EVOLVING SYSTEMS

COMPETITION MECHANISMS FOR ALLOCATION OF SCARCE RESOURCES

V. N. Burkov, B. Danev, , UDC 339:06.063 -
A. K. Enaleev, T. B. Naneva,
L. D. Podval'nyi, and B. S. Yusupov

We investigate the efficiency of competition mechanisms for the allocation of
scarce resources. We show that for certain classes of effect functions (produc-
tion functions) competition mechanisms ensure optimal.allocation of resources
betwen the winners. A connection is established between competition mechanisms
and open management mechanisms.

1. Introduction

Competition mechanisms are attracting ever increasing attention in management theory
and practice. The specific feature of competition mechanisms is that the players (the ele-
ments of the system) participate in a competition organized in the resource-allocation part
of the planning procedure. The competition winners are the elements that achieve the highest
efficiency measures of resource utilization in the plans submitted to the headquarters. The
competition winners are awarded a certain priority in allocation of resources. The attempt
to win the: competition encourages the elements to submit efficient plans..

Competition mechanisms are successfully implemented in the management of Bulgarian na-
tional economy. Examples of competition mechanisms include the national competition of pro-
posals for the development of small and medium enterprises; the license-buying competition
of the State Committee of Science and Scientific-Technical Progress; the competition for
the allocation of capital investment and foreign exchange budgets for the development of
small and medium enterprises for the production of new materials; a national competition
of credit allocation proposals for capital investments for implementation of the plans sub-
mitted by business enterprises.

The competition principle of planning has been adopted to a certain extent in the pro-
cedures for evaluation of the production programs of the enterprises controlled by the USSR
Ministry of Instrument Building. This procedure analyzes the plans submitted by the enter-
prises (industrial associations) in order to determine the number of enterprises that will
receive the minium (base) appropriation of centralized capital investments. The other enter-
prises (competition winners) receive larger capital investment appropriations in accordance
with the performance indicators of their plans.

On the theoretical level, competition mechanisms are classified as so-called multi-
channel organizational mechanisms of the theory of active systems [1]. In this paper, we
investigate the competition mechanism of allocation of scarce resources in an active system
consisting of a center, which controls resource allocation, and active elements, which rep-
resent the resource users. The competition winners receive the requested quantity in full,
while the remaining elements receive only the minimum quantity set by the center. We prove
the existence of a Nash equilibrium in the corresponding game and show that, under certain
conditions, this mechanism produces an optimal allocation of resources between the competi-
tion winners.

2. Description of the Model. The Competition Mechanism

Consider an active system comprising n elements and a center that allocates a scarce
resource. Let R be the quantity of the resource available at the center, xj the quantity of
the resource received by the i-th element, uj the effect produced by the use of the resource
by element i. In practice, the effect is usually identified with increase of output or with
some integrated estimate of the effect by a number of criteria. We take u,=¢i(z:) , where
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@:(z:) is the effect function or the production function. We assume that the function @«z:)
is strictly concave, differentiable for xj; > 0, nondecreasing, and defined for x; 2 0; also

¢:(0) = 0.* The problem of the center is to determine the resource allocation x = {xj, i =
1-n} so as to maximize the overall effect
(I)(x):Z @i () (1)

EE L)

subject to the constraint

E: z, <R, (2)
i=1

The problem (1), (2) is difficult to solve because, in general, the center does not
have sufficiently accurate information about the functions @:(z). The information about
the local behavior of the functions ¢:(x;) is communicated to the center by the elements
in the form of so-called retrogressive or divisional plans (sj, wi), where sj is the requested
quantity of the resource and wj is the estimate of the (expected) achieved effect. The active be-
havior of the elements is manifested in their tendency to exaggerate upward the requested quanti-
ties sj. If the elements are reouired to pay for the resources, then the optimal resource alloca-
tion in active system theory is achieved by so-called open-management mechanisms [2]. If the re-
sources are free, but sufficiently severe penalities (sanctions) are imposed for nonfulfillment
of the planned (expected) effect, then the optimal allocation for a wide class of production
functions is achieved by progressive optimal allocation mechanisms [2], auction schemes [3],
or the reverse priority principle [4]. So far, however, no optimal allocation mechanisms
have been proposed for the case when the resources are free and there are no sufficiently
severe penalities for nonfulfillment of the planned effect.

Let us define the competition mechanism. We denote by qj = uj/x; the efficiency of re-
source utilization by the i-th element, by £; = wi/sj the efficiency estimate as reported by
the i-th element. Arrange £; in increasing order, i.e., &3 2 &, 2 ... 2 &4 . Initially,

we ignore the constraint (2) on resource availablility at the center.

Definition. A competition mechanism is a resource allocation mechanism in which the
planning procedure includes a stage that identifies a set Q of elements called the competi-
tion winners. This set consists of m elements with the highest efficiency estimates, i.e.,

Q = {ig:k < m}, where m < n. The resource allocation procedure given the set of winners
has the form

Si, if ieQ,
. ) (3)
c, if i€Q, i=l\Qg,
where ¢ is the minimum awarded level of the resource (¢ > 0), I = {1, 2, ..., n}. The ob-
jective functions of the elements are taken in the form
fi(u,, wi)=u.‘—"lpi(wi—ui), . (4)
where
' ) {a(wi—ui), if w—u;=0,
lpi(ui_ui - O, if w.-—u.-<0

(by definition, for i#Q, we set w; = u; = ¢;(c), a > 0). Here the function yj(wj — uj) is
the penalty for nonfulfillment of the expected effect wj. We assume that each element se-
lects its strategies (the reported sj and w;) so as to maximize its objective function (4).

Thus, the choice of the information that the elements report under a competition mechan-
ism may be treated as an n-person game. Note that since £; = wj/sj, then any pair (s, wi),
(si, &) or (wj, £i) may be used as the reported estimates. For the ease of game-theoretical
analysis, we use the pair (sj, £i) as the reported estimate. For a given £;, the estimate sj
is determined so as to maximize (4), where uj; = @;(x{), Wi = £4Si, because the estimate sj
does not affect the selection of competition winners.

*The results remain valid also for twice piecewise-differentiable functions @i(z).
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3. Solution of the Game Under the Competition Mechanism

and Its Optimality

Let us define the function
hi(&:) = max [@:(s:) —§: (Eisi—i(5:)) ]
and investigate its properties. ‘

The maximum point of the function fi=@:(s:)—Pi(Esi—@i(s:)) over s; will be denoted by xj.
In what follows, we distinguish between weak and strong penalties, as defined by a. a defines
a weak penalty for the i-th element for a given &; if the function [i(@i(s:), &is:) attains its
maximum over s; at the point x; determined by the conditions

: a
[CP-' (xi)_mgi ]«Z'i=0 and  E.z.>q,(z). (5)
a defines a strong penalty for the i-thelement for a given £ if the function f.(@i(s), £4s1)
attains its maximum over si{ at the point xi determined by the condition
@i(z;) =8z, (6)

The expressions (5) and (6) describe necessary and sufficient conditions of extremum
of f; over s; in virtue of strict concavity of the function fj.

Let y;j(£;) be the value of x; satisfying (5) and B;(£;) the value of x; satisfying (6).
LEMMA. a) The function hj(£;) is.continuous and decreasing in £4;
b) sup Ai(E:)=qi(c);

0<t ;<o

c) limh,(g:)=0.

$;+
The proof is given in the Appendix.

It follows from the lemma that the equation hj(£;) = c always has a unique solution.
Denote the root of this equation by vj = vi(c).

First consider the case when
Z, z;+(n—m) c<R, (7)
ieQ
i.e., we assume that the total resource availability is unlimited.

The functioning of the system under the competition mechanism will be considered as
an n-person game in which the strategies of the players (the active elements) are the reported
estimates {£;}, and the payoff functions are hj(£;) when i€Q and A~=@:(c) when i&Q. The
solution of the game £* = {£;*} is identified with Nash equilibrium.

Let the elements be ordered by decreasing vj, i.e.,
U1‘>U¢,> oc wid >v¢,..

THEOREM 1. The solution of the game (Nash equilibrium) under the competition mechan-
isms exists, and for je(Q, E;j* = Vimti-

The proof is given in the Appendix.

The simplest competition procedure producing an equilibrium in two iterations is the

~ following.

Step 1. The elements report Ei" =vy, i=1, 2, ..., n. The center declares the win-
ners in the current step and orders the elements by decreasing vj.

Step 2. The winners j=Q report £E+% = vy , the remaining elements j&Q do not revise
otep < P j imt+1
their estimates £;' = £:° = vi. An equilibrium has been obtained.

J J J

From Theorem 1 it follows that in the solution of the game under the competition mech-
anism we have £; = const for all i€Q, i.e., in the solution of the game £ is the same for
all the winners. 1
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Let us now consider the construction of noncompetition planning mechanisms which are
not less efficient than the competition mechanism in this case.

Assume that the effect function @iz, ) depends on the parameters rj. The center does
not know the value rj, and it is only known that reQ:, where Q; is the set of possible
values of the parameter rj, i =1, 2, ..., n. The elements, on the other hand, are assumed
to know the exact value of the parameters rj.

We assume that the elements report the parameter estimates rj to the center and the
center uses this information to allocate the resources. Given the estimates o = {oj} the
center calculates the estimates v; = vj(o) by solving the equations hj(vj, 03) = ¢ic, 0}
where

hi(vi, 0;)= max [(Pi (84,04) —{y (Uisi—cpi (Si~, G:)) ].

sl

Arrange vi(oi) in decreasing order, i.e.,

vi(0,)2v,(0,) = . .. 20i(0u),
and let

§5'=v,-,,m(0,-m”) .

Consider the coordinated planning problem

2 (Pi(ziy 0{)" max (8)
Tmmq
subject to
ieQ : a;=arg max f;(¢:(z, 6:), &), (9)
i#Q : zi=c,

where [i(@iz, 0:), §")=@i(z, 6:)) —p:(E2—¢.(2, 0.)).

In the "coordinated'" case, the parameter £* is independent of o¢j, and therefore the pro-
cedure described above is in fact an open-management procedure. We know [5] that for open-
management procedures truthful reporting of information ¢j = r;j is the dominant strategy for
all the elements.

Note that for the open-management procedure oy = ri, i =1, 2, ..., n, and therefore the
allocation of resources under the competition mechanism coincides with the solution of the
problem (8), (9) defining the open-management procedure. We thus have the following theorem.

THEOREM 2. For any competition mechanism of resource allocation (3) in the case (7)
there exists an open-management procedure (8), (9) which is not less efficient.

Remark 1. This connection between competition mechanisms and open-management procedures
makes it possible to organize a one-step competition procedure. The elements report the
estimates ¢ = {04}, the center calculates v;j{o;}, identifies the set of winners Q, and sets
the corresponding plans.

Let us now consider the question of optimality of competition mechanisms of resource
allocation and thus of the corresponding open-management procedures.

Let the total quantity of the resource allocated to winners under the competition mechan-

ism be .
P Y 1

ieQ i€Q

and consider the following resource allocation problem:

E: @i (;) = max,

ieQ %}

21 z.=R’.

ieQ
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As we have noted above, by Theorem 1 we have for all the winners in equilibrium
§/"=Vin.,=const, jeQ.

Assume that the equilibrium is characterized by weak penalties for all the winners,

i.e., for all jeQ, the requests are selected from @; In case of weak penal-

1+
ties for nonfulfillment of the planned effect, we have the following theorem.

THEOREM 3. The set of requests of the winners under the competition mechanism in Nash
equilibrium is an optimal solution of the problem (10).

, The theorem follows directly from the optimality condition @/(s;)=const when allocating
~ a total quantity of resources R'. This theorem may be employed to find an approximate solu-
tion of the optimal allocation problem (1), (2).

If the ratio Z @i (z:) /Zcp,»(x.-) characterizing the relative effect of the losers in

ier\Q iel

the competition is small, then the approximate solution X = {Xj} is given by

Vi iy, ©), if iEQs
5"‘:{ ¥ , i e ING, i
~ where
2 Yi(vi,,, (€))+(n—m)e=R. (12)

ieQ

Thus, calculation of an approximate solution reduces to finding c such that (12) holds.
¢ can be found by various iterative schemes, in which the estimate c of the parameter ¢ is

chosen according to the sign of Z=Z -y,-(v,-m+’(c))+(n—m)c—11 (if £ < 0, then the center
ieQ

increases ¢, if £ > 0, then the center reduces c, if £ = 0, then ¢ = ¢ and a solution has
been found).

In these schemes, unlike the previously considered schemes, ¢ is chosen depending on

~ the strategies of the elements. Therefore, the resulting equilibrium may differ from that

established in Theorem 1. We will now give some considerations which can be used to estimate
the corresponding equilibrium point £j%*.

In order to find the strategies £;* for ieQ, note that y;(vin+:) is a decreasing func-
tion of Vimya. Thus, the higher Vipyy,* the higher is c. Since the elements i = I/Q prefer
higher c, then at least the element ip4, will report the estimate €1m+1 SUCh that & BT is
as high as possible. Since Vvip+, € Vip then in the solution of the game E1m+1 = vp. The

remaining elements (i€ I/Q), may report arbitrary estimates £;* < Vin

Thus, if the '"weight'" of the winners among all the elements is sufficiently high, then
the proposed mechanism produces a nearly optimal allocation of resources. To this end, the
number of winners should be made as large as possible, i.e., m = n — 1.

_ Let us consider a particular example in order to demonstrate the use of the competition
- mechanism and the proximity of the resulting allocation to the optimum.

Example 1. Let ¢i(z, r)=Yrix,, i=1, 2,..., n, and the number of winners is n — 1. Then the

~ condition (5) takes the form —E_‘_—= > &, whence
21z, 1to
1+oz)z (1+a)?

=25 d h = i

.z:; ( 20t 1oy «(®) 4at 4
Determine £* = v, from the condition (5), which takes the form
+ 2
Mr,,-;}’r,,_ic.

4at




Hence
.. (MHa)® Vra,

°
4o Ye
Substituting £*, in the expression for xj, we obtain the solution

1

4¢ r
Ti_i_—a);'-‘r‘—, if i=1,2,...,n—‘1,
.- n—1{
N g, if i=n,

n

Rr._,
¢= 7 y y where H= Z ri.

t

H_ n+ n— =t
ta) (At »

Substituting ¢ in the expression for x?, we obtain

. Rr; ~
Z; = for i¥n
o) '
Hr,tr, AT Z‘)

Let us estimate the relative error

5 EPH-0 (@)

® (xopPt)
We easily see that
0 PY=1RH, o@)=(vaE- T e/ T,
YH 2 H
where
1 Fa . Famy (1Fa)?
B= /V ———+ ! e —Y
1 1 H H 4
Hence

r. (1t+ta) Vrﬂrn_,)
6=1—(1——— — )B.
H’+ 2 H

Assume that r,-,/H and r,/H are sufficiently small. Then, expanding in Taylor series, we
obtain

1+a\?
()
1 — (ta) = 2
S§~—|Vr,— Tnet =z —
2H 2 2H

Thus, for 0 < a < 1, the relative error is § < rn_l/ZH.

The competition mechanism of resource allocation may be implemented as an open-management
procedure with bottom-up flow of information from the elements to the center. Assume that
the elements report the estimates oj of the parameters rj. The center calculates the parameter

2
==i1f3%255 for all ie Q= (1, 2, ..., n — 1) and determines the planning procedure from
4a¥c
the formulas (8), (9), where
Ro,
c= n—1
4
TENRYY itao,
S

For sufficiently large n, c depends on the estimate o; for ieQ. Therefore, if we assume
that the i-th element ignores the effect of its estimate o; on the parameter c, then the con-
ditions (8) determine an open-management procedure. In this case, the elements i€Q report
truthful information oj = rj. The element n exaggerates the estimate o upward to op(c,
rn-1), satisfying the equation v,(c, on) = vu- (c, op-,). It is easy to see that in our
example o, = rp-,. We thus see that the resource allocation produced by the open-management
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1 procedure coincides with the allocation by the competition mechanism. In the open-management
- procedure, the allocation is computed in one step.

Let us now consider the case of strong penalties for nonfulfillment of the planned ef-

~ fect. In.this case, the value of the parameter o is so high that the maxima of the functions

. fj over s; for equilibrium £ are attained at the points x; = Bj(£), i.e., are given by the
condltlons (6).

We will show that the solution of the game under the competition mechanism in the strong
- penalty case also has a certain optimality property. Let the functions @:(%:)) be concave

~ and continuously differentiable for all i = 1, 2, ..., n and let at least two elements have

- different functions, i.e., Vzli,j:qi(z)#q;(z).

THEOREM 4. For {z]i=Q} to be an optimal solution of the problem (10) for any Vipy,®
it is necessary and sufficient that all the functions @:(z), iQ belong to the class of func-
- tions Ng defined by the differential equation

doi/dz=8[§(qi(z), z) ], (13)
f where 6(:) is an arbitrary one-one function of a single variable.
The proof is given in the Appendix.

y Remark 2. In case of piecewise-continuous differentiability ¢. . Theorem 4 remains true,
~ and it is only necessary to replace the class of functions Ng with the class of functions
- defined by the inequalities

d(p.-"/d.t,-?@ [g ((p;, xi) ] = d(p.-+/dx,-.

: Remark 3. If the set Ng consists of a single function, i.e., ¢;(x) = ¢(x), i =1, 2,
~ ..., n, then clearly in the solution of the game xie = x* for all ieQ, which is an optimal
~ solution of the problem (10) for all concave functions ¢(z).

Theorem 4 constructs optimal competition mechanisms for the strong penalty case by the
~ same scheme that we have described above for weak penalties.

4 A similar optimality theorem for the problem of resource allocation by the auction
~ mechanism was proved by Burkov and Yusupov [6].

; 3 Example 2. Let uw=q(z;)=rzs a<i, i=1, 2,...,n . We have d¢/dr;=arz " '=au/r;. If we
- take £ = uj/xy, then the competition mechanism produces an optimal allocation of resources
between the winners.

Example 3. Let £ = ui/xi, i=1, 2, ..., n. Consider the differential equation
dp_ @

=a %
dz &
Its solution is @ = re-3/X, Note that

dp ar

—a/x
axr- -z ¢

~ is a decreasing function only for x > a/2. Therefore the competition mechanism with effi-
- ciency measure £ = u/x? produces an optimal allocation of resources between the winners by

3 the criterion
(D = Zr;e'“’"

ieQ

- for x; > a/2 for all i=Q.

- 4, Conclusion

Let us summarize our results. We have described a model of a competition mechanism of
~ resource allocation; we have shown that the competition mechanism leads to a game the solu-
- tion of which is a Nash equilibrium; we have established a connection of the competition

- mechanism with the open-management principle (for a given competition mechanisms, an open-

~ management procedure can be constructed which is not less efficient than the competition

- mechanism); we have shown that with weak penalties the competition mechanism (for a suffi-

~ ciently large number of elements) gives a nearly optimal allocation, whereas with strong

- penalties we have derived -conditions that ensure closeness of the solution of the competi-
- tion game to the optimum.
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Further development and generalization of our results is possible, say, by examining
penalty functions y;(°) of a more general form and also by investigating systems with mixed
penalties, when the penalties are weak for some elements and strong for the others. The
problem can be generalized also by considering allocation of a multidimensional resource
(composite deliveries, interchangeable resources). In this case, the existence theorem of
Nash equilibrium for the competition mechanism remains true, but the question of optimality
requires further analysis.

APPENDIX

Proof of the Lemma.

1+

* @@)_gz], where the function o) is strictly
. x . a
concave and differentiable for x > 0, 9(0) = 0. Let the function h(f) be defined at the

point £ = £°. We will show that h(£) is continuous at this point.

a) Consider the function h@):anmx[

. 1+ .
By differentiability and strong concavity of the function __ffq%x)_ga;, it attains a
(27

o
maximum over x at the unique point x° defined by the condition ¢Tz”==1 £, By strict con-
[/

1+
cavity of the function

1+
aqu)-g(x) in x, it follows that -——Ew(xy—g is decreasing in Xx.
o o

1+a
Since for a fixed £, —¢(2)—&zx is a function of a single variable x, its derivative has
o
no discontinuities of the first kind, and since this derivative is bounded and monotone on
1+a
[e', »], where €' > 0, we obtain that ——¢’(z)—~& has no discontinuities of the second kind.
o

1+o . . . :
Thus, ——¢'(x)—¢ 1is a continuous decreasing function.
(1

1+
It follows that the equation ——:i¢%x)—§°—6=0 for sufficiently small & (in absolute value)
o

has a unique solution xg. Here |x5 - x°] < vg, where limv;=0. Indeed, if limvs=const>0, then
l+a 60 30

= ¢(z)~E%  attains its maximum at least at two different
1+a

points, which contradicts strict concavity of the function ——¢(z)-§% .
(¢

we obtain that the function

Let £=£°+ §. We will show that ve > 0 d8. > 0, such that v§ < §¢ if g — £°] < &,
then |h(g) — h(g°)| < €, i.e., h(E) iscontinuous. Consider

1+a 1+

|R(E)—R(E®) |=a|max(
x a

e —e%—az) - n;ax( % p@) -t (z))

o

o 1+a
() —%7s—0675 ~ P(z%) —§%2° <(1+a) |9(2°) ~@(2s) | +ak°|2s—2°| +

+adrs<[(1+a) j@(z") | +at®+ad]vs+adz?,

where z'e[z, 2']. Since |9(z’)] and £° are bounded and limv;=0, then we can choose § suffi-
60

ciently small so that
[(1+e) |o(z") [tat tablvstazd<e.

The case £ = £§° — § is treated similarly. Thus, h(§) is continuous.

We have thus proved continuity of the function h(g) for the case of weak penalties.

For strong penalties, the extremum point of the function f{ is determined by the condi-
tion (6), which is solvable for X3, if @) >%& , and otherwise x; = 0. This follows from
strong concavity of the function i(z:). Therefore at the point x; we have 0<gq: (z:)<&: .

But then by the implicit function theorem, xi(£;i) is continuously differentiable. Thus, the
function hj(£;) is continuous for strong penalties also.
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We will now show that hi(Ei) is a decreasing function. First consider the case of
* weak penalties, when' n;(&:)=(11+a)g:(zi(E:))—akizi(E:) » Lethiz > g;', then we have hifgil) =
(1) @i (2:') —aki'z:' = (14 ) @i (¢4) —ak:'> (1+a) @i (24%) —afi*zi*=hi(8:%) , i.e., hj(£4) is a decreasing func-
tion.

Now assume strong penalties. In this case, &(§)=ei(zi(%)), where xj(£;) satisfies (6).
Consider an arbitrary function »&;(E:): ki’ (8:) =i (zi(E4))zi' (E4).

Here ¢/(zi(§:))>0. Let us investigate the sign of x;'(£;j). Differentiating the func-
tion @i(zi(8))—2=i(§)& with respect to £; and equating the derivative to zero, we obtain

(@ (21) —Baled (B1) =24 (&4).
Since xi(£3) > 0, and @i(2:i(8:))—8:<0, then x3'(£;) < 0. Hence hj(g3) < 0.
b) We have the chain of inequalities

sup hi(§¢)=hi(0)= sup @i (s:) =qi(c).

<< 8

c) We will show that for £ » «, lim xj(£;) = 0. Let lim x; »c;° > 0. Then ¢i(z:)~>
or x; > ci°, which contradicts boundedness of the derivative ¢i'on (g, ), where € > 0.
Q.E.D.

Proof of Theorem 1. Note that if we take fixed £i for the elements, then the request
si is selected by each element i so as to maximize its objective function [fi(9i(si), &s:) over
sj. Therefore, if the strategies £; selected by the elements determine a Nash equilibrium,
the theorem is proved. We will show that the collection of strategies is indeed a Nash
equilibrium. Note that for the losers k®Q by definition sy* = c, wi* = @i(c), fi(u;, wi)=qi(c);
for the winners, the payoff is hj(g). Since hj(£) is a continuous decreasing function, the
winners i€Q will choose the least £, which is not less than Vim+1' The latter follows from
the fact that otherwise the element iy, will be the winner. In this case, the payoff of
the element i=Q will be ¢i(¢)<hi(vin.) . Thus, for any i=Q the strategy £; = Vit maximizes
the payoff, i.e., determines a Nash equilibrium. Q.E.D.

Proof of Theorem 4. Sufficiency. Let (13) hold for all ¢:i(z). Since in the solution
of the competition game &(¢, z)=const, then denoting 68[&£(®, x)] = A, we obtain

dg/dz=A, i<Q. (A.1)

These are sufficient conditions of optimality of the solution {xj, i€Q} of the problem
(10).

Necessity. Let Ng be the set of distinguished functions ®;(x), i =1, 2, ..., n. For
any vi .,by the assumptions of the theorem, {x;} is an optimal solution of the problem (10).
Thus, there exists A, such that (A.1l) holds for any ¢:eNo. Therefore the function A =
8[Vipt,] exists. Notiug that in the solution of the competition game Vip+: = £[u;Q, x;Q]
for all ieQ, after substituting A = 6[£(®, x)], in (A.1l) we obtain (13). Q.E.D.
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