REPRESENTATION OF MATRIX CONVOLUTIONS BY GENERALIZED ADDITIVE
CONVOLUTIONS IN INTEGRATED EVALUATION

E. V. Umrikhina UDC 519.61:65.01

We consider the representation of a matrix (logical) convolution of local evalua-
tions in the form of a generalized additive convolution in integrated evaluation
problems. Necessary and sufficient conditions for exact representation are
given. Two approaches are proposed to solving the problem of exact representa-
tion. An approximate solution is sketched.

1. Introduction

In integrated evaluation problems, the choice of the procedure for aggregation (convo-
lution) of local evaluations into an integrated evaluation constitutes an important inde-
pendent problem alongside the problems of choosing a system of evaluation measures and de-
veloping rules for the application of integrated evaluation in management practice.

The choice of the aggregation technique is determined by the local structure of the
system of measures, the interrelationships between local and integrated evaluations, the
scales on which the evaluations are expressed, etc.

The suitability of specific aggregation techniques in particular integrated evaluation
problems and questions of interchangeability of the different techniques are studied in
the theory of active systems. One of the problems, in particular, is the representation
of matrix (logical) convolutions by additive convolutions. Additive convolutions are simpler
and are widely used in practice, whereas matrix convolutions are easy to visualize, simple
to correct, provide a clearer picture of the politics of the person (organ) performing the
evaluation, and constitute a universal form of representation of convolutions of any kind
f1-3].

The problem of approximate representation of the matrix convolution by an additive
convolution with minimum approximation error was presented and solved for a number of particu-
lar matrix convolutions in [4]. The maximum approximation error of a monotone matrix con-
volution by an additive convolution was also estimated in [4], where it was found to be
quite substantial.

A fairly simple convolution was proposed in [4], leading to a smaller approximation
error than the additive convolution: this is the generalized additive convolution (GAC),
i.e., an additive convolution with a nonlinear scale transformation. It was shown in [5]
that some matrix convolutions have an exact representation in the form of GAC, while their
approximation by an additive convolution gives a substantial error.

Some problems associated with the analysis of GAC were formulated in [4, 5]:

1) exact representability of an arbitrary matrix convolution in GAC form and methods
of construction of such GAC;

2) approximate representation of an arbitrary matrix convolution in GAC form with mini-
mum approximation error;

3) estimating the maximum approximation error of an arbitrary matrix convolution in
GAC form.

The first two problems are considered in the present paper.
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2. The Problem

Let C = Hcijn be a positive monotone logical convolution matrix, i = I, n, j = I, m.
Each element cijj of this matrix is an evaluation by some generalized measure given that the

evaluation by one local measure is kj! and by another kj2, i=1,n, j =1, m.

Monotonicity of the matrix implies that Cij » Cij-1 for i =1, n, =2, mand cij 2
Ci-1j for i =2, n, j =1, m.

Monotonicity of the matrix follows from the substantive interpretation of the integrated
evaluation problem. As a rule, the evaluation measures are chosen so that a higher value
of the measure corresponds to a higher (not lower) evaluation, and a higher evaluation by
local measures corresponds to a higher (not lower) integrated evaluation.

We moreover assume that the matrix C has no equal rows and columns, i.e., V, d; i Cij,
i=2,n, j=1, m, for V,Hd, c™cy_y, i=1, n, j=2, m. This property of the matrix is again
quite natural: if there are equal rows (columns) in the matrix, the corresponding local
evaluations may be combined, reducing the number of scale gradations and passing from the

original matrix to a smaller matrix.

In case of generalized additive convolutions, the integrated evaluation by two local
measures is ¢ (u; + Vj), where uy is the value assigned to the i-th evaluation by the first
measure, vj the value assigned to the j-th evaluation by the second measure, i = 1, n, j =
1, m, uy, vy are real numbers, and ¢ is some nonlinear scale transformation.

The problem of representing a matrix convolution in GAC form involves finding the num-
bers uj, i =1, n, vi, j =1, m and a nondecreasing function ¢(w), w=u;tv;, such that

&€ = max | Ci—@ (ui-{—z;j) , - min (1)
1,
or
+
& = max 1_M — min. (2)
i Cij

This formulation combines the first two problems of {4, 5]. 1Indeed, if ¢ or & are
0, we obtain an exact approximation of the matrix convolution by a generalized additive
convolution: if €, & > 0, then we obtain a minimum-error approximation.

Let L be the set of index pairs of the matrix elements of C such that (G, 1), (k,s)]eL,
if and only if

Ci™> Chs. (3)
Consider the system of linear inequalities
utvi>utv, VI, ), (k s)]eL. (4)
THEOREM 1. For exact representation of a positive monotone matrix C = HCin, i=
1, n, j =1, m by a nondecreasing function <p(ui + Vj), uj, vj are real numbers, i = 1, n,

j =1, m, it is necessary and sufficient that the system (4) has a solution.
The proof is given in the Appendix.

Thus, by Theorem 1, the original problem can be reduced to solving a system of linear
inequalities (4), and if the solution (uw’, v’) exists, then we can always construct a nonde-
creasing @(w) such that ¢(u/+v;")=c;

To this end, arrange the elements cjj in nondecreasing order and construct the corre-
sponding sequence {wij*}, Wij* = uy® + vj*. Isolate subsequences {wij*}q such that each
subsequence {wij*}q corresponds to the same value Cijq =c4, q = I, Q, where Q is the number
of values Cij> cdt! > ¢4, Let {lqg be the set of index pairs (i, j) corresponding to c9 and
{Wij*}q. The subsequences constructed in this way are disjoint because if cd%! > ¢4, then
(Wij*)q+l > (wij*)q for all (i,/)¢=Qq (i, /)¢1€Q,.,, since Wij* = u* + Vj*, and (0, V) is a

solution of (4). Thus, min w;> max wy".
= (1129,
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Therefore the function ¢{u’+v") defined by

@ (ultv)=cs, if (i,j?:llnr; wy'Sw;;"< (irllj?)aex;lq wy', g=1,0,
is nondecreasing and satisfies the equality e¢{u +v") =cy
Note a number of properties of solutions of this problem.
Property 1. The sequences {uy}, {Vj} are strictly increasing, i.e., uj > Uj-q, Vi 2
Vi-1, i=2,n, j=2, m

Property 2. Let (u, V) be a solution of the system (4). Then o=(au'+b’, av’+b")
is also a solution of the system (4) (a > 0, by' = b'j4,, i =71, n — 1, by = b"j41, J =

I, m—1; by', bj” are real numbers).

By this property, if there exists a solution (u",Vv') of the system (4), then there also

exists a solution . (w, V), such that u; = vy, = 0, uj, vi> 0, i =2, n, j =72, m.

Property 3. Let z'=(u',v') and 2°=(u%,Vv’) be two solutions of the system (4). Then
Z’=oz'+pz? is also a solution of the system (4) (a, § > 0).

Property 4. Let C be a symemtric matrix, i.e., m = n and Cij = Cji- If there exists

a solution of the system (4), then there also exists a symmetrical solution of the system

(4), i.e., ui* = Vj”, i=1, n.

Properties 1 and 4 are proved in the Appendix, whereas properties 2 and 3 are checked
by substituting w and z* in (4).

Using Property 1, we can somewhat simplify the system of inequalities (4). We intro-
duce the additional constraints

ui> iy, i=2,n,

(5)

Ui>vi-ia ]=27 m.

Consider the set L' ¢ L of index pairs [(i, j), (k, s)] & L such that i > k, j < s or
i <k, j>s. The system of inequalities
wtv>uctv, VIG,7), (k 5)]eL’ (6)
combined with the inequalities (5) is equivalent to the system (4), yet it is simpler to
construct when solving the problems for a particular matrix.

3. Methods of Solving the Exact Representation Problem

The simplest way is to reduce the problem (5), (6) to a basic linear programming prob-
lem. To this end, we introduce the optimality criterion

Untvm—min (7)

and rewrite (5), (6) in the form of nonstrict inequalities

Ui~ue e, =2, n,
V;—Uj_122€, ,7:27 m, (8)
(u,-+v,-)——(uk+vs)>8 V[(ir j)7 (k1 S)]EL,,

u, v;=20, i=1,n, j=1, m, e>0.
By property 2, the system of inequalities (8) may be replaced by the following system:

wtv~(mtv) =1 V[ ), (k s)]L, (9)
u,->u,-_1+1, U,‘?Uj_.“ l=27—7;:]=2_,_—”l, (10)

Ui, Uj?O, i=17 n, j=17

The matrix C is conveniently visualized by a m x n-vertex graph G(C) whose vertices
correspond to the matrix elements and arcs to the inequalities (9), directed from larger
to smaller element. The constraint system (9)-(10) may include redundant inequalities.
These inequalities are removed in the following way: if several arcs leave some vertex
of the graph G(C) leading to vertices that correspond to elements of the same row (the same
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column), only the arc to the vertex corresponding to the element with the largest column
(row) index is retained and the other arcs are removed. If arcs from several vertices
corresponding to the elements of the same row {column) enter one node, then only the arc
originating from the vertex with the least column (row) index is retained. The inequalities
corresponding to the retained arcs, combined with the constraints (10), constitute the mini-
mum constraint system without any redundant inequalities. The inequalities corresponding

to the deleted arcs are satisfied automatically given this constainst system.

As an example, consider the matrix

1 2 3 3
2 2 3 4
C=\2 3 3 4
3 3 4 4

The graph G'(C) corresponding to the minimum system of inequalities (9) is shown in
Fig. 1. The system of inequalities corresponding to the arcs of the graph G'(C) is

u1+U3_(u2+U2)>1’
wtvi— (u.tv.) =1,
wtvs—(ustv)=1,
u,tvs—(utv) =1,
u2+UA"‘(uL+U2) 217
u,tv.—(u,tvs)=1.

The solution of (7), (9), (10) in this case is uv; = 0, u, = 1, ug = 2, u, = 3, v, =
0, v =1, v3 =3, v, = 5.

The corresponding function ¢ (w) has the form

1, if  u;4v;=0,
2, if 1<y + ;<2
P +v)=13 ;i 3§ui+vj‘<5’
4 if 6<Cu 4 v;<K8.
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Fig. 5

In general, the problem (7), (9), (10) can be solved by standard linear programming
procedures.

Let us consider another approach to the solution of the problem.
Given {Vj} it is required to find {uj}. From (9) we obtain

w—uws<vi—v.~1 V[ 7)), (k s)]eL’. (11)
Let Ljx be the set of pairs (j, s) such that [(i, j), (k, s)] = L'. Define Lik =

min (v;—v,~1). For a n-vertex graph H(v) with arc lengths 2iks ky, i = I, n. Write (11)
(J, SYELyy,
in the form -
u—ui<ly,, k.i=1, n. (12)
The conditions (12) are typical constraints in the problem of potentials of graph
vertices [6]. A necessary and sufficient condition for solubility of the problem of po-
tentials is that the graph has no circuits of negative length.
A
2

2 3
(1Y)
3 4

The graph G'(C) corresponding to the minimum system of inequalities (9) is shown in
Fig. 2. The graph H(v)} is shown in Fig. 3.

Example. Let the matrix C have the form

LW I =
[SYUAE N ]

The lengths %£jx are shown for the corresponding arcs. The graph H(v) contains three
circuits,

(0,215 (1,3, 42, 1; (1.3, 2 1).
The condition of nonnegativity for the circuits of the graph H(v) has the form
Ux_Uz‘Uz‘}‘U;;.,,
01—2U2_03+2U4>4’

=202 F vty =4
ki
—v, v, =3,
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Setting v, = 0 and using (10), we obtain the solution
vi=0, wv,=1, vy=2, v,=>

Let us now determine the potentials of the vertices of the graph H(v) with the arc
lengths from Fig. 4. We obtain

u=0, u.,=2, u,=4, u,=6.
Thus, the solution of the problem in this case reduces to solving a system of linear
inequalities in the variables {vj}.

We can similarly construct the graph #(v) which is the dual of H'(u) in a certain
sense, and solve the system of inequalities in the variables {uj}l.

Thus, the graph H'(uw) for our example is shown in Fig. 5. This graph has 3 circuits
(1, 2, 3, 4, 1), (2, 3, 4, 2), (3, 4, 3).

The correspbnding system of inequalities for the circuit lengths has the solution
up =0, u; =2, u; = 4, u, = 6 and the vertex potentials are vy, =0, v, =1, v =2, v, = 5.

The corresponding function ¢(w) has the form

;, if 0<Cu; + vy,
o120 i 2y < 4
¢ (ui +vi)= 3, if 5<u,~+v;§7,

4, if 8<Cu; + v, 11,

4. Solution of the Optimal Approximation Problem

If the system (5), (6) is unsolvable for the matrix C, this means that the given matrix
cannot be represented exactly by a generalized additive convolution. In this case, we solve
the problem of approximate representation with minimum approximation error. Theorem 2 below
permits solving this problem by solving a sequence of exact representation problems.

Let L,." be the set of index pairs [(; j), (k, s)}€L’, such that Cjj — Cks > 4p and the
system

UiPUiey, Ui Umy, =2, 0, [=2, m, (13)
ui+v5>uh+vs "X[(Lv ])1 (k1 S)]EL'” (lzl)

contains no redundant inequalities.

Here A,=min A,‘jks, 1<r<B, A,’,'RSZC{;,‘“C;;S. Ao=0, Ar<max A.‘jks.
Ly L

We will show that {A,.} is an increasing sequence. Since By = min(cij = cgg)» and for

VI j), (k. s)]s=L” we have Cij — Cks > Or-1, then glin(cij—chs)>Ar_l,i.e., Ay > Bpoq,
r~1i
1 <r <R.
THEOREM 2. Let C = Hcijﬂ, i=1, n, j =1, m be the convolution matrix, r¥ the minimal

r such that the system (13)-(14) has a solution (W, V'), r* # 0. Then there exists a nonde-
creasing function ¢'(w) such that e'=max|c;—~¢"(u/+v;)|= min max|c;—q@ (uitv;} {=A/2.
i (o i,j

Theorem 2 is proved in the Appendix.

By Theorem 2, the solution of the problem of approximate representation of the matrix
convolution in GAC form with minimum absolute approximation error reduces to sequential
solution of the problems (13)-(14) for 0 < r s r* until for some r* (0 < r* < R) we obtain
the solution(u’, v'). Defining ¢'(w) as in the proof of Theorem 2, we obtain an approxima-
tion with minimum absolute error €% = Dpx/2.

The algorithm converges in finitely many steps, since in the worst case (r'=R, Ar=maxA;*)
Iz

the set Li”=g and the problem (13)-(14) reduces to the problem (13), which is always solvable.
As an example, consider the matrix
1 2 6
C=1|3 5 7].
4 8 9
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TABLE 1

Wij=w; 0 1 ] 2 ] 3 [ g e
WH {thst) 410 4ot 2| SR
L] > &y L 12) : (2: 2) (3; 3 ~ z
5 3 4) 14 8) Y (2588) | (Bu DB S
¢ i 2 {e2 T s ! ;
= S e % 5] | 6  § S ) 9
- : - & 5 4 AE e
(107) 1 it b
o(w 25 9% s = 5
; R A4S 45 81 15 :d.25 ! 9

The system of inequalities

(5)-(6) reflectin
t . . . .
of Thba matbe s B F e 2o 8 the conditions of exact representability

ux>u3>uh v3>v2>vh

Ut >y 4y, (15)
Ust v, >y 41, (16)
Ust0,>y,+p,, (17)
Urtvg>y,+p,, (18)

Adding (15) and (16), (17) and (18) ang setting u, = v; = 0, we obtain a contradiction.

2us>u,,  2u.<u,,

i.e., C has no exact representation in GAC form,

: i nEE: and we therefore seek an optimal approxima-
tion with minimum absolute error.

2 £ Susr ~ o T s
Since Ar—gﬁn(ﬁi ¢u)=1, then L) is the set of pairs [(i, j), (k, s)] such that

L%
cq_c;:Af=1 and the system (13)-(14) contains no redundant inequalities. The system (13)-
(14) of this problem for r = 1, Ar = 1 has the form

Ws=> o>y, Vs> 0>y,

u3+vl>uI+vz,
u|+U3>u3+Uz,

T R o
This system has the solution u; = 0, u, = 1, u; = 3, vy, =0, v, = 2, v3 = 4. The solu-
tion is obtained already in step 1, i.e., r* = 1, €% = A,.%x/2 = 4,/2 = 0.5. The corresponding

function ¢'(w) is shown in Table 1.
The original matrix C is indeed representable in GAC form with error e* = 0.5.

In conclusion note that the results reported in this paper enable us to select a
generalized additive convolution which ensures the most accurate representation of the given
matrix convolution in specific integrated evaluation problems.

Further theoretical studies of GAC will require estimation of the maximum approximation
error of an arbitrary matrix convolution represented in GAC form, analysis of the existence
conditions of integral solutions, extension of the results to the case of n local measures.

APPENDIX

Proof of Theorem 1. Necessity. Let du¥ v;* i=1, n,j=1 m, ¢*(w), such that C;=g*(@u*+uv;*)
for vij and let [G,j), (k s)]leL. 1If Cij > Ckss then @*(u*+v;*)>¢*(ux*+vs*) and by monotonicity

of ¢*(w)s u*+v;*>up*+v,*.

Sufficiency. Let the system (4) have the solution (u* v¥. Define the function ¢*(v)
at the point w = uj* + vi* as follows: @*(ui*+v;*)=ci;. ¢*(w) is nondecreasing since (u* v¥*)
is a solution of the system (4). Q.E.D.

Proof of Property 1. Since the matrix C has no equal rows, then forv; @jciy>ciyj i=2n,
j =71, m, and therefore uj + Vi > ujoy + Vi, i.e., uj > uj-;. The proof for columns is
similar.
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Proof of Property 4. Let (u,v) be a solution of the system (4). Then w’=v! and
vi=u' 1is also a solution by symmetry of the matrix C. But then by property 3.

is also a solution.

Proof of Theorem 2. Let (u*, v¥) be the solution of (13)-(14) obtained for some r¥*.
Consider the matrix W¥* = wajﬂ, wfj =uf — Vﬁ. Arrange the elements W*ij in nondecreasing

order and number them consecutively. We obtain the sequence {w¥*p} = (w¥,, ..., w¥,

*

w*T), where uf::nnnw ,wT_.maxw:,

T=mxn,uf>uwf, t=27. Construct the corresponding se-

quence of values {c(lj)t {ct}.

Since r* # 0, i.e., the condition of exact representation does not hold for the matrix
C, there are pairs (t', t“), t'" > t', such that c¢r > cgn, but w¥pr < wi" or c¢" > cp', but

o=

win = w{'. Consider one of these intervals [t', t"].

The interval [t', t"] may be such that t" = t' + 1, i.e., t' and t'" are two neighboring
points. But possibly there exist (=([r, "], tstt, t=". Let 1 be the set of pairs (&, ) e[, 7],
such that ctl > cy2, but w¥gr € w¥t2 or cg2> cil but w¥ 2 = w1, Let Arﬁzn?x[qfacv|:]%f__

ctq1|. Since r* is the minimal r for which (13)-(14) has a solution, and {A,} is an in-
creasing sequence, we have 0 < Aro < Ay,

For all uf,t=[¢,t"] let o* (w,*) = min (¢, Ctox)+é§- In this case, e[, tl]z:—nf%xmlc‘_w*(w?”:
7?::?ﬂn)21?xtﬁq-—w(Wbl, since any other nondecreasing ¢(u}), defined on [t", t'] cannot
¢ lrt* =[t", t

ensure et", t'] < e¥[t", t'].

Let tU be the nearest number greater thant'" such that ctu>miﬂ G

tL the nearest

A
number smaller than t' such that CtL<iHHn@m,cm)+.7F. For all t" < t < tU, tb < ¢t < ¢',

T

A . B
also define *(v*) =min(c,, w ey -5,  then e* 1L Y= max e —ox(wX) | = —2'-= min  max |c,—q(w¥ |
et U e wpk) sl fUg

P* (w,¥) is similarly defined on all intervals of this type.

On all other intervals, where Cett > Cl, Welt > Wel, OF Cg!f = Cpl, Wit > wet, set o¢*
(’-’Q)“U

The function @*Wf) defined in this way is nondecreasing on the entire set of values

(i}, 1 <t<CT,and &%= e [1, T) = max | ¢, — g% (wf) | =maxAp = min  max |c,— @ (w¥)].
t=(1, te[1 T1] ¢ (w *)t»—[l ]

Since r* is the minimal r for which (13)-(14) has a solution, then for r = r¥ — 1 no
such solution exists, i.e., there exists at least one index pair [(i, j), (k, s)] such that
(@) k) &Ly, 1.e., Ci§ = Ckg > Apsoy, Cij ~ Ckg S Oy OF Cjj ~ Cks = Op%, and w¥jj <
w*ks.

Let (i, j) correspond to t! and (k, s) to t2, t2 > t!. Thus, on some interval (t', t')
there exists a pair of points (t!, t2), t2 > t!, such that Cel > €2, Cpl — tg2 = Ap.

Since {4y} is an increasing sequence, then Am:=H?XA,=:Aﬂ for the interval [t', t"]

and at the same time A, — maxA —

A
,=max A, SO that eg*—g*[1, 7]= min max le,— o (W) = *

.
[1,7T) [1.T] @ (wpk) t<(1, T 2
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Assume that (W% ¥¥*) is a nonunique solution of (13)-(14) for r = r¥, i.e., there exists

another solution (u*, w*) distinct from (u', v}). Construct o!(w}) similarly to ICHE Then
max e, —q'(ul)|= min max |c,— qul)] = A and so ¢* =ﬁ: min - max e, —q (2, L)) Q.E.D
=iy ! ! @@y t=(1, 1] ¢ plm="as 2 Ty by T R M
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