and right coalitions inside each brick remains the same as
for GMVS (4) (see (5)), then (6) will be satisfied for all the
bricks from set of border bricks.

The GMVS that generates such set of bricks is ( ) :x p t=

3
( ) max{ [0, ] |

5
5 3

| #{ | } }
4 4

k k k

i k
k k

C
k M z

nz
i N z

C

p t

t

" Î = Î

Î ³ ³ +
.

Step 3 will return that all of border bricks satisfies (5) for this
GMVS. The algorithm will stop at step 4 in this example
because of brick convexity of .Z   That  is  why  this  GMVS
generates strategy-proof decision making mechanism for the
problem considered. For example for agents with tops

1 (7 /20,0,7 /20)C Ct = , 2 (7 /20,7 /20,0)C Ct = ,
3 (0,7 /20,7 /20)C Ct =  resource allocation will be
( ) ( / 3, / 3, / 3)C C Cp t = .

7. CONCLUSIONS

The main result of this paper may be shortly outlined as
follows.

First, we show, that in case of infinite number of feasible
alternatives it is enough to inspect finite number of unfeasible
alternatives  in  order  to  understand  whether  any  GMVS
respect feasibility or not for concrete set of feasible
alternatives.

Second, we provide algorithm for understanding, what
alternatives should we inspect, which is “good” in sense  that
it minimizes number of calculation to be performed in order
to understand, whether any GMVS respect feasibility or not
for concrete set of feasible alternatives.

Also initial problem, solved in this paper is not so crucial in
case of finite number of feasible alternatives (because
number of unfeasible alternatives is also finite) algorithm
provided will be useful in this case too, because it allows
reducing number of alternatives to be inspected.
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APPENDIX

Proof of Theorem 1. Necessity: It follows immediately from
Lemma 2.

 Sufficiency:

1.  From  Lemma  1  it  is  quite  easy  to  show,  that  in  order  to
understand whether a family 1{ }m

k kR R ==  of right coalition

systems on ˆ( )B Z  has the intersection property for Z  or not
it is enough to chose only one alternative from each brick

ˆ: ( ) \
w W w

B B B B Z ZÎ Ç ¹ Æ and check (2)  for  it  for  each

set of directions from ( , )
w

D B Z .

For brick-convex ranges ( ( )
W

BB Z = Æ ) it follows
immediately from Lemma 3 that for any unfeasible
alternative ˆ( ) \y B Z ZÎ  there is exist unfeasible alternative

from a border brick ˆ( ) \x B Z ZÎ , such that
( , ) ( , )d y x d x Z= . That is why in case of brick-convex ranges

it is enough to check only border bricks.

For ranges that are not brick-convex one should consider
each unfeasible alternative ˆ( ) \ : # ( , ) 1y B Z Z D y ZÎ >
separately. Yet, according to Lemma 1 all such alternatives
from one brick have same crucial for feasibility verification
properties. That is why it is enough to check (2) for any one
alternative  from  each  bad  brick    and  each  set  of  directions
from its set of directions. ( , )

w
D B Z . Q.E.D.


