EVOLVING SYSTEMS

ADAPTIVE FUNCTIONING MECHANISMS OF ACTIVE SYSTEMS
1. 'ACTIVE IDENTIFICATION AND PROGRESSIVE MECHANISMS

V. N. Burkov and V. V. Tsyganov UDC 62-506:62-501.72

We consider the analysis and synthesis of adaptive functioning mechanisms of a
dynamic active system under incomplete information at the headquaters concerning
the structure of the lower-level divisions. Conditions for exact structural
identification of far-sighted active elements are established. Necessary and
sufficient conditions are determined for optimality of adaptive functioning mech-
anisms.

1. INTRODUCTION

" "In [1] we analyzed the functioning of an active system under incomplete information at
ﬁffﬁfthﬁfhéQQQuartarg assuming adaptive or lagged formation of data. We noted that the far-sighted-
" ness of the active elements must be taken into account for purposes of adaptive control of

. dynamic active systems under uncertainty.

In |2] a simple active element was considered, with stochastic constraints described by
a stationary distribution function and the "actual achievement' being used as the basis for
the planning. It was shown that in this case the active element sets an upper bound on the
state variable, and as a result the active system performance is submaximal.

In [3] a two-level system was considered, consisting of the headquarters and an active
subsystem; the subsystem objective function depends on the parameter o, ¢ & A where the true
value (a,) is not known to the headquarters. The conditions for the existence of solutions
of the corresponding game-theoretic problems with adaptation were determined for finite A.

In this article we explore adaptive control of dynamic active systems under uncertainty.
The main tool for elimination of the headquarters' uncertainty concerning the structure of
the divisions is provided by the adaptive-control method. Adaptation and learning procedures
are widely used in automatic control systems [4]. Adptive control in active systems requires
the headquarters to use information about the plans and the states of the divisions in past
periods in order to identify the divisicnal structure, to determine the current divisional
plans, and to decide on contrels [5]. In adaptive control, we distinguish between adaptive
formation of data, when the structure refinement procedure is explicitly used (structure
identification), and adaptive planning, when the plans for the current period are determined

directly on the basis of the plans and the states in past period. The specific feature of
adaptive control in active systems is that it must allow for the far-sightedness of the

active elements. The information available to the active elements concerning the adap-
tive control procedures allows them to predict to a certain extent what the future
managment decisions (plans) of the headquarters are going to be, depending on the state
selected by the element '"todav." Therefore, the divisions may find it beneficial to restrict
the set of feasible states in the current period (not to disclose the full divisional poten-
tial) in order to secure assignment of preferential plans in future periods. For instance,
if adaptive control is based on identification, the result of identification may depend on
the divisional activity, on the information available to the active element about the cen-
tral identification and planning procedures, and on uncertainty eliminating actions of the
element when selecting its state. The ''monclassical problems" arising in this context may
be called "active-system identification' problems.

2. CONDITIONS OF EXACT IDENTIFICATION

Let us consider the conditions for exact structural identification of a farsighted ac-
tive element (AE) described by m stage indicators y = (y,, ..., ¥y) in the Euclidean vector
space EM, Let t denote the functioning period of the active system, t = 0, 1, ... By Yy (a)
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we denote the state of feasible AE states, which is known to the headquarters up to a scalar
parameter ¢, a<=FP = [b, p}] ¢ R*, The true value of this parameter will be denoted by p,
pe P. We assume that Y{(e¢) is bounded, closed, and Hausdorff-continuous on P. If Y (a) is
also strictly monotone on P, i.e., Yy (a)) o Yy(aﬂ, We (@) 0 Wela,) = 0 for ay, a, = P;

a, > a,3 Wy is the boundary of Yi, then the following lemma holds.

LEMMA 1. For every yt = Y.(p), p= P, there is a unique parameter a £ p such that y, =
Wt (CZ)

Exact structural identification involves estimating the parameter a = p. As we assume that
the headquarters objective function is a monotone function of the divisional indicators ysy,
k=1, m t =20, T, and without loss of generality we may take it to be an increasing func-
tion. The boundary surface Wy(p) determines the maximal (potentially atatainable) possibil-
ities of the division, and we will therefore call p the divisional potential. Let us con-
sider the following adaptive control scheme. In each period t, the headquarters obtains an
estimate a4 of the parameter p from the conditions Yy & Wela), a¢ = ay-, for the period
t +1, i.e., Xt41 "we41lat) € Yep.(ar). The procedure a4, may be called "actual-achieve-
ment planning."” It is based on the following assumptions. First, the headquarters assumes
that the division fully utilizes its potential in the current period (operating on the bound-
ary of its feasible set); second, the headquarters is interested in ensuring full utiliza-
tion of the divisional potential in the next period t + 1. A functioning mechanism which
ensures full utilization of the AE potential (the division operates on the boundary of its
feasible set, y¢ € Wt(p), t =0, 1, ...) 1is called progressive. We have to establish under
what properties of the functioning mechanism the headquarters assumptions listed above are
indeed true, i.e., we have to determine the sufficient conditions for a progressive func-

tioning mechanism. We denote by f(x,y) the divisional objective function, which is con-
tinuous in y, vy€ Y{(p) for all x=Y(p).

Definition 1. A functioning mechanism is called weakly progressive if Argmaxf(x,y)e
Wt(p) for all t, X4, P E P. t Vi

If the active element behavior is determined by maximization of the objective function
f(x¢, yt),» the structural identification problem for weakly progressive mechanisms is obvi-

ously solved fairly easily using the condition y+ € W¢(p). Let us now assume that the far-
sighted active element maximizes the efficiency criterion

wmw(fpm Py oy (PT)a (1)

and w is an increasing function of the objective functions ¢4 = f(xt, yt), t = 0, T. We have
to determine sufficient conditions for exact structural identification of the active elements

- for any monotone dependence of the divisional efficiency criterion on the objective functions
in the current and future periods.

We introduce two definitions.

Definition 2. A functioning mechanism is called plan-progressive if ;mmx:f@n(mg,y)Ea
YEY ,(a2) |

max f(m(a),y) for all a,, ao = P, a, 5 a,.
}*E:.-*Yt{az}

Definition 3. A functioning mechanism which is weakly progressive and plan-progressive
is called strongly progressive,

The following theorem holds.

THEOREM 1, A strongly progressive functioning mechanism is a sufficient condition for
exact structural identification of the active element.

All theorems are proved in the Appendix.

Remark. The strong progressiveness conditions are necessarvy in a certain sense. Spe-
cifically, if these conditions are violated, there is an efficiency criterion w and a value

p € P such that the strategy a+ = p is not optimal. Indeed, for some pair a; < a,, a;,
a, € P, let t =1

£+ (#T (a'2) ' aZ) <E=x (ﬂt (ai) ’ az) ‘

Take p = a,, WlQy, P15 +vevy P7) =@.. In this case the strategy ay =p, t = 0, 1,
.++s I is no longer optimal, since the strategy a¢y =a, for t £ 17— 1, ¢y =a, = p for t
ensures a higher vlaue of the efficiency criterion w.

i
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Consider a more general case, when the divisional potential is determined by a vector
parameter (p), and not by a scalar parameter (p) as before. Theorem 1 is true in this case
also if the sets Yt(a) are monotone in a (if a’ 2 a2, then Yt(a ) © Yt(& )). Thus, under
strongly progressive mechanisms, the division is willing to disclose its full potential.

Wil AR

The problem is thus purely technical — estimating the vector p. Clearly, in order to
obtain an exact estimator of p, we need at least % points on the surface Wi(p), which re-
quires observations of at least 2 functioning periods. The sequence of states Yo, V...,
y,—, should be such that the system of constraints |

v.eeW,(p), t=0,1,2..., 1—1

admits a unique solution. The construction of such a sequence (and thus of the corresponding
plans) may require modifying the adaptive planning law (while preserving the progressiveness

of the functioning mechanism), which in its turn may lead to temporary deterioration of con-

trol performance (for the duration of the exact identification).

3. THE OPTIMAL SYNTHESIS PROBLEM. STRONGLY PROGRESSIVE CONTROL LAWS

Let us consider a general statement of the synthesis problem for an optimal adaptive
functioning mechanism of a two-level active system with N active elements. We denote by i
the AE index, i = 1, N, superscripting with i all the variables introduced in Sec. 2. Thus,
¢ty yets ret, pyt are the plane vector, the state vector, the resource vector, and the po-
tential of the i-th AE in period t. For simplicity, the entire sequence of all the admissible
values of a particular index will be denoted by curly braces, without indicating the index
bounds. The variable index will be omitted in this abbreviated sequence notation; thus
e = ( ¢5, ooy xeN) = {xe1), x = (x*, ..., 2N) = {x1}. Moreover, we assume that the indices
take all the admissible values, unless otherwise qualified.

We assume that in each period the headquarters makes the first move (selects the func-
tioning mechanism) and communicates its decision to the divisions. The adaptive functioning
mechanism 2 = <I, 1, Q, £> includes 1dent1fzcat10n procedures L = 1It1}, planning procedures
T o= {ﬂtl}, resource-allocation procedures Q = {Qtl}, and incentive procedures f = {ftl}, all
of which are continuous functions

{ 4 . . . . . . .
Z’z+1“m+1(af): rﬁﬂ@f ({311): a, =1, (Xfta yti)r

| (2)
o =f!(x/, y/), %X=x°, re=r', a={a/}.
Here ryl are the resources assigned by the headquarters for period t + 1 at the end of
period t. Without loss of generality, we may assume that the i-th AE at the moment t = {

selects its state y! depending on the available potential p, so as to maximize its objective
function

:wi ({Pﬂif {pii& * ey (p"i) ? (3)

where wl is a monotone increasing continuous function of its arguments. The functioning of
the system thus may be treated as a game of N lower-level active elements. We denote

pi=1b’,ci], P

REZ, py={y={1=Y (p) v (' (x} y.),..., [ (&, ¥)) =
Su(ff (x4 7). (XA, 2Y)) Vi={z}eY (p)}, pe=P.
It is easily shown that R(Z, p) is a compact set. |

As the efficiency criterion of the functioning mechanism, we will use the guaranteed

“value of the headquarters continuous objective function y(x,¥r, y):
reP y=R{Z P)

K(Z)= min min P{(x,r,7). (4)

The optimal synthesis problem involves constructing a maximum-efficiency functioning
mechanism [4].

Suppose that by using some identification procedure I we have determined, with some
degree of accuracy, an estimator @ of the true system potential p. This estimator may be
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used to construct various planning and resource-allocation procedures (x = n(a), r= Q(a),
ae P) as well as the corresponding functioning mechanisms. We denote by GT>C the class of
adaptive functioning mechanisms with given adaptive planning procedures (X = m(a)) and given
resource-allocation procedures (r = Q(«)) for the system potential estimator a«. The follow-
ing theorem will be useful in what follows. )

THEOREM 2. The adaptive functioning mechanism Z is optimal in the class GgaQ if

R(2,p)=A(p) Vp=P (5)

where
A (p)=Arg max y(wt(a), Q(a),y).
‘ ¥EI{P) -
Note that in general condition (5) is not necessary.

| Theorem 2 is useful for solving optimal synthesis problems of adaptive functioning mecha-
nisms both when a structural identification procedure is given and when no explicit identifica-
tion procedure is used, so that adaptive planning is based directly on past plans and states.

Let us consider an adaptive planning procedure with system potential preduction,

(n*(a), Q" (a))=arg max @(x,r), (6)
(X,r)eH(Z)
where
¢(z,7)= min P(x,1,7) (7)
yeR{L,a)

»

is the predicator of the guaranteed value of the headquarters objective function for given
control parameters x, r and given potential predictor a, H(Z) is the set of admissible control
parameters., Note that for a = p, the relationships (6), (7) specify an optimal planning pro-
cedure with system state prediction under complete information, as considered in {1}].

We use Z(Z) to denote the set of adaptive planning and resource-allocation procedures
ensuring progressiveness of the functioning mechanism &. If H(I) < Z(z), i.e., the set of
admissible control parameters H(I) consists entirely of progressive planning and resource
allocation procedures Z(%), then a = p (see Sec. 2). The efficiency of the adaptive func-
tioning mechanism L#(p) = Gpﬂ’Q = <1{p), Qlp), £>» with procedures (6), (7) is maximized in
this case, since by (4) for every I

KZ)=min min ${x,1r,y)<< min $(x,rvy)<
PeP yeR(Z,P") '"§"EH{E:P)

< min $(n’(p),Q (p),y)=K(Z").

YER(I, D)

Thus, one of the approaches to the solution of the optimal synthesis problem of adaptive
mechanisms involves constructing the set of progressive mechanisms which ensure exact struc-
tural identification of the active elements (2 = p) and subsequently solving the problem of
optimal planning with state prediction [1].

The optimal synthesis problem of an adaptive functioning mechanisms with etficiency
criterion (4) thus reduces to the optimal synthesis problem of a progressive functioning
mechanism and involves determining the maximum-efficiency progressive functioning mechanism.

Let us consider the case of a strongly progressive functioning mechanism. The planning
procedure is represented by an arbitrary strongly progressive planning law (see Sec. 1). The
optimal synthesis problem for a strongly progressive planning law (in short, SP-law) involves
determining a maximum-efficiency SP-law. The conditions of plan~progressiveness for an in-
dependent AE have the form

Vﬂ'if o, Ay, QEEEP: gf(ﬁi (&1) ’ &2) g"gf (ﬂ‘f (ag) 1 {12) .

Example. Consider an active system with a single AE, whose state will be denoted by
v = (y,, V5) (here and in what follows, the indices i, t are omitted for simplicity). The
set of feasible states is

Y(p) #{(yig Ya): Y1ty S<p}.
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In each period, the heééquarters objective function is
P (y) =ciytey., c,>>c,
and the diViSiGﬁ£i §&jeCti?ﬁ function is

—M, if  y<zy or Y,<as,
fxy)= o - .
k1y1+kzyz-o&(y1+yz Ty 3’2)1 Y=y Yo==Ta,

where k, > kE §£§ ;§.ﬂ k,, M is a sufficiently large positive number.

Let the'ﬁgéf Wtar of the parameter p be « £ p. Then x, + X, = a, v, + y, = p. Clearly,
the division selects y, = X,, Y1 = p — X,. We have

g(z, P) =k, (p‘_iz) — Kyt (P'—@) :

e Assuming that x, = m,(a) is a differentiable function of a, we write out the plan-pro-
.. gressiveness conditions in the form (e = a, ay = p):
- § dm, (a) .
da Ritls

For a = ¢, we clearly have m,(e¢) = a,. The optimal planning SP-law thus has the form

= -a)(1- ),

e (P) =@y - (p—ay).

ki“‘"“kg
Its efficiency, normalized by max P(y)=cyp, 1is
yeY(p) |
K= min (C( --a)(i “ ) Ec(a, +O¢(p"-—dg)‘))/ . —.:j_.._(___ﬁf_)(l = )( . ~ )
il et he, | N T T, ISP ol Py  Cat=wy &

| The solution of the synthesis problem of planning SP-laws in general is quite complex
. and requires further research.

I Note that the planning procedure (6), (7) may prove to be highly efficient if we can

- identify the true system potential (p) with high degree of accuracy (i.e., ¢ % p). Other-
wise, this planning procedure may be far from optimal. In this case, the manifold of rational
(in some sense) admissible planning procedures (X = 7(a)) and resource-allocation procedures
(r=0Q(a)) for a given adaptive estimator ¢ may be quite large. Necessary and sufficient
optimality conditions for the corresponding functioning mechanism for arbitrary 7(a), Q(a),
i.e., in the class GcfﬁQ, are provided by (7). Now assume that (7) does not hold. It is

useful to compare in terms of efficiency the mechanism ensuring that the plan is met x=y
and those that exceed the plan y=x.

Definition 4. A guaranteed correct functioning mechanism is a mechanism which ensures

equality of states and plans of active elements for any system potential (x =y Vpe P).

LEMMA 2. A guaranteed correct mechanism (Z.) in the class G m,Q exists if and only if
x = m(a) € Y(b), b = {by1}.

In what follows we invariably assume that HI, € GaﬁrQ.

THEOREM 3. In the class G™sQ, the mechanism I is no less efficient than the guaranteed
correct mechanism %, if and only if

R(Z, p)=C(p,Z) VpeP, (8)
C(p, 2)={ysY (p) |p(n(a), Q(a), y) =¥ (n(a), Q(a), n(a))}. (9)

4, DISCUSSION

Adaptive control of evolving organizations must take into consideration the active be-
havior of their divisions, which is primarily manifested in varying degrees of utilization
of the divisional potential (e.g., the production capacity) under conditions of incomplete

information at the headquarters level [5].

The first group of problems arising in this context are associated with adaptive identi-
fication by the headquarters of the structure of the active elements. It is shown that a
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sufficient condition for exact structural identification of the active elements is strong
progressiveness of the functioning mechanism (Theorem 1). Note that the plan-progressivity
of the functioning mechanism required in order to satisfy this condition has a fairly clear
interpretation: As the target assignment of the active element is increased, its payoff
should not decrease.

A number of problems are considered arising in the context of analysis and synthesis
of optimal functioning mechanisms of evolving (growing) active systems. In case of exact
structural identification of the active elements by the headquarters, the optimal synthe-
sis problem reduces to solving the optimal planning problem with state prediction. On the
other hand, in evolving active systems the headquarters may have difficulties constructing
an optimal plan due to inadequacy of preductions for both objective and subjective reasons.
An efficient strategy for the headquarters in this case is to utilize the available predic-
tions in order to devise a realizable (balanced) plan with simultaneous synthesis of an in-
centive system which will encourage the divisions to utilize their internal resources fully
(e.g., so as to exceed the plan). If there is a way to coordinate the objectives of the ac-
tive elements with those of the headquarters for all the admissible values of the system po-
tential, the corresponding functioning mechanism will be optimal in the class of adaptive
functioning mechanisms utilizing these and only these predictions (Theorem 2). If such co-
ordination is not feasible, the functioning mechanism is suboptimal in the given class. For
this case we have derived necessary and sufficient conditions for the existence of adaptive
functioning mechanisms which in general are more efficient than the correct mechanisms
(Theorem 3),

APPENDIX

Proof. of Theorem 1. Consider an arbitrary sequence of parameters a., ay. ag,....
a7.; and the sequence corresponding to exact structural identification e¢+ = p, t = 0, 1,

2, v.., T.
| We will show that

max f(Xo,¥)> max f(XY¥),

yEYolp) ye Yo{ao) (A.1)
max f(q:y¥)= max f(X;,¥), t=12,...,7T, (A.2)
- ¥yeYi(p) ye¥{ay)

where gy = ﬂt(P)s X = Trt(at-l)'

The first inequality follows directly from the condition Y(p) 2 Y(a,). To prove (A.2),

we denote g,(z(ai),a)= max f(z{ay),y). Then inequality (A.2) may be rewritten as
yeY{az)

gi{m(p), py=ge(ne(at~1), ar).

Since ay.; S ay £ p, the plan-progressiveness and the growth of Y¢(2) in a,

Yi(az) oY (ay), as=aq,

lead to

gu(mu(p). pY=gi(me(ar), p)=gi(rmi(a)a) =g, (n,(a,—1), a,).

From (A.1), (A.2) and monotonicity of the efficiency criterion (1) in ¢3, i = 1, T, we
obtain

wlgo(zo, p), €1(g1, PYs. .., &x(qr, p)1=wipo, P1...., Qr].

The sequence y¢, t = 0, T, y+ © Wi(p) is thus optimal for the AE. In order to ensure

that this sequence is reliable, it suffices to ensure that max f(z0,y) 1is attained on the
veEYs(p)

boundary of the set Y,(p). Weak progressiveness of the functioning mechanism is sufficient
for this. QED.

Proof of Theorem 2. 1In the class GT»Q
K(Z)< min max ¥ (n(a), Q(a),y)= Emax(Z).

peP yeY(p)
Using the conditions of the theorem, from the definition (4),
K(Z)=min min Y(n(a),(a),y)> min min P(n(e), 0(a),y) = Kmax(Z),

reP yeR{(E.p) rePysA(p)

whence follows sufficiency of the condition (5). QED.
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: Proof of the Lemma 2. Indeed, if 7(s) & Y(b), then for p = b, y* = R(Z, b) <« Y(b),

X # y*, i.e., the mechanism is not guaranteed correct. If b S p, Y(b) < Y(p) and x = 7w(a) e
;Y{pj,°vp « P. Then selectlﬁg an incentive system with strong penalties for failure to meet
the plan (fsp), we obtain y* = R(Z, p) =x Vp e P, Lo = <1, Q, fsp> e GT,Q, QED.

| Proof of Theorem 3. For a guaranteed correct mechanism (Z.), y* = R(Z, p) =x Vp = P
~and K(Z,) = miﬁ p(w(a), Q(a), x). But then, by (4), (8), (9),
| pe

K(Z)=min min Y(n(e),(a),y)=

peP yasR(E,p)

= min min P(n(a), €(e),y)= K(2a),

pap yal{p )

‘which completes the proof of sufficiency.

Necessity is proved by contradiction. Let K(Z) > K(Z,) and let there be p = P such that
R(Z, p) € C(p, Z). Then by (9)

K(Z)< min min Y ((a), Pa),y) < K(Zo),

peP yeR(X,p)\C(P,2)

~a contradiction. QED.
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