DESIGN OF A COORDINATED MANUFACTURING STRUCTURE

M. M. Medetov, R. D. Raimbekov, and K. S. Sagyngaliev UDC 658.5.012.1

We consider the problem of designing a coordinated manufacturing structure. A
method of solution is proposed. Conditions are found for the problem to be epi-
coordinated and a corresponding proposition is proved. It is shown that the
models and methods of the aggregation problem [1] also apply to the design prob-
lem of coordinated manufacturing structures. An example is solved.

1. Introduction

A manufacturing structure (MS) is a collection of manufacturing subdivisions (MSD),
including their composition and the interrelationships between them. Most approaches to
MS optimization rely on "top-down'" description of the MS, from plant to shop, from shop to
line, etc. [2, 3]. The authors use economic or technological criteria which generally express
only the preferences of central management. We refer to central management as the headquarter
[4]. But the MS is a collection of MSDs, where the local managers seek to optimize the MS
of their unit, which does not necessarily ensure optimality of the overall MS. Below we
consider the problem of coordinating the headquarters preferences with the preferences of
the managers of groups of MSDs (e.g., shop foremen). These groups are called divisions.
The set of MSDs subordinated to one divisions. The set of MSDs subordinated to one division
is called a manufacturing block (MB). As an example, consider a MS which is optimal from
the headquarters' viewpoint. There are no conflicts of interest if the MSs of different
MBs are also optimal from the divisional viewpoint (the case of epicoordination) [4]. But,
in practice, the divisions often operate under a variety of conditions which are not optimal
from the divisional point of view. The divisional payoff is usually the same (e.g., the
salary of the shop foremen). In many cases, the payoff of overloaded divisions is lower
than the payoff of divisions which operate under easier conditions. The difference in payoff
is attributable to the fact that deviations from plan are more likely in overloaded divisions,
while the manufacturing bonus is usually determined by the closeness of actual performance
to plan. These cases indicate that a MS optimized without regard to the divisional prefer-
ences will not produce optimal operation of the entire manufacturing enterprise.

In this article, we propose an approach to MS design which attempts to coordinate the
preferences of the headquarters and the divisions.

2. Substantive Interpretation of the Problem

Consider a manufacturing system consisting of headquarters, n divisions, and m MSDs

(n < m). The headquarters decides on the MS design by optimal assignments of the MSDs to
the divisions. Each division attempts to acquire tightly linked and efficiently operating
MSDs. In this way, the interdependences between different MBs are minimized and their oper-
ating conditions are improved. The divisional problem thus can be stated in the following
term: the division seeks to maximize its own divisional payoff by choosing "good'" MSDs sub-
ject to local technology constraints, e.g., the total area needed to accommodate the MSDs
should not exceed the total manufacturing area allocated to the division by the headquarters,
etc.

The headquarters uses the information about the solutions of the divisional problems
to identify sets of coordinated MSDs. The problem of designing a coordinated MS with com-
plete information at the headquarters [4] is thus stated in the following form: the head-
quarters seeks to design a MS by assigning to each division various MSDs from a set of co-
ordinated MSDs so as to minimize the headquarters functional subject to the set of local
technology constraints (the constraints on the divisional states) and the following global
constraints: 1) each MSD should be assigned to one division only; 2) only those MSDs may be
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assigned to a division which satisfy the divisional technology constraints; 3) the total
cost of implementing the solution should not exceed the allocated resources.

Some examples of headquarters objective functionals are given in Table 1.

3. A Mathematical Model and Solution of the Problem

We start by introducing some notation. H(x) is the headquarters objective function;
hi(y:) is the payoff function of the i-th division; Yi is the set of alternative MSDs which
may be assigned to division i given the technology constraints; xi = (xij), where x; is the
plan vector assigned by the headquarters to division i; G:(x;) is the vector function of the
technology constraints; b, is a column vector; xij = 1, if the j-th MSD is assigned by the
headquarters to division i, xij = 0 otherwise; yi# = (yij), where yij = 1 if the j-th MSD is
preferred by the division i, yij = 0 otherwise; xi(xi, yi) is the function of side payments
independent of the plan, xi(xi, yi) = Ai if i # i, xi(xi, yi) = O otherwise; Aj are the
side payments earned by compliance with the headquarters decisions, and their sum is bounded

by some given number A,; S is the set of coordinated MSDs,

Here Si is the set of coordinated MSDs for division i,
Sy = {x; | kg (x;) > max [h; (¥:) — % (%4, ¥)]}- (1)
¥iSYy
The model of the design problem for a coordinated MS now can be written in the following
form:

(2)

H (x) > min,
G((Xi)=bi, i=ﬁ, (3)
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n (4)

Zij = 19 j=1,m,

i=1 :
inj>1! i=.—,?l«, (5)
j=1

xi'ie{or 1}’ l=m7 ]=11 m, (6)
h{(X{)> max hi(Yi)_}"i’ i=m, (7)

7=y

n

Z"&M' (8)

The constraints (7) are obtained from (1) using the structure of xi( xi, ¥i) [4]; Eq. (4)
implies that each MSD is assigned to only one division; relationship (3) is a divisional
technology constraint; the inequality (5) indicates that at least one MSD is assigned to
each division.

Problem (2)-(8) is solved by an algorithm which uses subalgorithms exploiting the spe-
cific features of each concrete problem. Note tht the accuracy of the algorithm depends
on the particular subalgorithm employed.

Let X be the set defined by the constraints (3)-(6). We will describe the k-th step
of the algorithm, initially setting k = 1, Rk = ¢.

1°. TFind hi* = maxhi(y,) ' over y<& Yi, i =1, n.

2°. Find x* = argminH(X) over x= X Rk by one of the standard methods, e.g., the method
af E51. Rp+1 = R U {x*}.

3°. Find Ai by the formula
hi=h'=hi(xs), i=1 n. (9)

4°. Check the constraint (8); if it is satisfied, then end; else k = k + 1 and go to
g

Let us consider the problem (2)-(8) with

A (x) >max (10)

when the function 1T(X*V:i2;hi@f) where  x'=(x;") is a solution of problem (10), (3)-(6).

i=]1
Clearly H(x) and H'(x) are defined on the same partially ordered set X.
For the problem (10), (3)-(8) we have the following:

Proposition. Let H'(x) be a monotone function of H(x) [6]. If the problem (10), (3)-
(8) has a solution, then the problem is epicoordinated.

The proof is given in the appendix.

Examples of problems and functions which have the monotonicity property are-given in
the next section.

Note that:

1) simultaneously with a coordinated plan of the problem (10), (3)-(8), we determine
the minimum total side payments;

2) the proposition remains valid when the problem (10), (3)-(8) involves simultaneous
minimization of the headquarters and divisional objective functions;

3) the proposition remains valid when the division solves the knapsack problem, which
is the most general integer programming problem [7];
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4) the results are also applicable to the problem (2)-(4), (6)-(8). Assume that a solu-
m
tion of this problem exists and that for some divisions lglxv=:0, iel,, [Ill < n. This
=1
corresponds to the case when the number of MBs in the MS should be reduced;

5) the problem

H(x)-—>max,
g.-(x.-)<b.~, i=1,—n, (11)
N - (12)
hy (%) > max (A (y;) — xi (Xi, ¥3)), i=1,n
ﬂeYi (13)

where Yi is defined by the constraint (12), gi(x:) is the technology constraint function of
the division i, and x are possibly continuous, is epicoordinated in the following cases:

a) H'(x) is a monotone function of H(x), xi(xi , y) are penalties of type NP [4];
b) hi(x;) are monotone functions of gi(xi), the constraint (12) is active for the opti-

mal solution of the problem (11)-(12), and xi(xi, Yi) are arbitrary penalty functions.

4. Relationship with Aggregation Problems

The design problem for MS and for organizational structures is often solved using models
and methods of some aggregation problems. The design problem may be restated in terms of
the aggregation problem and solved accordingly. A specific feature of the design problem
is that each pair of MSDs (j, %) is characterized by a number aj%, which is interpreted as
the "association strength" or a measure of "closeness' of the two MSDs, i.e., the given set
of MSDs is characterized by the matrix A = (ajg)j,g=1m, which we call the association matrix.

The mathematical model of the problem restated as a 0—1 programming problem coincides
with the mathematical model (2)-(8). The problem is solved by an algorithm which differs
from that of Sec. 3 in that x'in step 2° is determined by one of the methods used for aggrega-
tion problems.

While the division determines the hj* on its own association matrix, the headquarters
solves the MS design problem by first partitioning the MSD set into MBs and then choosing
the best assignment of MBs to each division. The assignment problem of MBs to division sub-
ject to additional constraints has the following form:

n n (14)
H(z)= Aipz4—>min,

b}

zp=1, r=1,nm (15)

i=1
Zzi,:A, i=1,n, (16)
Te==1
G/ (z)<b;, i=1,n, an
2={0,1}, r=T,m i=1,7, ' (18)

where Ai = (Air), Air are the side payments to the division i associated with the assignment
of the MB r to this division; z= (2i), z{ = (zir), where zir = 1 if the r-th MB is assigned
to division i, zir = 0 otherwise; Gi'(zi) is the vector function of technology constraints.

We describe the k-th step of the algorithm, initially setting k = 1, Rk = ¢.
1°. Find hi* = maxhi(yi) over w&Y, i=1, n,

2°. Using one of the methods of solution of aggregation problems, find x* = argminH(x)
over x& X\ Rk, Rk+; = Rg U{x*}. Here i is the MB index.
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3". Solve the problem (14)-(18). Check the constraint. If it is satisfied then end;
else k = k + 1 and go to 2°.

Aggregation problems are mostly solved by heuristic methods. Therefore, the accuracy
of the proposed algorithm may be improved only by increasing the number of enumerated alter-
natives. Directional enumeration is ensured by selecting branching vertices which correspond
to the best values of the objective function. The number of branching vertices for n = 2
is given by the formula 2m"! — 1, Ip order to speed up the algorithm, we may choose in step
3° only those solutions which satisfy the constraint (17).

Table 1 presents some functionals used in the aggregation problem. Let us examine them
more closely. If the functionals J,, J5, J,, J,, J; are defined on the same partially ordered
set X, then they are monotone functions of each other, since any of them may be obtained
from any other functional by monotone transformations [6]. Consider the following examples:
a) The functional J, is transformed to J, by subtracting a number o (the threshold) from
each element of the association matrix and, conversely, J; is obtained from J, by adding
the number o to each element of the association matrix; b) decompose the functional J, into
terms; each of the terms is a monotone function, If we now form a linear combination of
the terms with the coefficients ki, then we again obtain a monotone function. These trans-
formations reduce the functional J; to: a) Js; when ki = 1/Ni(Ni — 1); b) J, when ki = 1/Nji,
etc. Other transformations can be performed similarly. Note that the monotonicity property
is symmetrical for the functionals of Table 1.

Thus, using one of the functionals from Table 1 as the headquarters objective function
and the components of some other functional as the divisional objective functions, we conclude
that if the problem (10), (3)-(8) has a solution, then it is epicoordinated.

The functional J, is not a monotone function of the other functionals in Table 1. When
it is paired with any of the functionals J;, J3-Jg, we have to solve the problems (2)-(8)
or (10), (3)-(8) by the above algorithm.

Note that the results may be applied to design a coordinated MS with specialized MBs
and MSDs organized for group processing of parts and group manufacturing processes [2].

The results of this paper will be applied to design the MS of the subdivisions in one
of the instrument-building plants.

5. Conclusion

We applied the principle of coordinated planning to solve the MS design problem. The
results may be generalized to the design of MS in multilevel systems. Another possible ap-
plication of our results is to the design of coordinated organizational structures [8]. The
problem can be solved by methods developed for the more general coordinated planning problem
with 0-1 variables, which is the subject of future research and requires special analysis.

APPENDIX

1. Proof of Proposition. Let x* be an optimal solution of the problem (10), (3)-(6)
and let A* be given by (9). Then, in order to prove the proposition, it suffices to show
that if the constraint (8) does not hold for x* and A%, then the problem (10), (3)-(8) has
no solution.

Summing (7) over all i, we obtain

imaxhi(yi)—i M<anhi(x,~). | (A.l)
i=1 i—=1

i=1YiSYi

n

Since quy=:£:h4xu is a monotone function of H(), passing from x* to any assignment

i==1
n n

x', we have Ellu(hvzizl’wﬁf) since H(X') 2 H{(x') . Now, since the first term in the left-

=1 i=1

hand side of (A.1) is constant, the constraint (8) a fortiori does not hold for x'. Q.E.D.
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2. Solving the Design Problem for a Coordinated MS. Consider the following example:

(A.2)

H(x)= Z Z Z %j%iZq; > MAxX,

i=1 j=1 I=1

1>j (A.3)

. i (A.4)
111:11 ]=11 ]
i=1
2l 4, =Lt s e B (A.5)
riiTiTi = maxE rysiyii—~Ai, ’=H,,
ZZ 1i°ZijTil il T1;'Yij¥i i (A.6)
j==t 1=1 1=1
i3 |

yie{0,1), i=fn,  j=im,

n (A.7)
Z' Ai=<Ao,

i (A.8)

where Y4={y.-/1<2y,-j<b,.}, b;=3, i=1,n, n=2, m=5 Ay=40 . The MSD association matrix is taken in

=i

the form

£ 2°-3 o4 15 =2 3 4 5
100 20 15 8 15 170 15 20 11 13
2lo 0 31 15 10 210 0 8 4 20
=(a,,) =3 00 0016 544 3|, Ri=(})=3|0 0 0 13 8|,
sfo 0 0 0 8 40 0 0 o0 15
5Lo 0 0 0 0O 5L6 0 0 0 O

[ ke S

170 20 11 15 16

91000 8 1325

Ry=(})=3|0 0 0 4 5

40 0 0 0 13

5Lo0 0 0 0 0

Initially set k = 1, R; = ¢.
lst Iteration.

1°. Solve the problem h.—'smaxZZmiyuyu over yj = Yi. We have h,* =48, y,, =y,, =

j=1 I=1
1>j

Yas = ds b 26055721 F Voe = You & da

2°. Solve the problem (A.2)-(A.5) with H(X) - max over x= X\ R;, using the "pooling"
method [1]. The intermediate results are represented by the matrices A;; and A,,, where
A;, denotes the association matrix obtained in iteration 1 after step 1. In order to gener-
ate A,;, we chose a,;. In order to generate A;,, we chose a; ,(2,3)- The rows and the
columns in these matrices may have multiple indices, which represents pooling of rows and
columns corresponding to the matrix element selected in the preceding iteration:

2.3 4 5
1,00 A5 8 15
s ol g ¢ MR
e A0 00 8|
BEgE 0 0 0
1,2,3
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Ay

95 0 o

A'=58 A
52 H=52 H

N=53] (=80
H=73| |H=75 H

Fig. 1. Schematic diagram illustrating
the solution of the example.

We finally obtain the followlng comp051t10n of the manufacturing blocks: MBIl = {1,
2, 3}, MB2 = {4, 5}, X1,% = x;,% = x;3% T X5,% = Xp5% =1, H =74, R, = Ry U{x*}. The re-
maining xij* = 0. In what follows, xij* will be omitted. The process of branching from A to

A, and from A,; to A;, is shown in Fig. 1, where W==§:Ah

T=q

3°. Solve the MB assignment problem. As a result, the first division is assigned MBI,
the second division MB2, with A, + X, = 53. Since 53 > A,, go to step 2° setting k = 2.

2nd Iteration.

2°. Solve the problem (A.2)-(A.5) with H(x) »> max over xeX\, . In this case, it
suffices to start the branching with A;; (Fig. 1). Choose a;5 and find A,;. This gives

1,52,3 4 1,42,3 0
1,570 12 8 1,4 0 16 11,5
a=23 o 0 14,5{, Au=2,3]0 0 6.5
4 0 0 50 0 0

3°. Assign MB2 to the first division, MBl to the second division. Find A; + X, = 68 >
Ay, set k = 3, and go to step 2°.

3rd Iteration

2°. Solve the problem (A.2)-(A.5) with H®X) - max over xeX\R; . Choose a;,, in A,;.
Generate the vertex corresponding to the matrix A,; (Fig. 1). Finally, MB1 = {1, 4, 5},
MB2 = {2, 3}, H= 62, R, = RyU {x*}.

3°. Assign MB2 to the first division, MBl to the second division. Find A, + A, = 57 >
Ao, set k = 4, and go to step 2°.

4th Iteration

2°. Solve the problem (A.2)-(A.5) with H(x] > max over x =X\R,. Choose a(,,3),s in
A;,. Generate the vertex corresponding to the matrix A,; (Fig. 1). Finally, MB1 = {2, 3, 5},
MB2 = {1, 4}, H =52, Ry = R, U {x*}. The matrix A,, is

1 2,3,5 4
1 10 21,5 8

Ay =2,3,5{0 0 18,5].
4 |o 0 0

3°. Assign MBl to the first division, MB2 to the second division. Find Ay + A, = 58 >
Ag. Set k =5, and go to step 2°.

5th Iteration

2°. Solve the problem (A.2)-(A.5) with H(x) - max over xeX\R;. Choose a;, in A,
generate the vertex corresponding to the matrix Ag;. In Ay, choose a3, and generate the ver-
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tex corresponding to the matrix Aj,.

Finally, MB1 = {1, 2, 5}, MB2

R; U{x} . The matrices are
1,2 3 4 5 1,234 5
1,270 23 11,5 12,5 1,210 17,2 12,5
Acy om 310 0 14 3 3,4(0 0O 3,5
51 410 0 0 8 y Ap = s lo o o |-
50 0 O 0

3°. Assign MB2 to the first division and MB1l to the second division.

35 < XAy, so that the result is a coordinated MS.
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