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Abstract—A socio-economic system of several agents organized in a way to perform the system
functions was considered. Each function is realized by a group of agents compiled of some
subgroups. A notion of organization of the given groups and its cost was introduced. In the case
of invariable environment, design of the optimal system comes to determining a minimal-cost
organization. Classes of organizations involving the optimal one were established. Complexity
of the problem of determining the optimal organization was estimated, and algorithms to solve
it were constructed. Possible strategies for reorganizing the system in varying environment were
established, and a model for selecting the optimal strategy was described.

1. INTRODUCTION

The theory of active systems pays much attention to the game-theoretic models of the two-
level organization systems consisting of the principal and agents. One of the approaches to the
multilevel system lies in decomposing it into a number of two-level systems. Sometimes it allows
one to study the constant-structure system [1]. However, the system responds to environmental
changes by structural reorganization which cannot be described by the aforementioned models [2].
The problems of choosing the structure either are transferred to the level of problem formulation 3],
that is, are not analyzed mathematically, or the problems of job execution by the agents (assignment
problem) and determination of the system organization structure are completely separated and the
optimal tree is constructed from a rigidly defined class [4]. It seems that the environmental impact
on the system structure cannot be modeled within the framework of this formulation.

We assume that the system has at its disposal a collection of agents ai,...,a, (for example,
workers or machines) which can execute some of the elementary jobs ey,...,e,. The aim of the
system is to produce some articles from the collection I,...,I; corresponding to the industry.
Elementary jobs must be executed in order to produce the articles. The collection ey,..., e, does
not include auxiliary operations concerned with system organization, and it is the same for any
system of the given industry.

We assume that given are the matrices T = {t;;} and S = {s;;}, where #; ; is the number of
units e; required to produce one unit I; and s;; is the number of units e; that can be executed by
¢; in a unit time. We also assume that the dimensionless comparable indicators, the complexities
¢,...,c; of a unit of elementary job (mean labor consumption, consumption of machine time, and
50 on) are given as well. We suppose that the complexity C(I;) of producing a unit of product
liis equal to the sum C(I;) = c{t;1 + ... + c&t;, of complexities of the required elementary jobs.
Complexity (potential) C(a;) of the agent a; is assumed to be equal to the maximal complexity of
the elementary job which a; can do in unit time: C(a;) = max(c$s;1,...,c%sir).

Let the system produce y; units of I; in unit time; at that, 0 < y; < v;, where v; is the maximal
volume of product that the system can sell at the market. We denote by z; ; the fraction of time
unit which the agent a; assigns to executing the elementary job e;. Then, 0 < z;; < 1, and by

0005-1179/02/6305-0803$27.00 (© 2002 MAIK “Nauka/Interperiodica”



804 VORONIN, MISHIN

j=Tr i=1q
must be satisfied to maintain the balance of the executed and required jobs.

= ) %ij, 0 <z <1, wedenote the load of a;. Therelations 3. yiti; < X0 Tk Sk, J = 1r,
ol v

We assume that the cost of supporting the agent a; over unit time is equal to p§ + z;p!, where
p{ and p} are the constant and variable costs, respectively. We denote by p; the price of the
product I;. Then, the earnings in unit time will be V = y1p; + ... + ygpy. The direct costs, that
is, the costs of supporting the agents, will be Z = Y~ (p§ + z;p!'). The magnitudes of y; and x;;

i=1ln
can be established, for example, by maximizing the gross margin V — Z. Taking into account the

linear constraints on y; and x; j, the last problem, is that of linear programming,.

We denote the set of agents by A = {ay,...,a,}. By the group of agents is meant any noncmpty
subset f C A; the set of all groups is denoted by F = 2‘4\{®}. The number of agents in a group will
be called the group level. Each agent a; executes elementary jobs of volumes x; 181, ..., xj,Si,. By
distributing them in a way we establish whether a; is involved in the production of each product.
We obtain that the product I; is manufactured by a subset of agents f C A; here, f = & for y; =0,
otherwise, f € F. By disrcgarding the empty sets, we obtain that joint operation of the agents in
groups fi,..., fin, m < g, must be organized to manufacture the products.

(4]

For an arbitrary group f € F, we determine its complexity (potential) C(f) = ( > C(a,l-)l/“) ,

a;ef
where a € (0, +0oc). For a = 1, group complexity is equal to the sum of the complexities of its
component agents; for a > 1, it is greater than the sum (complicating parameter); for a < I,
smaller (simplifying parameter).

We assume that the cost of organizing joint operation of arbitrary subgroups gi,....q1 € F
in the group g = g1 U ... U gy over time unit is defined by the organization cost functional
P(C(g1),...,C(gx),C(g)) whose arguments are the complexities of subgroups and complexity of
the organized group. If P is independent of the last arguunent, then it will be omitted. The value of
P is independent of subgroup permutation. Descriptively, the cost of organizing joint operation is
the cost of coordinating actions (control), accounting, transportation, and other overhead charges.

Intermediate groups can be organized for joint operation of the agents in the groups fi,..., fm.
By the cost of organization will be meant the total costs of organization of all groups. The cost of
organization (indirect costs) is defined by the particular system structure.

2. SYSTEM ORGANIZATION GRAPH. KINDS OF ORGANIZATIONS

Definition 1. The oriented graph G = (V. E) will be called the organization graph of groups
f1, .-+, fin if it satisfies the following conditions:

(a) The vertices correspond to the groups, that is, V.C F, fi,..., fm, {a1},...,{an} € V;

(b) ECV xV, g Ch, g# h, is satisfied for any edge (g, h) € E (loop-free graph);

(¢) For an arbitrary vertex g € V', we denote by (Q(g) = {h : (h,g) € E'} the sct of vertices from
which edges go to g; then, g = U )h, Q({ui}) = @ is satisfied for any g # {a;}, i = 1, n, that i,

heQ(g
any group g # {a;} is organized from the subgroups of the set Q(g); and
(d) At least one edge goes out of any g€ V., g ¢ {fi..... fin}.

By the organization is meant the corresponding graph of organization. The vertices (groups)
{a1}....,{an} of the graph G will be called the elementary vertices; the nonelementary vertices of
G other than fi,..., fim, the intermediate vertices.

Definition 2. Let the organization G = (V| E) be given. We consider g € V\{a1},.... {ay}.

Let Q(g9) = {g1,.-..9x}. We label the group ¢ by the cost R(g) of organizing it from the sub-
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groups gi,...,gx: R(g) = P(C(g1),...,C(gx),C(g))- By the cost of organizing G will be meant

P(G) = 3 R(g). Organization of G’ will be called optimal if P(G') = min P(G),
geV\{a1}.....{an}
where all possible organizations of the groups fi, ..., fm are minimized. By the problem of optimal

organization will be meant that of seeking one of the optimal organizations.

A problem similar to that of optimal organization is not encountered among the existing prob-
lems of discrete optimization (see, for example, [5]). Its complexity and the algorithms to solve it
are discussed below.

Definition 3. The organization G = (V, E') will be called the sequential organization if for any
geV\{ar},...,{an} Q(9) = {g\{ai}, {ai}} for some 1 < i < n.

Definition 4. The organization G = (V, F) will be called the r-organization, r > 2, if for any
geviQg)l <.

Definition 5. The organization G = (V, E) will be called the simultaneous organization if

V="{{ar}h,. . {an} fir- -, fn}; at that, Q(f) C {{a1}, .-, {an}}, 1 <i < m.
The sequential organization is a special case of the 2-organization. The simultaneous organiza-
tion is unique.

Definition 6. By the complexity C(G) of the organization G = (V| E) of the groups fi,..., fm
will be meant C(G) = < > C(g)) [(C(ar1) + ...+ Clan) + C(f1) + ... + C(fm)).
gev
The complexity of simultaneous organization is minimal and equal to unity.

Definition 7. Let G be the organization of the groups fi,..., f;m of agents ai,...,a,. By

the G-optimal organization of the groups fi,...,fm, fmt+1,---, fmer of the agents ai,...,ay,
@n41s- -+ Onys Will be meant the minimal-cost organization among those that involve G as a sub-
graph.

3. REQUIREMENTS ON THE COST FUNCTIONAL.
POSSIBLE FORMS OF THE FUNCTIONAL

Definition 8. The cost functional will be called uniform if P(xC1, ..., zCy,zC) = £(x)P(Cy,. ..,
Ck,C) is satisfied for any nonnegative numbers z, Cy,...,Cy, C, C > max(C;), where &(z) is a
monotone nondecreasing function, £(0) = 0, £(x) > 0 for any z > 0.

Definition 9. The cost functional will be called correct if P(C,0,...,0,C) = 0 is satisfied for
any C' > 0, that is, the cost of organizing a group with zero-complexity groups is zero.

Definition 10. The cost functional P(CY,...,Ck,C) will be called monotone if (1) P(Cy,...,
Ci,C") > P(Ch,...,Ck, C) is satisfied for any €} > Cy,...,C, > Ck, C' > C, and (2) P(Cy,...,
Cr,C',C") > P(Ch,...,Cy,C) is satisfied for any C' € [0; +00), C" > C, that is, the cost does
not decrease if greater-complexity subgroups are organized and one more subgroup is added to the
organized subgroups.

The condition for uniformity of the cost functional ensures independence of the optimal organi-
zations of the scale of complexities. We assume that the cost functional is uniform. If addition of
one more zero-complexity group requires costs, then the cost functional cannot be correct. If upon
increasing complexity of any of the organized groups the cost of organization can decrease, then
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the cost functional needs not be monotone. Definitions 8-10 suggest the following variants of the

cost functional:

P(C(g1),. .. Clgr)) = [C(qn) + - - + Clgr) = max(Cla).- -, Claw))s (1)
P(Clg1).....Clg)) = [Cla) + ... + Cla)) s @)
P(C(g1).....Clar), C(g)) = C(g)/ max(Clgn),---- Clow) =1 (3)
P(C(g1),....Clar), Cl9)) = D_ Cl9) = Clgi), (4)

i=1.k

where the group g = ¢; U...U g is organized from the subgroups gi...., gk, B € (0; +00).

Functional (1) is uniform, correct, and monotone. The cost of organization is defined by the
sum of complexities of groups organized beginning from the most complex one.

Functional (2) is uniform and monotone, but not correct.

Functional (3) is uniform and correct, but not monotone. The relative indicator, cost of orga-
nization, is defined by the ratio of group complexity to the maximal complexity of the subgroup.
We assume that P(0....,0,0) =0.

Functional (4) is uniform, but not correct and monotone. The absolute indicator, cost of organi-
zation, is defined by the difference between the gronp complexity and the complexities of subgroups.

4. KINDS OF OPTIMAL ORGANIZATION FOR DIFFERENT COST FUNCTIONALS

In what follows, we make use of the inequality which is readily proved by induction on n:
(ti+... 43 >al+.. +a2¥ forany x;20,....,0, 20 for y>1. (5)

Assertion 1. For 3 > 1. solution of the problem of optimal organization of the groups fi,..., fu
with the cost functional (1) exists in the class of 2-organizations.

Proof. Let G = (V. E) be an optimal organization. We consider g € V\{a1}....,{an}, Qg) =
{or,...voe} k23, Clgi) = Cy, C1 = max(Cy,...,Cy). If there is no such vertex, then G already
is the 2-organization (see Definition 4). Otherwise, we construct the organization C’ by removing
the edges going from the vertices gy,...,gr to g. adding vertices and edges hy = gy U g2, Q'(ho) =
{91.92}: h3a = ha U g3, Q'(h3) = {h2,g3}. and so on, Iy = hg_o U gr—1, Q' (hr—1) = {he—2, gr—-1}.
Then g is organized from the vertices Q'(g) = {hx—1.9x}. Therefore, simultaneous organization of
g1..... g, in g was replaced by sequential additions gs....,gr. In doing so. two edges enter all the
added vertices, g also is organized of two subgroups. The number of vertices g with |Q(g)} > 3 in
the resulting graph G’ was reduced by one. If we prove that G’ is optimal, then continuation of
this operation will provide the desired optimal 2-organization.

The label R(g) of the vertex g was included in P(G); we denote it by Py = (Cy + ... + Cy)>.
New labels Py = R'(hy) + ...+ R'(hy_1)+ R'(g) = C5 + ... + C'f will be included in P(G’) instead
of 1. Since 3 > 1, it follows from (5) that P, < P;. Consequently, P(G’) < P(G). which proves
the assertion. \

Theorem 1. For 3> 1 and a3 > 1, solution of the problem of optimal organization of the groups
froo... fin with the cost functional (1) ezists in the class of sequential organizations.

Proof. Let G = (V, E) be the optimal 2-organization (see Assertion 1). A vertex of the graph G
will be called incorrect if it is organized of two nonelementary groups; otherwise, it will be called
correct. We call the vertex h the successor of g if ¢ # h and there exists a path from h to g.

If there are no incorrect vertices in G, then G is the sequential organization (see Definition 3).
Otherwise, we construct the optimal 2-organization G’ where the number of incorrect vertices is
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Fig. 1. Reconstruction of the organization graph. Upward orientation of the edges.

one less than in G. Then, by repeating this operation as many times as required we get the optimal
sequential organization.

Let g be an incorrect vertex such that all its successors are correct, Q(g) = {g1,92}. Let in turn
Q(g1) = {h1,ha}, Q(g2) = {h3, hs}. We assume without loss of generality that C(g;) > C(g2),
C(h) = Ci > Cy = C(hy), C3 = C(g3), C4 = C(ga), h4 is elementary. Since g; is a correct vertex,
at least one of the vertices hy or hy is elementary. G is loop-free (see Definition 1b). Consequently,
hi N hy = @, similarly, h3 N hy = &. Then, C(g,) = (Cll/a + C%/a)"‘, C(ge) = (C';/a + C;/a)"‘.

We reconstruct G by adding the vertex g3 = g; U h3 and changing the edges so that Q(g) =
{93, ha}, Q(g3) = {91, h3}. The corresponding part of G before and after reconstruction is shown
in Fig. 1 to the left and right, correspondingly.

If one edge goes from g; in G and g is not contained among fi,..., fm, then we eliminate g,.
We denote the resulting 2-organization of the groups fi,..., fm by G;. The cost of G includes

P of
Py = R(g1) + Rlg2) + R(g) = Rlg1) + R(ga) + (3" + C}/*)™ .
If the vertex g2 was retained, then instead of P; the cost of GG includes
Py = R(g1) + R'(g2) + R(gs) + R'(9) = R(g1) + R(92) + C§ + CY.

With regard for (5), for a3 > 1 we obtain (C;/a + C’i/a)‘w > (C.;/a)aﬁ + (Ci/a)aﬂ, whence it
follows that Py < P;. Consequently, P(G1) < P(G). Removal of g5 can only reduce P;.

Therefore, G is optimal. If g3 is correct, then we get the desired graph G’. Otherwise, we
reason as follows. The level of g3 is lower that of g, all successor vertices of g3 are correct. We
repeat the above reconstruction by taking G as G and the vertex g3 as g. Therefore, we again
reduce the level of the incorrect vertex. By repeating these actions, either obtain the desired graph
G’ at the current step or reach the instant where the level of g3 is two. In this case, g3 is correct,
which is what we set out to prove.

Assertion 2. Solution of the problem of optimal organization of the group fi,..., fm with the
cost functional (3) exists in the class of 2-organizations.

Proof is repeats that of Assertion 1. By retaining the notation of this proof, we assume that
Ci=C(hi), i=1,k, hy = g1, hy = g. Then, C(g;) < Cy < Cy < ... < C}, is satisfied for i = 1, k; it
is possible to set down Pp, Py: Py = C,/Cy — 1, Pp = Cy/Ci 4+ C3/Ca+ ... + Ci/Cr_1 — (k — 1).

We prove by induction on k that Py < P;. We denote Py, P, for each k by P, (k), Py(k). We
get P5(2) = Py(2). Let Py(k) < Py(k) be satisfied for k < j. We assume that k = j + 1:

P(j+1) =Cj41/C1 = 1= (Cj41 — C; + C;3)/C1 — 1 = P(j) + (Cj41 — C;)/Ch,
P(j+1)=Cy/Cy + C3/Co+ ...+ Cj/C]‘,1 + Cj+1/Cj —j=P()+ (Cj+1 - Cj)/Cj.
Since Cj > C1 and P»(j) < Py(j) by assumption, we get that Py(j+1) < Pi(j+1), that is, P, < P,
which proves the assertion.
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Theorem 2. Solution of the problem of optimal organization of the groups fi,..., fm with the
cost functional (3) exists in the class of sequential organizations.

Proof follows that of Theorem 1, the notation is the same, the optimal 2-organization exists
by virtue of Assumption 2. The values of P, and P, are representable as Py = R(g1) + R(g2) +
C(g)/C{g1) — 1 and P2 = R(g;) + R(g2) + C(g3)/C (1) — 1+ C(g)/C(g3) ~ 1. We denote x = C(g),
y = C(g3), and z = C(g1). Then, z < y < x is satisfied, and it is possible to st down

Ph-Py=x/z-1-y/z+1—-a/y+1=(ry+yz— y? — x2)/yz.

We denote &(r) = 2y +yz — y? — rz and differentiate &'(x) = y — z > 0 by virtue of y > z. Further,
&(y) = ¥* +yz — y* — yz = 0; consequently, &(z) > 0 is satisfied for all z > y, that is, P, < P,
which proves the theorem.

5. PROBLEM OF OPTIMAL SEQUENTIAL ORGANIZATION.
ALGORITHNMS OF SOLUTION

Definition 11. The sequential organization of the group fi,..., fm having the minimal cost
among all such organizations will be called the optimal sequential organization. The problem of
seeking one of such organizations will be called the problem of optimal sequential organization.

Definition 12. The oriented graph H = (Vy,Ey) : Vy = FU{@}. Ey = E}j; U EJ; U EY],
where Eyy = {(@,{a;}) : 1 = ﬁ}, E} = {({ai} {aia;}) 1 1 < i < j < n}. By ={(g,9 U{a:}):
geV.lgl>22 adg i= 1.1} (see Fig. 2). will be called the problem graph. We define by
\: Ey — RT the weight of graph edges and assume that the edges from Ej; have zero weight. Any
edge from Ef; U E}] has the form e = {g, g U {a; }} and corresponds to the organization of g and
{a;} in gV {(L }. We assume that Me) = P(C(g), C({a;}).C(g U {a;})).

{(l] s, a, _] (l”}
P(C{as, az, ... .a, _1,a,}), Cla,))

P(Cay, aay .. @y _20 Ap-1D) Clay) ~
Aal as, ay _ . (l”}) C(Uv))

P(C([(ll Ay oon 3y 20y 41”” C((l,, I))
7/

(!a Ay vee sy 2,0y E’ GI] [C PRSI P l”]) e o o q(’l. ady, oWy, |.(1”D qdz. dyy oy I’aHD
° ° . . [} ] . ]
. . . . . . . . . . . .
L L
{ay, as} {ay, a4} o o o o o .G’H#Q. “ll—D@’n -2 ‘IHDQ(’”_ 1.a,l

P(C(a; ) Cay) P(Cla,_»). C(",,_ )
\ P(C(ay). Clay)

P(C(a,_5), Clay))

P(Cl(a;). C(as) P(Cla, 1), Clay )

Fig.2. Graph If = (V. En) of the problem of sequential organization.
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Fig. 3. Reduction to the normalized graph of the problem.

Figure 2 depicts the problem graph. To simplify the figure, the last argument in P and the
braces of the elementary groups were omitted.

Definition 13. Let us consider the subtree D of the problem graph H rooted in @ which comprises
fiy- o, fm whose leaves are contained among f,..., fm- The problem of seeking such a minimal-
weight subtree will be called the problem of optimal subtree in H. By the weight \(D) of the subtree
D is meant the sum of weights of edges D.

In what follows, by the subtree is meant the above subtree, unless otherwise specified.

Theorem 3. The problem of optimal sequential organization is equivalent to that of optimal
subtree in H.

Proof. Let G = (V, E) be a sequential organization of the groups fi,..., fm. Let us construct
the subtree D = (VD,E'D) of the graph H, the set of vertices Vp = V[, UV} U {@}, where
Vp = {g e Vgl > 2}, Vi = {{a;} : 35 > 4, {a,,aj} € V}. We consider g € V, Igf > 3; then, in
G Q(g) = {h,{ai}}, 9, h € Vp, include the edge e = (h,g) in Ep, and obtain here R(g) = A(e).
We consider g = {a;,a;} € V, i < j, then g,{a;} € Vp. We include the edge e = ({a;},9) in Ep.
Again, we get R(g) = A(e). For {a;} € Vp, we include the edge e = (2, {a;}) in Ep, A(e) = 0. By
construction, D is a subtree, P(G) = A(D).

Inversely, let D = (Vp,Ep) be a subtree of H. We construct the sequential organization
G = (V,E) of the group fi,...,fm: V = (Vp U {{a1},...,{a:}})\{@}. One edge e = (h,g)
enters the vertex g € V, |g| > 2 D; we add the edges (h,g), (g\h,g) to E, then R(g) = A(e). By
construction, P(G) = \(D).

Therefore, a sequential organization G, P(G) = A(D), corresponds to each subtree D and wvice
versa, which proves the theorem.

Definition 14. Let us consider H = (Vy, Ey). We denote for g € Vi by S(g) the set of vertices
to which edges from g come. Let g € Vi, k = |S(g)| > 3, S{g) = {g91,-..,9x}- We transform H
by removing the edges (g,¢;), i = 1,k, and adding k; = |[(k + 1)/2] vertices denoted by g¢1,... ’911'1
and edges (gﬂ(i +1)/2)> gi), i = 1, k, having weight equal to the weight of the removed edges (g, g;). If
k1 > 3, we add ko = [(k; + 1)/2] vertices denoted by g2, ... ,g,%2 and edges (gf(z’+1)/2pgil)’ i=1,k,
of zero weight, and so on. At the current step we add two vertices g7 and g3 and edges (g,47)
and (g,95) of zero weight. By performing these steps for all g € Vy, |S(g)] > 3, we obtain the
graph N = (V, En) from each of whose vertices at most two edges go out. It will be called the
normalized graph of the problem.

The above reconstruction for & = 27t! is shown in Fig. 3.
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Assertion 3. The problem of optimal subtree in H is equivalent to that of the optimal subtree on
the normalized problem graph N.

Proof. Let us consider the subtree D = (Vp, Ep) of the graph H = (Vi, Eyy). We construct the
subtree D' = (V. E7)) of the graph N = (Viy, Ex). We add to V), all vertices from Vp. For g € Vp,
|S(g)| < 2, we add the edges outgoing from g in E},. We consider g € Vp, S(g) = {g1,--- 9k}
k > 3. Then, there are in N the vertices g{ . q{} J = 1,q (see Definition 14). Let { edges

go out in D from g to gi,...,g;,; we add to V}, the vertices gf(z‘,-+1)/2j and to E’, the edges
(gz(ij +1y/20 9 = 1,24. For the added vertices, we add the edges leading to them in the graph N
and the corresponding vertices, and so on until the edges going out of ¢ are added. We obtain the
subtree D’ of the graph N. By construction, A\(D') = A(D).

Inversely, let us consider the subtree D' = (V},, E,) of the graph N. We construct the subtree
D = (Vp.Ep) of the graph H. We add to Vp all vertices from V), N Vy. For g € V},NVy,
|5(g)| < 2, we add to D the edges going out of g to D’. For g € V/,NVy, Qlg) = {gi.-. g},
k > 3, some 0 < £ < k vertices g;,,...,¢; (see Definition 14) belong to V},. Then, we add to Ep
the edges (g.g;,), j = 1.4, and obtain the subtree D of the graph H; at that, A(D') = A(D) by
construction. Therefore, to each subtrec of N a subtree of H of the same weight corresponds and
vice versa, which proves the assertion.

Theorem 4. There exists an algorithm solving the problem of optimal subtree in N = (Vi, En) by
comparing less than Vo(N)3™ weights of different subtrees, where Vo(N) = |{g € Vn : |S(9)| = 2}|.
Constriction of the algorithm is given in the proof.

Proof. We denote M = {fy,..., fm}, L = 2M\{2} and consider v € L and g € V. We denote
by A(g,v) the minimal weight of the subtree with root at ¢ whicl contains vertices from v and
whose leaves are contained among the vertices of v. If there is no such tree, then we assume that
Mg, v) = oc.

Let |S(g)| = 0: if g ¢ M, then Mg.v) = oc for any v € L; if g € M, then Mg, {g9}) = 0,
A(g,v) = oo for any v # {g}.

Let one edge e = (g, h) goout of g. If g ¢ M, then for any v € L we obtain A(g,v) = A(h, v)+A(e),
and the subtree corresponding to A(g, v) is constructed as a union of the cdge e and the subtree
for A(h.v). If g € M: for any v € L, g ¢ v we have A(g,v) = A(h,v) + Ae); for any v € L, g € v,
v # {g} we have A(g,v) = A(h,v\{g}) + A(e) because g is already at the tree root. If g € A, then
Mg.{g}) = 0.

Let two edges e; = (g, h1) and ez = (g, hy) go out of g. Let us consider v € L; in the subtree
corresponding to A(g, v) some collection v, C v is contained in the subtree with root at hy; collection
ve = v\ (or va = vi\(v; U {g}) if g € M) is contained in the subtrce with root at hy. If
vy # D.ovg # I, then Mg, v) = AMhy, 1) + Aer) + Ahg,v9) + AMea). If v1@, vg = &, then
Mg, v) = Mha.v2) + AMez). If vy # @, va = @, then Mg, v) = Ah1,v1) + Mer). If g € M, then
AMg.{g9}) = 0. By comparing at most 2/" variants of decomposition of v on vy, Vg, we determine
A(g,v). For all v € L, we compare at most Y. C% 27 < 3" variants.

i=1.m

For vertices from which no edge goes out, (g, v) and the corresponding subtrees are known for
any v € L. The problem of subtrees will be said to be solved for such vertices. Owing to acyclicity
of N, there will be g € Vjy such that the edges from g go to the vertices for which the problem of
subtree is solved. Then, we solve the problem for g, which requires less than 3" comparisons of
the subtree weights. We proceed until the problem is solved for all vertices g € Viy; then A(@, M)
and the corresponding subtrees are the required ones, which proves the theorem.
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Corollary 1. There exists an algorithm solving the problem of optimal sequential organization by
comparing less than (n + 1)2"3™ weights of the subtrees of the graph N.

Proof. For any g € Vy, k = |S(g)| > 3, we add to N at most 2k vertices. From the vertex H
of the ith level, n — i, i = 2,n — 3, edges go out. For all vertices of the ith level, we add at most
2Ci (n — i) vertices in N. From the vertex {a;}, j = 1,n—1, of the graph H, n — j edges go out;
for all vertices of the first level we add to N at most Y.  2(n — j) vertices. For @, we add to N

) 7j=1n-1
at most 2n vertices. All in all, at most Y~ 2Ci(n—14)+ > 2(n—j)+ 2n vertices are added.
i=2.n—3 j=Tn—1

We estimate the last expression by n2" taking into account that iC} = nC.L%. Since |Vy| = 27,
Vo(N) < |[Vn| < (n + 1)2", which proves the corollary.

Corollary 1 gives the worst-case upper bound. Let us generate in an arbitrary way a collection of
groups (each agent is included in a group with probability 0.5), calculate V2(N), and apply Theorem
2 to estimate the average complexity by 100 tests. For m,n = 15, complexity is approximately
3 x 108, that is, is still acceptable.

For C(a;) = ... = C(a,) = C, complexity of the group is defined only by its level. We denote
by P; = P(i*C,C, (i + 1)°C) the cost of organizing a group of the ith level with the elementary
group. The problem of optimal sequential organization is fully defined by the values P, ..., P,_;
and the collection fi,..., fm.

Theorem 5. For C{a;) = ... = C(ay), the problem of optimal sequential organization fi,..., fm,
Ifil <3, i =1,m, is NP-complete for any P; > 0, Ps.

Proof. We prove membership to the NP class. In the optimal sequential organization, f; is
organized in some sequence. By generating this sequence by a nondeterministic machine for each
fi» we remove all repeated groups and calculate the cost in polynomial time.

Let us consider the problem of representatives in the 2-sets: given are the set X = {z,...,7,}
and two-element subsets Yi,...,Y;, € X; needed is to determine the minimal-cardinality ¥ ¢ X
such that |Y' NY;] > 1 for ¢ = 1,m. The problem of representatives in the 2-sets is N P-complete
(see [6]).

Let Y = {zj, x4}, i = I,m, 1 < j; < ky < n. We assume that A = {ag,ay,...,0a,},
fi = {ao,a5;, a1, }. Let the set of representatives ¥ = {wg,,....2¢,} C X be given. We con-
struct G = (V,E): V = {{ao},{al},...,{an},fl,...,fm,{ag,agl},...,{ao,agq}}. To organize
{a0,a6,}, .-, {a0,ag,}, we add edges to E. For Y; = {zj,,a,}, either zj, € Y or x, € YV is
satisfied; consequently, {ag,a;,} € V or {ag,ar,} € V. We organize f; by means of one of these
groups. As the result, we construct the sequential organization G of the groups fi,..., fim of cost
qP, + mPs.

Inversely, let sequential organization G = (V, E) of the groups fi,..., fm, P(G) = qP, + mP,,
where ¢ is the number of groups of level two in G, be given. Let g = {aj,a;} eV, 1<i<j<n.
An edge can go out of g only to f = {ag,ai,a;}. We remove g and organize f from {ao, a;}
and {a;} by adding {ao,a;}, if necessary. By continuing in the same way, we determine the
sequential organization G' = (V', E’) comprising ¢’ groups {ao,agl},...,{ao,agq,} of level two,
P(G') = ¢'PL + mPs, ¢ < q. Let us then consider Y = {ay,,... ,.I‘gq,} C X. For f; = {ao,a,,ax,},
cither {ag,a;,} € V' or {ag,ar,} € V' is satisfied, that is, there exists 1 < r < ¢ aj, = ay, or
ak; = ag,; consequently, x;, = z¢, or xp, = x4, [Y;NY| > 1. So, YV is the set of representatives of
¢ elements.

Let us determine the optimal sequential organization G, P(G) = qP; + mFPs; then, in a poly-
nomial time we can determine the set of representatives Y of ¢’ elements, ¢’ < q. If there existed
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a set of representatives of ¢” < ¢’ < ¢ elements, there would be a sequential organization G”,
P(G"Y = ¢"Py + mPy < P(G), which contradicts optimality of G. Consequently, Y is the solution
of the problem of representatives in 2-sets, which proves the theorem.

Definition 15. The groups of the set U= {f;, Nn...Nfi, : 1 <k <m, 1 <i; <...<ip <m}\
{{a1}....,{an}. @} will be called the nodal groups.

Assertion 4. For C'(a;) = ... = C(ay), there exists the optimal sequential organization G =
(V. E) for which any g € V' from which more than one edge goes out is either nodal or elementary.

Proof. Let'G = (V, E) be the optimal sequential organization of the groups fi..... fm. Let at
least two edges go out from g € V\{{a1},...,{an}}. ¢ ¢ U, in hy, ¢, there existing no path from
g to any vertex with the same properties. Let hy — ha — ... — h,, be the path from h; to h,, €U
which comprises no other nodal groups; similarly, €1 — €y — ... — €y, is the path from ¢; to ¢,, € U.
By construction, precisely one edge goes out of each vertex h;, i1 = 1,n; — 1, €, j=1,ny—1.

Let us consider ¢’ = hy,, N ¢,,. We have g C ¢'; consequently. ¢’ is nonelementary and ¢’ € U.
Then, g C ¢’ because g ¢ U. The vertices fi,..., fr, are not included among hy,..., "y, 1,
€1,....lny—1, and we remove them. Let ¢'\g = {aj,,...,a; }; then we add to G the vertices
gi = gU{ai,....a;;}, j = 1.k, and edges (9j-1:95), ({ai; },g;). where go = g. Similarly, we
complete sequentially construction of ¢’ to hy, and €,,. As the result, we get a sequential organi-
zation G’ of the groups f1,..., fin.

Instead of the labels of the vertices hy,..., hg, £1,...,0, P(G’) includes the labels of vertices
g1, .-, 9k, that is, P(G') < P(G). We did not add to G’ any nonnodal vertex from which more
than one edge would go out. From g in G’ one less edge goes out that in G. We continue the above
actions uutil one edge goes out of g.

As the result, we construct the optimal sequential organization of the groups fi,.... f,, where
the number of vertices g ¢ UU {{a1}..... {a,}} with more than one outgoing edge is one less than
in G. By continuing these actions, we obtain the desired optimal sequential organization, which
proves the assertion.

Assertion 5. There exists an optimal sequential organization G = (V, E) for which the following
is satisfied in addition to the conditions of Assertion 4. If g, h€ V. NU, h C g, and there exists a
path from h to g containing no nodal vertices. then there does not exist g3 € U, g; C g3 C g9. If
there is no path to g from any nodal vertex of G, then there exists no h e U, h C g.

Proof. Let us consider the optimal sequential organization of G for which the conditions of
Assertion 4 are satisfied, and some path hy—...—hy in G, k> 2 b € U, hy € UU{{a;},..., {an}},
ho,... hy—1 ¢ U. The path will be called incorrect if there exists ¢’ € U, hy C ¢’ C hy.

Let hy — ... — hy be an incorrect path, then ¢’ € U corresponds to it. We remove the vertices
ha, ... hx—y from G. Let ¢'\h; = {a;;,...,a; }: we add to G the vertices h;- = U{aiy, ... a3},
j = 1.7, by organizing h from h’s_, and {a;;}, where hy = hy. We complete similarly construction
of ¢’ to hy and obtain a new organization of G/ with P(G') = P(G). If the path from hy to ¢’ or
from g’ to hy, is incorrect, then we perform this procedure for these subpaths, and so on until we get
the optimal organization where any subpath from h; to hy is correct. Consequently, the munber of
incorrect paths was decreased by one as compared with G. By repeating these actions, we obtain
the optimal sequential organization all of whose paths are correct, which proves the assertion.

For further presentation, we redefine the problem graph H = (Vy, Ey) for C(a;) = ... = C(a,).
The set of vertices Vg = U U {@}. We consider gy, g2 € Viy, g1 C go; there exists no g3 € Vy for
which g1 C g3 C go. For each such pair, we include in Ey the edge e = (g1, g2) by assuming that
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Ae) = Pgy| + Pgjj1 +--- + Pg,|—1, where Py = 0, that is, the weight A(e) is equal to the cost of
sequential completion of construction of g; to gs.

Theorem 6. For C(a;) = ... = C(an), the problem of optimal sequential organization is equiva-
lent to that of the optimal subtree in H.

Proof. Let G = (V, E) be the optimal sequential organization fi,..., f, satisfying the conditions
of Assertion 5. Let us construct a subtree D = (Vp, Ep) of the graph H. The set of vertices
Vp = Vy U {@}, where Vi C V is the set of nodal groups of V. Let us consider ¢ € Vy; let
Qlg) = {g1,{ai,}}. If g1 ¢ Vo U {{a1},...,{an}}, then we consider Q(g1) = {go, {ai,}}, repeat
the arguments for g and so on until we reach g, € Viy U{{a1},...,{a,}}. Either g is elementary,
then we add the edge (@, g) to D, or g € Viy, and then we add to D the edge (gi,g). In the first
case, there exists no g’ € U, ¢’ C g, and in the second case there exists no g’ € U, g, C ¢’ C g, that
is, in both cases the added edge belongs to Fyy, its weight being equal to the total cost of vertex
labels g, g1, ..., gr—1. Each vertex of D, except for @, includes precisely one edge from a lower-level
vertex; consequently, D is a subtree of H. The label of each nonelementary group G is included in
A(D) precisely once; consequently, P(G) = \(D).

Inversely, let D = (Vp, Ep) be a subtree of the graph H. We construct a sequential organization
G = (V,E) and add to V the vertices (Vp U {{a1},...,{ar}})\{@}. Let g € Vp; on the tree D,
precisely one edge e = (h, g) comes to it. Let g\h = {a;,,...,a;,}; then, we add to V the vertices
hj =hU{ai,...,a;}, except for the elementary {a;,} vertex h = @, j = 1,k — 1, by organizing
hj from h;_y and {a;, }, where hp = h. The sum of labels of g and the vertices added to V will be
Me). As the result, we construct G, P(G) = A(D), which proves the theorem.

In the case of C(a;) = ... = C(ay), the algorithm to solve the problem of optimal subtree in
H coincides completely with the general algorithm, which one can ascertain by repeating word for
word Assertion 3, and Theorem 4.

Corollary 2 (of Theorem 4). For C(a;) = ... = C(ay), there exists an algorithm solving the
problem of optimal sequential organization which compares less than 222™3™ weights of different
subtrees of the normalized graph of the problem N.

Proof. For C(a;) = ... = C(a,), the graph H has at most 2™ vertices from each of which at
most 2™ — 1 edges go out. Consequently, when constructing the graph N we add at most 2™+ — 2
vertices for each vertex from H. All in all, we add at most 22"+1 — 2m+1 vertices. Therefore,
Vo(N) < |Vi| < 22?2, which proves the corollary.

To construct H, one has to determine at most 2™ vertices and at most 22"~ ! edges. To determine
a vertex, we perform at most mn operations, and at most n operations to determine an edge. The
order of complexity of the remaining operations (construction of N, passage from the subtree in N
to the subtree in H) does not exceed 22™. Therefore, the order of complexity of the algorithm to
solve the problem for C(a;) = ... = C(ay) does not exceed 222™m3™ 4 n(22m~1 4 m2™). Only the
second term depends on n and, at that, depends linearly, which enables one to solve the problem
for greater n. By generating randomly a collection of groups (the agent is included in a group with
the probability 0.5) and estimating complexity on the average by 100 tests, we obtain that the
problem is solvable if m does not exceed fifteen.

6. CONCLUSIONS

If the environment does not vary (static case), then one can minimize the costs and create an
optimal-structure system by solving the problem of optimal organization. For the functional (1)
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for 3> 1, o > 1, and the functional (3), the problem of optimal organization can be solved using
the above algorithms to determine the optimal sequential organization (see Theorems 1 and 2).
For the functional (4), there exists an optimal 2-organization, the sequential organization in the
general case does not exist (see [7]). For the monotone cost functionals, existence of the optimal
tree of organization of one group was proved (see [7]). It can be determined using the algorithms
of {7]. By using the form of a group which is optimal among the sequential organizations (sce [7))
and relying on Theorems 1 and 2, one can establish the optimal organization of one group for the
functionals (1) and (3). Besides the domain o« < 1, g > 1. for the functional (2), the optimal
organization of one group was determined in {7].

If the environment varies (dynamic case), then the collection of groups fi,..., fin, the set of
agents, the cost functional, and complexity parameters can vary. If the cost of passing from
one structure to another is given, then one can compare different strategies of reorganization—
for example, by the mean result of system operation over a certain time interval. The following
strategics can be suggested. The strategy of maximal changes—for each change of the environment,
we pass to the optimal organization. The strategy of minimal changes—upon adding new groups
and agents, we pass from the previous organization G to an organization which is optimal in G (see
Definition 7) and then remove the “excessive” parts of the graph. The majority of the algorithms
described in this paper and in [7] can be modified to establish a relatively optimal organization. The
strategy of retaining the minimal-complexity structure (see Definition 6)—all the time we retain
the simultaneous organization (sce Definition 5) requiring the least reconstructions upon changes.
By modeling the system behavior, one can establish which of the strategies is preferable under the
current conditions, for example, under the given intensity of environmental changes. Verification of
the regularity observed in practice is one of the problems of modeling: for rigid (intensive) external
changes, it is advantageous to maintain the simple system structure which is complicated as the
external actions become easier.
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