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Abstract: The problem of Pareto-efficient resource allogatnong rational agents is considered. The
mechanism that implements efficient allocation asiNequilibrium in case when utility is transfegabl
among agents is offered. The approach to solufaalotment problems as multicriteria public chmic
problems lies in the basis of this mechanism, #ilmws to implement Groves-Ledyard mechanism,
which was initially designated to the solutionpaiblic good problems. It is shown, that there istethe
only Nash equilibrium in a game among agents indudey the mechanism developed.
For the case when utility functions are privateiniation of agents, it is shown, that efficienbaition
may be realized via an iterative bargaining prodessed on this mechanism, if agents behave aceprdin
to Cournot dynamics. Possibility to reduce agemt&ssages space to a scalar one in iterative bargain
process is demonstrated. It is also shown thatharésm developed may be inconsistent for some
nontrivial agent’'s behavior — there exist some gasokitions which can be reached via iterative
bargaining process but are not Nash equilibriumdonrtt yield efficient resource allocation.

Keywords: Control in organizational systems, Game theorysdRece allocation, Mechanism Design,
Nash Implementation.

there may exist an agentt € N and a utility
) such that

1. INTRODUCTION

profiled = (4, ,u_,
We consider the problem of resource allocation mitéd

amount R e R' of infinitely divisible good should be wu,(g,(@)) > u(g,(u)),

allotted among _finite numper of agents fr(_)_m thei@yc where u_, - the profile of preferences of all agents except
N ={1,...,n}. Each agenti € N has an utility function

u(e): R\ — R that is drawn from some set of possibleand u=(u,u,), g,(u)- the amount of good allotted to

agentk given profile u .
utility functions U.. Let us denote the set dkasble

allocation as This is the issue of Mechanism Design — is it dassio find

suchmechanism p =< S,m,t > where S =x_ S - a space
A={z = (2., ): Z:pi <R zeR"},

ieN

the set of possible utilities profiles as

of agent’s actionssr(e) : S — A - some procedure that maps
agent actions onto set of feasible allocation and
t(e): S — R" - transfers of utilities, that will allow to reaé
U={u=(ufe), . u,e)):u(e)cU,icN}. efficient allocation in case wheny(e) is not incentive
The goal is to find sucllocation mappingg(e): U — A, compatible.

that isefficient in sense that it maximizes the total utility of

all agents for any utility profiles € U : We consider following set of utility profile§ :

g(u) € Argmax » u (). 1. utility function of each agent is concave afid;
zed ieN

. . i . 2. YueUitis not efficient to allocate all the good
Even if for some set of utility profile§” such mapping does _ o ,
exist, it may be noincentive compatible (see Maskin (1985) available to one agent - that§i, j} € N

for example). That is mean that given utility pl®fiu € U

ou, Ou,
—(0)>—L(R);
702 1R



3. there exist possibility to transfer utility amongagent is asked about his desirable share of theustnaf
agents. good available.

We will provide the mechanism, thatu € U yields efficient But transfers are onlpsymptotically balanced — for any
allocation as the onlyNash equilibrium in game P €(0;)) there exist transfers such that

[(p) =< N,S,0, _>,wherep ={g,..,p } -profileof
preferences of agents determined by their utifitpfile Y f,(s"(u)) = P,
u € U and procedurer(e) : =
where A - Lagrange multiplier for initial optimisation

¢,(s) = u,(m(s)) —t(s), i€ N. problem. But they didn’t offer solution faP = 0.
That is mean thatu € U 3!s™(u) € 5 Another close approach eest sharing mechanisms that are
developed by Moulin (see, for example Moulin (2)10t
1. Vie N,V35 €8 (s (u)>p(3,s (u)); also has small message space — each agent annonuiyce
amount of good, that he would like to receive. Bhis
2. w(s'(u) = g(u). mechanism is also inapplicable if cost of good ¢oplid by

whole society is zero.

Moreover, mechanism may be treated as efficientvdren . _ . .
In this paper following approach is utilized. Resz

" allocation problem is treated as multidimensiomablic
;{%( (w)) %: (9(w)) choice problem — the vector of good’'s allocation among
agents is treated gmblic good. This approach turned out to

That leads to very important property of mechanisith be fruitful for solution of resource allocation ptem with

transfers -balanced transfers in equilibrium: out transferable utility — it allows do extend cla¥ strategy-
proof mechanism, see Burkov, Iskakov and Korgin1(®0

it (s"(u) = 0 and Korgin (2012)

i=1 '

For the case when each agent knows only its owlityuti

The problem considered has only one solution, wagamt's  function, we provide conditions whesi(u) may be achieved
utilities are not transferable and there is no @olt&l iz jterative bargaining process:

information about agent’s utilities — theiform allocation,

see for example Novikov (2013). o(1) = m(s(T = 1)), ¢,(1) = u,(2(1)) — t(s(1)),

With transferable utility solutions for similar ftems were where s(7) = (s (7),...,s (7)) - agents’ messages at iteration
developed by various authors. There are two mainagehes F>1

to solution of the problem stated. The first onestisitegy- -
proof direct mechanisms — when each agent is asked about
his utility function and the bestdminant) strategy is to
report information truthfully — so called Vickeryr@es- e mechanismp =< S,7,t > that solves problem stated
Clark (VGS) mechanisms. The drawbacks of this aggino
are following (see, for example, Maskin (1985) ftmneral
case, Yang S., Hajek B. (2005) for the case of lprob S ={s cR" 'ZS <R
considered): i i ' qi=

2. DESCRIPTION OF THE MECHANISM

above is following.Vi € N

jEN

1. Itis not possible to balance transfers, that tesnl 1
z,(s) :_st (1)
. n = il
Yo (s (W) < D u(g(u) _
ieN ieN where s, Is message of agent about what amount of good
2. Message space of such mechanism are quite complegiould be allocated to agent
each agent should report its utility function, thesults B ad 5
in nontrivial practical realisation of such mectsmi (8) = p,(s)— ;Z;pj (s); @)
J=

Nash implementation approach allows to constructal®d where
indirect mechanisms - agents may be not asked about their
utility but about something else. Basar and Maheswa (s)zﬂZ(:p (5) = s )

(2003) developed class of mechanism wiyioportional : J s

allocation rule, which was later generalized by Yang and . .

Hajek (2005) and Johari and Tsitsiklis (2009) iffedent We Will call parametersd > 0 - penalty strictness, a € [0,1]
ways. These mechanisms yield efficient allocatiethe only - balancing coefficient. If « =1 then transfers are always
Nash equilibrium, and have “smallest” message spagach balanced Vs c S



: S w''(25A) = R,

ieN

/-1

d Whereu/(e) is the inverse function ta/(e).

and mechanism may be treated as"Groves-Ledyardrafiz
government” — mechanism, that was previously appt® Another important property of this mechanism is ttha

public good problem (see Groves and Ledyard (1977),.

Arifovic and Ledyard (2011)). Qf@ € Nandvs , € x‘],eN\{l,}Sj the best response strategy

. . . . br(s )€ S (that gives maximum profit to agent, given that

For this mechanism the following statement is azirre n(s.) €5, ( ¢ P ¢ g
the profile of others’ messages ds ) satisfies the following

Proposition 1. YueU, VY8>0, Yaec[0,1] there is equations:

Ils*(u) e S 1
u/(—=(br (s )+ s, )=
1. which is Nash equilbium in game ‘'n “ L;e;i} " 3)
n N —i v ik
2. a(s"(u) = argrgaxg%(%) : andvj € N \ {i}
In case ofa = 1 the mechanism offered maximizes the total(” — 1)b7},;(5_,;) - Z Sy =

utility of all agents. If « <1, then it yields efficient
allocation of resource, but total utility of agergsless then =(n—1)
the possible maximum:

(4)

2o() <maxd u () 3. ITERATIVE BARGAINING PROCESS

_ -~ . ) One of the essential problems of Nash implememasdhat
Given uwcU let us denotes’(f,«)- solution of game Nash equilibrium may be not achieved by agentthe/ are
depending on parameters of the mechanism. not fully informed about parameters of game thegypt

. particularly if some agents don't have informatiabout
Lemmal. V3 >0, Yo €[0,1] s(8,a)=5"(5,0), where utility functions of others. That is why quite aatujuestion
is whether equilibrium may be reached via someniegr

=5 n—l-a _ process — when agent may acquire all the informadioout
n—1 the game via interaction with each other (see HE006)).
Tr;]at ishwhy it is possri]ble to balance transfersyanl case We consider the situation, when each agent injtiatiows
when there are more then two agents. only its own utility function, total number of agenamount
Following equations describes dependencies betwe@hthe good available and mechanism.
effective allocation and solution of the ganw(i, j} € N lterative bargaining procesdp under consideration is
A following. At initial stage (fist iteration) each gant
xi(s*) = s; -, announces amount of good he would like to receive -
" A s,1)€[0,R]. If > s (1)<R, then VieN, and
z(s) = *1 + ) ieN
' " on(n—1) vje N\ {i} we places (1) =s,(1). If 257’1(1) > R then
) A2 ! ieN
(s )= , . . . _ - _
p(s) Y- VieN,VieN\{i}s,1)=R-s,1)/(n-1) .
£(s) = B(1—a) A’ Amount of good that is offered to each agent aaddfiers are
: n(n—1) calculated according to (1) and (2) with=s(1). At each

iteration 7 >1 each agent can announce any feasible
messages.(7) € S.. Amount of good that is offered at

A:%\;SM_R‘ iteration 7 to each agent and transfers are calculated
according to (1) and (2) with = s(7).

where

It is clearly seen from this equation, thatif= 1, then there
are no real transfers for any agent in equilibriiixact value
of Adepends from profile - it should be derived as
solution of the following equation:



The bargaining process stops at stepl'if and 2) z(0) ={115 /3,115 /3,115 / 3} and

||s[T —1]- s[T]" <. The final allotment and transfer are £(0) = {0,0,0} . That is why¥i € N f(s(0)) = u, (2(0))
calculated according to (1) and (2) with= s(T') .

For agent 3f (s(0)) ~ 7,96 .
We call agents behaviou€ournot dynamics, if at each
iteration each agent chooses his messages aebpshse on

: s ! For mechanism witha=1 and =10 it takes 7
messages of other agents at previous iteration:

iterations to reach allocation that is quite closéhe efficient
s(1)=br(s (r—1)), one, if agents behave themselves according to ©@burn
" o dynamics (see Fig. 1 and Fig. 2)

where br.(s_.(7 —1)) is derived from (3) and (4). In fact, at

—i

each step each agent tries to maximize his profth w
assumptions that other agents will not change thessages. 8

8.5

7.5

For such iterative process following statemenbiseaxct

7

Profit

Proposition 2. Given u €U s'(u) is reachable inIpif

. . . &5 - —12
agents behaviour is Cournot dynamics af@ € R such . .
that Vi € N
5.5
max(fuv”(xv(s)) <C. 5

ieN ! ! 12 3 4 5 6 7 8 9 10 11 12 13

Number of iteration

The iterative bargaining processp may be modified in

order to reduce amount of information, that agesitsuld F19- 1. Agents’ profit under Cournot dynamics.

announce at each iteratiolr > 1 each agent is asked only From Fig. 1 it is quite obvious, that at each itieraprofit of

. . agent 3 decreases. Moreover it is always less ¢xpected
about what share of good he would like to receive,tr), under assumption that other agents will not chatiggr

i€ N. Then his messages about how much good shouitessages. It turns out that best response strategysecure
receive other agents are defined according to (4rategy (see Iskakov (2008)pr agent 3 at any iteration of

Vj € N\ {i} s,(r)=br (s (r—1))with assumption that bargaining process.

br.(s (1—1)=s/(7). 140
120
Modified iterative bargaining process also allowsréach - 100 \
s*(u) someu € U under conditions of proposition 2 taking &, %0 \ —
in account that in order to perform Cournot dynasragent g o \V/\-’ s
should use (3) to define (1) = br.(s_ (7 —1)). E L, __— — 2
/\/—’_ s13
4. DIFFERENT BEHAVIOUR MODELS 7
0 L4
Cournot dynamics is one of “simplest” in sense thgents 123 45 6 7 8 910111213
behaviour model may be much more complicated —feee Number of iteration

example Arifovic and Ledyard (2011). Following exae
illustrates situation, when such dynamics turns tutbe
«irrational» (while remaining to be rational at leateration).
Let us consider the modified iterative bargainimggess.

Fig. 2. Amount of good that is offered to agent dda
messages about it from all agents under Cournot
dynamics.

Figs 3 and 4 illustrates situation when agent dehange
his message,, = . Agents 1 and 2 acts according to their

o best responses till iteration 10. At second iteratagent 3
Amount of good to be divided among themiis= 115 . loses significantly, while agents 1 and 2 increthasdr profit .
But from iteration 3 till 10 profit of agents 1 ar@ is
significantly smaller than in initial allocation af iteration 1.

There are 3 agents with utility functions = /= + x, where
r ={1;9;25} - profile of initial endowment of agents.

Efficient allocation is z ={49,41,25}. In efficient

allocation, profit of each agent is 7,07 .
At iteration 11 agent 2 changes his message t@limhe -

5,,(11)= R. While loosing profit at this iteration, from

iteration 12 and further agent 2 receives moreiiptbén at
iterations where he picked best response strategy.

Let us consider situation when at first iteratiorofije of
agents’ messages i80) = {115,115,115} . According to (1)
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Fig. 3. Agents’ profit — agent 3 doesn’t follow Caaot
dynamics.

From iteration 11 only agent 1 takes best respatsgegy.
But at iteration 20 amount of good he receives laisdbest
response message don't change significantly angrbfit is

4. Agent’s message space in iterative bargaining poce
may be reduce to scalar.

The last of these points suggests a promising egijoin of
the mechanism developed - as a distributed opttiniza
algorithm in style of alternating direction method of
multipliers (ADMM), see for example Boyd, Parikh and Chu
(2011). This application should be explored furthe

But the example provided makes it clear that even i
mechanism induces the game with the only Nash ibguiin,

it does not guarantee, that there will be otheutgmis of the
game, that don't vyield efficient allocation. Funthe
explorations should be conducted in order to ustded how

it will perform under different assumptions abowgeats’
behaviour, including possibility of cooperation argothem.
Equilibrium in secure strategies is one prospectoncepts
to deal with due to fact that mechanism desigrsrigjue for
this concept is not developed yet while latest ysial of

only ~ 2,73. At iteration 21 agent 1 switch his message frorflifferent classical models, tightly connected wittcourse

best response for messages of agents 2 ands3 te .

And keeps this message for rest of iterations. Fiteration
27 messages and profits of all agents are nealgdime as at
first iteration.
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Fig. 4. Amount of good that is offered to agent dda

messages about it from all agents when agent 3ndoes

follow Cournot dynamics.

At all iterations except 2, profit of agent 3 igghér than in
effective allocation of good. Total utility of adigents is less
then in effective allocation at all iterations.

6. CONCLUSIONS
Mechanism suggested in this paper has followingaathges

1. It yield’s efficient resource allocation as the ymMNash

equilibrium of game among agents.

2. Due to balanced transfers it does not reduce taiiétly
of society.
3. In situation when utility functions are private

information of the agents efficient allocation

mechanism offered.

is
achievable via iterative bargaining process based o

allocation problem shown that besides from Nashliegum
(or even in case of its absence) there may exissetnof
equilibria in secure strategies — see Iskakov asigkov
(2012).
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