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The problem of coordinated planning of the production divisions in a discrete
active system is considered and the corresponding mathematical model is con-
structed. The properities of the set of coordinated solutions are identified

and studied. A solution method is proposed and its complexity is estimated. The
paper reports the results of one of the first attempts to apply the principles

of coordinated planning in a small-batch multiproduct enterprise (development

and installation of a computerized on-line/long-term coordinated planning sys-
‘tem for a stamping shop in an instrument-building plant).

k. 1. INTRODUCTION

- Coordinated optimization of two-level hierarchical systems (HS) is a popular area of
ent research [1, 2]. Solution methods of coordinated planning (CP) problems allowing

e goal-directed behavior of the lower-level subsystems in the HS are among the topics
red in this area.

- The HS functioning mechanisms are studied in two directions in the existing litera-

[1-13]. One direction focuses on analysis and synthesis of functioning mechanisms

level HS [1-4]. The corresponding work is surveyed in [5], where the following main
ts are noted: 1) construction of functioning mechanisms ensuring prescribed -coordinated

ctioning regimes of active systems (AS); 2) determination of necessary and sufficient

ions of optimality of coordinated functioning regimes subject to given control per-

e criteria [1, 4, 5].

second direction focuses on models and numerical methods for the solution of some
te coordinated optimization problems of two-level HS for given functioning mechanisms
conditions of complete information at the center [6-13]. First CP models and opti-

ion methods were proposed in [6]. Exact algorithms for the solution of combinatorial
blems (coordinated scheduling problems) in a two-level AS with dependent active ele-
(AE) were published in [4, 7-9]. An approximate algorithm for the allocation of dis-
ources in a HS was described in [10]. Solution algorithms for discrete coordi-
roblems in HS combining the methods of vector optimization and sequential analysis
rnatives were proposed in [11]. Synthesis of a coordinated AS structure, which is
cular case of the problems considered in this paper, was studied in [12, 13].

resent study (which can be assigned to the second direction of research) develops
ntive formulation, a model, and a numerical solution method for the discrete CP
a tow-level AS with fanlike structure.

2. STATEMENT OF THE PROBLEM AND THE MATHEMATICAL MODEL

sider an industrial enterprise with discrete production. We represent it as a two-

, consisting of the management (the center) and the subordinated production divisions
ive elements). The production divisions function as follows. The main task of

tion teams is to manufacture batches of parts according to a monthly plan, using
cked in the divisional store. Production deadlines must be strictly observed,

is determines the continuity of operation of the assembly teams in the enterprise.
rds, the batches with the earliest deadlines should be included by the produc-

in their daily-shift assignments. This primarily serves the interests of the
rprise, so that this problem can be viewed as the problem of the center. With
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tight monthly schedules and limited production capacity, the production teams naturally
tend to give priority to batches that have the highest cost. This is attributable to the
specific incentives system instituted in the enterprise, which evaluates the activity of
production teams only in terms of the fulfillment of the necessary product mix and normed
assignment. The production teams thus develop the daily-shift assignments so as to maxi-
mize their objective functions, which are determined by the material incentive system. The
parameters of the incentive system are known to the production teams. We call this problem
the AE problem. Then the production teams can be identified with the AEs, and the produc-
tion team of each shop or division has its own goals and preferences.

The existence of different preferences for the center and the AEs requires coordina-
tion. Moreover, both the center and the AEs attempt to utilize as fully as possible the
divisional production capacity, which requires minimizing the auxiliary jobs®* needed for
the completion of each batch.

The AE operations planning accordingly starts with coordinating (by volume and product
mix) the daily-shift assignments. Then the assignment is broken down into a more detailed
plan, i.e., a processing schedule is constructed for the batches included in the coordi-
nated daily-shift assignment so as to minimize the auxiliary jobs for the divisional machines.
The planning problem for the production divisions thus can be divided into two subproblems.

1. The problem of determining the coordinated daily-shift assignments (a CP problem),
which is formulated as follows: Include in the daily-shift assignments the batches with
the earliest deadlines, subject to AE preferences and technological constraints.

2. The problem of optimal scheduling of the machines required for processing the parts
included in the coordinated daily-shift assignment. The substantive formulation and the
solution methods for this problem are described in detail in [14], and in what follows we
can consider only Problem 1.

We introduce the following notation: 1) X=(Xi,...,X,...,X,) is the daily-shift assign-
ment for the AS (a n,-dimensional composite 0-1 vector), where Xi=(Zi,..., &, .. Liny) is
the daily-shift assignment of the i-th AE (a mj-dimensional 0-1 vector)}; xij = 1 if the
j-th batch is included in the assignment of the i-th AE, xi; = 0 otherwise; 2) V¥: is the
actual performance of the daily-shift assignment by the i-th AE (a 0-1 vector), ¥~
(i ooy Yy s Yimi)s where yij = 1 if the j-th batch is actually included in the daily-
shift assignment of the i-th AE and yij = O otherwise; 3) X ¢ Ro is the set of feasible
shift assignments in the AS, determined by the production constraints; Hj € RMi jis the
actual performance set of the shift assignments of the i-th AE determined by technological

u

constraints; 4) Q(I)==§:afki is a linear objective function expressing the loss to the

i=1
AS due to failure to meet the deadlines; & is the vector of coefficients of the AS loss
function attributable to the violation of deadlines by the i-th AE; fi(x:, v:)=hi(y:)—x(x, ¥i)
is the incentive system of the i-th AE; h,(y;)=cy; is the payoff function of the i-th AE,
where ©; is the vector coefficients of the payoff function of the i-th AE, Xi(x, vi)=(x()--,
%) ... m(-)) is the penalty vector function of the i-th AE, T denotes the transpose; 5)
Si={x;|hi(x;) =max [k (y:) —x:(x:, ¥:)] over y.H;} is the set of coordinated plans of the i-th AE.

Then the mathematical model of the CP problem has the form

n

O (x)= Z,airxi — min ,

it xe X

Si={x:|e,"x; = max (¢,"y;—e,": (x,, ¥:) 1}. izrn’ (1)

v;eH;
X={x|x=(xy,.... X, ..., X,), Xi=(Xy.....Tye ... Timi),

*Auxiliary jobs in this context include setup and adjustment of machines and transportation
of blanks and semifinished parts from one machine to another.
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Ax=p, z,={0,1}}.

Ili:{y‘lyi=(yih---1yih---’yimi), B,-y,»<b,<,

y;={0,1}}, i='177,

here e; is the mj-dimensional unit vector, b; is the Lj-dimensional column vector deter-
ining the production capabilities of the i-th AE, B; is the Lj x mj matrix of technologi-
al coefficients of the i-th AE. The components of the matrices A, B; Ci=SF o, n)iand

e vectors p, e¢”, b, aT (i=1,rn) are assumed nonzero positive.
b

3 In what follows, the problem min ®(x) over x=X will be called the &-problem, the
problem max[h:(y:)—%(Xi ¥) ] over yi€H: will be called the i-th AE problem, and the problem
h(y) over ye=H:; will be called the P;-problem.

The solution of the CP problem (1) is difficult because of the nonstandard constraints
describing the sets S; (i = 1, ..., n). One of the known approaches to the solution of such
blems involves preliminary construction of the set S; (i =1, ..., n) followed by solving
dard mathematical programming problems.

3. CONSTRUCTING THE SET OF COORDINATED PLANS

Using the results of Theorem 3 [15] and noting that the set S is the Cartesian product
the sets S; corresponding to the coordinated plans of the different AEs, we can replace
he n independent AEs with one generalized AE and reduce the CP problem (1) to a problem
ith one generalized AE. In what follows, unless otherwise specified, we omit the index
of the set and the variables.

Construction of the set S requires specializing the penalty function. Consider a penalty
tion which is independent of the plan [1]:

2 o, if Y~z
%(x,y)= 2 % y), (@, y)= 10, if  y,=x, (2)
e Bn if Y=<z,

aj and Bj are the penalty function coefficients (aj, Bj = const).

e that if x and y are 0-1 vectors, then the penalty function (2) is equivalent
inear penalty function

x(x,y)= ZXJ (25, y5)= Z,a,-(y,-— i)+ 255 (z—y5),

j=1 jiedy i€y,

= {jli- = 0} and J, = {j'Xj = 1}. In what follows, we consider linear penalty
. In our case, without loss of generality, we may set aj = Bj, Ji=NLC L OEE, mE SPhe
s constructed for the case when

a;=¢tc; 0<e<1, j=1,m. (3)
se the following definitions.

ight p(x) of the 0-1 vector x=(Zj,...,%n) is defined as

m

p(X)= X,

=1

tahcg between the vectors z and Y is defined by the Hamming metric d(x,y)=

is the set of vectors y for which p(y)=I—1, d(x, S’)=1, where [=p(x),

-1, d(x,y) =1}'

s the set of vectors Y for which p(y)=i+1, d(x, y)=1, where |=p(x), i.e.,
X,y) =1}.

1, d
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The upper-level Boolean set F, is the set of vectors y=H such that Qf+‘nﬁé=¢ i.e.,

Fo={ysH|Q," NH=9}.
LEMMA 1. If condition (3) is satisfied for the CP problem (1), then the upper-level
set F, includes the set of coordinated plans S, i.e., S ¢ F,.

Lemma 1 and all the subsequent theorems are proved in the Appendix.

It follows from Lemma 1 that if X=Fo and x&$ (x is the prohibited vector), then
no vector y=S exists such that d(x,y)=1.

Change the indices j so that if j, < j,, then Cj1 S Cjz- We say that the vector x° is

in relation % with the vector ¥y if ;" =1, z.'=0, y;=0. y.=1, Vj#j,, j» 2’=y; and cy1 <
For the vector x° we define the following sets:

1) Ve'={ylp(y)=l d(x°, y)=2},
2) sz°p= {yeV'|x° 2, ¥},
3) Vx'.,d={yEon'|y—“—>x°}.

Cjz-

Note that V /=V,?UV.? and VPNV =4,
THEOREM 1. Let x°=S. if xeVu'*NF, then x=8.
(Wg, U), where
W= {x|p(x) =1}, U={us,,|d(x, y)=2}.

Consider the graph Gy

Take the subgraph G¢S = (WS, US), where
We={ysWlyssS}, U={u,, ,=U|x=S, ysS, d(x, y)=2}.

COROLLARY 1. Let WyS # ¢. Then the subgraph GyS is connected.

COROLLARY 2. Let x'=V.“NF,, where xS and x'&S, if x=V,“NF, then x&S.

Theorem 1 directly implies that the set of vectors obtained from the vector x'&S by
successive application of the relation e is coordinated.

The set S is constructed as follows. Assume that we have found the vector X’ =(z,° ...,
zn") =8S. Determine the set Vyo'=V.?UV."“. By Theorem 1, VXOQP ¢ S. Index the vectors of
the set Vo by w (u =1, .., N) so that if p; < pz, then p(x*)<<h(x*). Perform one of
the following operations for each vector x* (up =1, ..., N) in the order of inceasing in-
dices:

a) if x'EH®- determine the set (... where Qv = {x|p(x)=I—1, d(x". x) =1},

b) if x*<H,x*=F, determine the set (. where Ot ={x|p(x)= I+1, d(x*, x)=1},
c) if x"SS  then by connectivity of the graph G;S determine the set 1k,

d) if x*=F,, x*&S, then the vector x" is prohibited.

The procedure of construction of the set S continues while at least one allowed vec-
tor x*€S remains.

The construction of the set S requires testing for the membership of the vector x" in
the sets H, F,, S.*

4. SOLUTION ALGORITHM

The algorithm developed for the solution of the CP problem (1) consists of an initial
step and an iterative procedure which additionally uses the sets E, P, and R. 1In the initial
step, set E=@, P= 0, R =@. Solve the P- problem to determine the vector ¥' and the
set Vyol, where l==§1yf. Set P = P U {y°} and E=EUV,/U{y’}. Index the vector xel,/ by

=t

*The conditions =x*=H and ~e«F, are checked by simple substitution in the constraints
of the AE problem. The test of the inclusion xt-~¥ is much more complicated, and this topic
is considered separately in Appendix 2.
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“p(u=1, ..., N) so that if p; < M,, then h(x*)<h(x"). End of initial step. The itera-
~ tive procedure selects the next vector X’ in the order of increasing indices. It identifies
~ to which of the states a, b, c, and d (see Sec. 3) the vector x° belongs and correspondingly

determines one of the sets V!, ,Qj5 Qs for x'. If the vector x° is in state c, then the
m

"'set Vis is determined, where l“:Za-f, and the subsets V'25 and Vi are found. The

i j=1

" set R is determined as the intersection of the sets V' and {X N F,}. The vectors from
~ the set R are included in the set P and the minimum of the function ®(x) is sought on these
~ Vectors. The resulting set of vectors is combined with the set E, the vectors are indexed
bypu (u=N+1, ..., M) as described above, and the iterative procedure returns to the

3. beginning. Let us describe the steps of the algorithms in detail.

Initial Step. Set P =@, E = §. Find the vector y° and determine its weight Z=Zyj°,
B . j=1

Determine the set V.. Set P=PU{y'}, RECORD =®(y"), xjCP = yj°% j =1, ..., m,

- E=U{V, Uty RECORD stands for the best value so far. The vectors x=E\{y’} are in-
ed by p (=1, ..., N). Set § =1 and go to the beginning of the iterative procedure.

Iterative Procedure. Step 1. R = @.

Step 2. If x°EH. then go to step 6.
Step 3. If x°EF,, then go to step 7.
Step 4. If x’<P, then go to step 8.
iv Step 5. Test X’ for coordination by Algorithms 3 from Appendix 2. If x°=S, then P=
PU{x’} and go to step 8, else go to step 9.

Step 6. For x° determine the set Qial- Index the vectors x EQiBI\{EﬂQ}EI} by u

=N+ 1, ..., M). Set E=FUQ.;'! and go to step 9.

X

~ Step 7. For x’ determine the set Qls'. Index the vectors xEQi’Sl\\{EﬂQiEI} by u
B, ..., M) and go to step 9.

Step 8. For x° determine the set Vx . Partition the set Vs into subsets V.3 and

Set R—RU(V3 N{F,NX}), P=PUR. Index the vectors x=V,;\MENV,s! by u (u =N+
.oy M), set F—puVis. Fix x’=argmin®(x) over x=RU{x'}. If ®(x")<RECORD, then
RD=0 (x°), x,°P=z, j =1, ..., m, and go to step 9. Else go to step 9.

Step 9. Set N=M, § =8 + 1. If § > N, then go to step 10. Else go to step 1.

.S;,teg 10. RECORD is the solution of the CP problem (1)., and the vector x©P is the
ht coordinated plan. :

estimated the comlexity of the algorithm by counting the number of vectors tested
ordination, i.e., the number of vectors of the set F,. The worst-case cardinality

o does not exceed sz’ where [=p(y°’), m=dimy’. Therefore, the complexity of the algo-
s bounded by Cp%.

5. AN APPLICATION

formulation of the problem and the mathematical model (1) were presented in a

orm. When applying the results in real AS, the mathematical model may be substan-
plified by utilizing the specific features of the production divisions. Thus,

ar, the computer-aided subsystem for coordinated daily-shift operations planning
ping shop of the "Aktyubrentgen' industrial association minimizes the AE objective

m m

iting it in the form f(x, y)=2 ciY; +E a;| z;—y;| where cj are the divisional losses
=1 j=1

auxiliary jobs for batch j. The components of the vector ¢ are ordered as c; >

2 cm. The problems of the element and the center are knapsack problems. The con-

e identical for the center and the elements, as they describe the production

the stamping shop. The constraints have a simple structure and an inequality

>. Therefore, the set F, can be replaced with the lower-level set F, of the

iich has the form
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Fo={ysH|Q,” N H=0}.

The solution algorithm of the CP problem (1) also has been slightly modified. Thus,
during the construction of the set S, the vectors + are indexed so that if u, < u,, then

» m

— 1—

chxj"‘>20j$j“*. Moreover, if x*&H, then the set ml is determined. These modifications
j=1 J=1

simplify the application of the results for the determination of the daily-shift assignments
of the stamping shop.

In addition to the mathematical system software, special programs and data bases were
developed. The programs are different modules of the basic procedures, coded in FORTRAN
IV under the OS-RV operating system. The data base was implemented using the tools of the
SETOR-SM DBMS. The data base is stored on a SM 5400-00/12 magnetic disk. It consists of
nine interlinked files and is maintained and supported by SETOR-SM DBMS tools.

The operating plans of the stamping shop are constructed by successively solving the
following two problems:

1) the problem of determining a coordinated daily-shift plan;
2) the problem of optimal scheduling of the machines in the division.

Application of the results produced by the solution of the first problem (determining
a coordinated daily-shift assignment for the stamping shop) has improved the continuity
of operation of the machining, drilling, and assembly teams. The volume of work in process
was reduced, and the finished product output accordingly increased by 37%. Note that the
second problem is designed to reduce the volume of auxiliary jobs. The application of the
results of its solution has made it possible to eliminate two setup positions, and the re-
dundant workers are now employed as stampers. The stamping shop output accordingly in-
creased by 67. The economic impact of the computer-aided subsystem is 42 thousand rubles.

6. CONCLUSIONS

The CP problem has been formulated for a discrete AS and an appropriate mathematical
model has been constructed. The properties of the set of coordinated plans have been iden-
tified and investigated. A solution algorithm for the CP problem has been developed and
its complexity has been estimated. The application of the results in an instrument-building
plant has been described.

Note that the model (1) may be used to describe the synthesis of a coordinated AS struc-
ture and the algorithm proposed in this paper is incorporated in the system software of
the computer-aided production structure design system of the "Aktyubrentgen' industrial
association. Moreover, the proposed algorithm can be used to solve coordinated planning
problems with nonlinear objective functions, as well as ordinary discrete optimization pro-
blems. The corollaries of Theorem 1 were used as a basis for a direct method of solution
of the CP problem (1), which differs from the method proposed in this paper in that it does
not require preliminary identification of the set S and dispenses with a number of approxi-
mate algorithms.

APPENDIX 1

Proof of Lemma 1. Let S ¢ F,, i.e., there exists a vector XS and x&F. Construct
a new vector x'ef, by setting the j*-th zero component of the vector x equal to 1, i.e.,
xi%! =1 and zy=x;1-1, zj==x;! Vj=j  Since xe=§. then from the definitionof the set S we have
the following:

m

”
Z. ¢t = 2 2 =1 (%, x1)
j=1

j=1

or

j*—1 m i*—1 'r%
€.z, 4 CiuTiat E ¢ x; > E c!.r} —!rcj,,.rj’,, + c/.r} —x (x, x1).

=1 =it j=1 j=j*+1
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Since vj=j* 2;—z;!, we have

P ] i e )
cirp=cpzit—ay|zp—zit.

Substitute x:%x! = 1 and x:%x = 0. As a result we obtain Cj% < aj%, and since vj cy >
then x=s5. a contradiction. Thus, S ¢ F,.

Proof of Theorem 1. Let x'eS, x%cV,» Assume that x'ES. Then there exists a vector
~such that

m

Z, ¢z’ < Z (e;95°~aj]2;°~y;°]). (A.1)

i=t i=1

Denote I° = {j[x;° 1}, I = {Jli* =T I =dily =1, 1 e 0 T
_y°,1*=1*uz.v°1 = T* n Iy°.

n order to prove the theorem, it suffices to show that the theorem holds for the follow-
s separately: 1) yj;,° =1, yJ2° =0; 2) le =0, 75 a2 =033 i 2= 1; yj2° =
= '}he other components of the vector yo may be arbltrary

ch<.2 b Z a; (A.2)

=0 jer® le‘{\lg
Sl c.> E‘ . = E a;. (A.3)
7 7
.‘—'J.. Py * *
el ier el \Iy

x°sV.'?, we have
: S 2 aj + X5 + B
o 0 X * *
€N,y €N\
may therefore write

Zc— 2 a>23_. Z “”‘aj‘—aj,>2cy. (A.4)

JEI o »° £
s ES AN € o jenng jer

x'eVl» it also follows that Zc,-;ch. which contradicts (A.4). The theorem

jere jers
roved for case 1.

0. Tet I,° = I,°\I,° U{j2}, Is*=TI,;*\I,* U {j,;}. Clearly I;° =
j2 2 @j;, then using (A.2) and (A.3) we vrite

2 20—2a—a>20———2a—a>2 (A.5)

T e, ol BT et

o than Z ¢; = Zr, We thus have a contradiction in (A.5). The theorem

jere jsIs

,° = 1. Denote I,°
the condition x°=Vy

15010 U {94)), T.E= I 2\ (1,* U {Ja]). Clearly,
» we rewrite the inequalities (A.2) and (A.3) in the

2“}'“2“1'_“"? Z R (A.6)

P - =Tt
Ec—-Za—ahg Z £y X (A.7)
jery® 514 IE*N\ i >
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Multiplying (A.6) by —1 and adding the inequalities (A.6) and (A.7), we obtain
(A.8)

Oy —Qjy<<Cj;—Cjs.
Using (3), we have

e(cj—cjy) >cj—Cjy.

This is a contradiction, which proves Theorem 1 for case 3.

4) y5:° =1, yj2° = 0. Rewrite (A.2) in the form

Ot o Z Bkt =3 2 @5 (A.9

JEIN {2} FSIY\ {3s) J'EI?_\Ig
Since x%eVe!?, we have I* = (I°\{j,}) U {j.}. Add cj1 — cjp to both sides of (A.9). Thi
gives
N Er JEIY\ ta} e\ 1

From (A.10) it follows that 'x'=S. A contradiction. Theorem 1 is thus proved for case
4, which completes the proof. Q.E.D.

APPENDIX 2

Testing the Plan x* for Coordination. By definition, a given plan x'eHNX is coordi-

nated, i.e., x'e§, if
: (A.1
s [esyi'~a;|z5*~y;0|],
i=1 j=1

m

where )‘°=al‘gmax[Z(cjy,-—a,-].rj'-y”)] over y=H. In order to find Y we need to solve the

j=1

following problem:

Iyn:: [Z ciyj— Z, o (Yp—z;*)— ZG:(% —y;)]

isdy i€J,
or
max [2 prJ E Iaixz § |a111 ]7 (A.1
yY=H
i€t i€eJ,
where

citay,  if  jel,
P =
Cj—0; if isl;.

Problem (A.12) is an ordinary 0-1 linear programming problem, and it can be solved

by one of the standard techniques. In some cases, the following test of coordination is
more efficient. Consider the system

Z piy;it 2(1,1; Z‘a Tt = Zc iz, (A.1 )

JET jer,
Z, brjy;<bn. k=1,.... K. (A.14]
j=1
yi={0, 13, j=1.2,....m, (A.15
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where (A.14), (A.15) define the set H of the AE problem. Denote by Dx the set defined

the system of inequalities (A.13)-(A.15) for the given plan x'. If for the plan x- the
Dy* = @, then x'=S. In order to check the system (A.13)-(A.15) for consistency, we need
ipper and lower bounds on the weight of feasible vectors.

- Let us determine the upper bound %* of the weight in any feasible solution of the sys-
em (A.13)-(A.15). Order for each k (k = 1, 2, ..., K) the coefficients bkj (7 =1, ..., m)
nondecreasing order and count the maximum number %K of first elelments in the sequence

, «+.s bkm} whose sum does not exceed by. Set 2* = min ek over 1 < k < K. Using the
‘initions of J, and J,, we obtain from (A.13)

r
3 m

2 piYi= Z, (cjto;) +1=T.

i=1 i€,

Let us determine the lower bound 2° of the weight of any feasible solution of the sys-
(A.13)-(A.15). To this end, order Pj (j =1, ..., m) in a nonincreasing sequence and

t the minimum number of the first elements of the sequence {p;, ..., Ppp} whose sum is
r than T. This determines the lower bound 2°.

bviously, if 2° > 2%, then Dy* = @.

t 2% = ¢*%., Then the check for consistency is carried out by a simple substitution
13)-(A.15) of the numerical values of the vectors from the set Wy, where & = 2° = i%,
p(y)=0). The definition of the set Wy for any % is given below.

et 8% = ¢% — 1. Then only vectors of weight 2% and &% are feasible, i.e., vectors
sets Wgo and Wgx. System (A.13)-(A.15) is checked for consistency by Algorithm
> basic idea is the following. Determine the set Wgo and identify the subsets Wgo!
where

Wl={yeWn|h(y)<T, y=H),

Wit={yeWpn|h(y) =T, y=H).

02 # ¢, then D¢*¢ and x'SS. Otherwise, for all y=W.' determine the set QZ'H.
L : y
u 1Q,,‘*‘. Identify Wox?. If Wox?=@, then x-=5 otherwise x'=s.
EW
I
2% < g% — 1. If y=Dx, then P<p(y)<l’. i.e., only the vectors YEIUI.WI are feasible.

(A.13)-(A.15) is checked for consistency by Algorithm 2, whose basic idea is
2
2

ng. Initially set l==] [ Determine the set Wg. Then arbitrarily index the

the set Wg by y (y =1, 2, ..., I';). We obtain a sequence {y!, ... .... y'). whose
not been checked. Assume that they are prohibited. The next vector ¥y’ may
the following states.

h(Y)<T.y'sH. Then for ¥ we obtain the set

< yi)+i° Ty +]*
: W= {ylp(.v)= ]%—[ a(yry)= ] p(#[ —P(yT)} .

. = p(yO T
M’» we first determine the set Wy, where I= ]~—~5— . Then for vyew; set

(where 7' ={(j|y}= 1}). From Wj select vectors of weight p(y)=]M[.
: 2

orm the set Why.
7,yi=H. Then for y' we obtain the set

(yn+0° (yn+e
WuYH={ yle(y)= ]p—,,—[ T OnNSy=p(yi) — ] : * [ } .

=
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Then for VyeW; take
Pw0+”[

9

A (YN
To this end, first determine the set Wy, where I= [

-

e
=0, VieJj (where JYY = {j|y}= 0}). TFrom W; select vectors of weight P(Y)=]

They form the set Wgy.

3. Let n(y)=T, y'eH. Then yieD..
4, Let h(y)<T,y'=H. Then y' is regarded as prohibited.
The new vectors are arbitrarily indexed by y (y = T; + 1, ..., o

The procedure of checking the system (A.13)-(A.15) for consistency is continued either
until a vector y'sDs 1is found or as long as the sequence ({y! ...,y’} contains at least one
allowed vector. If no such vector exists, then Dyx = @ and x'ss.

The set Wy, 0 < £ < m is determined as follows. For the vector y'. with the first ¢

components equal to 1, determine the set Vg Then for all ysVy! also determine the set
Vy, and W,= U V( '
yEVf\-: ¥

Before describing the algorithm that tests the vector x* for coordination, we present
a number of auxiliary conditions.

Assume that there exists a vector x°eV.?nH, such that

€y <Cjy—j;—Ojs (A.16)
Then clearly, x'ES.

m

Assume that y°=argmax 2 [Z1'F] and

yEH

m

Z ozt < Z(‘—'JUJ"—GJI%'-W”)- (A.17)

j=1 je=1

From (A.11), x'=S.
A given plan x" is tested for coordination by Algorithm 3.

Step 1. Test condition (A.16) for x'. If true, then x'=S, and go to step 7. Else
go to step 2.

Step 2. Te;t condition (A.17) for «x*. 1If true, then x'=S, and go to step 7. Else
go to step 3.

Step 3. For X' construct the system of inequalities (A.13)-(A.15). Find 2° and 2*.
otep 2 :
If 2% > 2%, then Dyx = @ and x°<S, go to step 7. Otherwise go to step 4.

Step 4. If 2% = g%, then go to step 4.1. Else go to step 5.

Step 4.1. Determine the set Wy (o =00 = W) UTf Wo N DX* = @, then x’=S and
go to step 7. Else x'=S and go to step 7.

Step 5. If 2° = ¢* — 1, then go to step 5.1. Else go to step 6.

Step 5.1. Apply Algorithm 1 to check Dyx N (Wgo U Wgx) = @. If Dg* n (Wgo U Wgx) =
$, then x'=s and go to step 7. Else x'=5 and go to step 7. -

’i
Step 6. Apply Algorithm 2 to check D.N(y W)=g. If Dx.ﬂ(lﬂ‘ W) then x'e§
1=10 =19
and go to step 7. Else XSS and go to step 7.

Step 7. End.
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