CORRECT ADAPTIVE MECHANISMS
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We consider an active system comprising a center and a far-sighted active element
with a controlled stochastic model of constraints. The notion of correctness of
adaptive functioning mechanisms (AFMs) is generalized under conditions of uncer-
tainty (including the case of unrealistic plans). Optimal synthesis of a correct
AFM is considered.. The characteristic function of the AFM yielding the necessary
and sufficient conditions of correctness is constructed. The optimal incentive
procedure is synthesized for a correct AFM. Open and two-way planning problems
in AFM are formulated and solved. The results are applied to the case of guar-
anteed correct AFMs.

INTRODUCTION

Optimal synthesis of a progressive AFM of an active system ensuring full utilization
of the system potential was considered in [1]. The active system included a center and
a far-sighted active element (AE) with a controlled stochastic model of constraints. The
AFM characteristic was introduced and used to derive the necessary and sufficient condi-
tions of optimality for a progressive AFM. The characteristic also provided the basis for
deriving constructive necessary and sufficient conditions of optimality of the incentive
procedure for a progressive AFM with given prediction and planning procedures. The initial
problem of optimal synthesis of a progressive AFM for a vector AE was reduced to the con-
struction of a progressive AFM for some scalar AE.

Optimal synthesis of a guaranteed correct AFM, i.e., an AFM which ensures fulfillment
of a plan that is realizable for any active-system potential, was considered in [2]. Such
a plan corresponds to the least potential, and a guaranteed correct AFM accordingly en-
sures minimal utilization of the system potential. It is therefore relevant for both theory
and practice to investigate and construct AFMs that motivate the AEs to fulfill the plan |
and at the same time to achieve full utilization of their potential.

In this paper, we consider the important and quite common problem of constructing a
correct AFM that ensures fulfillment of the centrally imposed plan by the active elements
in cases when the planned targets are attainable in the prevailing situation (i.e., for
the specific values of the random factors of the potential, which are unknown to the center).
Alternatively, with an unrealistic plan, a correct AFM should motivate the AEs to increase
the degree of plan fulfillment to the maximum attainable level in the given situation through
complete utilization of the system potential.

2. THE MODEL

The set of possible states of the AEs, the AE objective function, the order of function-
ing of the system, and the solution of the game have the same form as in [1]. We accord-
ingly use the same notation as in [1]. Recall that the state of an AE in period t is de-
scribed by the vector y.=(¥i,...,Ym)<=Y(P)) where P:=(a:.5:,) is the vector parameter of the
model of constaints of the AE (the model of the AE potential), Ct is a random disturbance,
Ct € 6, a is a tunable parameter estimated by the prediction procedure I:

a,..=I(a, ,Yr)Taz, a,=a’. (1)

Here and in what follows, we use the notation [(a, y.)ta: if [I(a, y:) is strictly monotone

increasing in a;. It is easy to see that .4, PSP =:4,80 where At ® 6 is the direct pro-

duct of At and 6, A4,9Y,—>4,.,, 4,=A4°, Y,=Y(p:). The set Y(a,, {t) is convex, compact, strictly
1
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notone and Hausdorff continuous on At for any Ct = 6 and on 6 for any a, = A¢, Y(a,.,
)= Y(ai, Ct)s Tt > Ct'y Tty Ct' = 05 Y(p)oW(p) where W(p:) is the boundary of Y(p.).
BEsume that Ayy, < A, t =0,1, ..., and for any a=A¢, T, C'e 6,

I(a,y)=I(a,y)=UE, 0'€0: yeW(a, L), y'eW(a, §'), L=T, (2)
e the equality holds if and only if ¢ = {'. Hence
I(a, y)>I(a,y'), ysW(a, §), y'sint Y(a, T). (3)

The AE objective function is

t+T :
W(Pps - - o5 Qrar) = Z‘Pt_T(Pn §r = [ (X, ¥1); X =7 (av), (4)

T=t

where ¢: is the reward in period 1, p is the discounting factor, p < 1, X is the plan in
period 1, x.=X.={x=n(a),a=4.}, n(-),f(-) are continuous functions of their arguments.

We consider the usual order of functioning of the system in period t [1]. In period

'» the center estimates ay (1) and assigns the plane Xx: (4). Then, realizing the random
potential P: the AE chooses the state ¥: and receives the reward ¢:.. In the process, the

AE optimizes the objective function (4) for some predicted values of its potential and state
er the entire far-sighted interval T. Since the choice of the state Y. (for a given
tential P: depends on the AE, the predictor states are the states maximizing the objec-
tive function (4). We introduce a maximization operator over the states Y: from the set Y (p:):
= max. By Ez+ we denote the operator that eliminates the uncertainly concerning

Yi€Y (py)

i-»- disturbance C; in period t, {; = 6. For example, if uncertainty is eliminated using
the principle of maximum guaranteed outcome, Ey =—min. The product of the operators ECt’
(=

= v, p will be denoted by EyM: E\M = Eg, o-eo ECU' Finally, the sequential product of the

erators My and Er_, T = V, ¥ will be denoted by M,H: MM = Ez )My ... EzyMy. The expected
AE payoff in state y, thus can be written in the form [1] i e

4T

D (X, Vo) = MET w0 (@ - - - Prat) = ¢ + 2 P tMEt] Pr (Xes Yoo (5)
T=t+41

'@ere P« (X, i) =f(Xs, ¥:), Xe=1(a.), acri=I(a:, ¥:), ¥:€Y(p:), pEP, 1=t, t+1T.
The set of possible choices of the AE (the solution of the game) is given by
R (Z,p)=Arg max @ (x; YY) (6)
ytEY(P)

3. A CORRECT AFM

: As we have noted in the introduction, a guaranteed correct AFM is an AFM that ensures
equality of the AE state and plan (y.=x,€Y(p:)) for any system potential (R(Z, p.)=x, Vp.EP).
Note that the plane x: is assigned before the element determines the disturbance {{ and with
it the system potential P:=(as ;). Moreover, the disturbance C{ is not known to the center.
- Therefore the plan x: does not necessarily belong to the set of possible AE states Y(p:).

We say that the plan X: is realistic (unrealistic) if x,€Y(p,) (or respectively xX:&Y(p:). The
definition of a guaranteed correct AFM is obviously meaningful only if the plan is realistic.
~ We generalize the definition of a correct AFM to the case of an unrealistic plan. We assume
that in this case a correct AFM ensures that the elements choose a state y: from some subset
A(xi, pr) on the boundary of the set of possible states W(p,)2A(x:, p:) which in a certain
~sense is ""the closest" to the desired state x, [1]. Let

X x, =Y (py) =p (7)

8 % i) = { A p)CW (), =Y (@) M=

~ be the set of optimal AE states in period t, t =0, 1, ..., and A(X, p’)=x. if x,=W(p~), We
- say that the AFM is correct if
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R(Z, p:)<B(x:, p:) Vp.=P. (8)

In the absence of far-sightedness (T =0), the sum in the right-hand side of (5) is zero
and condition (8), by (5)-(7), has the form Vp,EP

F (%, pr) =Arg maxl f(x;,y,) C B (x;, py). (9)
VY (Ry)

The class of AFMs satisfying (9) will be denoted by II. It is natural to restrict the
construction of correct AFMs to mechanisms from the class I, because the AFMs obtained in
this way remain correct for AEs that are not far-sighted. Finally, recall that the AFM
2 = (I, m, f) is called progressive (regressive) if M.f(n(a.),y:) increases (respectively,
decreases) in a a; for any p=P, t =0, 1, ... [1]. Progressive and regressive AFMs com-
prise the class M of monotone AFMs. The solution of the synthesis problem of a correct
AFM (8) will be sought in the class (I N M). We first assume that A(x, p,)is a point for

any p.€P.

THEOREM 1. Let I = (/INM). Then the AFM I is correct if and only if for any p.€P
we have

V(Z, p)<=B(x:, p), (10)
where
V(Z,p)=Arg max v(xyy) (11)
YiEY (py)
4T
ol =30+ S P-E T (20 ) (12)
T=t-+1
(Pt (xh yt) =j (iTi z‘t)t Zy = B (i@, i"t)v i’t =T (d‘r)y ﬁ'r: (dn ;T)v
Uy=1(G12)yt=t+1,t +T,8=anz =Yy,
and

R(zy pt)=V(za Pt)=F(xt- Pt)-
This and the following theorems are proved in the Appendix.

Note that for ;& |J Y (p), t = 0, 1, ... (unrealistic plane) by (7) we have B(x p:)=
PP

A(x:, 1) and Theorem 1 leads to Theorem 2 [1]. Expression (12) then coincides with (18)

[1]. Therefore (12) can be considered as a generalization of the AFM characteristic which
includes the case of both progressive and correct AFM. Now, the AFM I satisfying Theorem

1 is correct both for AEs without far-sightedness T = 0, Z e (I N M), and for far-sighted
AEs with T > 0. It is easy to show that it is also correct for AEs with far-sightedness
less than T, i.e., far-sightedness equal to 1, 2, ..., T — 1. Thus, if the true far-sighted-
ness of an AE t¢, is not known exactly to the center, it suffices to take T that is de-
finitely less than T, and to ensure that the conditions of Theorem 1 are satisfied.

4. CORRECT INCENTIVES

Let us now construct incentive procedures that ensure correctness of AFM for given
prediction procedure I and planning procedure m. As we have noted above, the solution of
the optimal synthesis problem (8) obtained in [1] remains valid for the case x,& (] Y (p)-

p=P

Therefore, in what follows we seek the solution in the case of AFMs &= R with procedures
I, m such that & |J Y (p) (i.e, the plan is realistic for at least some value of the AE
PEP

potential). We introduce an extension of the set B(x, p:;) in the form

[ B (X py), X, = int Y (py), (13)

B, (xpp) =
. (Xt 1) L&ty 1)y X = int ¥ (py),

where &(x,p.) is aclosed set, &(x,p)<W(p,) and &(x,p~) =x, if x, W (p~).
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THEOREM 2. Consider the AFM ¢ = (I, 7, f) = (I N M N R). The AFM ¥ is correct if
and only if for any P:E P we have

f(xi, y) =h(a, a,.,) Vy.EB.(x,p.), (14)
where h is a continuous function of its arguments, and

h(ay, as4y) T Qrags it (@p, @131) 1 Qrayy @rig << a:’-l’ (15)
arg max h(a; ap)=—arg max u(a, au,)= (16)
1S A1y &4
. *
= min [asy, I {ay, yi)]s
where
t+T .
t+T O ~ ~ ~
U@y, Gryy) = Z pT_tEtL R Ay o), Gy = @y, driy = Qag, oo = (17)
T=t

l(d‘h z‘l:)v ZTEB(X'[, pr), p-\j:(dr, CT)’ T=1 —1— 1, t + T ———1,
afﬂzl(a,, 7 (a;))-

Theorem 2 has the following meaning. A correct incentive procedure is realized by
the function f(x y.) whose maximum for yeW(p) (i.e., for a given awu=I(a: y:)) is
attained, by (9) and (13), on the set B.(x, p:). When ¥: is varied within the sets B,(x, p:)
with different PSP the function f(x, ¥:)=h(a. a.) increases monotonically with the in-
crease of @rwi=I(a:, ¥:) if ary, < ap4,* (i.e., until the equality x,~y, is attained).

By (16), the maximum of f(xi, y,) is attained either for X:=Yy. or for y.=z<A4(x, p:.) (if
I{a,, z,)Sa?H). Conditions (15)-(17) use the characteristic of the incentive procedure

u(a;, at+,) to tune the parameters of the function f(xi, ¥:) for far-sighted AEs with given
prediction and planning procedures. Thus, the incentive procedure in a correct AFM, as

in a progressive AFM [1], is based on scalar estimates g¢,,, as the images of the vector

AE states y,.

Note that by (13) the set of maxima of f(x¢, yt) for x.=intY(p.), y.=W(p.) is arbitrary
(because & (x,, p.) <W(p:) is arbitrary). Therefore condition (13) essentially does not restrict
the choice of the functions f(-) when synthesizing correct incentive systems in AFMs. It
is only essential that for Y. €W(p:) the values of f(xi, y)=h(a, a;ss) and u(a., ats,) be
less than h(a,, af4,) and u(ga,, at+,). Otherwise, a far-sighted AE will find it advantageous
to exceed the plan x..

5. GUARANTEED CORRECT MECHANICS

Let G = R be the class of AFMs with the procedures I, w such that x.€Y(p.), t=t, t+T,
peP (i.e., all the plans are realistic). To this end it suffices to have x;e= N Y (po).
P

Represent the incentive procedure in the form | =

(%, ¥)=g(y)—x(x, ¥), 2(x, x) =0, x (x, y) >0, x=~y, (18)
vhere g(y) is a continuous function. Let & (I N M N G). Then from (18) it follows that
the function g{(m(a)) is monotone in a, asA. Indeed, for £ = (G N II) we have from (7),

(9)  Mf(n(a.), y.)=g(n(a.)) and from L =M it follows that g(n(a:)) is monotone in a,
e A. ‘Then, substituting (18) in the condition of Theorem 1, we obtain that for an AFM
to be guaranteed correct (see Sec. 3) it is necessary and sufficient that for any p.=P

we have
O
arg max [f(xuy)+ ) ot (%) | =x ¥ () (19)
YiEY () Saerand}

where X,=n(a.), dep=I(as, X.), T=t+1, t+T—1, arv=I(a, y.). Condition (19) establishes an addi-
tion lower bound on the penalty function #%(X;y,). Indeed, from (9), (18), (19) we have

X (Xey yi) >g(y) —g(x) Fp(x, V1), XeFYe, (20)
+T _
where ¥ (x,,y;) — max [0, 2 (g (k) — & Re))]y Re=7(de) drig=1(Gr,%e), T=1T1, tFT—1, depi=I(as, X:), X,
=t+
= T
is defined in (19). Note that for Z[g(i,)—g(ﬁt)]zo (20) coincides with (9), which is
T=t-+1
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a necessary and sufficient condition for a mechanism to be correct without far-sightedness
(i.e., when T = 0). Now, if the AFM I is progressive, then we easily see that the addi-
tional penalities (X, y:) associated with far-sightedness are nonzero for I(a:, y:)>I(a., x.),
are equal for any y.€W(p,) for given PSP, and increase with the increase of I(a, y.).

In view of (3), this means that the penalties for "exceeding" the plan (i.e., y.=W(q, t),
x,<intY(a, §)) for a far-sighted AE should be greater than for an AE without far-sighted-
ness. If the AFM is regressive, then the additional penalties v(x; y:) are nonzero for
asi=I(a:, y)<du=I(a, x,) and increase with the decrease of au=I(a» ¥:). In this case,
far-sightedness increases the penalties for "underperformance'" (i.e., reduction of a,;.).

6. OPEN AFM

Assume that the plan for period t is assigned by the AE itself (so-called open plan-
ning), after which the system functions as described above. The AE essentially sets the
initial plan in an iterative plan-forming procedure. Substantively this corresponds to
open current planning of the AE states followed by adaptive estimation of the parameters
of its model of constraints and long-term planning on the basis of these estimates.

We denote by 7m° a planning procedure that includes open current planning and adaptive
long-term planning (4). The functioning mechanism with planning procedure m°, prediction
procedure I (1), and incentive procedure f (4) will be called an "open'" AFM. We denote
open AFMs by I = (I, w%, f). In an open AFM, in distinction from an "ordinary' AFM, the
element first chooses the plan x; and then chooses the state y:. Optimal open AFMs
naturally include also those mechanisms for which the AE plan and the AE state belong re-
spectively to the set of optimal plans and to the set of optimal states. Since the choice ¥
of t=t+1, t + T also depends on the AE, the predictors as before are the states maxi-
mizing the objective function (4). The expected payoff of the AE under the plan x; ob-
viously has the form

@ (x)=MtTw (@, - . -\ @rar), (21)

where x.€X,, Xt is the set of feasible plans. Therefore, the set of preferred plans for an
AE plan under open planning has the form Q(Z, X¢) = Arg max w(xy).
ey

Denote the set of optimal plans by X{°. In view of the above, the open AFM I = (I,
7%, f) is called optimal if Q(Z, X¢) = X¢° and (8) holds.

THEOREM 3. Consider an open AFM £ = (I, «°, f) & (I N M). The AFM I is optimal if
and only if ‘

V(Xv PI)CB(Pt)a plEP7 (22)
Arg max v (x;) CC XYV, (23)
=X, ,

where v(x,)=E;, v(x,,2,), z,EB(p,).

The function wv(x,) will be called the characteristic of an open AFM.

7. TWO-WAY AFM

Now assume that in period t the plan x,=n(a,) is assigned by the center on the basis
of a current estimate of the parametersof the model of AE constraints a, as reported by
the element to the center (the so-called two-way or bottom-up method of data generation),
after which the system functions precisely as in the base model. Substantively this corres-
ponds to two-way current planning with subsequent generation of adaptive estimates of AE
parameters and long-term planning on the basis of these estimates.

We denote by I° the prediction procedure which includes two-way current estimation
of the AE parameters and adaptive- prediction of these parameters in the long term by means
of the procedure I. The functioning mechanism with prediction procedure I°, planning pro-
cedure 7, and incentive procedure f (5) will be called a two-way AFM and will be denoted
by £ = (I° m, f). The notion of optimality of two-way AFMs is introduced similarly to the
notion of optimality of open AFMs. Denote by Ay and A¢° respectively the sets of the center's
feasible and optimal estimates a,, At° © Ay. The two-way AFM T = (I°, n, f) will be called

optimal if Argmax @(n(a,))C 47 and (8) holds. Then from Theorem 3 we obtain
GE A
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COROLLARY. Consider the two-way AFM % = (I°, w, f) € (I N M). I is optimal if and
only if

V(E,p)C B(x,pp), p & P, Arg max v(n(a,)) C AL

A=A,

£ An example is provided by a guaranteed correct two-way AFM. Let 2= (I N M N G) and
- (18) holds. Then condition (22) takes the form (19) and the characteristic function of
- the open AFM is
‘ E
v(x)=g(x) - Y 0% g (%) = (x,),

=
where x. is given by (19). Note that v(w(a) ) is monotone in a, a; = Ay, because, first
I€ M and h(n(gg)) is monotone in a,, and, second, I(g, y¢)ta. Now, if a.S4,°={a|x,c
- Y(p), x.=Y(p.), p-="(@, &), t=t+1, t+T} where d. is given by (19), then the two-way AFM I is
. guaranteed correct (i.e., I = G). Let % be progressive, so that h(mn(a,))%ta. Then, clearly
arg max v (n (a;)) = max @,=a ¢ Thus, the AE will report to the center the highest estimate

GEA e AL

- @* from all the estimates a, = AtG for which the plans are guaranteed to be realiable in
~ the periods t, ..., t + T. If a* < At", then, by Corollary, this mechanism is optimal,

~ and otherwise it is not optimal. If the AFM I is regressive, then h(m(a:) ) and v(n(a:) ) are
~ strictly monotone decreasing in a,. Therefore the AE reports the minimum estimate min a,.

G
“tEAt

8. CONCLUSIONS

In this paper, we develop an approach to the construction of correct AFMs of far-sighted
AEs that are also correct for non-far-sighted AEs (i.e., when & € 1I). Using the montonicity
property of AFM (i.e., I = M), we formulate necessary and sufficient conditions for correct-
ness of an AFM in terms of its characteristic function (Theorem 1). We use the characteristic
function to solve the synthesis problem of the incentive procedure for realistict plans
(e R) and for plans with guaranteed fulfillment (£ = G) (Theorem 2 and Sec. 5). We state
the problems of optimal synthesis of AFMs with open planning and with two-way generation
of data. These problems are also solved using the AFM characteristic. Thus, the character-
istic-based approach to the solution of analysis and synthesis problems of AFMs of active
systems with far-sighted elements, as developed in [1] and in the present study, proves
to be very fruitful.

I would like to acknowledge the useful comments of V. N. Burkov.

APPENDIX
Proof of Theorem 1. First note that (9) combined with (7) imply that
f(xv ¥v) <f(Xy, Xv), Xy, YveY(py), XYy, (A' 1 )
f(x\'v zV) >f(x\'1 y\')v xvéy(Pv)y Y. Y (pv)/A (X\,, pv) 3 ZVGA (xv' pv) (A * 2 )
Introduce the functions
t4T
Uy Xy ¥y) = s pt—vElvt'Il‘(T"‘ (Xyr ¥y) + [ (Xy ¥o)s B (X ¥Vy) = (A.3)
T=Vv+1 =
=f (xrv zt)v X, =10 (a-;)v
=1 (A1, Zr—l)v ZIEB(;ﬁ P‘;), ay=ay,

Pe=(de, §) v=0+1, viT, v=t, (+T—L

Note that by (12) ve(xe, yi)=v(xs, y:) and

Vy_y (Ky_gs Yyy) = (Xy_ps Yyy) F 0BTy (Xys 20)s 2y €B Xy, By)- (A.4)

]

fRecall that the case of unrealistic plans (£ = R) is considered in [1].
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From (9) it follows that  f(x, z:)=Mf(x, ¥t), ZEB(Xs, P1), X4€Xy, p:=P. Hence, noting that
At = Apy7, Xt = X4, we obtain f(Xesr, zesr)=Misrf(Xesr, Yi+r) fOr any zisr €B(Xtsr, Pr41), XepreXisr,
P,.r<P. Now, using the definition (A.1), it is easy to show that

Vipr—1(Xegr—1, Ye+r—1) =F (Xt 471, Ye+17-1) TOMt17Qt 47 (Xt 47—1, Yt+7-1)-

The rest of the proof is by induction. Assume that for some v, t + 1 < v <t + T —

1, we have
14T

Uy (X.v, yv) - f (xw yv) + Z pt—vM"\:Tl'q:-r (xv’ y\‘)' (A : 5) i
T=V-+1
and show that
t4+T
Vy_g (Xy_ps ¥yy) = F (Xy_pp Uy y) + pT—vM?T‘P-: (Xys ¥o)e (A.6)
T=v

Successively applying the fact that MM = EgvaMB+; and using the hypothesis (A.5),
we obtain

4T
PVVMET @ (Xy_gs Yyoy) = PM 0, (Xy, Yo
=V
xv=mn(av), av=I(ay-y, Yv—1), Xv_1=m(av-y), Yv€Y(p,), py<P. (A.7)

We will first prove necessity and then sufficiency of the conditions of' the theorem.

1. Necessity. We will show that for Ze(lInM),

MVUV(XV! yV) =Uy (x\'y zv) ’ szR(z| pv)- (A . 8 )

Note that for xy € Y(pv), given that ¥ is correct, we obtain from (7), (8) R(S ps)=x.
Hence, using the definition (6), we obtain for t = v,
v+T
P x4 D 0% IMYT0, (xyr 2 — MYTe (ks 901> (5,0 3
T=v-+1 (A.9)
xweX, y,sYp) x,7FY,.

Now note that if gq., q.eY¥(p,) are such that I(a,, q)=I(ay, g;) then for the progressive case
we obtain :
n

Z PV [M3,10 (x4 9y) — MY,10, (x,, 8,)] >0, (A.10)
T=E+1
and for the regressive case
n
2 PV MY, 9, (X, q,) — MY, @ (x,, 8,)] <O (A.11)
T=E+1

for any.v b=l <av il

1.1. Regressive Case. For x,&¥Y(p,) by (7), B(xy, ps)=A4(Xv Pv) =W (py). Repeating verbatim-
the argument used to prove Theorem 2 in [1], we obtain the sought assertion (A.8).

Now let x,€Y(py). Assume that I(av, x,)<I(ay, y»). Then, setting in (A.11) E=t+T, p=v+T,
gv=Xv, gv=Yv, summing the resulting inequality with (A.1), and using (A.5), we obtain (A.8).
Now let I(av, xv)>I(av, yv). Setting in (A.11) g=t+T, p=v+T, qy=xy, g=y+ Wwe obtain

v+T

PV IMNT o (x,, y,)— Mo, (x,, x,)] > 0. (A.12)
=t+T-+1

Summing (A.12) and (A.9) and using (A.5), we again obtain (A.8).

1.2. Progressive Case. For X&¥(p) by (7), (8), zed(xy p») =W(p,) so that by (2),
(3) I1(ay, z)=I(aw, yv) if yveY(p)/A(xy, p»). Hence, setting in (A.10) E=v, p=t+T, qy=2v, go=y, Summing
the resulting inequality with (A.2), and using (A.5), we obtain (A.8). Now let x.=Y(p.).
If I(as, xv)=I(av, ¥v) then setting in (A.10) E&=v, p=t+T, qv=Yv gv=%v and subtracting (A.1) from
the resulting inequality, we also obtain (A.8). Finally, for I(aw, x) <I(av, yv) setting in
(A.10) £ =t + T, u=v+T, @G=Yy,g=x. We obtain (A.12). Summing (A.12) and
(A.9), we again obtain (A.8).
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Thus, (A.8) holds for Z=e(InM).. Now, by (8), z.eB(xy,p). But then (A.7) and (A.4)
“imply (A.6) for any v =t + 1, t + T . Setting in (A.6) v =t + 1, noting that ve(xs, yo)=
o(xs, ) and comparing (5) and (A.6), we obtain

v(Xe, Ze) =0 (Xt, Ze) >0 (Xe, Y2) =0 (Xt, ¥i). (A.13)

Therefore, by (6), (11), (12), V(, p)=R(E, p:) and by (8), z <B(x,ps). This completes
the proof of necessity.

2. Sufficiency. We will show for Ze(IInM),

Moy (Xy, Yo) =Vy(Xy, 2o), ZyEV(Z, py). (A.14)
‘Note that for x.e¥(p,), t=v by (7), (10), we have V(g p,)=x.. Hence, using the definition (11),
We have for t=v, x,#y.eY¥(p)
} V4T

Fr x) + Y OV IENT P (xv, ) — BV (0 91 > 1 (530 9 (A.15)

T=v-+1

] Moreover, by (A.1) and (9), V(I, p)=F(xv, pv). Now, similarly to (A.10), (A.11), we have
for the progressive case

1’3
D VB B (xyn ) — By (50 8] >0, (.16)
=5+
and for the regressive case
3 B
2 PV [EY, 19y (x40 Q) — BN, 19, (X, 8,)] <O (A.17)
T=E+1

:‘foranyv5£§u§v+T—l.

) 2.1. Regressive Case. If xEY(p,) then B(x,, p,)=A(xy, Pv) and repeating verbatim the
‘proof of Theorem 2 [1], we obtain (A.14). Now assume that xeY(py). Then by (7), (8),
B(x,, p)=xy=2, and we have (A.1). If I(ay,x)<I(ayyy) then setting in (A.17) @=y,, g.=x,,
we obtain .

t+T

D F BT (5 v — BT (ks 2] <O, g
T=v+1

1 Summing (A.18) and (A.1) and using (A.5), we obtain (A.14). Now let I(as, x,)=I(as, yv).
' Then, setting in(A.17) £ =t + T, u = v + T, ©&=Xv gv=yv we obtain
3 v+T
0" [EVIT®r (xys ¥,) — ENIT, (x,, x,)] > 0. (A.19)
T=t+T+1
Summing (A.15) with (A.19) and using (A.5), we again obtain (A.14).

2.2. Progressive Case. Let x=Y(py). Then by (7), (10), z<A(Pv<W(py) so that from (2),
(3) we obtain I(av, z)>I(av, y») if ¥v=Y(p,)/A(py). Hence, setting in (A.16) £ = v, u=t + T,
§=2v §v=Yv , summing the resulting inequality with (A.2), and using (A.5), we obtain (A.14).
Now let x,€¥(ps). Then by (7), (10), z=x, and we have (A.9). If I(ay, x)=I(ay, y») then
‘getting in (A.16) £ = v, u =t + T, &=Xv ¢»=yv» and subtracting the resulting inequality
from (A.9), we obtain (A.14). Finally, if I(es, x,)<I(av ¥+), then setting in (A.16) £ = t + T,
u=v+ T, &= =X we obtain

V4T

v+ T~

0"V [y By (X4 ¥) — Exf{@; (xyy x,)]>0. (A.20)
T=t+T+1

Now summing (A.20) and (A.15), we again obtain (A.l14). Thus, (A.14) holds if Zen M).
- Now, substituting (A.14) in (A.17) and comparing the resulting expression with (A.4),

- we obtain the sought equation (A.6) for any v, t + 1 < v < t + T. Setting in (A.6) v = t +

1 and using definition (5), we obtain (A.13) for any x.eX;, z.€V(Z, p), y:=Y(p)/V(Z, p). Therefore,
E by (6)’ (8)3 (11)’ (12)) R(zyP)=F(xvp)=V(EvP)CB(XyP). Q.E.D.

Proof of Theorem 2 is given only for the case of regressive AFM, in order to save space.
- Fix ¢ and xi=n(a). Let Ct « 6 be such that xt=Y(as, &). Then by (2) a;, =/(ar, n(ar))>I(ar, 20),
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pi=(a;, T1). Moreover, B(x: p:)=A(X P1). In this case, the conditions of the theorem (14)- z:=W(p:),
(17) fully coincide withconditions (20)-(22) of Theorem 3 [1], whence follow both necessity
and sufficiency.

Now consider the case x;eY(p:). Then B(x:, p)=x: ¥p:=P and by (3) a,, <I(ar, 20}, z€W (ps).
Let us prove necessity and then sufficiency of the conditions of the theorem.
Necessity. Consider y;, y’,E;LéeA(X,, p) such that ey, >®.=I(a), y)>I(ay, y¢)=a,,, . Then,
t
repeating verbatim the argument of part 1 of the proof of Theorem 3 [1], we obtain
Fxp YY) =hia, a,) 1a,,, 8 < a:l, Y, = B(x, p)s (A.21)
u(ay, apq) 184 @44y < ";:1' (4.22)

Now let yi=A(xy P:) be such that ay,=I(ay, ys)>a;,; . Since I e I, using (9) we obtain

(X ¥0) <f (e, x1). (A.23)
Therefore, the function f decreases in a4, for a;y, > a1+1 . Moreover, it decreases
in a. Finally, for y/<4(x:;p:) we have from the definition of A(xi, py)
foe y) =16 ¥e),  1(an, yo)=I(as, ¥¢). (A.24)

The last equality holds because A(x,, p:)=W(p:). Using (A.24), (A.25) and x,=n(as),
we have for at4; > a4,

F(Xp ¥) =h(a, &) <h(a, a},) =] (x, x). (A.25)
Since the AFM § is correct, then by Theorem 1 V(3, p:)=B(x:, pt)=x: Substituting (A.21)
and (A.25) in conditions (10)-(12) of Theorem 1 and using definition (17), we have

vV, Pt)=al‘gve me A(x,a,g)u(at, at+1)=xt- (A.26)
reth, g Y

Thus,

< *
arg max g (g, a y=a_, a,,.>a;.. . (A.27)
a1 €414, t i1 23 Kt £51 t+1

Combining (A.21) and (A.25) and also (A.22) and (A.27), we obtain (16). This concludes
the proof of necessity.

Sufficiency. Since aej, <I(a;, z), z=W(p:) we have by (16) arg ~max u(ay a,)=af, . On
1+1S 484

the other hand using definition (11), (12) of V(& P and conditions (14)-(17), we again
obtain (A.26). Hence, seeing that af4, = I((as, 7(ar)), we have V(I p)=n(a;). But mn(a)=x,=
B(xs, p:) so that V(2 p)=B(Xt, Pt) and condition (10) of Theorem 1 holds. Thus, the AFM I

is correct by Theorem 1. Q.E.D.

Proof of Theorem 3. It follows from Theorem 1 that (22) is necessary and sufficient
for (8) to hold. Now, using the definitions (21) and (5), we have $(§)==Egﬂg&(q,yﬁ==

EQMgWxﬂyg==EQv(§,yg. The second equality holds by (A.13) and the third by (22). Thus,

Q(, X) =Arg max Ey v(x,, 2,). Hence Q(I, X ) = B(X) if and only if (23) holds. Hence, using the
=X

definition of optimal open AFM, we obtain the sought proposition. Q.E,D.
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