EVOLVING SYSTEMS

ASYMPTOTIC AGGREGATION

G. R. Adilov and V. I. Opoitsev UDC 62-501.5

We study systems for which aggregation is asymptotically ideal as the system
size increases, i.e., the errors of the simplified macro description, in stat-
istical average sense, tend to zero.

1. Introduction

The description of complex technical and economic systems usually relies on aggregated
variables. The reasons for this are obvious: the detailed description is unwieldy and in-
comprehensible, does not fit in computer memory, the large problem cannot be solved in ac-
ceptable time, etc. Yet there is another, even weightier, reason. Detailed micro descrip-
tion is usually superfluous, useless. Consider, for instance, a large-scale optimization
problem. Even if an exact solution can be obtained, it very seldom means much. The point
is that when we attempt to implement the computed solution in practice, we run into various
errors, random faults, inconsistencies. As a result, the system actually functions in a sub-
optimal mode.

The aggregation method is basically studied by two techniques. The first technique
looks for systems which admit ideal aggregation without any information losses. Such sys-
tems are of course unique, rare, and their study is not generalizable to standard situations.
The second technique is more pragmatic. It is concerned with what we may term "forced ag-
gregation methods," which forcibly define certain aggregates and subsequently estimate the
losses associated with the aggregated description [1].

In this paper, as in [2], we examine the aggregation issue from an entirely different
angle. We study systems in which aggregation is asymptotically ideal as the system size in-
creases. Asymptotically ideal aggregation in this context means that the errors of the sim-
plified macro description, in the statistical average sense, tend to zero as the system size
increases.

It should be stressed that the examples considered below are nothing more than models:
they are intended to illustrate the general idea and do note pretend to be of any use in
practice.

2. Aggregation of the Cobb—Douglas Production Function

Production is often described by the Cobb—Douglas function
S(X)=x,Mz,% . .. 2%, : (1)
where

otaat. . ta.=1, a=0, i=1,n. 2)
For large systems, it is necessary to estimate the value of s(x) using several aggre-

gates of the form .Xi=121¢uﬂﬁ For simplicity, consider the estimation of s(x) using only
j
one aggregate
x .. Tz,
= . . (3)
At a first glance, it seems improbable that the value of a single variable X will pro-
duce a reliable estimate of s(x). Yet, for sufficiently large systems, this is actually so.
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Anticipating our full analysis and ignoring some details, we can state the corresponding re-
sult in the following terms.

For sufficiently large n, we have for almost all vectors x with any desired accuracy

AL LT )

where C is the Euler constant. Denote by Q the simplex

Q={z|z\tz.+. . .Fzo=h, 2>0,i=1, n},

5 f SdS__Ynh"“‘

whose area is

(n—1)!
Using the Dirichlet formula
5 j x‘;“‘...x:""dx,_,,dxn=M
wk . A E <t T(pit...+p,)
x>0, . ,%,0
we can easily evaluate the surface integral
jj. s(x)dS=.£lr_l‘;1’_'fl’__’ (5)

xeQ

where
A.=T (a,+1)...T(a,H1).

In (5), s(x) is defined by formula (1) subject to (2).

The average value of s(x) on the simplex Q is

§(X)=Sij j s(x)dS=A,,£Zn—=A,,X_ (6) |

LEMMA 1. Let n » « and
M
max oy < —<1. (7
i n
Then A, > e7C.
Let us first consider a simple situation when all @i = 1/n. Then
1
1nA,,=nlnI‘(1+—)=n{l"(1)i—+o(—1—)}.
n n n
Noting that T'' (1) = —C, we obtain A, » e”C.

In general

Inds= Yy InT(1+a) =T" (1) )} @i+ 0( 2y ad) =

i==q i=1 =1
n

=r'(1)+o(2, a.)

i=1

and the conclusion is the same. Q.E.D.

y, a(’=o(ia4 ), ®

i=1 i=1

Condition (7) ensures that

which is precisely what we need. Therefore (7) can be replaced by any other condition which
leads to (8).
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Let us now check that the average (6) provides a sufficiently accurate estimate of the
function s(x) for most vectors xe(. To this end, we will show that the relative mean square
error of the estimate tends to zero as n » =,

First let us determine the "variance"

o,.2=%5 ...j{x,“‘...xn“"—i"h}z ds =
xeQ

1 . 4,70 { i, A,f}
=) Ve zmas — - - 2
Sj E * nntly w2 3

2
xeQ n

vhere
A.=T(14+2a,) ... T (1+2a,).

The square of the relative error is given by

6. n A,
$2(x) ntl A2

Given (8), we obtain

wtime Dzacto (Do) —2oso L ).

% i

In4,°=21n A,.=—26'+0( Z a.-) .

i

These decompositons, using the previous formulas, easily lead to the following result.

TEOREM 1. Let n » « and let condition (7) (say) hold. Then the average value (6) of
the function s(x) gives in the limit the exact value of s(x) for almost all x in the sense
that the relative mean square error s(x)—5(x) tends to zero.

Theorem 1 is of definite interest in itself, because the Cobb—Douglas function is widely
used in practice. However, its primary significance is as a reference point, demonstrating
the error in the prevailing conviction that increase of problem size invariably means increase
of complexity. Here the situation is the exact opposite. The larger the size, the simpler
it is to compute the function s(x). We do not need a detailed description of all the re-
sources — it suffices to have only one aggregate.

3. Resource Allocation

Let us now consider the problem of allocation of a single resource

n

Z‘ ¢+ (z;) > max, 2 z,=R. (9)

=1

For definiteness let @:(z:)=r¥z; Let us determine the average effect

s(x) =Z‘ r,-Y;:

Taf

when the vectors x are uniformly distributed on the hyperplane Zz‘=R.

i

Clearly (x=0 is assumed throughout),
R

_‘.5 Vx—ldxi...dx,.=5{ j j‘ Edwz...dxn“dz,=

x+...+¥, <R .. +X, SR-x,
R 1
I _ n—1 n+'z n4' 8
=jy 1(B z,) o — R j‘z-,, 1—z)"'dz = R B(—3—,n)=i/2)—}l"+”’_
X (n—1)! (n—1)1] (n—1)! 2 I'(n+3%/,)
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Writing out a similar integral over the domain x; + ... +x, < AR, subtracting it from
the previous integral, dividing the difference by layer thickness, and letting A -+ 1, we ob-
tain,

—_— [‘3/ +1
J. j. Yx,dS=——_—.( 2) (3n /_2) R (10)
Xt og=R F(n+ /2)}/71
Seeing that
3 1 1 3\ Vxn
t(n+3)=(nrg)ilne ) 1(3)=5
S AN R S 2 /72
and dividing (10) by the area of the simplex x; + ... + x5 = R, we obtain

1 . _

._.j ._.j 'Vl-idS_:}./i._F_(_’?l_van.

S b bR 2 T'(n+Y/,)

We now easily obtain the average

n

= i £2 s < F<Fin32> ; rAt= gﬂﬁ% Zr,vi

fexy
where, as before, X = (x; + ... + xn)/n.
Stirling's expansion of the gamma-function easily gives
I'(n) V-;I./F(n'l*‘/g)-*l as n—oo,

Thus, for sufficiently large n, the average effect of resource allocation is given with
any accuracy by the formula

§=— r,-VX. (ll)

Here, as in the previous section, we can show, under natural assumptions on the coeffi-
cients rj, that the relative mean square error tends to zero as n > «». Thus, for large prob-
lems, the effect of any allocation x is determined with very high probability by the right-
hand side of (11).

It is interesting to determine the difference between (11) and the optimum (the maximum

attainable effect). The solution of the problem (9) is
r

& =————R.

7‘12+...+r,,2 R

For this allocation, the effect is given by

s'=Vrit. . Fr 2 VR=VYri+. . +r,:Vn¥X.

In the simplest case, when all rj are equal, we have

=—~0.89.
c= (12)

The relationship (12) holds also in more general cases, e.g., when all r; are of the same
order of magnitude.

From (12) and the above discussion it follows that for large systems an arbitrary allo-
cation is roughly 10%Z worse than the optimal allocation. The analog of (12) for the previous
problem is somewhat worse — around 0.6.

These figures suggest that we should rethink the usefulness of optimization of complex
systems, at least the usefulness of detailed optimization. A gain of 10%, of course, can
be quite substantial. However, even if the optimal solution is found, it is not simple to
implement in a complex system. In practice, we are faced with various unanticipated factors
(spoilage or delayed delivery of the resource, an accident or lack of coordination may pre-
vent us frgm achieving the expected effect, errors in processing and transmission of informa-
tion, etc.).
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Our thesis, of course, should not be viewed as a declaration against optimization. Low
effectiveness of optimization is only one of the phenomena that we witness in complex systems.
In order to estimate the contribuiton of this phenomenon, we need a specific approach to the
analysis of specific problems.

Returning to the resource allocation problem, we have to stress the following point.
For small problems, the ratio of the average to optimal effect is different from (12), but
it is also fairly close to 1. Nevertheless, in small problems, the situation is qualitatively
different. The optimal effect has a flatter peak, and therefore the set of those X on which
the effect is below average has a fairly large measure.

4, Optimization by Aggregates

Optimization by aggregates should be applied in systems where detailed optimization is
impracticable due to large size, inaccurate modeling, implementation losses, etc.

Let us consider a simple example. We solve the resource allocation problem (9) in which
the producers are divided into two groups and the top level first has to decide on the allo-
cation of the resource between these two groups. In other words, the system has to solve

the problem
Z%V—;'*‘Zriv?/:_*max’ Z -Ti'*'E y:i=R, (13)
=1 i=1 i=1

Fa=i

but the management hierarchy is such that the resource is first divided into two parts:

~2 T, Y= Zy,,

=i

and then each group allocates its appropriation independently.

The top management has to decide between two alternatives: either solve the problem

Vg it .. Fg2YX+HVr2+ VY —>max, X+Y=R (14)

or solve the problem

L LA
2¥n 2¥m

(r+...+ra)VY, X+Y=R (15)

From the point of view of optimization of (13), the top management must solve the problem
(14). But this is justified only if we assume that the resource will then be allocated op-
timally within each group. If the groups allocate the resource suboptimally, then the solu-
tion of (14) is not necessarily the best. Here the top management should look at the aggre-
gated total effect functions (11) and solve the problem (15) instead of (14).

This example again emphasizes the important fact that aggregated subsystem descriptions
are needed not only for simpler computations. In stepwise solution of optimization problems,
they are simply indispensable.

5. Selection of Aggregates

Let us return to the problem of aggregation of the function (1). Instead of aggregate
(3), we can take another aggregate, linear or nonlinear. For example, take

Q='sz+...+z,2-
. n

Let us compute the average of s(x) on the surface x;?2 + ... + x4 = R? (x; >0, x, >0,
«evy X 2 0).

Using the Dirichlet formula and making a substitution of variables, we easily evaluate
the integral

j j %,z d, .. da, =

*3+...+xpl=R3
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Dividing this expression by the area of the surface

nnn/z

S=—-———R""" ‘
n
2"I‘(—+1)
2
we obtain
n 1 oy 1 (¢ 28
F(—+1)I‘(—+—)...F(-—+—)
1 + 2 —_
—J. 5 z&. Lz dey . dE, = ntl 2 2 3 2 2 TnQ.
x24 . +x,2=R2 n n/2 ( 17,— + __)
a™*l 3 5

Now, for n » =

1‘(7"+1)/1‘(~2n—+§)»1/]/21+1-> ;—2—-

F

)8/ e () 1) e ;

and we obtain the asymptotic bound

_ e qfzlit+ ...tz
5(x) > —— .
¥2 n
Now, as in Sec. 2, we can show that the relative mean square error tends to zero. There- '
fore, in large systems, we can successfully use the formula

e~¢/* PRl I o
s(x) = —— .
¥2

(16)

n

The formula (4) was previously derived for the same purpose. Which of the two formulas
is better? The answer depends on additional factors. If in multiple computations the vectors
x are uniformly distributed on the surface x; + %, + ... + X, = const, then (4) is better; if
the vectors x are uniformly distributed on the sphere x,2 + x,2 + ... + x,? = const, then (16)
is preferable.

The following example illustrates the aggregate selection problem. Assume that the vec-
tors x are uniformly distributed on the euclidean sphere, but we make a "hardheaded decision"
and estimate s(x) as a function of the aggregate X, for example

..tz
s(R) =yl I (17)
n

In order to determine the asymptotically best constant v, we need to evaluate the integral

1 x)
?j j Z—_—;%_x—nd:c,...dxm

X2+ . +xd=R1

(this is quite easy) and pass to the limit as n > = (using R = v/nQ).

As a result, we obtain a coefficient v which is not e”¢, although it is close to e~C.
Which estimate should we use, (4) or (17)? Under these conditions, (17) is preferable, al-
though its relative mean square error after averaging over the simplex xX; + x, + ... + Xp =
const no longer tends to zero.

The point is that the ratio s(x)/X is strictly constant on rays. The choice of a par-
ticular surface with a uniform measure for averaging in general induces a nonuniform measure
on rays and thus affects the computed averaged characteristics.
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6. Numerical Experiments

The results of Secs. 2, 3, 5 show that, for sufficiently large systems, the micro descrip-
tion may be replaced with fair accuracy by a macro description. Since the results are only
valid in the limit and we have not estimated the rate of convergence, the expressions "suf-
ficiently large" and '"fair accuracy" are undefined. In order to determine the particular
system size when we can pass to a macro description and to estimate its accuracy, we have
conducted a number of numerical experiments.

1. The vectors x=(zi,...,T,) are generated by a random number generator. In order to
obtain a uniform distribution on the simplex x; + x, + ... + x, = const, x; >0, x, >0, ...,
X, > 0, each X4i is defined as an independent realization of the random variable ——TInE.- ’

where £4 is a [0, 1] uniform variate. a; are generated as realizations of the random vari-
able £;M + 1, which after normalization ensures that (7) is satisfied.

Below we reéport the results of experiments with A = 10, M = 5,

The function s(x)=z,*...x,% was evaluated nearly a thousand times for various (normal-
ized) vectors x. For n = 10, 50, 100, 200, the ratio 5(x)/X , respectively had the values
(e”C = 0.5616).

! 5(x)/X=e"¢+0.0517; ¢~°+0,0091; e~°+0.0047; ¢—¢+0.0017.
The relative variance respectively was
0./5(x)=0.2731; 0.1361; 0.1006; 0.0703.

2. The next cycle of experiments performed the same computations for the aggregate X =

/(x,2 + ... + x,2)/n. The uniform distribution on the sphere x;2 + x,2 + ... + xn? = const,
x; 20, x, 20, ..., x, > 0, was generated by taking each x; as an independent nonnegative

realization of a (0, ¢) normal variateon [— «, + ],
Below we report the experimental results for o = 30.

As in the previous cycle of experiments, the function s(x)=z,*...z.,% was evaluated
around a thousand times on a sphere. The corresponding values for n = 10, 50, 100, 200

were the following (e~¢/2//2 = 0.5302):

§(X) -c/2 -c/2 ~C/2

+00485 400157, T — +0.0079;
V2 V2

X

-C/2 o
' =—02378; 0.1123; 0.0821; 0.0391.

+0.0026;

5(x)

3. The third cycle of experiments focused on the resource allocation problem. The
vectors X were generated by the same random number generator as in the first cycle, with rj

defined as aj. The function s(x)=2 ri¥z; was evaluated around a thousand times on a simplex.
i=1

The corresponding results for n = 10, 50, 100, . 200 were (szri/2=0.8861)1

Vn Z r; -V?LZ Ty

i

sx) _ +00093;  ————+0.0023;

VX
V; 2 r; V_ﬂ- Z r;

+0.0015;  ————+0,0005;
O _00859; 00343; 0.0256: 0.0191.
5(x)




Thus, experimental results make it possible to estimate, subject to specified accuracy,
the system size when the macro description becomes acceptable.
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M-MACHINE PROBLEM WITH REAL-TIME PROCESSING

V. I. Levin UDC 65.012.122

The Bellman—Johnson problem for time optical sequencing of an jobs on M machines
given the same processing sequence of the jobs on each machine is generalized

to the case of real-time arrival of jobs, i.e., the next job to be processes is
not necessarily waiting at the system input when the current job is being proc-
essed. We show that time optimization of a real-time system reduces to the solu-
tion of a similar problem for a batch-processing system.

1. Introduction

The problem of the optimal sequencing of a batch of jobs on 2 machines (the Bellman-—
Johnson problem) was solved in [1]. This was the beginning of scheduling theory. Modern
scheduling theory [2, 3] usually considers situations when the entire batch of jobs to be
processed is already present in the system before processing begins. This is called batch
processing. In practice, this situation is observed when a special buffer bin provided at
the input to the system of machines is replenished by a sufficiently productive technologi-
cal source, so that a batch of sufficient size is always available for processing. However,
if batch processing conditions are not observed (e.g., there is no buffer bin), we are faced
with a qualitatively new situation, when only a partial set of jobs, or possibly no jobs at
all, are present at the system input before processing begins. Thus, the jobs are delivered
to teh machines directly as they arrive in the system, so that instead of batch processing
we have individual or unit processing, which we call real-time processing.

In this paper, we propose an approach to optimzing the processing sequence of jobs ar-
riving in real time. This is a generalization of the previously proposed approach to a solu-
tion of a similar problem for a batch processing system, which relies on special tools (in-
finite-valued logic and logical determinants) to obtain a comprehensible description of multi
dimensional problems [4, 5].

2. Statement of the Problem

Consider a system of m serially connected machines operating in real time. We will re-
strict the analysis to a time interval during which a bounded set of jobs {1, 2, ..., n} ar-
rive in the system for processing. These jobs arrive in a fixed order P, = (j;, jas +++» Jjp)
as in batch processing [1, 3, 5], but at unknown real-time moments £315 Cjas snes tins tyy ¢
tj2 e S tjn’ which form a vector t = (tjl, ot vy tjn) of arrival times. Here jig is the in-

dex of the k-th arriving job, tkj is its arrival time (k = 1, n). The jobs are processed as
in batch mode [1, 3, 5]. Specifically, a certain processing sequence is chosen P = (i,, 173

o in), where iy is the index of the k-th job in the processing sequence (k=1,n), ad
in general the processing sequence P is not the same as the arrival sequence P,. All the
jobs are processed in a fixed sequence P, which is the same for all machines. Each job from
P is processed sequentially first on machine 1, then on machine 2, ..., and finally on machii
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