EVOLVING SYSTEMS

TWO-LEVEL ACTIVE SYSTEMS.
II. ANALYSIS AND SYNTHESIS OF OPERATING MECHANISMS

V. N. Burkov and V. V. Kondrat'ey | UDC 65.012.122.2

The article presents formal statements of analysis and synthesis problems for the operating
mechanisms of two-level active systems using the two-way method of data for mulation [1].
To formalize the statements of the problems, the authors employ the theory of games with
nonconflicting interests {2, 3] and the notions of equilibrium stability for many purposeful ele-
ments [4, 5].

1. Introduction

In [1] the authors described a model of a two-level active system (AS) and its operating mechanism. The
approach elaborated in [1] can be employed in simulating economic mechanisms of hierarchical organizational
systems (planning procedures, including setting of prices and standards, etc.; data-generation procedures for
planning; systems for stimulating, centralizing, and decentralizing control). In this paper we offer formal
statements of the analysis and synthesis problems for operating mechanisms of two-level active systems with
the two-way method of data generation [1]. Operation of AS is regarded as a game with nonconflicting interests
2, 3], in which the participants are a center (C) and active elements (AE). The center has the first move; it in~
volves choosing the AS operating mechanism. After C's move, a game among AE is played out. The strategies
of the elements in the game involve communication of information to C and choice of state. Operating periods
("sets"” of the game) can be repeated with the AS operating mechanism remaining unchanged. The analysis probe
lem for the operating mechanism involves analyzing the decisions of the AE game for a specified operating
mechanism, while the synthesis problem involves the determination of the AS operating mechanism that maxi-
mizes the efficiency criterion of the center defined on the set of solutions of the AE game. To formalize the
notion of AE game solution we will draw up the theory of games with nonconflicting interests [2, 3] and the no~
tion of stability of the dynamics of team behavior [4, 5].

In what follows we will assume everywhere that the minimum (or maximum) of the functions investigated
is attained, and that the set of minima (or maxima) is compact and nonempty.

2. Game Decisions in One Class of Games

Consider an (n+ l)-st-player game whose target functions are Wy = {;(z,, 2y, ..., 2pn), 1 =0,1,2, ..., n. Here
is the player number and z; is the strategy of the player with number i. The sequence of moves is as follows.
Player with number i = 0 has the right to one move (he selects strategy z, from the set of permissible strate-
gies Uy; zo€ Uy), makes this move first, and communicates it to the remaining players. Then players with num-
bers i€1={ili=1,2, ..., n} choose their strategies z;. If player i = 0 calculates and does indeed have information
~about the strategies of the remaining players, he can set up his strategy as a function of the strategies of the
others zy = zy(Zys Zg, ..oy Zp) (game I'g, s= 2, in the terminology of [2, 3]). If player i = 0 does not have the re-
quisite information, his strategy is independent of those of the others (game I')). Each player with number i€I,
by substituting the strategy of player i = 0, z = z4(zy, 2y, ..., 2p} into his own target function Wj = {j(zy, 2y, ..., 2p)
= fi{%"o(zi, Zoy .ovy 20}y Ziy -oes Zn) = filZy, Zos ...y Zp) can represent it as a function of strategies z = (2, Zy,y «vsy 2p) of
players with numbers i€1. Consequently, after player i = 0 has moved and communicated the move to the others,
we can consider an n-player game with target functions W; = fi(zl, Zgy «sey Zpy) 1€1. Henceforth in this section we
will everywhere consider the game of players with numbers i€ that arises after player i = 0 has moved.
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mitted May 6, 1976.
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We will consider games in which players with numbers itI are entitlied to two moves. The strategy of the
first move of player i will be denoted by u;, the strategy of the second move by vi; thus zj = (uj, vi).T For
player i the first move involves choosing the first-move strategy u; fromthe set of permissible first-move
strategies Uj:uj€U;. The values of the first-move strategies u = (uy, u,, ..., up) chosen by the players (or the ag-
gregates of these strategies »j(u), i€1, that determine the way in which the target functions of the players de-
pend on the first-move strategies) are communicated to all players, after which players with numbers i€ make
the second move, involving choice of second-move strategy v; from the set of permissible second-move strate-
gies Vj(u); we will assume that set Vj(u) depends on the first-move strategies u chosen by the players v;€ V;(u).
We will consider a particular case of the game described in which the target function of the i-th player T; de-
pends on the first-move strategies of all players u = (uy, u,, ..., up) and on the players' own second-move strate-
gy vi: fj(u, vi). The players' choice of first- and second-move strategies involves a variable degree of infor-
medness. In choosing first-move strategy ﬁi, the i-th player may not know the first-move strategies ﬁj, =i
of the others! or his own second-move strategy v;. The i-th player chooses second-move strategy v; under con-
ditions of complete informedness and hence this can be done in an optimal fashion:

- ~

Fi(u, i) = WX F(u, v) = @ (u). ()
v, eV, (1)

This makes it possible for the i~th player to predict the value of v; from condition (1) in choosing the first-
move strategy. The target function of the i-th player ¢;(u) as "contracted" with allowance for the second-move
strategy choice rule can be called the efficiency criterion of the i-th player with allowance for the second-move
strategy choice rule (1).

The i~th player may choose first.move strategy u; under conditions of indeterminacy. The principle of
generating a rational strategy choice for the i-th player under conditions of indeterminacy [3] involves reduc-
tion by the player of a criterion ¢; to criterion ¢;* that depends only on parameters known to him and on his own
strategy, after which, by optimization of t‘.ﬁi* with respect to his own variables, he determines the strategy to be
chosen in the game. The principle by which the i-th player chooses rational first.-move strategies can be con-
veniently represented by the following diagram:

0: (1) = @ (e, B, (w(i))) —> max, (@)

. uiEUf
n
where _; indicates a changeover from criterion ¢, to ¢;* (rule for eliminating indeterminacy Ilj); ﬁni(u(i)) are
parameters known to the i-th player that form part of his efficiency criterion after rule for eliminating of in-

determinacy I1j has been employed;ll., — max means that the i~-th player chooses strategy u; in attempting to

woslf
1 i

maximize (,01* with respect to uj on set Uiz.

The situation z = (4, v) is called a solution of the game if

Vi ¢£'(§faﬁni (u(i)))=max CP:(R"’E’H;-(H(E-)))’ - (3)
ufEUf
Viifi (U, 0s) = max_ fi(u, vi) (4)
E‘iEVi{u} '

If several repeating "sets" are played, the players can also use information about past sets to eliminate
indeterminacy. If this occurs (we will assume that only information from the preceding set is employed), the
scheme by which the i-th player chooses a rational first-move strategy becomes

tut(i))) —> max. (5)

Iij
q}t (Zl?;_} . q::i- (u{h} ﬁni (uh.—

The definitions of solution zK of the k-th set of the game are exact repetitions of those given above on the
basis of conditions (3) and (4), the only difference beingthat (3) should be replaced by the condition

Vi: @ (ud, ﬁni(u““‘, 2* (1)) ) = max ¢ (ué, pu (u*',2*(0))). (6)

k
H{EU!:

TThe game-~theory literature also employs the terms "choice of first-move alternative,” "choice of second-

move alternative."”
¥ In the more general case,on some set Uj'< Uj.
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Assume that in a game with repeating sets the player i = 0 entitled to the first move does not change his strate_
gy from one set ta the ﬁem The situation z = (m v) is called a stable solution of the game in qaﬁstmn‘? 1f

Vi: @i (0 B, (8, 2.()))) = max @ (a5, Br, (2, 2(3))), I 4
. al, o :

Viifi(u, o) = max  fi(@ ). (8
viaviiﬁ) |

Assume thatin the initial set (k= 1) the players have chosen arbitrary permissible first-move strategies
ul€ U, and assume that {04, g= 2} is some arbitrary sequence of first-move strategies that appear in the solu-
tion zd{ud, v4} in sets with numbers q = 2, 3, ... The set of stable solutions R of the came will be called the
set of globally stable solutions of the game if any sequence {ud} converges to some stable first-move strategy
u from R, i.e., |

lim 2%=1, where z°=(u, 0)=R. (9)

Remark 1. In what follows, in speaking of solutions (or set of solutions of a game in the sense of one of
the above definitions), we will frequently speak only about first-move strategies (or set of first-move strate-
gies), bearing in mind that, for specified first-move strategies, the second-move strategies are determined

by optimum selection rule (1).

3. Analysis and Synthesis of Operating Mechanisms of

Two-Level Active Systems with Two- Way Method of

Data Generation

1. Operation of AS with the Two-Way Method. Assume that wearegiven amodelofanASand its operat-
ing mechanism & = <W, B, 7> i.e., we are given the AE target functions W = {Wi, i€1}, constraints on the set of
possible AE realizations B = {Bj, z%l} the two-way method of data generation s = {sj, s€I}, and the control law

- m(s) = (x(s), A(s)). We will also assume that the operating mechanism Z. satisfies the condition of independence

of the system elements [1. Sﬁ' Each operating period of the AS. mﬁmdes thre& stages: data generation by the
two-way method, planning, and implementation of plan [1]. -

2. Game Description of AS Operation with the Tw&m%%fa?"%iéﬁhéd A. Game "Set" and Partiaipants. Inthe
game interpretation, a separate operating period is regaréaci as a set whose participants are C and n AE, for a

total of (n+1) participants.

B. Strategy and First~-Move Capability of C (playeri= 0}, C isentitled to one move {onthe permissible
set Gy he chooses operating mechanism Z = <W, B, 7> with two-way method of data generation), makes his move
first, and communicates it to the AE. If we are dealing with an AS with repeating operating periods, we will as.
sume that C's strategies remain unaltered from one period to the next.

C. Strategies, Efficiency Criterion, and Selection Rule for Rational AE Strategies (players with numbers
i€1). The target function of the i~th AE In the k-th set is Wik = f(A(sK), x{(sk), yiK). ** Since the controllaw 7(s),
= (%(8), A(8)) is known to the AE, the i-th AE can represent his target function in the form Wik = fi(?\(sk), xi(gk}ﬁ-
yik). It depends on the aggregates of data, or estimates, of all AE: plan x;(sK) and control A(sK), and also on
the realization y;K of the AE. In each operating period the i-th AE makes two moves: The first-move strategy

is the estimate s ;}‘;6&23_; communicated to C in the stage of data (estimate) generation, while the second-move

THere we can draw a certain analogy with the notion of equilibrium of a dynamic system. So as not to confuse
our concept with the established notion in game theory of equilibrium in the sense of Nash, it seemed desirable
to employ the term "stable” solution of a game instead of "equilibrium" solution. An additional argument in
favor of this is the subsequent requirement of global stability of the set of stable solutions of the game.

I Here.and henceforth, the first number indicates an article number in the bibliography, while the second num-
ber is the number of the formula in that article that is referred to.

** Inthe two~-way method of data generation, estimates and realizations of AE of the k-th operating period have
no effect on control A4 or plan x4 in subsequent operating periods, and therefore there is no need to allow for

the "far-sightedness effect” [1].
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the "far-sightedness effect” [1].

999



strategy is the realization yikG Bi(xi(sk}, ri}, chosen in this stage. It can be seen that the operation of the AS
can be regarded as a game with nonconflicting interests as described in 82. Solutions of the AE game will be
understood to be globally stable equilibrium situations (S Y), or, for brevity, globally stable equilibrium situa-
tions s.

D. Hypothesis of Informedness and Efficiency CriterionforC. The efficiency of the k-th operating period |
of the AS is determined by the value of target function &\ (sK, x(), yK) that is attained in this period. If Chas
no information about future AE strategies sikEQi and yikE Bi(xi(sk), r;) and parameters rj, itI, it can deter-
mine the guaranteed value of AS operating efficiency: minmin min O (A (s),z(s),y). The fact that C is entitled

rel seQ yeB(x(5),r)

to the first move and knows the principles for choosing estimates sik (5) and realizations Yik (1) for all AE
(1€1) permits I fo determine set R of solutions of the AE game and to set up the guaranteed value of the AS tar-
get function, not on the set of all permissible AE strategies but only on the set of solutions of the AE game
(principle of guaranteed result for player who makes his move first and has information about the selection
principles for rational strategies on the part of the remaining participants [2, 3]). The set of solutions of the

AE game can be written as R=Rx [ Rau(s(r). Here R(s) is the set of first-move strategies, or esti-
(= R(g) i

mates s(r) that are part of the set of solutions of the AE game; R(y)( s(r}) is the set of second-move strategies,
or realizations y(r) that are part of the set of solutions of the AE game for first-move strategies s(r) Note that
R(y)(s(r)) = 1Arg max f; (A (s), x;(s), Vi)s i€1}. The symbol Algm&§f(z) denotes the set of all z* such that
4 ==

f(z )ﬂngélgf(Z)-
Let us consider the guaranteed value of the AS target function on set R of solutions of the AE game:

Y(ry= min  DQAE ), 2(8(M), §(r))= min min D (A (s(r)), #(s(r)), (10)
(8(r), w(irNl=R | s (F}E‘R{{:) y(rie{Arg max fi(?,(s(r)), xi(s(r)), yi), =]
Uy EB; (%, (5(r), 1)

gr) = _min ¥ RAEE), 2 E0), ).

s (MeR ()

Here W (A(s),z(s), 1) = min D (A (s), z(s), y) denotes the guaranteed value of the AS farget
ues{ATg max fi(A(s), x;(s), v3 )y il
UiEBi(xi(SJ- ri)

fun,gtion on the set of locally optimal realizations of all AE for a specified control A{g and plan x(s). The value
of ¥(r) can be conveniently compared with the maximum attainable value of the target function ¥y, (r) for the
constraints specified in the system. This is defined as follows:

Yulr)=max DA, z,y)=max ® (., y,y). 11
AL heL
Yy=x yeEY (1)
yeY (r)

Indeed, Vx', Vy'€Y(r), VA'€L can be written ' -

V. (ry=max O, y,1)=0R, vy, y) =00, 2", y').
AL
yeEY (r)

Here the first inequality on the left is obvious, while the second follows from [1.2]. As C's efficiency
criterion in evaluating the operating mechanism 2 = <W, B, ™

min W (A(s(r). z(s(r)). r) min D (A (s (X)), z (s (), ¥ (7))

) 7 . s{MeR . (3{rY, utr;
K+ = min Y min () - == mip S HIIER . | (12)

ref L () reQ () reQ v, (r)

3. Problems of Analysis of the AS Operating Mechanism. Assume that the AS model and its operating
mechanism 2 = <W B, m>with the two-way method of data generation are specified. We need to determine the
following:

a) the.degree of distortion & of the information communicated to the AE:

A= max max |s(r)—r]. (13)
g=22 ;{?‘)ER(S;
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This is the guaranteed value of the norm of the difference lis(r)— ril with respect to r€§ and g(r)ER(g)..
If & = 0 (a unique solution of the AE game S(r) = r exists), then the information communicated to the AE will
be regarded as reliable. Other methods of determining the degree of reliability of the information g(r) Com -~
municated in the decision of the AE game with the real value of the corresponding parameters r, then deter~

~mine the maximum guaranteed value of the comparison result with respect to r€Q and s(r) ER(S);

- b} degree of divergence between the plan and realization chosen by the AE:

§ = max max max [z (s()—y )] | (14)
'ER 5 (NER s TER ()

The same reasoning that applies to & also applies to &;
¢} the value of C's efﬁeieucy criterion (12).

4. Synthesis of AS Operating Mechanism with the Two-Way Method of Data Generation. Assume that we
are given the model and the set G of possible AS operating mechanisms using the two.way method of data
generation. We are to determine on GZI the operating mechanisms Z*= <W?*, B*, 7*> such that C's efficiency
criterion (12) is maximized for Z*:

. K(W“,ﬁ',ﬁ")m max K{Wiﬂjﬂ}. | (15)
g (W ’ B.% } PN .

If in the statement of problem (14), C chooses only:

a) sets B=1{B i} €-Gy, then we obtain the control problem by introducing constraints;
b) target functions W= {Wi}é Gw, then we obtain the criterial control problem of [6];
¢} control law 7(s)€ G4, then we obtain the problem of choice of control law of [7].

Solution 2 * of problem (15) will be called an optimum operating mechanism. Generally speaking, because
of the existing constraints on control laws Gy, AE target functions Gw, and so forth, the value of Ky, can be
less than 1, i.e., Kxx=1. Solution Z* of problem (15) will be called an absolutely optimum operating mechanism

if KZ;@; =1,

5. Operating Mechanisms with Penalties for Distortion of Information [1]. The target function of the i-~th
AE with penalty function X;(s;, ;) for distortion of information has the form W; = f;?d (A, Xi, ¥, Xi(81, 6

= f;pd(X, Xis Vs }\i(si, 0:{s:5 ¥5))). Here 6; = o,(s;, yi} isthe generationoperatorforestimates 6;based on obser-

vation of the realizationofthe AE. Similarly to (11), we have the following conditionforthe target function of AE
with penalties for distortion of information:

<f A, zi,yy), 850, - (16)

pd {
i s Loy Uiy i\ 8y 0 3
j (K z ' y x ( { i)) Mfi'(?lf? xﬁ y{) ; if sfmei‘} 5?‘&‘{,

The efficiency criterion for the i-th AE, taking account of the selection rule for the realizations in an AS
with penalties for distortion of information, can be written in the following form (which will subsequently prove

convenient):

.pd d . “ ~ - d
mdx ]1p (ijf:yi:?,i(ghﬁi(’ghyi))) #flp (Ai‘i‘f#yiﬁ}i’i(sfi{ji(’gi:yﬁ}))ﬁfﬁpd(kaxf! yi:xi(gff%i>)m{?? (aﬂxf!ri!sﬁxf(sf!gi))(i?)

Y, @B (x;{8).7,]
where, similarly to (16), we have

<{?i (}“? Ly 1"1-) ’ if Sg#eh

18
:@i(?‘“: Ly rf)i if | 5.=4; ( )

ipi pd (}15 Liy Fiy Sy :{.i (;S'g, 81)) {

The statement of the analysis and synthesis problems for the operating mechanisms in AS with penalties
for information distortion can be made similar to those given in 3 and 4 of this section, with appropriate moaifi-
cation of the principles for selecting rational {irst. and second-move strategies (estimates s; and realizations

i}
Illustrations of general formulations of control problems in AS, using simple examples, can be found in
17, 81.
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APPENDIX

In relation to the game considered in 82, let us consider a number of principles for selecting rational
first-move strategies and the solutions to which their use by the players leads.

Example 1. Principle of maximum guaranteed result when there is no information about the strategies |
of the remaining players [3]. In relation to the indeterminacy associated with his ignorance of the others’ strat-

Iy
egies, player i proceeds from the guaranteed-result principle: ¢:(u) = min o@;(z) — max. Here U(L)-—]-IUj

u{i)eU{i) w7y o
i

Information about preceding periods is not utilized. If all players adhere to the principle of maximum guar-
anteed result in choosing strategies, the game solutions are situations u such that

Vi min Qi {By,..., Bieq, Ui, Bist,..., 8n)= Max min @;(n).
u{i)elU({) uv;elU; wl{iyet{{)

Example 2. Coalition principle of achieving Nash equilibrium [3]. All players agree tc) melement some
Nash equilibrium situation u, i.e., a situation satisfying the conditions vi:g:(i)= max ¢: (Ugs ooy Ujqp Uip Ujtqyes ,u ).

usEir;

Thus in this case each player knows the strategies chosen by the others (player i knows strategies ffj, j=i). In
this case the principle of choosing rational strategies for the i-th player can be represented as follows:

HI -~ . - ~
Qi () = @i (U, .00y Wimygy Biy Bisty ..., Un) —> INAX.
wysEly

The solution of the game is a Nash equilibrium situation chosen by the players in coalition. Another ver-
sion of the coalition principle of achieving Nash equilibrium was given in [3].

Example 3. "Absolutely Optimal" Strategies [3]. Strategy ﬁi of player i is called "absolutely optimal" if
VuiE Uj, j=is goi(ui, covy Ui 1y ﬁi, Wj+qs -»+9 Up) = maxgi(u). If an "absolutely optimal” strategy fzi exists for playeri,

e

a principle for choosing a rational strategy for player i can be set up without resorting to the rule for elimina~"
tion of indeterminacy: VquUj, j=i:g:(u)—max. If "absolutely optimal" strategies exist for all players, the solu-

ureElis

tions of the game are situations such that

"y

Vit @@y, ..oy Bimgy Uiy Rigty oo v, U,) = max ¢ {a).
uzel'y

It is not difficult to see that any such situation satisfies the conditions of Nash equilibrium.

Example 4. Indicator behavior in games with repeating sets [4, 5, 8] and so forth. The indicator rule of

choosing strategies for the i-th player in a game with repeating sets is described by the following iteration pro-
cedure:

~h—14 ~h—1 At k-1 ~he)
Vi nite=n +y:* oy (@W=1()) —a; 1=us -yt (@ —uw ).

Here 'ﬁ;k-l = wl({ik-i(i)) is the maximum point (position of the target) with respect to the intrinsic variable
| t of the efficiency criterion for the i-th player in the (k— 1)-th set of the game, given an array of strategies
t‘" l(i) for the other players:

~ Rt ARl Bl AR A fpe §
Epi(uk“‘)“ max @i(w ., Wicty B S Hiot,..a.y 80 ).

?; tE{;

As a rule, it is assumed that a target position for the playver exists and is unique. The specific yik-valtze
that determines the step size Au;K = ;K —G;k~! may depend on time, the current state, or certain other (e.g.,
random or external) parameters. The indicator principle of choice of strategy presupposes that a player in the
k-th set, who knows the strategies of all players UK-1 in the (k— 1)-th set, can determine the way in which his ef-
ficiency criterion depends on his own variable ulk- in some neighborhood UlkCZU of point G¥~!, and moves to-
wards increasing his target function, assuming that the strategies of the others remain unchanged If for y, =1
= ulk-1 the target function of playeriis maximizedonUj; K , the player mamtains strategy"ilk -—-ul . Theas sumptmns
regarding set U;¥ which limits the step size of the 1-th player Au;K = ujk —ujk-1, where u;K, g, K16 Uk are
analogous to the assumptions regarding ylk, Thus the indicator prmc;f.ale of choice of strategy can be sche-

matized as follows:
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If vk set Uik coincides with Uj: Uik = Uj, we obtain the Cournot principle of choice of rational strategies
[8]. An important case is that in which the observed quantities for the player are not the vector strategies of
other players but only certain aggregates of these strategies w;(u) = {Mn(u) A59(U)y vney Him(u)} ([5], IV). Pre-
cise determination of the position of the target is frequently qulte complicated in this case. A player in this
situation can orient himself toward determining the approximate position of the target §i(w, ;i(u)). This approach
is more realistic when the number of players is large, since the number of observed aggregates sufficient for

.. indicator choice of s{rategies may be much smaller thanthe number of variables that describe the strategies of

all players in the game. The presence of a large number of players may cause the strafegy of an individual
player to have little effect on a number of aggregates, and this can also simplify the determination of the tar-
get's position.

Stable game solutions for the case of indicator behavior of all players and a single target position for
player are Nash equilibrium situations. Sufficient conditions for global stability of Nash equlhbrmm for indi-
cator behavior of the players have been considered in a number of studies, [4,5, 8] and others.
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