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SCALARIZATION OF THE CONSTRUCTION OF THE SLATER-OPTIMAL SOLUTION SET
M. Z. Arslanov UDC 519.7

Multicriteria (vector) optimization is studied as a problem of construciing a set of x-consistent plans
in an active sysiem model. The construction of e set of Slater-optimal (semieffective) poinis in
mullicriteria optimizaiion is reduced to optimization by a scalar criterion, which is ¢ new convolution
of the criterion set. The relationship of this convoluiion with the Karlin convolution is studied.

1. INTRODUCTION

A vital trend in operations research is multicriteria optimization. A basic tool in operations research is the
reduction of one problem to another. Along with the representation of the technical apparatus for solving certain
problems in terms of the solutions of other problem, such an approach yields additional information about these
problems and new aspects in their interpretation.

In this paper, the interpretation of multicriteria optimization in terms of z-consistent planning is used to
study a new criterial convolution, which is helpful in scalarizing the construction of a set of Slater-optimal solutions.
For convex multicriteria optimization problems, the new convolution is shown to be related to the Karlin convolution.

2. MAIN RESULTS

Let us study the multicriteria optimization problem
fily) »min, yevY, iel={12,...,n}. (1)

In the sequel, without any special mention, we assume that all maxima and minima are attained. For this, it
is sufficient to require that the functions be continuous and the sets be compact. If no additional information is
available about the priorities of criteria, this problem is reduced to constructing a set of effective (Pareto-optimal)
or semieffective (Slater-optimal) points

P={yeY|Vz€Y fil2) < fily) Vi€ I = fi(2) = fi(v)},
S={yeY|VzeY Jecl:fiz) > f:(v)}- (2)

A large number of papers deal with the construction of these sets. The Karlin and Germeier techniques are
the classical construction methods [1-3].

The Relationship between multicriteria optimization and optimal z-consistent planning for the base model
of active systems [6-9] is studied in [4, 5]. The base model of a two-level active system with complete information
consists of a center and n active elements. For our purposes, it suffices to study a system with one active element.
The state of the system is determined by the state of the active element y € Y, where Y is the set of all possible
states of the active element. The center assigns a desirable state £ € Y to the element, whereas the element chooses
its state y € Y to match its interests best. The interests of the element are described by the stimulation function
f(z,y); so the decision that the element makes consists in solving the optimization problem

f(z,y) - max, yeY. (3)
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The center must adopt a plan z € Y with regard for its interests and the behavior of the element in the form of an
aim function ®(z, y). Different planning procedures arise, depending on the requirements that the center must take
into account while making a decision. The most well known and deeply studied is the z-consistent planning, which
is formulated as follows:

®(r,z) > max, z €Y, :cEX[I](f), 4
XE(f)={z €Y | f(z,y) < flz, ) Yy €Y}, (5)

where X[z](f) is a set of z-consistent plans of the element that are, by virtue of (5), advantageous in implementation,
Le., in choosing the state y € Y equal to z.

In [4, 5], multicriteria optimization is shown to be equivalent, in a certain sense, to the z-consistent planning.
In other words, if a function of two variables is defined by the expression

f(@,y) = min(fi(2) - f:(3),
we obtain the set-theoretic equality
x¥l(f)=s.
A key role in the theory of active systems is played by the gain function of the active element
¢(z) = max f(z,y), (6)

which is the value of the objective function of the optimization problem (3) of the active element for the plane z.
Furthermore,

z € XEI(f) = o(z) = f(z, ).

Using the gain function (6), for the multicriteria optimization problem (1), let us introduce the convolution

o(e) = max {min(5() - 50D} 7)

The following lemma holds:
LEMMA 1. A point x €Y is semieffective if and only if p(z) = 0.
The relation f(z,z) = 0 implies that p(z) > 0 for any z. Hence,

S = Argmi
rg min o(z)
and (2) is equivalent to the set of semieffective points

S = Arg Eéllx,u;lealgilz_rg;l(fi(z) = fi(y))-

Therefore, the vector optimization problem (in the sense of constructing a set of semieffective points) is
reduced to the scalar optimization problem

o(y) > min, yevY.
Example 1. Let us consider the multicriteria optimization problem

f1i(®) = (y+ 1)® — min,
f2(y) = (y — 1) - min,
Yy € R=(—o00,+00).

Convolution (7) for this problem is
#(2) = maxmin(fi(z) - f1(y), fo(2) - 2(¥)) = maxmin((z -y)(z+y-2), (z—y)(s+y+2))

2 2
= max —y° -2y - .
yER(x y ly — z|)
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The superdifferential of the subextremal function, which is concave in y, may contain a zero only at the points 1,
—~1, and z. Therefore,

. 0, -1<«z
ga(z:):ma.x(:cz—1—2|1——1:],:c2-1—2]1+1:[,0): (z+1)27 r g -1,
(z-12 z>

Example 2. Let us consider the two-dimensional multicriteria optimization problem

fi(y) = (n1 — 1)* + y3 — min,
f2(y) = ¥} + (y2 — 1)* — min,
y = (v1,92) € R

Convolution (7) for this problem is computed in the same way as for the previous example and is equal to

($1+I2_ 1)2/2> |$1—172| < 1)
pz)=q (m1-1+23, =z-z221,
i+ (z2—-1)?, z-z2<-L

Clearly, ¢(z) = 0 on the interval [(0, 1), (1,0)].

These examples show that the computation of convolution (7) is not easier than the construction of the set
of semieffective points. However, if Y is a convex compact and f;(y) are convex continuous functions, we can use
the following method to compute convolution (7). Let us note that if a constant equal to the minimum of a function
is subtracted from the function, the minimum of the new function thus derived is zero and the point of minimum
remains unchanged. Since every point z € S(f), by virtue of the Karlin lemma [1], can be determined as the solution
of the optimization problem

D o Nifi(y) > min, yev,
iel

for certain nonnegative z-dependent A; : }_ A; = 1, the convolution

¢(z) = min (ZAifi(z)—;gigz/\ifi(y)) ’ (8)

X205 n=1 \ igy iel
is self-evident. It is a simple matter to demonstrate
LEMMA 2. LetY be a convex compact set and let the functions f;(y) be convex and continuous. Then

convolution (8) is such that

$(z) 20, ¢(z) =0 < z € S(f).

Hence convolutions (7) and (8) are similar and, under certain conditions, identical. Thus, we have

THEOREM 1. Let Y be a convex compact set and let f;(y) be convex continuous functions. Then
convolutions (7) and (8) are equal to

¢(z) = ¢(=).

Let us note the following simple corollary:

COROLLARY 1. Let the objective functions fi(y) be defined as dist?(y, y;), where i € I = {1,2,...,n},
y €Y = R™ is an m-dimensional Euclidean space, y; €Y are certain fixed points, and dist(z, y) is a function of the
distance between two points. Then their convolution (7) is p(z) = dist? (z, A), where the set A = conv(y1,y2,.--,Yn)
is the convex shell of the point set {y1,ya,...,Yn}

Theorem 1 defines a relationship between convolution (7) and the Karlin convolution.
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Example 3. The example below shows that convolution (7) for a one-dimensional case may be nonconvex
even if the functions f;{y) are convex. Let

fiy) =lyl, fo(y) = ly—1]/2.
Then

o(z) = Hfén1 max(afl(x) + (1= a)fo(z) — afi(y) = (1 — a)fa(y))

= min {a(~lz~ 11/2+|z]) + o - 1}/2 + max(~als] - (1 - @)}y = 11/2)}.

Since this function is convex and piecewise linear in y, it attains its maximum at the bounds of the interval [0, 1].
Therefore, the last formula can be rewritten as

min {~a(z = 1|/2 ~ |a]) + |z - 1}/2 + max(~a, ~(1 — )/2)}
= |z—1]/2+ min {—o(]z —1]|/2 - |z| + 1/4) + |1 — 3a|/4 — 1/4}.
a€[0,1]
Since the function is piecewise linear, its minimum is attained at the points 0, 1, and 1/3. Hence, the last formula

can be expressed as
|z —11/2+ min{0, —|z = 1|/2+ |2/, (1/3)(~|z — 1|/2 + |z] - 1)}
= |z — 1{/2+min{0, (1/3)(=|z - 1|/2 + |z[ - 1)}.

This equality holds, because the second term is always less than the third term. Finally, the function can be expressed
as

(x—1)/2, z2>1,
0, 0<z <1,
w(e) = —2z/3, -3<z<0,
(1-=z)/2, z<-3.

The function ¢(z) is obviously not convex.

3. CONCLUSION

Convolution (7) reduces the vector optimization problem (in the sense of constructing a set of Slater-optimal
points) to a scalar optimization problem. Therefore, multicriteria optimization is reduced to computing the criteria
convolution (7). The examples given in the paper show that the computation is not an easier problem than the
problem of vector optimization. Nevertheless, construction of this convolution is of great interest, because it, being
the gain function of the active element, is the obvious convolution for the base model of active systems. There-
fore, this convolution, if reformulated as a base model of active systems, is helpful in multicriteria optimization.
This reformulation may also yield other interpretations in multicriteria optimization, which require independent

investigation.

APPENDIX

Proof of Lemma 1.
z€S < zeXF(f) < olz)= f(z,z)=0.

Proof of Lemma 2. The first property is self-evident; therefore it suffices to demonstrate the second

property.
1. Let z € S(f). By virtue of the Karlin lemma, for some X; > 0: 5~ A; = 1, we have
i€l

= min ¥ Afi
T argyeyg fi(y)
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Consequently, for these \;, the subextremal expression in formula (8) is

D Xfi(z) —min > Aifi(y) = 0.
el ve¥ 1o

Therefore, since ¢ > 0, for this z we find that ¢(z) = 0.

2. Conversely, let ¢(z) = 0. Consequently, for some A; > 0, 3~ ; = 1, the subextremal expression in formula
i€l
(8) is equal to

i fi(z) — mi Fily) = 0.
D Xfi®) —mind Aifi(y) = 0
i€l el

Hence,
= I Aifi(y).
ooy Sl

Now, by the Karlin lemma, we find that z € S(f). This completes the proof of the lemma.
Proof of Theorem 1. First, let us rewrite the function ¢(z) as

z) = min A; fi(z) — min Aifi = min max Ml filz) — fi(y))-

¢( ) Ai?O,Z Ai=1 (; f (17) yeY zezl f (y)) )\;ZO,Z Ai=1 yE%’ Z‘:’( (f( ) f( )))

Using the minimax theorem [10], which holds because the function 3~ A;(fi(z) — fi(y)) is concave in y and convex
i€l

in A, we find that

o=, min | mad ()~ A =z min S SOu(i(e) - i)

A;;O,Z,\;:l YyEY : ,\;>O,ZA,_ el

= max {r;gp(fi(x) - fi(y))} = ¢(=).
This completes the proof.

Proof of Corollary 1. Since the functions fi(y) are convex, the conditions of Theorem 1 are satisfied.
Therefore

e(r)=  min (Z Aifi(z) — irél}r} Z /\ifz‘(y)>

)\;ZO,Z ;=1

i€l iel
= min Ai{le—yi,c—y)—min Yy Ny—w,y—wu
,\.-20,2,\,-:1<£EZI e-w ) erg v -vny y,))
= min <z—Zz\5yi,iv—Z/\iyi>
Ai20,) 0 Ai=1 iel el

= dist>(z, conv{yy, 2, .. ., yn})-

Here the symbol (-, -) denotes scalar multiplication. This completes the proof.
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