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Abstract: The problem of Pareto-efficient resource allocation among rational agents is considered. The 
mechanism that implements efficient allocation as Nash equilibrium in case when utility is transferable 
among agents is offered.  The approach to solution of allotment problems as multicriteria public choice 
problems lies in the basis of this mechanism, that allows to implement Groves-Ledyard mechanism, 
which was initially  designated to the solution of public good problems. It is shown, that there is exist the 
only Nash equilibrium in a game among agents induced by the mechanism developed. 
For the case when utility functions are private information of agents, it is shown, that efficient allocation 
may be realized via an iterative bargaining process based on this mechanism, if agents behave according 
to Cournot dynamics. Possibility to reduce agent’s messages space to a scalar one in iterative bargaining 
process is demonstrated.  It is also shown that mechanism developed may be inconsistent for some 
nontrivial agent’s behavior – there exist some game solutions which can be reached via iterative 
bargaining process but are not Nash equilibrium and don’t yield efficient resource allocation. 
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Nash Implementation.  

 

1. INTRODUCTION 

We consider the problem of resource allocation – limited 

amount 1R
+

∈ ℝ  of infinitely divisible good should be 

allotted among finite number of agents from the society 
{1,..., }N n= . Each agent i N∈  has an utility function 

( ) :
i
u • 1

+
→ℝ ℝ  that is drawn from some set of possible 

utility functions 
i
U . Let us denote the set of feasible 

allocation as 

1
{ ( ,..., ) : , }n

n i
i N

A x x x x R x
+

∈

= = ≤ ∈∑ ℝ , 

the set of possible utilities profiles as 

1
{ ( ( ),..., ( )) : ( ) , }

n i i
U u u u u U i N= = • • • ∈ ∈ . 

The goal is to find such allocation mapping ( ) :g U A• → , 

that is efficient in sense that it maximizes the total utility of 
all agents for any utility profile u U∈ : 

( ) max ( )
i i

x A i N

g u Arg u x
∈ ∈

∈ ∑ . 

Even if for some set of utility profiles U such mapping does 
exist, it may be not incentive compatible (see Maskin (1985) 
for example). That is mean that given utility profile u U∈  

there may exist an agent k N∈   and a utility 

profile ( , )
k k

u u u
−

=ɶ ɶ  such that 

( ( )) ( ( ))
k k k k
u g u u g u>ɶ , 

where 
k
u
−

 - the profile of preferences of all agents except k  

and ( , )
k k

u u u
−

= , ( )
k
g u - the amount of good allotted to 

agent k  given profile u .   

This is the issue of Mechanism Design – is it possible to find 

such mechanism , ,S tρ π=< >  where 
i N i

S S
∈

=× - a space 

of agent’s actions, ( ) : S Aπ • →  - some procedure that maps 

agent actions onto set of feasible allocation and 

( ) : nt S• → ℝ  - transfers of utilities, that will allow to realise 

efficient allocation in case when ( )g •  is not incentive 

compatible. 

We consider following set of utility profiles U
⌢

:  

1. utility function of each agent is concave and 2C ; 

2. u U∀ ∈
⌢

it is not efficient to allocate all the good 

available to one agent - that is 2{ , }i j N∀ ∈  
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3. there exist possibility to transfer utility among 
agents. 

We will provide the mechanism, that u U∀ ∈
⌢

yields efficient 
allocation as the only Nash equilibrium in game 

,
( ) , ,

u
N S

π
ρ ϕΓ =< > , where 

, 1
{ ,..., }

u nπ
ϕ ϕ ϕ=  - profile of 

preferences of agents determined  by their utility profile 
u U∈  and procedure ( )π • : 

 ( ) ( ( )) ( )
i i i
s u s t sϕ π= − , i N∈ .  

That is mean that u U∀ ∈ ! ( )s u S∗∃ ∈ : 

1. i N∀ ∈ ,
i i
s S∀ ∈ɶ ( ( )) ( , ( ))

i i i i
s u s s uϕ ϕ∗ ∗

−
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2. ( ( )) ( )s u g uπ ∗ = . 

Moreover, mechanism may be treated as efficient one when 

( ( )) ( ( ))
i i

i N i N

s u u g uϕ ∗

∈ ∈

=∑ ∑ . 

That leads to very important property of mechanism with 
transfers – balanced transfers in equilibrium: 

1

( ( )) 0
n

i
i

t s u∗

=

=∑ . 

The problem considered has only one solution, when agent’s 
utilities are not transferable and there is no additional 
information about agent’s utilities – the uniform allocation, 
see for example Novikov (2013). 

With transferable utility solutions for similar problems were 
developed by various authors. There are two main approaches 
to solution of the problem stated. The first one is strategy-
proof  direct mechanisms – when each agent is asked about 
his utility  function and the best (dominant) strategy is to 
report information truthfully – so called Vickery-Groves-
Clark (VGS) mechanisms. The drawbacks of this approach 
are following (see, for example, Maskin (1985) for general 
case, Yang S., Hajek B. (2005) for the case of problem 
considered): 

1. It is not possible to balance transfers, that results in 

( ( )) ( ( ))
i i

i N i N

s u u g uϕ ∗

∈ ∈

<∑ ∑  

2. Message space of such mechanism are quite complex – 
each agent should report its utility function, that results 
in nontrivial practical realisation of such mechanism. 

Nash implementation approach allows to construct so called 
indirect mechanisms - agents may be not asked about their 
utility but about something else. Basar and Maheswaran 
(2003) developed class of mechanism with proportional 
allocation rule, which was later generalized by Yang and 
Hajek (2005) and Johari and Tsitsiklis (2009) in different 
ways. These mechanisms yield efficient allocation as the only 
Nash equilibrium, and have “smallest” message space – each 

agent is asked about his desirable share of the amount of 
good available.  

But transfers are only asymptotically balanced  – for any 
(0; )P λ∈  there exist transfers such that  

1

( ( ))
n

i
i

t s u P∗

=

=∑ , 

where λ  - Lagrange multiplier for initial optimisation 
problem. But they didn’t offer solution for 0P = . 

Another close approach – cost sharing mechanisms that are 
developed by  Moulin (see, for example Moulin (2010)). It 
also has small message space – each agent announce only 
amount of good, that he would like to receive. But this 
mechanism is also inapplicable if cost of good to be paid by 
whole society is zero. 

In this paper following approach is utilized. Resource 
allocation problem is treated as multidimensional public  
choice problem – the vector of good’s allocation among 
agents is treated as public good. This approach turned out to 
be fruitful for solution of resource allocation problem with 
out transferable utility – it allows do extend class of strategy-
proof mechanism, see Burkov, Iskakov and Korgin (2010) 
and Korgin (2012)  

For the case when each agent knows only its own utility 

function, we provide conditions when ( )s u∗ may be achieved 

via iterative bargaining process: 

( ) ( ( 1))x sτ π τ= − , ( ) ( ( )) ( ( ))
i i

u x t sϕ τ τ τ= − , 

where 
1

( ) ( ( ),..., ( ))
n

s s sτ τ τ=  - agents’ messages at iteration 

1τ ≥ . 

2. DESCRIPTION OF THE MECHANISM 

The mechanism , ,S tρ π=< >  that solves problem stated 

above is following. i N∀ ∈  

{ : } ,n

i i ji
j N

S s s R
∈

= ∈ ≤∑ℝ  
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1
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where 
ij
s is message of agent j  about  what amount of good 

should be allocated to agent i . 
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We will call parameters 0β ≥  - penalty strictness, [0,1]α ∈   

- balancing coefficient. If 1α =  then transfers are always 
balanced - s S∀ ∈  
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and mechanism may be treated as”Groves-Ledyard quadratic 
government” – mechanism, that was previously applied to 
public good problem (see Groves and Ledyard (1977), 
Arifovic and Ledyard  (2011)). 

For this mechanism the following statement is correct: 

Proposition 1. u U∀ ∈
⌢

,  0β∀ ≥ , [0,1]α∀ ∈  there is 

! ( )s u S∗∃ ∈ : 

1. which is Nash equilibrium in game 

,
( ) , ,

u
N S

π
ρ ϕΓ =< > ; 

2. ( ( )) argmax ( )
i i

x A i N

x s u u x∗

∈ ∈

= ∑ . 

In case of 1α =  the mechanism offered maximizes the total 
utility of all agents.  If 1α < , then it yields efficient 
allocation of resource, but total utility of agents is less then 
the possible maximum: 

1 1

( ) max ( )
n n

i i ix A
i i

s u xϕ
∈

= =

<∑ ∑  

Given u U∈
⌢

 let us denote ( , )s β α∗ - solution of game 

depending on parameters of the mechanism.  

Lemma 1. 0β∀ ≥ , [0,1]α∀ ∈  ( , )s β α∗ = ( , 0)s β∗ ɶ , where 

1

1

n

n

α
β β

− −
=

−
ɶ . 

That is why it is possible to balance transfers only in case 
when there are more then two agents. 

Following equations describes dependencies between 
effective allocation and solution of the game. { , }i j N∀ ∈ : 
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( 1)i
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−
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where 

ii
i N

s R∗

∈

∆ = −∑ . 

It is clearly seen from this equation, that if 1α = , then there 
are no real transfers for any agent in equilibrium. Exact value 
of ∆ depends from profileu  - it should be derived as 
solution of the following equation: 

1(2 )
i

i N

u Rβ−

∈

′ ∆ =∑ ɶ , 

where 1( )
i
u −′ •  is the inverse function to ( )

i
u ′ • . 

Another important property of this mechanism is that 

i N∀ ∈ and
\{ }i j N i j

s S
− ∈
∀ ∈×  the best response strategy 

( )
i i i
br s S

−
∈  (that gives maximum profit to agent, given that 

the profile of others’ messages is 
i
s
−
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equations: 
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3. ITERATIVE BARGAINING PROCESS 

One of the essential problems of Nash implementation is that 
Nash equilibrium may be not achieved by agents, if they are 
not fully informed about parameters of game they play – 
particularly if some agents don’t have information about 
utility functions of others. That is why quite actual question 
is whether equilibrium may be reached via some learning 
process – when agent may acquire all the information about 
the game via interaction with each other (see Healy (2006)).  

We consider the situation, when each agent initially knows 
only its own utility function, total number of agents, amount 
of the good available and mechanism.  

Iterative bargaining process Iρ  under consideration is 

following. At initial stage (fist iteration) each agent 
announces amount of good he would like to receive - 

(1) [0, ]
ii
s R∈ . If (1)

ii
i N

s R
∈

≤∑ , then i N∀ ∈ , and 

\ { }j N i∀ ∈ we place (1) (1)
ji ii
s s= . If (1)

ii
i N

s R
∈

>∑  then 

i N∀ ∈ , \ { }j N i∀ ∈ (1) ( (1)) / ( 1)
ji ii
s R s n= − −  . 

Amount of good that is offered to each agent and transfers are 
calculated according to (1) and (2) with (1)s s= . At each 

iteration 1τ >  each agent can announce any feasible 

message ( )
i i
s Sτ ∈ . Amount of good that is offered at 

iteration τ  to each agent and transfers are calculated 
according to (1) and (2) with ( )s s τ= .  



 
 

     

 

The bargaining process stops at step T if 

[ 1] [ ]sT sT ε− − ≤ . The final allotment and transfer are 

calculated according to (1) and (2) with ( )s s T= .  

We call agents behaviour Cournot dynamics, if at each 
iteration each agent chooses his messages as best response on 
messages of other agents at previous iteration: 

( ) ( ( 1))
i i i
s br sτ τ

−
= − , 

where ( ( 1))
i i
br s τ

−
− is derived from (3) and (4). In fact, at 

each step each agent tries to maximize his profit with 
assumptions that other agents will not change their messages.  

For such iterative process following statement is correct 

Proposition 2. Given u U∈
⌢
( )s u∗  is reachable in Iρ if 

agents behaviour is Cournot dynamics and C∃ ∈ ℝ  such  
that i N∀ ∈  

max( ( ( ))
i ii N
u x s C

∈

′′− ≤ . 

The iterative bargaining process Iρ  may be modified in 

order to reduce amount of information, that agents should 
announce at each iteration. 1τ∀ >  each agent is asked only 

about what share of good he would like to receive – ( )
ii
s τ , 

i N∈ . Then his messages about how much good should 
receive other agents are defined according to (4): 

\ { }j N i∀ ∈ ( ) ( ( 1))
ji ji i
s br sτ τ

−
= − with assumption that 

( ( 1)) ( )
ii i ii
br s sτ τ

−
− = .  

Modified iterative bargaining process also allows to reach 

( )s u∗  some u U∈
⌢

  under conditions  of proposition 2 taking 

in account that in order to perform Cournot dynamics agent 

should use (3) to define ( ) ( ( 1))
ii ii i
s br sτ τ

−
= − . 

4. DIFFERENT BEHAVIOUR MODELS 

Cournot dynamics is one of “simplest” in sense that agents 
behaviour model may be much more complicated – see for 
example Arifovic and Ledyard  (2011). Following example 
illustrates situation, when such dynamics turns out to be 
«irrational» (while remaining to be rational at each iteration). 
Let us consider the modified iterative bargaining process. 

There are 3 agents with utility functions 
i i i
u r x= + where 

{1;9;25}r =  - profile of initial endowment of agents. 

Amount of good to be divided among them is 115R = .  

Efficient allocation is {49, 41,25}x = . In efficient 

allocation, profit of each agent is 7,07≈ . 

Let us consider situation when at first iteration profile of 
agents’ messages is (0) {115,115,115}s = . According to (1) 

and (2) (0) {115 / 3,115 / 3,115 / 3}x =  and 

(0) {0,0, 0}t = . That is why i N∀ ∈ ( (0)) ( (0))
i i
f s u x=  

For agent 3 ( (0)) 7,96
i
f s ≈ .   

For mechanism with 1α =  and 310β −
=  it takes 7 

iterations to reach allocation that is quite close to the efficient 
one, if agents behave themselves according to Cournot 
dynamics (see Fig. 1 and Fig. 2)  

 
Fig. 1. Agents’ profit under Cournot dynamics. 
From Fig. 1 it is quite obvious, that at each iteration profit of 
agent 3 decreases. Moreover it is always less than expected 
under assumption that other agents will not change their 
messages. It turns out that best response strategy is not secure 
strategy (see Iskakov (2008)) for agent 3 at any iteration of 
bargaining process. 

 
Fig. 2. Amount of good that is offered to agent 1 and 

messages about it from all agents under Cournot 
dynamics. 

 
Figs 3 and 4 illustrates situation when agent 3 doesn’t change 

his message 
33
s R= . Agents 1 and 2 acts according to their 

best responses till iteration 10. At second iteration agent 3 
loses significantly, while agents 1 and 2 increase their profit . 
But from iteration 3 till 10 profit of agents 1 and 2 is 
significantly smaller than in initial allocation of at iteration 1.   

At iteration 11 agent 2 changes his message to initial one - 

22
(11)s R= . While loosing profit at this iteration, from 

iteration 12 and further agent 2 receives more profit than at 
iterations where he picked best response strategy. 



 
 

     

 

 
Fig. 3. Agents’ profit – agent 3 doesn’t follow Cournot 

dynamics. 
 
From iteration 11 only agent 1 takes best response strategy. 
But at iteration 20 amount of good he receives and his best 
response message don’t change significantly and his profit is 
only 2,73.≈  At iteration 21 agent 1 switch his message from 

best response for messages of agents 2 and 3 to 
11
s R= . 

And keeps this message for rest of iterations. From iteration 
27 messages and profits of all agents are nearly the same as at 
first iteration.  

 

 
Fig. 4. Amount of good that is offered to agent 1 and 

messages about it from all agents when agent 3 doesn’t 
follow Cournot dynamics.  

 
At all iterations except 2, profit of agent 3 is higher than in 
effective allocation of good. Total utility of all agents is less 
then in effective allocation at all iterations. 

6. CONCLUSIONS 

Mechanism suggested in this paper has following advantages 

1. It yield’s efficient resource allocation as the only Nash 
equilibrium of game among agents. 

2. Due to balanced transfers it does not reduce total utility 
of society. 

3. In situation when utility functions are private 
information of the agents efficient allocation is 
achievable via iterative bargaining process based on 
mechanism offered. 

4. Agent’s message space in iterative bargaining process 
may be reduce to scalar.  

The last of these points suggests a promising application of 
the mechanism developed - as a distributed optimization 
algorithm in style of alternating direction method of 
multipliers (ADMM), see for example Boyd, Parikh  and Chu 
(2011).  This application should be explored further.  

But the example provided makes it clear that even if 
mechanism induces the game with the only Nash equilibrium, 
it does not guarantee, that there will be other solutions of the 
game, that don’t yield efficient allocation. Further 
explorations should be conducted  in order to understand how 
it will perform under different assumptions about agents’  
behaviour, including possibility of cooperation among them. 
Equilibrium in secure strategies  is one prospective concepts 
to deal with due to fact that mechanism design's technique for 
this concept is not developed yet while latest analysis of 
different classical models, tightly connected with recourse 
allocation problem shown that besides from Nash equilibrium 
(or even in case of its absence) there may exist an set of 
equilibria in secure strategies – see Iskakov and Iskakov 
(2012). 
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