AUTOMATED CONTROL SYSTEMS

MINIMIZATION OF DATA FILE GENERATION TIME
IN MANAGEMENT INFORMATION SYSTE MS

V. N. Burkov and V. A. Kletin UDC 658.52.011.5¢
A technique is described for minimizing data file generation time by optimizing their proces-
sing sequence, The problem is stated formally and cases are cited for which efficient proce-

durcs and appropriate algorithms can be devised. Application of the proposed technique to the
generation of software for a specific management information system is described.

1. Introduction

The operation of management information systems (MIS) is, as a rule, associated with processing of large
numbers of data files and generation of output documents both of which consume considerable machine time.
Attempts to reduce such time losses arc based on the use of data banks and on a careful study of data file ar-
rangement on machine carriers (magnetic tape, disks, drums, etc.), of file organizations (index-sequential, re_
lative, direct, sequential), and of encoding systems [1-3].

The basic elements of MIS data bases are data files intended cither for long-term or for temporary infor-
mation storage. Data files located in the system data bank for long-term storage, centralized updating, and
general use are called master files. All other files intended for temporary storage and for application by a
specific user are called working files.

Since the contents of various working data files frequently intersect, the above methods of processing-
time minimization can be enhanced by devising a data file generation sequence which would take advantage of
file interaction for shortening their generation time. In other words, some working files are generated not di-
rectly from master files stored in data banks but with the aid of already available and more "accessible" files.
This also includes the production of intermediate files which are not needed for MIS operation but help to save
time for the generation of working files.

In the following the problem is stated in a formal way, cases for which cfficient procedures and appro-
priate algorithms can be devised are cited, and a program package implementing this approach in the design of
a specific MIS is described. ,

2. Formal Statement of Problem

Let there be given a weighted oriented graph G(X, U), where X is the set of nodes (| X] = n) and U is the
set of edges (JU| = n?). To each edge (i,j)€U is assigned a weight t(i, j) =0, On the set of nodes X of the graph
G(X, U) are selected a node s€X with no edges entering into it and a subset of nodes QGX\{S} such that any
node q€Q is accessible from s along edges of the graph G(X, U). On G(X, U) we want to isolate a subgraph
G!(X!, U') such that [4-6] G!(X!, U!) is a tree with a root ins, QC X!, and

Z t(i, j) — min. @

(i, iyeut

We will show that the problem of data file generation formulated above can be reduced to the problem (1).
To each data file let us put into correspondence a node of the graph G(X, U). The data filed include those neces-
sary for MIS operation as well as intermediate files not directly needed for MIS operation but used for reducing
the time needed for generation of working files. Data files needed for MIS operations are said to be obligatory,
i.e., they must be generated. Two nodes are joined by an edge (i, j)€U if the j-th file can be generated on the
basis of the i-th file. To each edge (i, j)€U is assigned a weight t(i, j) equalto the time needed for generation of
the j-th file on the basis of the i-th file. On the set of nodes X of the graph G(X, U) we select a subset of nodes
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Fig. 1

Q‘ X corresponding to obligatory data files and a node SFX\Q corresponding to master files. Thus, the prob-
lem of generating data files needed for MIS operation in minimum time is reduced to finding a minimal tree
with a root in node s on the graph G(X, U) corresponding to the given problem.

It can be shown that the case in which a j-th file is generated on the basis of several other files in time 7
can be also be reduced to (1). In such a case a fictitious node k is added to the graph G(X, U) which can be ac-
cepted from the same nodes as j in zero time. In the new graph G!(X!, U!) the node j is accessible only from
k and t(k, j) = 7 (see Fig. 1a, b).

The following problems can be shown to be reducible to the problem (1): construction of electric trans-
mission lines; construction of gas and oil pipelines; making decisions about the development of deposits; trans-
mission of messages; ete. [5-7).

3. Solution Algorithms

The problem formulated above is a problem in discrete programming which for a general solution re-
quires the application of various sorting procedures such as branch-and-boundary methods, the Balas algorithm,
ete. It is, however, possible to indicate certain conditions which allow the application of efficient procedures
that guarantee a global optimal solution and do not require full sorting. A trivial example of such problems is the
case when in (1) only one node of X\{s} must be accessible from s; obviously, in this case one can use the
shortest-path method [8].

If all nodes of the subset X\{s}» are "obligatory" one can usc onc of the procedures effective for different
typcs of graphs; a description of these procedures is given below.

Mesh Search., Let G(X, U) in (1) be a mesh, i.e., it has no loops [s]) and Q = X\{s}. The following algo-
rithms [5] can then be used to solve (1).
ALGORITHM 1
1. On the obtained mesh select a node belonging to the first level as counted from the root node.
2. Contract the selected node to the root node.
3. Add the weight of the contracted edge of the former weight and record the index.
4.

If the graph is exhausted, i.e., if all edges have been contracted to the root node, the algorithm is com-
pleted and the solution is obtained in step 3 of the last iteration; otherwise go to step 5.

5. Test for the presence of parallel edges in the resulting mesh. If such edges are found go to step 6;
otherwise return to step 1. ‘

6. Of all parallel edges leave the one whose weight is minimal and eliminate all others. Return to step 1.

ALGORITHM 2

1. On the obtained mesh select a node not considered before. If no such edges are present proceed to
step 3; otherwise continue with step 2.

2. On the set of edges entering the node selected in the preceding step retain the edge with a minimal
weight and eliminate all other edges. Return to step 1.

3. End of algorithm. The resulting tree is the solution. Proving that the algorithm is finite and the opti-

mal solution is trivial. The first follows from the finiteness of the graph and the second, from the properties
of meshes.
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If a more general case,viz.,Q = X' = X\{s}, is considered the Algorithms 1 and 2 are, generally speaking,
not valid since they give only the upper bound of the resultant weight of the minimal-tree edges. To compute
the Jower bound use the following procedure.
ALGORITHM 3
1. Mark all nodes of the subset X!c X and assign to the variable S a weight zero.

2. If all marked nodes have been contracted to the root node go to step 9, if not continue with the next
step.

3. Select an arbitrary node on the set of marked nodes X\{s}

4. On the set of edges entering the node selected in step 3 of the last iteration take the edge having a
minimal weight " .

5. Reduce the weights of all edges entering the selected node by /.
6. Increase Sby . .
7. "Contract" the nodes connected by the edge with zero weight and mark the newly formed node.

8. If contraction of the nodes resulted in parallel edges retain the edge with minimal weight and eliminate
all other edges. Return to step 2.

J. End of algorithm. S is equal to the lower bound of the total weight of the minimal tree and the con-
tracted edges correspond to the edges of subset Ul.

Search On Planar Null Graphs. If the starting graph G(X, U) is such that to each edge (i, j)€ U corresponds
an edge (j, )€U and t(i, j)+ t(, i) = 0, the graph is said to be a null graph.

Problems of optimizing the trajectory of particles in force fields can be frequently reduced to solving (1)
on such graphs in which the weights of edges t(i, j) represent the loss of energy on moving from point i of the
field to point j. Let Ulc U be the subset of edges with nonzero weights and U" = U\U! € U. It can be shown that
the search on graph G(X, U) can be reduced to a search on a graph G,(X,, U;) such that G,(X,, U11) is a mesh
symmetric to the mesh G,(X,, U") by contracting to a single node all loops the total weight of whose edges is
zero. If G(X, U,) is planar the problem dual to (1) is the search of a minimal cut on a biconnected, planar,
oriented graph dual to G, (X, Ull) [9]. However, as shown in [3], the magnitude of a minimal cut on planar graphs
is equal to maximum circulation and is an integral quantity. Hence, if the starting graph is a null graph and
satisfies the above conditions the search for a minimal tree can be implemented by the methods of linear pro-
gramming.

Search on Graphs with Bicomponents

HQ - X\{s} but G(X, U) is an oriented graph with biconnected components, one can use a more complex
algorithm devised for the search of maximal trees on arbitrary graphs [7]. The solution of problem (1) is in
this case preceded by a simple procedure: Select a number M - maxt(i, j) and assign a weight r(i, j) = M—t(,j)
to each edge (i,j)€U. The problem is then solved by the algorithm described below.

ALGORITHM 4

1. For each node jEX\{s} on the obtained graph select an edge (i, j) such that r(i, j) = mixr(k, j) and
mark it. If the selected edges form no bicomponents go to step 4; otherwise continue with step 2.

2. Select any loop formed of marked edges and contract it to one of the nodes not belonging to it.

3. If the resulting graph has no biconnected components return to step 1; otherwise return to step 2.

4. If the loops of the graph have been contracted go to step 5; if no such loops are present go to step 2.

5. If the number of nodes of the obtained graph is |X|, go to step 9; otherwise go to step 6.

6. Replace one of the contracted loops Vg into the graph denoting the set of nodes belonging to Vg by X(Vq)
and the set of edges by U(Vg).

i, j i j € i ight r'(i, j) = r(, j) +minr (k,
7. To each edge (i, ])EU\U(Vq) such that LEX\X(Vq), j X(Vq), assign a weig (i, ] J(k,l)(' Uvg)

l)-r(m, j), where (m, j)€U(Vg).
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8. On the subset of edges discussed in the foregoing step select the edge with maximum weight and mark
it at the same time unmarking the edge entering into the same node which has been marked before,

3. The set of marked edges in the resulting graph gives the desired tree. End.

Example 1. Let us find the minimal tree with a root at x, on the weighted oriented graph G(X, U) shown
in Fig. 2. The graph for finding the maximal graph and obtained from the starting graph is shown in Fig. 2b;
the sequence of transformations implementing Algorithm 4 and the final graph forming the minimal tree are
shown in Fig. 2c-h, and in Fig. 2i, respectively.

As noted before, in the general case one has to use for solving (1) one of the many sorting procedures
whose effectivityis analyzed in [10]. This analysis served as a basis for the development of a program package
described below.

4. DELTA Program Package

General Description. The purpose of the program package is to solve problem (1) and is preceded by
entry, checking, and diagnosis of input data. The output results have the form of a contiguity matrix of the
nodes of the obtained tree and the record equal to the sum of weights of edges belonging to the tree. Input data
serve as the contiguity matrix of the initial graph nodes and a list of "obligatory" nodes of the final tree.

The package is based on the DELTA 3 program which searches for an optimal solution of (1) using a
branch-and-boundary method [10].

The estimate A(7) of the partial plan 7 containing the subset of nodes Q X of the initial graph G(X, U) is
computed from

A(n)=2 mint(i,]’)+2 min £(k, 1),

x, =Xy x; eX\Q

ueQ *i xEX

where X;'c Q and the nodes of subset X' in 7 continue to x;.

The block scheme of the package operating algorithm is shown in Fig. 3. The input data input, output, test,
and diagnostic programs are implemented in COBOL and the optimal solution search program in FORTRANIV.
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The DELTA program package is designed to work on series ES computers fitted with an OS ES operating sys-
tem, and a main memory of 100 kbytes. One limitation of the package is that all input data must be stored in
the main memory. The DELTA package has been included in the software for the first line MIS. The principal
features of the problems solved are given below.

Analysis of Package Efficiency in Solving Specific Problems. The subsystems of the first line of MIS in-
clude technico-economic planning, technological preparation of production, marketing, sales, and operational con-
trol which encompass the entire production control cycle from issuing a list of orders of preparing a set of
documents for shipped products and exchange information by means of interconnecting files. The initial graph
G(X, U), which represents the entire set of files and links between them has [X| = 41 nodes and [U]| = 89 edges.
Finding a locally optimal solution took 4 h by a group of experts and 2 h by the DELTA package, the program med
implementation providing a daily gain of computing time of 1.5-3 h as compared with the solutions proposed by
experts; the overall economical gain amounts to 50,000 rubles/Ar.
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