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INCENTIVES IN AN ACTIVE SYSTEM WITH A STOCHASTIC

A. K. Enaleev and Yu. G. Lavrov UDC 62-505.5

A model of an active system with a stochastic element is considered. The op-
timal incentive function is synthesized.

__Introduction

~ The synthesis of an optimal incentive function in active system theory has been studied
detail only for the case of deterministic active systems when the center has complete
ormation about the models of the active elements [1, 2]. For active systems with random
turbances, the optimal incentive function has been synthesized only for the fairly parti-
ar case of a linear cost function [3]. An approximate solution of the problem of deter-
an optimal incentive function for the case of a nonlinear cost function is also given
. The synthesis of an optimal strategy of the center for the case when the choice set
tie active element depends on a random parameter is considered in [4].

The synthesis of an optimal incentive function in its general form is a nonstandard

cemum problem for some function that depends on the sought incentive function and on the
 states of the system, while the phase states themselves are determined as the solution
in extremal problem which also depends on the sought incentive function.

ij this paper, we solve the synthesis problem by reducing it to a classical optimal
1 problem to which Pontryagin's maximum principle is then applied.

‘F‘ive System Model and Statement of the Problem

onsider a system consisting of a controlling element (the center) and one active ele-
The AE is a model of some social-economic object whose performance is evaluated
asure x, X 2 0. For example, x can be identified with a measure of the output or

integrated performance measure of the AE. The AE objective function has the form

f(z7 r) =0(l‘)"‘§(.’t, r)v

%) is the incentive function set by the center and {(x, r) is the cost function of
ive element associated with the achievement of the value x of the performance measure.
a random parameter characterizing the production possibilities of the AE. A cost
dependent on the parameter r models the effect of stochastic external disturbances
ject (the active element).

, assume that r e [e, M], where M > € > 0, and x € X(r), where X(r) is a set to be

'71)elow .
‘§~objective function of the center will be denoted by f° = f°(x, o(x)).

assume that the active system functions in the following order. First, the center
incent1ve function o(+), given the distribution function F(r) of the random vari-
'Then the parameter value r is realized and the AE, given the incentive function
known realization r of the parameter, selects a value of the performance measure x.
e x = x(r) is chosen by the active element so as to maximize its objective function

z(r)e Arg max f(z,1). (1)

zeXx(r)

consider the generalproblem of synthesizing an optical incentive function o(x). This
is formulated as follows: For some given class of functions G, determine a function
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o = o(x) such that the expected value of the objective function of the center is maximized
subject to the choice by the active element of the value x = x(r) of the performance measure
from (1), i.e.,

M
(0)—(111106355 x(r):;(r) Fo(x (r), o (z (r))) dF (1), @
where
z(r)eX (r)=Arg max (¢°(2)—t(z,r)). (3)

2EX(r)

By specifying the objective function f°, the cost function {(x, r), the distribution
function F(r), and the class of incentive functions, we identify a specific synthesis prob-
lem. The following assumptions specialize our problem.

1°. The set G of incentive functions o(x) consists of all twice piecewise-differenti-
able functions defined on [0, ) that satisfy the inequalities 0 < o(x) < g, where g is the
incentive "fund."

2°. F(r) is an absolutely continuous distribution function, F(M) = 1, F(e) = 0, where
M>¢e > 0.

3°. The cost function {(x, r) has the domain of definition ¢ s r < M, x € X(r) = [0,
x*(r)), where x*(r) is a nondecreasing function of r, and in particular we may have x*(r) =
o, We assume that Vr e [e, M], C(x*(r), M) > g.

4°. The cost function {(x, r) is twice continuously differentiable with respect to
any of the variables (0, r) = 0, {x(x, r) > 0, Cr(x, r) < 0, Cxx(x, r) > 0, Iyp(x, r) <0
for x > 0, r > 0. Examples of such cost functions are { = —ln(l - x/r), ¢ = 1/2(x/r)?,
etc.

5°. f%x, o) =9(x) — ao(x), where ¢ (x) is a nondecreasing differentiable function,
©(0) =0, a > 0.

3. Synthesis of the Incentive Function as the Solution
of an Optimal Control Problem

We reduce the optimal incentive function synthesis problem (2), (3) to the classical
optimal control problem to which Pontryagin's principle is applicable. We start with some
auxiliary propositions, which are proved in the Appendix.

Consider the incentive function o0'(x) such that for some value r; of the parameter r
we have

o' (z) % (z4,71) =0" (22) =6 (22, 1) = max [¢* (z) —§ (z,1) 1=M", 2,<z,,

e X(r)
and also the incentive function 02(x) such that
o' (z), if zt[zy, 2,],
¢'(z)= . .
t(z,r)+M°,  if z={z,, 1,].
LEMMA 1. J(ol!) = J(02).

Consider the incentive function o3(x) such that d x;, x,, VX € [x;, %x,]: 03(x;) 2
03(x), and the function

o'(zx), if z&[zy, 2,1,
t(z)=\ .
o*(xy), if r=(z,, 2,].
LEMMA 2. J(o3) = J(o*).
COROLLARY . The optimal incentive function belongs to the class of nondecreasing func-

tions.

LEMMA 3. For any piecewise-continuous function ¢®(x) there is a continuous function
a8(x) such that J(o%) < J(o®).
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Lemmas 2 and 3 imply that the optimal incentive function on the class of twice piece-
wise-differentiable functions belongs to the class of nondecreasing, continuous, twice
piecewise-differentiable functions. Therefore, in what follows we assume that o(x) is con-

tinuous and nondecreasing.
Let us transform problem (2), (3) to a different form.

A necessary condition of extremum in problem (1) (the choice of the performance measure
by the active element) for a continuous piecewise-differentiable function f(x, r) = o(x) —
{(x, r) is written in the following form.

If for the given r we have
Vy: o(y)<t(y,r), (4)

then
z(ry=0; (5)
otherwise, there exists a choice x{(r) # 0 such that
L (z, ry=do(z), (6)
where 3 denotes the subdifferential.
Thus, the solution of problem (2), (4), (5), (6) can be used when looking for a solu-
tion of problem (2), (3).
Let us further transform conditions (4), (5), and (6). To this end, we will investi-
gate the solvability for r of the dependence defined by the relationships (4), (5), and (6).

The following lemma is proved in the Appendix.

LEMMA 4. If the cost function { has the form { ={°(x/r), where £°(+) is a convex, increas-
ing, twice continuously differentiable function defined on the half-open interval [0, a)
(here ¢ is a positive number, possibly a = »),* then

1) the implicit function defined by (4)-(6) is globally solvable for r for all 0 < x <
M with the possible exception of finitely many points x = x5, i =1, » I, where the func-
tion o(x) is nondifferentiable, and also with the exception of the point x = x; = 0; here x
is defined by conditions (4)-(6) for r = M;

2) the function r = r%(x, 3o0(x)) that solves the relationships (4)-(6) is nondecreasing
in x3 .

3) the function x = x(r), which is the inverse of the function ¥°(x, 30(x)), is nonde-
creasing in r and single valued, with the possible exception of countably many points.

Assume that at the points x, where o(x) is differentiable, we have u(x) = 6(x), and at
the points xj, 1 = 0, 1, ..., I, the function u(x;) is equal to the left-derivative of the
function o(x).

Let
F(x,u), if O<z<z™,

M, if z>zM,

F(x,u)::{

Suppose that Lemma 4 is true. Then we have the following theorem.

THEOREM 1. The solution of problem (2), (3), for £f%°(x, o) = ¢(x) — ac(x), G = {o(x)[0 <
o(x) < g, 0 < x < »} is also the solution of the optimal control problem

J(6) = min j {F(F(z,u))—11[¢p(z) —auldz, (7)

umu(zx) ,

*The cost function is taken in the form { = {°(x/r) because this simplifies the proof of
Lemma 4. The same result apparently also holds under weaker conditions on the cost function

¢ =¢(x, r).
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0<j‘u(x)dz:<g, (8)

where u(x) = o(x).
The proof of Theorem 1 is given in the Appendix.

Problem (7), (8) can be solved by Pontryagin's maximum principle. The Hamiltonian of
this problem has the form

H(z,u,\)=[1-F (F(z,u))] [¢(z) —au]—Au.

The optimal control u(x, A) is determined so as to maximize the function H over u,
where the parameter A = A(g) 2 0 is calculated from condition (8), i.e., by solving the

equation

oo

5 u(z,\)dz=g.

The optimal incentive function is given by
x

o(z)=J u(t,(e)) .

In order to compute the optimal incentive function from this formula, we need to know
the dependences u(t, A) and A = A(g). Let us investigate the properties of these dependen-
ces, which are useful for computing the optimal incentive function.

THEOREM 2. 1) The optimal control u = u(x, A) is a nonincreasing function in the pa-
rameter A. 2) The dependence A = A(g) is decreasing in g.

The proof of Theorem 2 is given in the Appendix.

The monotonicity property of the function A(g) makes it possible to construct iterative
algorithms that compute the optimal control by the following scheme.

Take A > 0 and find u(x, A) from the condition of maximum of the function H(x, u, A)
over u. If Szp@gx)dx:>g, then in the next iteration A is incremented by some sufficiently

0

small quantity; if ju(z,x)dp<g; then A is decremented. The procedure is then repeated for

[}
the new value of A until condition (8) is satisfied with sufficient accuracy. The values of
A and u(x, A) obtained in the last iteration are the solution of problem (7), (8).

Let us consider the synthesis of an optimal incentive function in application to a par-
ticular example.

Assume that the cost function is ¢(x, r) = =In(1 — x/r), the objective function of the
center is f°(x, o) = x, and the random variable r is uniformly distributed on [d, D]. 1In
this case, r(x, u) = x + 1/u. From the condition of maximum of the Hamiltonian H = 1 —

F(x + 1/u) — Au, where F is the uniform distribution function, we obtain

—In (1 = _;_ ), if o<z<d—B(n),
o(z)= z B i d—B(A)<z<D—28(M),
——5(7\') In = £ p(M) <=z B(r)
g: if - D—28(A)<z<oo.

Here B(A) = V(D — d)A.

We see that the solution of the problem consists of three "modes.'" For certain rela-
tionships between the parameters d, D, and g, the first or second mode may be missing.
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"4, Conclusion

The main result of this paper is the reduction of problem (2), (3) to optimal control
‘problem (7), (8), for which standard solution methods exist. Solution of specific examples
- of this problem shows that the results may be applied for qualitative and, in some cases,
‘quantitative analysis of incentive systems in the economy.

APPENDIX

Proof of Theorem 1. We will show that if the maximum of the function f(x, r;) = o(x) —
(%, r,) for some r, is attained at the points x; and X,, X; < X,, then for any r # r; the
~function f(x, r) may not have a maximum at the point x' € (x;, x,).

Assume that this is not so, i.e., there exist x such that
vzeX(r) : o(z') -t (2, r) =a(z)-C(z, 7). (A.1)

The condition of maximum of the function f(x, r,;) at the points x, and x, has the form

VzeX(r) : o(z1) =L (x4, i) =0(22) =L(22, 1) =0(z) = (2, ). (A.2)
From (A.1) and (A.2) it follows that
E(zs, 1) =T(2', 1) =L (24, 1) =5(2, 1), (A.3)

S(z2, 1) =T(2', 1) = (22, 11) =L(2, 10).
Rewrite (A.3) in the form

'

J e naes e ez, (A.4)
EN =
ﬂ [ tta, ndz> | Lo ds. (A.5)
From Exr(X, r) < 0 it follows that
tz(zi T) >t=($1 rl)v if T1>T, (A . 6)
te(@ N <balz, 1), if mi<r. (A.7)

3 Inequality (A.6) contradicts inequality (A.4), and inequality (A.7) contradicts 1nequal-
- ity (A.5). Our proposition is thus proved.

Note that the functions o'(x) and 02(x) coincide over the entire domain of definition

" with the exception of the closed interval [x;, x,]. Also note that the maximum of the func-
‘tion f2(x, r;) = 02(x) — ¢(x, r,) is attained on the entire closed interval [x;, X,]. From
the proposition that we have just proved it follows that for r # r, the maximum points of

' the objective functions fl(x, r) = o*(x) — ¢(x, r) and f2(x, r) = 02(x) — ¢(x, r) do not be-
-ong to the closed interval [X;, X,]. But since the functions o!(x) and 02(x) coincide out-
~side [x,, x,], the maximum points of the functions f!(x, r) and f2(x, r) also coincide where
't #r,. Hence it follows that J(o!) = J(02). Q.E.D.

i Proof of Lemma 2. Consider the function o(x) such that o(x) = o“(x) for x ¢ [x,, x,]
ind o(x) s 0*(x) for x € [x,, xz], where X, < X,. As shown, the maximum point x* of the func-
tion f(x, r) = o(x) — T(x, r) is not an element of (x;, X,). Assume that this is not so, x*e
(%5, x,). This leads to the contradictory inequality o(x*) — g(x*, r) 2 o(x1) — ¢(x,, r), because
o(x*) < o(x1) by definition of o(x), and {(x*, r) > {(x1, r) by monotonicity of the cost
function. Thus, x* € (x;, X,). Hence J(o) = J(¢*). Q.E.D.

Proof of Lemma 3. Let 0%(x) be a nondecreasing function. Otherwise, by Lemma 2, we
always find a nondecreasing function whose effectiveness is not lower.

Let 0%(x) have a discontinuity of the lst kind at the point x* > 0. The case x* = 0 will
be considered below. Denote by Ac® the change of the function ¢°(x) at the point x¥*.

We will show that there exists a neighborhood (x* — §, x*) such that the maximum point
the function f°(x, r) = 0%(x) — ¢(x, r) does not belong to (x* — §, x*) for any admissible
vue r € (e, M). Take & such that
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te(z*, 2)8<AoS (4.8)

and § < x*, where ¢ is the least admissible value of the parameter r. Assume that this is
not so, i.e.,

gz’ < (25, z°), dArele, M], Vz: as(z’) % (2, r)=0%(z) —&(z, 1),

and so
0°(z") =L (2, ) =a* (z)~L(z', ). (4.9)
By monotonicity of the function o%(x), we have
0°(2") <a®(z*) —Ad®. (A.10)

Summing (A.9) and (A.10), we obtain g(x*, r) — ¢(x', r) 2 Ac®, i.e., jt:@yﬂdxzﬁﬁﬂ

From Exr(x, r) < 0 and Exx(x, r) > 0 it follows that éx(x', r) < {x(x*, €). Hence

x* x*

J‘ tx(x', €) d:c>j 'Cx (z, rydz=A0°

x x

or
Lz, e) (z—2') >A0s. (A.11)

Clearly, (A.11) contradicts (A.8), because x* — x' < §. Thus, there exists a neighbor-
hood (x* — &, x*) on which the function f°(x, r) dces not attain its maximum for any admis-
sible r.

Consider the function

o° (), if  z#(2"-6,2%),
6 — S(z*+0) — g (2*—
" (=) M__G?(x_z-)+05(z-+0)’ if ze (-8, 2"),
8
which is continuous on the closed interval [x* — &, x*]. Note that o%(x* + Q) — o®(x* —

§) 2 Ac® by monotonicity of the function o¢°(x). Therefore, on the open interval (x* — §,
x*) we have &%(x) 2 A0°%/8 > {4(x, €) > {4(x, r). Hence it follows that the maximum of the
function f®(x, r) = o%(x) — ¢(x, r) is not attained on (x* — §, x%). Since throughout

the rest of the domain of definition the functions ¢°(x) and ¢®(x) coincide, we have J(g%) =
J(0®). All the discontinuity points of the function ¢°(x) are examined similarly.

Now consider the discontinuity point x* = 0, assuming that o® is continuous at all other
points. Note that the optimal incentive function at the point x* = 0 takes the value o(x¥) =
0. Let o(0) # 0. Clearly, the active element chooses the same strategy x(r) for any admis-
sible r for the alternative incentive functions o(x) and o¢'(x) = o(x) — 6(0) 2 0. Therefore,

<

>
in what follows we assume that o®(0) = 0. Since (0, €)=0, lim ¢*(x)=Ac*(0)>0, 0%(x) g, C(x*(e),
x—++0

£) > g, the function {(x, €) is continuous, and ¢%(x) is continuous for x > 0, there exists
at least one point x' where {(x', €) = ¢%(x'). Let x' be the least of these points. Define
the function o0®(x) as follows: of(x) = {(x, €) for 0 s x < x' and o%(x) = o%(x) for x > x'.
We will show that J(c®) > J(0%). Note that by construction o®(x) < o°(x). If the x(r)
chosen with the incentive function ¢°(x) is such that x(r) 2 x', then by the inequality
08(x) < 0%(x) for all 0 s x s x', the same x(r) is chosen for the incentive function o®(x).
If the x(r) chosen for the incentive function ¢%(x) is such that x(r) < x', then by property
4° of the cost function the choice with the incentive function 0®(x) is x'. Since ¢(x) is
an increasing function, we have J(c®) 2 J(o¢®). Q.E.D.

Proof of Lemma 4. Consider the solvability for r of the implicit function &(x, r,
30(x)) = Cy(x, r) —ul(x) — t = 0, where t is one of the values of the subdifferential do(x).
The equation
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Lz, D =u(z)+t (A.12)

has at least one solution r* for some x* = 0, t*. Since ixr(x, r) < 0, Eq. (A.12) is lo-
cally solvable in the neighborhood of the point (x*, t*). If ¢(x, r) = °(x, r), Eq. (A.12)
is globally solvable,

T

r= ————— ‘
nlz(u(z)+)] ’ (A.13)
where u[+] is the inverse of the function v(x/r) = {4°(x/r)x. The function v(x/r) is global-
ly invertible because Vg(s) = (g5%s + Cg°(s) > 0 for s = x/r > 0. This proves part 1 of the
lemma.

We will show that r(x, 30(x)) is a nondecreasing function, i.e., if x; < x,, then r; =
t(x;, ty(x;1)) < r, = ¥(x,, t,(x,)), where t;(x,) and t,(x,) are some values of the subdiffer-
ential at the points x; and x,, respectively.

Assume that this is not so, i.e., X; < X, implies that r;, > r,. From o(x;) — ¢(x,,
1)) > 6(x,) — C(x,, ry) and o(x,) — C(x,, r,) > o(x;) — ¢(x,, r,) we obtain {(x,, ry) —
C(X1’ rl) > C(Xz’ r2) - C(le rz)- Hence

x2

j [tx(zv ri)—éx(zy rz)]dz>0. (A.IA)

£y

But from ﬁxr(x, r) < 0 it follows that

Bxlz, r)—~Lta(z, 1) <0 for ri>ra. , (A.15)

But (A.15) contradicts (A.14), and so r(x, 30(x)) is a nondecreasing function. This
proves part 2 of the lemma.

Let x; and x, be such that r* = r(x;, u(x;)) = r(x,, u(x,)). Then by Lemma 1, there
exists an incentive function o' whose effectiveness is not lower than that of the original
function and such that r(x, u'(x)) = r* for all x € [x,, x,]. Define [x;, %X,], where x, =
infx, X, = supx over all X, such that r(x, u'(x)) = r*. As a result we obtain an open inter-
val (x,, X,) where r is constant. Find all such open intervals. There are clearly at most
countably many such intervals. Therefore, the inverse of the function r is many-valued only
at countably many points. Q.E.D.

Proof of Theorem 1. Consider the function r(x, 30(x)) and its inverse X(r). The set
of definition of the function x(r) is denoted by 9 and its value set by X. By Lemmas 1 and
4, in order to solve the original problem (2), (3) it suffices to consider incentive func-
tions o(x) for which x(r) is such that X is a connected set.

Define the following subsets of the set Q: Q; the subset of open intervals (er, rJ-U)
on which the function x(r) is continuous and strictly monotone increasing, j = 1, ..., Ji;
2, the subset of intervals (rkL, rkU) on which the function X(r) is constant, k =1, ...,
K; @3 = Q\(Q, U 92,). Note that by Lemma 4 Q; consists of at most countably many points rp,
n=1, ..., N, and the sets Q; or @, in general may be empty. We similarly define the value
subsets of the function x(r): X; = x(Q;); X, = x(Q,); X3 = %X(Q;). Note that X; is the set
of open intervals (ij, XjU), where xJ-L = i(er + 0), ij = )N((rjU - 0); X, is the set con-
sisting of at most countably many points xi, k = 1, ..., K; X3 is the set of closed inter-
vals [x,L, xpU], where x L = X(rp, — 0), x,U = %(r, + 0). Also note that ril = F(xx — 0,
u(xg = 0)), Y = F(xp + 0, ulxy + 0)), rJ-L = f‘(XjL + 0, u(XjL +0)), rjU = ;(ij -0,
u(xjU -0)), ry = ?(an + 0, u(an + 0)) = f‘(xnU -0, u(xnU - 0)).

Compare two quantities: I= j[q)(x(r))—ac(:c(r))]d[F(r)—1] and J=j [F(F(z, u(x)))—1]l¢(2)—au(z)ldz.
Q X
Note that the corresponding integrals vanish on the subsets Q5 and X,, because Q; and X,
are sets of measure zero.

Using the properties of the function r(x, u) and x(r), integrating by parts, and chang-
ing the variables on the subsets Q; and X,, we rewrite the expressions for I and J in the
form
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J J1
. U u L L L
I= 2'[ (x5 —ao (EDIF () — 11— Y [0(z;) —ao @IIF (r;)— 1] +
o PLzy § j 2: I

K K
+ Vo) — a0 (2] [F gy — 11 — Z[cp(zk)—ao(zk)l [F (h) — 1] —
=3 1 U k=1
Jy Xj
— 3 (e @11 @ —au @1 s,
j=1 L
x§
N U N
7= N1F()—tlle(F)—aoc @] — Y [F (r)— 11X
2 &
J1 ’p:"
xlp@)—ao @+ 3 § 17 (e u (@)~ 1116 () —au () &=
=1 x,L

Denote B(x) = [¢(x) — ao(x)][F(r(x, u(x))) — 1] and consider the sum I + J. Reducing
and changing the notation, we obtain

7y x

I+i= Z [B(a,~0)~B (z,"+0) 1+Z, [B(2x+0) B (22-0) ]+

j=t At

+ Y Bel-0-B@E+o).

naq

From the definition of the sets Q;, 0,, Q; and respectively the sets X;, X,, X, it
follows that X = X; U X, U X;. The points Xj7s Xjos Xk an, and xnU, where j =1, ...,
J;, k=1, ..., K, and n=1, ..., N, partition the connected set X into a system of at most
countably many open and closed intervals. Note that since these points are the boundaries
of the corresponding adjacent open or closed intervals, some of these points coincide. Ar-
range these points in increasing order and denote them by xj, i =1, 2, ... . Represent the sum

I +J as J+J= ZAB(;-‘)+B(;M)—B(I°), where i=1, 2, ... . It is easy to see that AB(xj) = B(x; — 0) -

B(x; + 0) = 0, if @j, n such that x; = ij = xnU or xi = ujU = XnL, and also AB(xji) = B(xj-

0) + B(x; + 0) — B(xy — 0) — B(xy + 0), if @j, k, n such that x; = ij =Rk = an or xi =

xnU = Xk = XjL, or @j:, jz» k such that x; = x'lU = Xk = x-zL, or &n;, n,, k such that

x| = xn,Y = Xp = anL; B(z*)=lim B(z(8)). Note that B(xM) = B(X%M)) = [o(:M) — ac(xM[FM) -
8—+0

1] = 0, because F(M) = 1. The quantity B(x°) is also zero. Indeed, as we have shown in
the proof of Lemma 3, o(0) = 0 and for all x > 0, we have o(x) < {(x, §) if § < €. Then
from (4) and (5) it follows that x(8) = 0. From ¢(0) = 0 and o(0) = 0, we obtain B(x°) =
B(0) = 0. Hence it follows that I + J = 0. For x = xM we have F(¥(x, u)) = 1, and so

J= I[F(F(l,u(x)))—il[(b(z)—au(x)]dz. Q.E.D.
0

Proof of Theorem 2. Consider the Hamiltonian H(x, u, A) for two different values of
the parameters A = A' # 0 and A = A" # 0, A' < A". By optimality of the controls u(x, A')
and u(x, A") it follows that

H(z, u(z, M) A)=H(z, u(z, '), M),
H(z, u(z, M), A" Y=H(z, u(z, M), A"').

Summing these inequalities, we obtain

H(z, u(z, M), AY~H(z, u(z, M), A"} =H (x, u(z, A""), A") ~
—H (z, u(z, M), ).

Hence, substituting the expressions for H(x, u, A), we obtain

A,”u(t, A,I)‘*).,M(I, )"r) 2},”11(1, KII)LA.’LL(I, A.”),
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ie., u(x, A') =z u(x, A"). This proves part 1 of the theorem.

Let 0 < A' < A", Consider the following quantities:

o0 oo

g(},’):j u(z,A")dz and g(}\.”)=§ u(z, A")dz.

From u(x, A') 2 u(x, A") it follows that g(A') 2 g(A"), i.e., the function g(X) is non-
increasing.

We will now show that A(g) is decreasing in g,. Let g, > g, and A(g,) = A(g,) = A%,

then &= quah”dz and g.= jucnx%dx, i.e., g1 = g,, a contradiction to the assumption g; >
] 0

g, Thus, the function A(g) is not a constant. Since g(A) is nonincreasing and A(g) is

nonconstant, it follows that A(g) is a decreasing function. Q.E.D.
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APPLICATION OF STRATEGIES WITH REFINEMENT IN MULTISTEP
CONFLICTS UNDER RISK

A, D. Khalezov UDC 519.83

We solve the decision-making problem in a two-level dynamic control system.
System dynamics is assumed to depend on random parameters and the elements

on different levels have different information about parameter realization.

An information exchange procedure is proposed, so that the upper-level element
can utilize the information available to the lower-level element. An optimal
strategy of the upper-level element is constructed. An example is analyzed.

1. Introduction

Studies of decision-making processes in hierarchical dynamic systems have led to sever-
al classes of hierarchical games [1l] with different strategies for the two players. Analy-
sis of dynamic conflicts under risk, i.e., in the presence of random parameters in the sys-
tem, has focused on positional strategies with "memory" [2] and positional counter-strate-
gies with "memory" [3]. It has been noted that under these strategies the player
making the first move cannot fully utilize the information available to his partner.
It is therefore relevant to consider a wider class of what we call strategies with
refinement, similar to the strategies in [4]. Constructs similar to strategies with refine-
ment are also used in the theory of active systems [5].

Computational Center, Academy of Sciences of the USSR, Moscow. Translated from Avto-
matika i Telemekhanika, No. 2, pp. 113-123, February, 1990. Original article submitted
March 22, 1988.

0005-1179/90/5102-0231$12.50 e 1990 Plenum Publishing Corporation 231



