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The article considers the problem of coordinated operations management whose goal
is to ensure plan fulfillment in a two-level active system representing the process
industry. The properties of incentive systems for the active divisions are inves-
tigated and constructive methods are proposed for determining the set of coordina-
ted plans.

1. INTRODUCTION

The improvement of management mechanisms is a multifaceted problem which includes plan-
ning, incentives, socialist competition, etc. Experience shows that in order to improve the
management of industrial systems, we have to jointly analyze all the management functions,
such as the information base, planning, accounting, performance evaluation, control, and in-
centives. Focus on analysis and improvement of separate links in the management cycle fails
to produce the full desired impact and in some cases may actually lead to totally unexpected
results. For instance, development and installation of information and optimal planning sys-
tems which ignore performance evaluation and incentives may produce targets which are in-
consistent with the Incentive schemes used by the particular enterprise. As a result, the
employees will differentiate between 'profitable'" and "unprofitable" jobs, exceeding the tar-
gaets in the profitable jobs and failing to achieve the targets in the unprofitable ones. The
manufacturing divisions may be driven to supply distorted information concerning their
capacity, which in its turn will adversely affect the planning quality. In the final analy-
sis, certain optimization procedures may be totally "rejected" by the organization.

Joint mathematical analysis of all the main functions and stages of industrial manage-
ment required the development of a special apparatus and special models. These are primarily
the topics of the theory of active systems [1, 2].

A topical current issue is the testing and implementation of the methods of active sys-
tems theory in actual economic organizations and the development of an appropriate methodology
for this. The present series of papers examines the application of the methods of active
systems theory in an actual industrial organization, i.e., for operations management of the
principal industrial activity of a lead production plant {(the V. I. Lenin Ust'-Kamenogorsk
Lead-Zinc Combine).

In the framework of active systems theory, an industrial system is described by specify-
ing the system structure, the state indices of the system elements, the model of the technol-
ogy and the constraints, and the functioning mechanism of the system. The structure of an
industrial system is specified by its structural elements and the interconnections or de-
pendences between them. The state indices constitute a collection of phase variables which
determine in a particular setting the state of the system as a whole and the states of its
elements. The constraints on the phase variables are defined using the constraint model. The
functioning mechanisms constitute a set of rules, functions, and assumptions which regulate
the activity of all the functioning elements in the system.

The technology used to extract pure lead from lead ore concentrates is a complex se-
quence of industrial activities made up of continuous-process and discrete-batch stages. Of
the wide range of operations management tasks in a lead production plant, we will only con-
sider two typical examples which are characteristic not only of lead production plants but
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also of many industrial systems with continuous-process and discrete-batch production, re-
spectively.

In Part 1 we consider the management of the charge preparation process, which is a ver-
sion of the well-known mixing activity in process industries. In Parts II and IIl1 we con-
sider operations management of a typical batch industry — the refining stage. For these in-
dustries, we construct coordinated operations management mechanisms, including coordinated
planning procedures, performance evaluation methods, and divisional incentive schemes. The
coordinated planning procedure may be regarded as further development of optimal planning
methods to cases when the preferences of the active elements entrusted with plan performance
must be taken into account. Constructively, these procedures are obtained by augmenting the
optimal plnning problem with supplementary constraints, i.e., coordination conditions which
- ensure that the elements are assigned only such targets from the performance of which they
stand to benefit under the given incentive scheme. The theory and the proof of effective-
ness of these procedures are given in [2].

Our objective in this article is to determine one of the first examples of practical
implementation of coordinated management methods in industrial systems and to describe a
methodology of constructing coordinated operations management mechanisms in industrial sys-
tems using the methods of active systems theory.

2. DESCRIPTION OF THE TECHNOLOGICAL PROCESS

The pyrometallurgical technology of producing soft lead from lead concentrates [3] con-
sists of the following sequential activities: charge preparation, sintering, smelting, and
refining. These activities are respectively carried cut in the sintering, smelting, and re-
fining shops. A technological diagram of the plant producing soft lead from lead concen-
trates is shown in Fig. 1.

The feed (F) — lead concentrates, fluxes, semiprocessed ore — is delivered to the store
(S) from outside sources. A separate store is provided for each type of feed. The charge
preparation process (CP) involves the preparation of a mixture (wet charge, WC) of given com-
position from the available feed — lead concentrates and fluxes (limestone, iron ore, quartz).
The charge is prepared by stockpiling in a special mixing area {4], which may accommodate
several stockpiles at the same time. The returned sinters (RS) are also loaded into the
stockpile: They are returned from the output of the sintering shop to be mixed with wet charge
into what becomes sintering charge (SC). In order to ensure continuity of the lead produc-
tion process, the stockpile must always contai'. sintering charge (of given composition) ready
for loading.

The stockpile size may satisfy the sintering charge requirements of the lead production
plant for two-to-three days. The sinter produced from the sintering charge is divided after
the sintering stage (SIN) into usable sinters (US) and returned sinters (RS). The usable
sinters are used as the feed for the smelting shop, which produces black (or crude) lead
(BL). Sintering and smelting (SM) are both continuous processes.

The black lead from the smelting shop is continuously delivered to the collection ket-
tle in the refining shop. When the collection kettle is full, its contents are pumped into
the refining kettle for refining (R). The refining shop may also receive black lead from
other plants in the form of cast blocks, which are loaded directly into the refining kettle.
The refining technology for each batch of black lead invelves sequential removal of various
impurities: sulfur, tellurium, arsenic, antimony, tin, silver, gold, calcium, magnesium, bis-
muth. The degree of refining for each batch is determined by the required grade of current
production. The refining process may be carried out simultaneously in several refining ket-
- tles, although a single distribution kettle is used to pour out the finished batch. The con-
tents of the distribution kettle may be poured in the form of pigs or blocks, using one or
two pouring machines. Unlike the sintering and smelting shops, the refining shop is char-
acterized by discrete-batch operation.

The technology of producing soft lead (SL) from lead concentrates is thus a complex series
of industrial activities which involve both continuous-process and discrete-batch operations.

3. THE PROBLEM OF COORDINATED OPERATIONS PLANNING OF CHARGE PREPARATION

The main task of the crushing and charge-making division is to prepare a charge of the
required composition in a quantity which will be sufficient to enable the sintering shop to
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meet its annual production target of usable sinters. Optimal charge preparation (mixing)
methods and models have been studied in considerable detail in industrial management [5, 6].
There is, however, a big difference between setting a target and ensuring that the target
is met.

The stockpiling plan is entrusted to charge-making crews who work in shifts. One stock-
pile is usually loaded over several shifts, which in its turn requires developing detailed
shift targets for the crews. Note that the loading of the next stockpile begins before the
previous stockpile has been completed and that during one shift a single crew is on duty
whose "economic behavior' is determined by its economic payoff, which is a function of the
shift target and the actual performance.

Thus the crushing and charge-making division may be represented as a two-level active
system in which the headquarters is represented by the management of the sintering shop and
the crushing and charge-making division, while the active elements are the charge-making
crews (Cr) together with the stockpile loading activity (L). The "external environment" (EE)
accounts for the interaction of the crushing and charge-making division with other processes
(feed delivery, stockpile unloading, etc.). A structural diagram of the crushing and charge-
making division is shown in Fig. 2.

The state of the system is defined by the state of the stockpile (ST), which by the end
of the v-th shift is described by the vector vy,= {yys}, where y, i~ is the volume of the con-
centrate j stockpiled since the beginning, i € J, J is the set 0% concentrates, v =1, V, V
is the number of shifts required to load the stockpile. The state of an active element at
the end of the v-th shift is described by the state vector y, = {y,j}, where y,j is the volume
of the concentrate j stockpiled in shift v. The set of admissible states of the active ele-
ment in the v~th shift V,, is determined by the technological constraints

Gﬁyﬁﬁgvj, fﬁg; Zyvj“‘c«EQ Z tjy?:iﬁT; y?iﬁ“Rh fﬁji{:f& ( 3.1 )

jexJ jeJ

where qy+ is the quantity of the j-th concentrate in store in the v-th shift, R is the standard
total voiume of feed loaded during one shift, tij is the time to load a unit of concentrate j,
T is the duration of one shift, Rj is the loading standard for concentrate j during one shift.

The headquarters sets the shift target x = {ij} for each crew, taking into considera-

tion the technological constraints, specifically the target mass JH==:£:AE and the target

iwJ

composition {Mj} of the stockpile at the end of the planning period. The set X, of feasible
production plans for the v-~th shift is thus constrained by the technological constraints

L By<R(V—v);
ies (3.2)
Z LEG<T(V—v); Zuy<R;(V-v), jel=],

jeJ

$V5+§ViﬁMimyﬁmi]i; 0‘@&“?::‘5‘51:5%01@;
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where Xy is the locading target for concentrate j in shirt v, X4 is the planned loading

target for concentrate j in the remaining (V — v) shifts, ij is the predicted delivery of
j-th feed during V shifts, starting with shift v. |

The functioning of the system during the shift v 1is described as follows: First
headquarters assign a shift target x, € Xy to the active element, after which the active ele-
ment selects the state y,, from the set Y,, of admissible states, proceeding from economic con-
siderations. This active behavior of the charge-making crew often results, in underperfor-
mance of the target Xv. injecting an element of uncertainty into the management of the stock-
piling process for the headquarters. The uncertainty can be eliminated by applying the methods
of coordinated operations planning, i.e., by planning the concentrate loading targets of each
shift while taking into consideration the actual atmosphere in the shop and the actual crew
preferences. The incentive scheme for a crew in shift v~th has the form

flay, yv)=h ({5}, yo) = (2w, 4v), (3.3)

where h{{cj}, yy) is the basic pay of the crew, cj is the unit cost of loading the j-th
concentrate

>0, y, &2, (3.4)
(i‘iaxvmgv)¢ yv}ﬂ:“ &,:}G

K (Zvy Yu) = {

is a penalty function, which essentially provides an incentive for exceeding the targets:
The active element is penalized by the amount ¢ > (0 for failing to meet the target at least
in one of the components and is encouraged to exceed the target. The incentive depends on

the amount by which the target is exceeded and on the incentive coefficient a'= {aj} repre-
senting the incentive rate for each component.

During system functioning, the headquarters presents various targets, some of which,
e.g., reducing the charge cost, ensuring constant charge composition in the stockpiles, etc.,
may be incorporated in determining the optimal stockpile composition while others may be
allowed for in operations planning. Thus, one of the factors in operations planning is en-
suring uniform work load (in terms of cost) fonr the crews during the month,

The problem of coordinated operations planning involves determining the shift target xy
for a crew so as to minimize the headquarters objective function:

it .
=X (3.6)
TES,, (3.7)

where B(v) is the difference between the actual crew income and the average income of the
previous shifts since the beginning of the month,

So={z.|f(zv, 2) Zf (20, §+) VY=Y, (3.8)

is the set of coordinated plans of the active element in shift v X, is the set of feas-

ible plans in shift v defined by the constraints (3.1), (3.2), u is the average income
of the active element during one shift.
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The problem of coordinated operations planning of charge preparation (3.5)-(3.8) may
be considered asa mathematical programming problem whose solution can be obtained by stan-
dard optimization methods. These methods, however, assume canonical representation of the
constraints in inequality form. The constraint (3.7) of the problem (3.5)-(3.7) is noncon-
structive in this sense, and before we can proceed to solve the problem we have to describe
the set Sy of coordinated plans in constructive canonical form.

4, CONSTRUCTING THE SET OF COORDINATED PLANS

For simplicity, we omit the index v. Common incentive systems use linear

k(c,y)=(c,y)*-=2wj (e 1)

or quadratic
h(c, y)="'(Qy, y)+(d, y) (4.2)

payoff functions with penalty functions of the form (3.4), where the sets X, Y are convex
polyhedra defined by the system of linear inequalities X =Y = {y|Ay £ b, v 2 0, A = {ai},
ai = {aij}, b = {bi}, i =1, m j =1, n}.

1. Assume that the incentive system for the charge-making crews comprises a linear pay-
off function (4.1) and a penalty function (3.4).

THEOREM 1. Let x(x, y) = min {xyx(x, y)}, where xyi(x, y) is also a penalty function
15ksK

corresponding to the set of coordinated plans

Sy, ={z|h(z)= max (k(y)—%a(z,¥)}.

veY

Then S, mﬁ Sy, -
he==1{

The proof of Theorem 1 is given in the Appendix.

It is easily seen that the penalty function (3.4) is obtained from two penalty functions

@n=1, i,
Z, )=
il (o0, z—y), y=z, a=0
and
0>0, y#z,
xz(ﬂ:fy)={ y
0, y=nx,

by applying the minimum operation, i.e., x(x, y) = min (x,(x, v), x3(%, v)). Then by Theorem
1, the set 5y of coordinated plans of the active element is formed as the intersection of
two sets 5y, and Sy, of coordinated plans corresponding to the penalty functions x,(x, y)

and x,(x, y), Sy = Sy1 N Sy,.

Now, in order to construct the set of coordinated plans of a charge-making crew, it suf-
fices to determine the sets 5., and Sy,. The set 5y, of coordinated plans is constructed in
the following way. First we solve the linear programming problem

h(y)=(c, y) > max, (4.3)
Ay<b; y=0. (4.4)

Let y* be an optimal solution of the problem (4.3), (4.4). Then the set Sy, is defined
by the system of linear inequalities

Ay<b; y=0; h(y)=h(y’)—o.

Now using the duality theory of linear programming, we can write the following system
of linear inequalities to define the sets Sy, of coordinated plans: (b, A\) = (¢, 2); 2z 2 03
Az £ by A 20; v 20; Ay £ by (¢, v) 2 (¢, z) — o, where A is the dual vector, A = {Ai}, z'
is an auxiliary vector of the same dimension as y, z, y &€ Y.
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Let us now determine the set 5., of coordinated plans. Let Y be a bounded set with non-
empty interior, int ¥ # @. We will show that the set Sy, of coordinated plans is located
at the boundary of the feasible set Y. Indeed, if x & int Y, then x ¢ le, since the element
assigned this plan will prefer not to fulfill it: By performing v = x + ¢1 € Y, ¢ > 0, where
1 =1, 1, ..., 1) is a unit vector of the same dimension as x, the element will receive the
payoff f(x, yv) = h(y) + x(x, y) = h(x + €1) + oy — x) = h(x + €l1) + (a, €1) = h(x) + (¢ +
a, €1) > h(x). Hence it is clear that the plan x € int Y is not coordinated, i.e., x ¥ Sy,.

We prove in the Appendix that the set S,, of coordinated plans consists of subsets T,
of the boundary of the set Y which are descri%ed by the system of linear inequalities of the
form

(a;, z)=0b;, i€sm(l,); z=¥,

where m(T¢) is the subset of indexes (1, 2, ..., m) of the constraints (4.4) corresponding to
the set Ty, and the vectors ai, i € m(I'gy) of the constraint matrix (4.4) are such that in the
n-dimensional Euclidean space EU there is a vector B with positive components which can be de-

composed in the vectors aji, i€ m(I‘Q), with nonnegative coefficients MAi:f= Z A, =0,
Az o El " ftem(rly)
1 “

We have thus elucidated the structure of the subset S,; of coordinated plans for func-
tioning mechanisms with incentive system based on linear payoff function. It has the form

Sy=IUI,U. . .ur,.

where I'¢ is a subset of the boundary of the feasible set Y satisfying a system of the form

(3.1). Now, using Theorem 1, we find that the set SX of coordinated plans of the active ele-
ment has the form

Sx““:51USZU. ¢ ;USL,WhErE S;ﬂfgﬂsm.
4, y#zx,

Example 1. Let h(y)=y 2y x(x,y)= 0, y=z

the set Y is defined by the system

0<y, <10, 0=<y, <10, y+3y.<33, 3y t+y,<33, yit+y.<15.

It is easily seen that for the optimal solution y* the value of the objective function is
h(y*) = 15. The sets Sy,, Sy,, Sy are shown in Fig. 3.

2. Let us now consider the incentive system w = <h, x> with payoff function (4.2), where
the matrix Q is negative definite, and Y = ER, 1In this case, the set of coordinated plans
of the active element is again the intersection of two sets S, = S5y, N Sy,.

The set Sy, is constructed as in the preceding section. We first find h(y*) = max h(y)
over y € EN. Then the set Sy, is defined by the inequality h(x) 2z h(y*) —o=~"/,(Q7%d, d) —
0.

THEOREM 2. Let h(y) be an upward convex differentiable function, x(x, y) = max(b, y -
x) over b€ B, B a closed convex set, Y = ENl, Then a necessary and sufficient condition for
x to be a coordinated plan is Vh(x) &€ B, where Vh(x) is the gradient of the function h(x).

The proof of Theorem 2 is given in the Appendix. Theorems 1 and 2 were proved by the
authors jointly with M. Z. Arslanov [7].

To find the set Sy,, we use Theorem 2. To this end, we represent the function x,(x, y)
in the form

p & (:E! 9’) == max {bi ymx)t

be B

where
B={blbsE", bza}.
Hence it follows that x & Sy, if and only if Qx 2 «.

Finally, the set Sy of coordinated plans is defined by the system of inequalities

Qz=a, ',(Qz, z)+(a, z)=-".(07'd, d)—o.
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Fig. 3

Example 2. Let h(y) = =/, (y.i% + v,%), v = {yys Vo), ¥ = {x,, Ko}

o, y#z,

o= {0, Az}, z(aay)z{
(o anky % a (zi—y.) o (2—1), y=u.

Then the sets Sy of coordinated plans are defined by the system
_2:12/2”1!'"{332/2%0; xiEQ;, Lo == Clo.
If a;%2/2 + 2,%2/2 > o, the set Sy is empty. The condition '/,(a;? + a,%) S 0 is neces-

sary and sufficient for nonemptiness of the set Sy of coordinated plans.

5. SOLUTION OF THE COORDINATED PLANNING PROBLEM

Depending on the incentive system for the active elements and the objective function of
headquarters, the problem (3.5)-(3.7) may have the following solutions.

Let the payoff function of an element be k(y)z(c,y)mz c;y;, » and let the penalty func-
tion be (3.4).

je=J

If the headquarters objective function ¢(x, x) is linear, the optimal coordinated plan
is found as the solution of the following linear programming problem:

D (z, x) ~max no z=conv(S,),

where conv(SX) is the convex hull of the set 5,. Here we use the fact that the optimal solu-
tion of a linear programming problem is one of the vertices of the feasible polyhedron.

If the headquarters objective function ¢(x, x) is nonlinear, we may separately solve
L problems of the form

D (z, z) >max, =8,

each with a polyhedral constraint set, and then compare all the L solutions in order to choose
the best solution, 2 = 1, L.

Let us now solve the problem of coordinated operations planning of charge preparation
(3.5)-(3.7). Applying the previous results, we obtain the following two problems (L = 2):

D(z,, z,) > min no z.€X,; .8}, (5.1)

D{zy; zoj=>min mo 28X 2,85, ﬂ (5wt )

The set Sv of coordinated plans for shift v is the union of two sets Sy, and Sy,:
Sy = Sy; U Sv,s where Sy; = I'y, N Syi1s Sva = I'vy n Sy,. The set Sy, is described by the

system
2 Ty=R,; Z iy h'—0,

jieJ ieJ

and the set Sv, is defined by the system

E !tji‘vjmT, 2 }ijvj;?ﬂ'h"—ﬁ,

jeaJ jeJ
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where h* is the value of the payvoff function of the active element for optimal solution of

j;ﬂﬂﬁﬁfﬁqnax over vy € Yy. The quadratic programming problems
jet

(5.1), (5.2) are reduced by a standard transformation to a linear programming problem, which

may be solved, say, by the simplex method. The best solution of these problems provides the

solution of the original problem of coordinate operations planning ot charge preparation.

the linear programming problem
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APPENDIX

The following lemma determines the properties of the elements of the set SXI‘

LE . A feasible plan x is coordinated in the sense x € Sy, if and only if the cone
E4R = {z, z 2 0} having its apex at the point x meets the set Y at the unique point x.

Proof of Lemma. Necessity. Let Xy & Sy;. Then the cone of feasible directions K(x,)
at this point may not contain a vector p € EM with all nonnegative components. Otherwise,
assigned the plan x, the element would prefer to perform v = x + €p £ Y with some ¢ > 0,
since f(x, v) = h(y) — x(x, v) = h(x + ep) — x,(x, ep) = h(x) + h(ep) + e(a, p) = h(x) +
(e + a, p) > hix).

Therefore, by the separating hyperplane theorem, there is a vector B, B # 0 such that
(B, x) > (B, v), x ¢ EL/{0}, v & K(x,). Hence it follows that (B, %) > 0 and B8 > 0. More--
over Vv € K(x,):(B, y) £ 0. Therefore, from the properties of convex cones we have

K{ﬂlfl (ﬂ{,ﬂ?g)ﬂ bh Ki?O, I & m(l“;)} .

- )

B& —K(zg)= {

Sufficiency. Let the point x, be such that the cone of feasible directions K(x,) con-
tains no vector with all nonnegative coordinates. Then x, © S5y;. Indeed, assume the contrary,

h(y)—x1(zo, y)=h(zs).
Clearly, v 2 x,. But the vector v — X, is not in K(x,). Contradiction. QED.

Proof of Theorem 1. It suffices to prove the theorem for the case k = 2. The proof
is in two stages.

Let x € SX; then x EﬁSXl N Sy,. Indeed, from the definition of SX3 we have forVy < Y:
h(x) 2z h(y) — min(x,(x, v), Xo{%, yv)). This inequality is equivalent to two inequalities:
h(y) — h(x) £ x{%x, y) for ¥y ¢ Y; h(y) — h(x) £ y,(x, y)forVy €Y. But the first inequality
is equivalent to x € 5,,, the second to X € 3y,. Therefore, indeed x € 5y, Nl S5y,.

The proof that x € 5y, N 5x, implies x € 5, 1s developed along the same lines. QED.

Proof of Theorem 2. Sufficiency. Let Vh(x) € B. Take the actual performance y = x +
Ax; then f(x, y) = h(x + Ax) — x{(ax) £ h(x) + (Ax, Vh(x)) — x(Ax) since the function h(y)

is upward convex. From the definition of the penalty function, for all b € B: x(Ax) 2 (b,
Ax ), including the case b = Vh(x). Therefore f(x, v) & hi{x) + (Ax, Vh(x)) — (Vh(x), Ax) =

h(x) = f(x, x). Whence it follows that x EﬁSX.

Necessity. Let x € S,, but Vh{x) &€ B, Since B is a closed convex set and Vh{(x) ¢ b,
the separating hyperplane theorem [8] indicates that there exists y, suchthat for¥ b € B
we have (Vh(x), v,) > (b, y,) and therefore for y,, (Vh(x), v,) }_gax(bg Vol
= B
Moreover, since B is a closed set and the linear function (b, v,) is bounded from above,
max(b, y,) over b € B is attained. Thus, there exists o > 0 such that (Vh(x), y,) —a >
X(y,). Since the penalty function is homogeneous, we have x(y) forVy:> 0

(Vh(z), eyo) —ae>y (&Yo)-

Take v = x + ey, for sufficiently small € > 0. Then

Ha, y)=h(z+eyo) =% (eyo) =h () + (Vh(z), eyo) +0(g) ~% (yo),
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where o(e) is an infinitesimal of higher order than €. By (A.1) we obtain f(x, x + ey,) > h(x) +
ae + o(e). This implies that for some ¢, > 0 we have f(x, x + €,y¥,) > h(x), which contradicts
X ejSX . This completes the proof of necessity. QED.
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