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{f - The article deals with analysis and synthesis of performance mechanisms of a two-level active
@... - syslem when the center has complete information about the models of lower.level elements.

; - Optimal performance mechanisms are obtained for different degrees of centralization. Warkmg
~ expressions are derived for the cost of partial and complete decentralization of planning.

1. INTRODUCTION

r In {11 we described the model of a two-level system of active goal-directed elements and possible ways
fnf organizing its operation (operating mechanisms). In [2], game~theoretic methods were applied to problems
};ffﬁjjf analysis and synthesis of the operating mechanisms of a two-level system assuming that the upper-level elew
;;mem: (the center) has incomplete information about some of the parameters of the subordinate element models
and uses the counterflow data generation method to reconstruct the missing parameters. The problems formu-

:__iated in [2] were investigated in [3].

Yet in some cases we may assume that the center has complete information about the models of the sub-.
{_:Qrdinate elements. Situations of this kind are frequently considered in publications on organization system
ffj_qmanagemeﬁt In this article we investigate some problems of analysis and synthesis of performance mecha-
‘nisms of atwo-level active system when the center has complete information about the models of lower-~level ele-
‘ments., Optimal performance mechanisms are obtained for various degrees of centralization. Expressions are
derived for calculating the cost of partial and complete decentralization of planning.

: We use the definition of the degree of centralization of performance mechanisms introduced in [4] and the
classification of performance mechanisms by degree of centralization introduced in [5, 6]. A general survey of
fﬂ::',%t,hesa topics sufficient for the purpose of this article will be found in {6].
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2. ANALYSIS AND SYNTHESIS OF OPERATING MECHANISMS
WITH COMPLETE INFOEMATION AT THE CENTER

If the center has complete information about the sets Y; of the possible states y; of every active element
i€I, we can naturally omit the data generation stage intended to supply the missing data on Y;, so that the pro-
- cedures generating the control parameters (control laws) no longer use information received from the active
. elements. Every periormance period of the system is divided into two stages: the planning stage and the im~
plementation stage.

Following the methodology of [2], we develop a game-theoretic description of a two-level active system
~ and formulate the control problems.

The center makes the first move and communicates it to the elements. The center strategy is to choose
an operating mechanism Z = <W, 7> from a feasible set Gy, where W = {Wi}r Wi = £;(A, Xi, ¥;) is the objective
. function of the i~th element, A is the control (common for all elements), x; is the plan (i.e., centrally required
values of the planned components y;P ofthe statevectory; = (yiP, yi'), where y;u are the unplanned components), -

T =(A, x) is the control law (x= {x; })

| Centrally imposed penalties on deviations of the operation yip from the plan x; may be formally expressed
- by writing the objective function of the element in the form f{ (A, xi, yi) = g, y)—1A, X, yiP), where (2,

yi) = §i(A, yi, y;) and 772, xi, y;P) is the penalty function for failing to meet the plan. We assume that Ay X,

- yiP)= 0, (A, xj, Xi) = 0, and the functions u;{A, y;j) attain their maxima on the sets Yj, 1€1.

For a given mechanism %, the operation of the system may be regarded as a game of n active lower-level
‘elements. In every operation period (i.e., in every session of the game), a given element makes only one move:

. It gelects a particular state y; from the set Y, of feasible states, attempting to maximize its objective function,
i.e., the strategy of the element is to choose one of the locally optimal states yj* which satisfies the condition

yi€R (A, 2) = Arg max fi(A, 2., ys), , (1)

V; &Y

where R; (&, x) is the set of (ocally optimal states of the element.

We assume that the selected operating mechanism ¥ satisfies the condition

R(Z)={

| R.(,z) = v8!, | S @

il

- where Y8l is the set of global constraints on the states of the entire system, y = {y;}, yEYgl* This is the so-.
called implementability condition on the performance mechanism 3. "

An efficiency measure of the operating mechanism Z = <W, 7> is defined as

K(S)= min O, z,y)/ max O, 37y, I
yeER(E) | AsSA yeY ‘ ~ o 3 |

" where the numerator giveg the assured value of the central objective function (A, %, y) on the solution set of

the game R(Z), and the numerator is the maximum value of the central objective function on the set of all the

feaszble system sets Y = vgl ﬁéﬂY and the set of controls A.
icl

The analysis problem for a given operating mechanism ¥ calls for investigating the properties of the .
~ solutions of the game R(Z) and determining the efficiency measure K(Z); the synthesis problem for operating
- mechanisms is concerned with constructing mechanisms which satisfy the given constraints (¢ G); the {}ptlm

 mal synthesis problem seeks to find 3*€ G with the maximum efficiency measure

g 4

K(2)=max K (3), | | @
where G is the given set of opérating meﬁhamsms, | | | |
3. MECHANISMS WITH COMPLETELY AND

PARTIALLY CENTRALIZED PLANNING

Completely Centralized Planning. Mechanisms with completely centralized planmng are charactemzed ) ' _
| by the following properties. First, all the performance components are planned, y;P =y;, i€1. Second, by gen- .
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erating the objective functions of the elements W = {Wi}, the center ensures that the actual operation y coin-
cides withthe plan x (this can be achieved, say, by introducing severe penalties for deviations from the plan in-
to the objective functions of the elements [1}).

The optimal solution of the synthesis problem (4) on the set of performance mechanisms with completely
~centralized planning is easily obtained as the operating mechanism Wlﬁl the optimal planmng law {1}, More-
.amr, this operating mechanism is absolutely ﬂg;tzmal i.e., K%)= - -

Indeed,
min @ (A, opt, gﬁi}t,y) max (A, z,2)
E(E’}*-:—JFEH{EE—* = AeazxeY -
max O\ ¥, Y) max DQ,y,y)
red ey ' AEAYEY

- where xXgpt and ;\opt are respectively the optimal plan and the optimal control. The first equality is based on
~the definition of the efficiency measure K(Z*), and the second equahty uses the fact that in systems with com-
pletely centralized planning v = x.

This resu.lt (derived here without considering the "activity" of the elements) was originally obtained by
‘Kantorovich {7] and it supports the application of operating meeh&nisms with the aptmzai plazmmg law tmder CONe
ditions of complete mf@rmtmg at the center. - |

| Practical utilization of smh operating mech&nisms is somewhat complicated because they require that
the following specific conditions be met. First, all the components of the state vector of the system must be
planned. However, if too may items are to be planned, the actual solution for Xopt may significantly delay the
~decision-making process based on planned data [8]. Second, the operating mechanism of a system with com. |

- pletely centralized planning should ensure that the elements select the states y, which coincide in all their com-
ponents with the corresponding plans x;y. However, there are caseswhenit is impossible to make the actual -

-operation y coincide with the optimal plan xppt, since the penalties introduced by the central authority into the

- objective functions of the elements are of necessity bounded.

One of the possible ways to overcome thégﬁ éiffm.zlties e&lls for operating mechanisms with partmlly cenm |
tralized planning. -

Partially Centralized Planning. Operating mechanisms with partially centralized planning are charac-
terized as follows: First,thereis no need to plan all the components of y, and it suffices to plan only some of
the components yP = {y ?} sei’:f}ﬁé the operation of the planned components of yP need not exactly coincide with
the plan. -

The optimal planning law cannot be directly applied to partially centralized systems, and so it should be
modified to a certain extent. A suitable modiﬁeatmzz is provided by optimal planning with prediction of the sys-
tem state, OPP in brief: |

A, Y==arg max P{A,z ' o | 5
(o ppropp) = a8 ﬁmmf’( ), - - - 6

‘where z;a(?s. z)= min O}, z, y) is a prediction of the assured value of the central objective function for given
ne R

control parameters (l x), H(Z) is the set of controlled parameters which satisfy the implementability condztxm .

(2). Note that if H(Z) = ¢, no implementable operating mechanism can be constructed for the given objective

function W.

) The OPP law essentially determines the control parameters (Aopps x(}pp) that maximize the assured value
.of the central objective function on the solution set of the game R(Z). The efficiency measure K(}:Opp) of i:he -
performance mechanism Zgpp with the OPP law in partially centralized systems is given by

min @ LT max. min D\, z, | |
K( yeﬁizgw) ( cpp” ©Opp *y) A, x}&f{m@w?yemzﬁpp ( ) <1 (6)
ﬂ?p max @A, y°, y) max @ (A, yP, y) N |
A=A, =Y LA, yeY

- Consider the set GW of implementable operating mechanisms with a fixed W and different control laws
T={A, X). It follows from (3}, (6) that the OPP operating mechanism Zopp is an optimal solution of the synthe-
sis problem (4) on GW:

K(Z

i‘?pp}“ maz K{Z). - (7)

k=1 i
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Note that the oplimal mechanism Zgpp in general does not guarantee that the elements meet their plans,
although the requirement that the plans are met is an essential condition imposed on the operating mechanism.

It is thus interesting to congider those operating mechanisms that meet the plan, yP = x. We call these
mechanisms correct operating mechanisms.

The center has two options for cong}tructing a correct operating mechanism: 1) by choosing an appro-
priate reward system W (e.g., by introducing high "penalties™); 2) by choosing control laws that only assign
"rewarding” plans to the elements, namely plans that are certain to be filled under a given reward system W
{the opencontrol law [1] provides an appropriate example of this approach).

Correct operating mechanisms also may be defined as operating mechanisms in which the centrally des~
ignated control parameters satisfy the following conditions:

V@EI, I;‘ESi (}v) e {:r:il (.‘Z{, Y ud‘) ﬁYﬁ

max fi (A, 2o, y) =fi (M 2, ¥},

ViEY

®

where y;* :'{xi, yiu*) is a locally optimal strategy of the element i,

The get S(A) = I1S;(A) is called the set of consistent plans, and the control laws in which the control parafﬁ;
i€l

~eters are determined from the consistency conditions x€8(A) are called consistent control laws.

Comparison of the efficiency measures (3) for correct operating mechanisms under various consistent |
control laws shows that the consistent control law obtained by solving the problem (5) with the additional con-
sistency conditions (8) is optimal in the sense of criterion (3).

The operating mechanism Sqc€GW with consistent optimal control law is derived under the additional con.
sistency constraints (8) imposed onthe centrally designated control parameters, sothat naturally it isless effi- |
cient than the operating mechanism Zopp€ GW. We will now determine the conditions that the reward system W
should satisfy in order for the correct mechanism Zqsp to have the same efficiency as the OPP operating mech-

| | anism, K(Eopp):

K )=KEp. , 9

To formulate these conditions, we introduce the following notation. Consider the set P(A) which is the N
union, over all the possible plans (for a given A), of the sets of values of the planned components yP* of locally
optimal states y*, or

PV ={Ply=wPy" )= U RE),

s X (%)

where

X)) ={zl (A, z)=H ()}, R(z)m]]a(z,, z). .

ie]

LEMMA 1. Let Sopp) = P(Agpp), then (9) holds.

The proof of this and the following lemma is given inthe Appendix.

We further assume that the elements are "friendly" with the center when selecting the planned compo-
- nents y;P, i.e., if yi* R;(A, xj) and yi* = (x, yiu*), the i-thelement selects either the state y;* or another state
yi ERi(A, x;) such that y; = (x{, yj1). Under these conditions, we have the following lemma. - |

LEMMA 2. A sufficient condition for S(A) = P(A) is the "triangle” inequality

ni(h, 25, YOI, 7, 28)+1: (A, 238, 3P ~ (10)
for every i€l, x€XQ), y; = (yiPs y;WE€Y, z; = (z;P, 29 €Y. '
Finally, combining Lemmas 1 and 2, we obtain the following ftheorem,

THEOREM 1. Let the penalties 7;(2, xi, y;P), i€I for deviations of the perfarms.me y;P from the plan x;
satisfy the "triangle" inequality (10) for A = Agpp. Then the correct mechanism Z¢o is optimal on GW, i.e.,

K(Z g{}) = K(Z {}pp) .




The following fairly common penally functions satisfy the condifions of Theorem 1:

_ 1) linear penalties n;(A, xi, yiP) = <@, |y;{P—x;[>, where <aj, [y;P—x;[> is the scalar product of the non-
ﬁ%gatwe vector ¢ and the vector lyip-- xg_l whcge components are the absolute dematmﬁs of the Operation COIMe
g{ments yiP from the corresponding plan x;

' 2) "yes—no" penalties which are independent of the magnitude of deviation:

0, if y¢P=xi3
14 (}‘11 &gy 1P == { |
! b:) Ci(yP), if yip'#;xﬁ

ﬁhere Ci(Yip):-"—“ 0.
4, THE COST OF DECENTRALIZATION

. It foﬂt}ws from the preceding section that by lowering the degree of centralization we may reduce the ef_
}ﬁmency measure of the optimal operating mechanism compared to the completely centralized case, when
;E%{E *)=1. Using the terminology of {833E we refer to this reduction in efficiency as the cost of deeentrahzatmn

Partially Decentralized Planning. The cost of decezztrahzatmn in thlS case is | o
A=1—K (Sopp. -_' ' o e an
Here K(Zqpp) is given by (6). ' " '

_ Completely B&eentrahzed Planmﬂg By gradually reducing the list of planned components, we end up
f%@3’11;11 y = y4% and no x. The resultis an operating mechanism with completely decentralized planning which is also
?@{}Wﬂ as the market.price mechanism [8, 9], where the central authority fixes the control A (the prices) and
j@:.;i}es not fix any plans x. Let AY, A’c A, be the set of all the controls A for which all the system states y* =
*} obtained when the elemen‘ts select the locally Optlmal states y; *, i.e., yl*GR (A) --Arg max p,;(h y:), satigfy

‘l

;iéhe global mﬁstramts v ¥€ Yg1 or in a different notation R(Z)= HHi(k)c:Ygl In the literature dealmg with mcdels |

AT
i}f decentralized economy, the set R(Z) is known as the set of competitive equilibria {9].

Note that the expression for the efficiency measure (3) in this case does not contain x and yP (these vari-
ﬁbi@s simply do m}t exist) and it is written in the form | | o | )

E(Z)= min ®(A,y)/ max (hy). . o i (12)

yER{) : reA ey

If the control A* is determined as the solution of the problem

A= arg max ¥ _{A), - o (13)
A AR | . _ - - .
;}where 1p (A)= min $(, y), we {:sbtam the i}ptlmai market mechanism Z,, with the efficiency measure
. _ o - ueER(n) . | : .
' K(%)= max min 00, y)/ max O, n. I ¢ 7
s Al ﬁ&ﬁ{ﬁm) sed yeY - . o

Note that the control law (13) is an expression of the OPP principle in systsems with completely decen~
‘tralized planning.

 The ﬁ{zst of decentralization is thus given by L |
A=1-K(Z,) o (15)
5. DISCUSSION OF RESULTS

| Our formulation of the analysis and syntheéis problems for operating mechanisms under complete infor-
_;Zmation at the center is close to the corresponding formulations in information theory of hierarchical systems
[8] and in the theory of games of coalition [10-12]. |

: The result concerning the aphm&lzty of OPP laws, although of fundamental importance, is quite obvious.
If the choice of the control law is considered as the center's strategy, using the terminology of {10, 11} we con-
Qinde that the OPP law coincides with the well-known result on the center's optimal strategy in the game T';.
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Knowing the optimal control law under complete information we can compute the cost of decentralization as the
numerical efficiency measure of the operating mechanism for a given degree of decentralization.

Important new results in our opinion are those relating to correct operating mechani sms, the construce
tion of correct mechanisms from consistent planning laws, and the optimality conditions of correct mechanisms.

Using’ consistent control laws and reward systems satisfying the condition (10) for penalties, we can con-
struct efficient operating mechanisms and ensure that the plan is fulfilled,

APPENDIX

| 1. Proof of Lemma 1, Let l{}g}p; Xopp be the control parameters corresponding to the p«erfﬁrm&m}e
mechanism Zopps and y' = (yP', y!') a state of the system from the solution set of the game R(Zopp). From the

~definition of the set P(?igpp} it follows that RP(E{;}?p} C?{k@?}ﬁ where RP(Zgpp) = {yPly = (yP, yﬁ}ﬁa(zﬁi}p}} We

thus have yP'¢ P(Aopp). Finally, using the condition of the lemma, we get yP' QS(R{)??} or yP' = Xopp. Hence it

follows that the OPP law is a consistent control law, i.e., K(Zopp) = K{(Z¢o}. Comparing this inequality with

- K(Zpo)= K(Eogp), we obtain (8). QED,

2. Proof of Lemma 2. Clearly, if X(A) = ¢, then P =¢. We will show that S(A) = o, Consider the i-th
alement Let yi* be the vector on which the function y(A, y;) attains its maximum on Yj. Take the plan x;=
yiP* and show that x;€8(Q), i.e., SA)= ¢. To this end it suffices to show that j(A, z, y’)=maxfi(d, 2, y). Indeed,

hLEY;

 gsince T]l(}‘.g Xis yﬁp*} =0, w& have £, z;, yy=wm:{}, ¥ }mma%m(k yiysmax ({3, §Fi}“ﬁi(% i, gf}}mma%fi{k z, ¥, Since iisg

V& | LS Ypem g
 arbitrary, we get S(\) = ¢. |
Now, since certainly S(\)< P(\), it suffices to show that P(A)C SQ). Let vi(h, yd)=max si(h, ¥, where '
?gﬁ
y;R€dy;uly (yip yiu) €Y;}, and assume the contrary, i.e., P(A)Z S(\).

This means that at least one element j for some plan x, x€ P{A}\S (A) selects a it}eaiiy &;}tzmai state y}

such that yjP* = X;. From the condition of seleetz{m of the locally ﬁgaﬁmai state yj* by the element j we may
write

vi( A, y.ﬁ’ﬁ-—m(k T Yj P >v;(4, m}

Here a strfmg inequality is written since we assume a "friendly" element. On the other hand, since x€
. ?’P(}l} and from the definition of P(A) there is a plan x' for which the elements select a ii}eaiiy optimal state y =
(yP, yU} = (x, y4), i.e., we have the inequality |
vi(h, 2) sy 2f, 2 BvsCh U E )=k 2/, B ).
Combining the two inequalities, we get _
| ﬂf{&'! Z‘j: yfpﬁbﬁf(}ﬁ zfr;.xé) ’*‘?}5{;‘*! Eﬁﬁ?}i

which contradicts the triangle inequality. Thus the assumption PR)Z SO is false. QED.
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‘OPTIMAL CONTROL PROBLEM WITH DISCRETE
VARIABLES | |

Yu. F. Sharonov L A  UDC 62-505:622.323

.+~ - An optimal control problem arising in operation of multilayer oilfields is considered, in which

-~ the oil recovery and flooding wells are redistributed in such a way as to maximize the yield ofthe
. entire field over a specific operating period. An effective algorithm is devised for solving the
problem, which amounts to solving a linear prwrammmg problem in functional space and a dls-n N
| cr&t& gf{}grammng problem. The &riwl& ;s in essence a ci}ntmuatmn of [1].

......
sttt

1 The Problem

- Let 2 be a domain of three.dimensional space R3, bounded by an external contour I'y and interior contours
i} i€S, corresponding to the contours of the operational and water-injection wells; S is the set of well num-
_bers; x is a point of space R’ with coordinates (x,, X,, X3); by(x) is the distribution of the layer permeability
f_gjj;}f;aé{}ﬁg the [.th coordinate, [ = 1,2,3; uis the liquid viscosity; (t,, ty) is a given time interval; d is the layer

r{)Slty, and ff, By are the coefficients of compressibility of the fluid and medium.

r’ “In the porous flow of a homogeneous compressible fluid, the variation of the prﬁssure p(x,t) over volume

s:z and in time gatisfies the gam%}{}hc equation {2]

0 bia) dplzt) (d?f‘*’%n" 33-’?( ) . )
dx; 1) -_é} T o | , , . |
{er the f{}ﬁ{mzing boundary conditions.
S On the exterior boundary I'y, the pressure is assumed fo be given: |

o p(z, ) =pi(z, 1), 2=, 1€ (f, t). (2)

 Ifapart T, of the exterior boundary of the layer is impermeable, then the boundary conditions have the
form - ' o | S

924, =0, o=l t=(tt), - @)

P(x‘f f) ........Fk(x t} 'xﬁrﬂ\rﬂri iﬁ (tﬁ%r t-ﬁ") .

The interior boundaries I'; consist of M; nonintersecting parts I'ijs corresponding to different layers

_I’;-——-’UMFﬁ. On each part I‘ij,w& can assume, since they are small, that the pressure is independent of the
Jev. - -

1

‘space variable:

i
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