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Introduction

Any firm is an organization of economic agents (Eyees}. In
the organization employees conform to some rulecf@nisms) regu-
lating their activity and providing the achievemaftthe general goal
of the firm.

The employees in the organization are specialiddabrefore,
they are more efficient than the set of self-emptbynon-organized)
agents. But the employees with different specitibramust be coordi-
nated to achieve the general goal. Coordinatica fisndamental prob-
lem of any organization because activity of a teanst be planned and
monitored, individual goals must be coordinated, &ome organiza-
tional hierarch§ is created to fulfill the coordination functioredgnin-
istrative labor) in the firm.

On the one hand, the hierarchy increases effici@iche em-
ployees’ interactions (for example, due to the piag and monitoring
informational, material and other flows). On thaathand, the perfor-
mance of coordination (control) functions is costtymodern economy
organizations become increasingly more complex. aAsesult, the
proportion of managers in organizations may excé@t (see, for
instance, Radner (1992)). So, the key factor ofi'firefficiency is the
optimality of the hierarchy.

Two-tier hierarchy can be optimal for small firnhs.this hierar-
chy workers on the first (lowest) tier are immeedigtsubordinated to a
single manager. As the firm grows, the single man@an not control
all interactions between the workers. Therefore bas to hire several
managers to the second tier of the hierarchy armktegate them the
responsibility to control business interactiong\f) within the subor-
dinated groups of workers. But interactions betweseordinated
groups cause interactions between the managerseorseicond tier.
Several managers on the third tier must contradehiateractions, etc.
In such a way multi-tier hierarchy arises. A supetinanager in the
hierarchy has an authority over his or her subatgi®s (managers or

! Below we use the terms “organization” and “firng’ synonyms.

2 The employees on higher tiers of the hierarchyehaere authority than the employees
on lower tiers. It allows to control the firm evemen conflicts between the employees
exist.
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workers) and a subordinate provides the informatioand follows the
instructions from his or her superiors.

The design of the hierarchy is one of the aspettsganization
design. Management science literature divides thegss of organiza-
tion design (and re-engineering) into three phagsse, for instance,
Mintzberg (1979), Williamson (1975)):

I. Technology design: the number of workers, tfigictions and
interaction rules are determined.

Il. Hierarchy (organigram) design: the number ofnagers and
their subordination are determined.

lll. Mechanism design: superiors’ authorities otteeir subordi-
nates are determinéd

Typically, an expert in the appropriate field penfis the tech-
nology design (phase I). There are technologictimapation models in
different industries, plants, etc. In real firmsngrs’ interaction rules
are frequently not formalized. In this case, one dascribe the tech-
nology using, for example, function modeling metblogy (IDEFY.
Technological interactions between workers can tkahematically
described using a weighted network. The weightamthenetwork link
determines intensity of the interaction.

There are many mathematical models of control nashes
(phase Ill). Two-tier hierarchy mechanisms (prirmtipgent problems)
have been researched in detail (see, for instatad,and Holmstrom
(1987), Grossman and Hart (1982 and 1983)). Thest the models of
control mechanisms in some types of multi-tier &iehy (e.g.
Melumad, Mookherjee and Reichelstein (1995) exptbee delegation
mechanism in three-tier hierarchy).

In this paper we concentrate our attention on tiese Il. Several
papers are focused on the hierarchy optimizatiedlpm (phase II) or
joint optimization of hierarchy and mechanisms g#swall and 1ll). The

% In practice these three phases may not be altegétidependent. But it is rather
difficult to optimize all these phases at once. Siimplify the problem each phase is
usually considered separately.

4 For example, employees’ rights and responsitilitiee determined.

® One defines some aggregated functions (purchagirmguction, sales, document
processing, etc.) and makes detailed decompogitiagmentation) down to elementary
functions performed by each specific worker. Durthg decomposition process, one
defines interactions between the workers.
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study of the hierarchic organizations was pionedrngdsimon (1957).
His model is based on the following assumptions:

1. The employees on the first (lowest) tier are ahty workers
performing production labor. All employees on higkiers are manag-
ers performing only administrative labor (contrehgtions).

2. Any employee in the hierarchy has the only imiskedsuperior
on the next hierarchical tier. Thus, any hierarchy tree. And only
employees on adjacent tiers may interact directly.

3. The wage is the same for all employees on are The span
of control (the number of manager's immediate sdibates) is the
same too. So, employees on one tier are assunteditientical.

4. The span of control is the same on differemstad the hierar-
chy.

5. The wage on the next tier is a constant multilhe wage on
a previous tier. The constant is an exogenous nyridgch does not
depend on the tier and other parameters of tharaiey.

Williamson (1967) explores a similar model and g®that firm
size is limited because of “loss of control” (empmes’ efficiency
decreases from an upper tier to a lower tier). ifkerlayer efficiency
differential is an exogenously given constant. Gand Wellisz (1978)
explain the wage and the efficiency endogenousiyplbyee’s effi-
ciency depends on his or her wage and the spaontfat of the imme-
diate superior. The larger the manager’'s span ofrabis, the less is
his or her subordinates’ effectiveness, as indaidsubordinate is
controlled rarely. Using this assumption Calvo anellisz (1979)
consider the profit maximization model. The prefifuals the difference
between income (the number of workers multipliedthsir effective-
ness) and total wages of all employees. In thisahbdth different
spans of control and wages on different tiers assible. Thus, Calvo
and Wellisz dispense stringent assumptions 4 aanttiorove important
principles, for example, that in the optimal hietar the higher tier the
more employee’s efficiency and wage per efficienni.

Keren and Levhari (1983) optimize the hierarchyecidion-
making tim& (delay on each tier equals the span of contraé plon-

® Marschak and Radner (1972) study the effect aiydeh the value of decisions. This
is one of the first models of hierarchy with marragealculating some “decision”
(control action).
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stant). Average cost per employee is calculatedHerhierarchy with
minimal decision-making time. This cost allows talaulate the limits
of the firm’'s size. Similar information processingpdels are explored
in numerous papers (see, for example, Van Zandg)1Bolton and
Dewatripont (1994), Radner (1993)).

Qian (1994) explores Calvo and Wellisz (1979) mduaelusing
optimal control techniques, a method pioneered byeK and Levhari
(1979). Continuous approximation is considered fjooous number of
employees on each tier). In this case, the optiioizgproblem is sim-
pler than discrete probl€mf any employee’s effort choice is restricted
to only zero or maximal effort, then in Calvo andeMéz model the
optimal employee’s wage depends only on the spamiofrol of his or
her immediate superibrTo maximize profit one has to minimize total
wages because employees’ efficiency (effort) isimak In this case
Qian (1994) obtains the optimal hierarghy

Like Qian, in this paper we consider the problerseadrching out
optimal hierarchy (optimal hierarchy problem), whiminimizes total
wage of employees (total cost). However, we diffem Qian and other
cited above papers in two important respects. ,Rirstconsider manag-
er's wage function depending not only on the splacoatrol, but also
on sets of workers controlled by the employees idiately subordi-
nated to the manager. So, manager’'s wage depergpexcificity” and
“complexity” of manager's administrative labor (buwage function is
called “sectional in this paper). Thus, we do not assume that eyplo
ees on one tier of the hierarchy are identical.oS8écwe consider not
only tree-like hierarchies, but also more complégrdrchies with
multiple subordination or cross-tier subordinatfonTherefore, we
differ from papers, cited above, because we disgpassumptions 2 and

" Van Zandt (1995) examines the validity of continsicapproximation of discrete
optimal hierarchy problem.

8 Suppose any employee works at full efficiency hirks. In this case the employee
compares expected loss of wage (the wage multigtiedhe loss probability) and
shirked time utility. To induce the employee to wafficiently one should calculate
such wage that expected loss is greater than cal équthe utility. Loss probability
inversely depends on span of control of the immediaperior. Therefore, optimal wage
linearly depends on the superior’s span of control.

® Also Qian (1994) explores more complex cases.

191t allows to prove insightful optimality conditisrfor tree, symmetric tree, etc.
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3 (this paper bases only on assumption 1). Opthiehrchy problem
considered in this way is much more complicated. ekplore this
problem we base on the additional assumption: dratchy provides
the maximal efficiency of employees. In this casenaximize profit we
have to find a hierarchy with minimal total wageté cost). Thus,
control mechanisms (phase lll) are not considereimanager’s wage
(cost) function is given exogenouSlyWe suppose that if employee’s
wage equals to the cost then his or her efficiéaegaximal. Particular-
ly, we entirely abstract from incentive probléfns

One well-known aspect of hierarchy optimization kjeon is
comparison of divisional, functional and matrix faiehies®. Ad-
vantages and disadvantages of these types of ¢lgrare often dis-
cussed in management science literature (seex@onm@e, Mintzberg
(1979)). In a divisional hierarchy, all flows périamg to a product
(region, customer, etc.) are controlled by the gidrial managers (for
example, a single brand manager for each prod8ttegic managers
control all flows between different divisional mgeas. By contrast, in
a functional hierarchy, all flows pertaining to iagde activity (sales,
purchasing, production, etc.) are controlled by ftirctional managers
(for example, sales manager, purchasing manageifuption manager,
etc.). Strategic managers control all flows betwdiferent functional
managers. In a matrix hierarchy each worker beldongsne division
and one department. For example, if a worker psrdomarketing
functions for the first product then the workersisbordinated to the
sales manager and the first product manager. Tdreredivisional and
functional managers control all flows; strategicniagers perform some
strategic functions.

Recently developed models allow to compare mathieailt di-
visional, functional and matrix hierarchies. Foample, Maskin, Qian
and Xu (2000), Qian, Roland and Xu (1997), Milgremd Roberts

™ In this paper we consider different cost functiofier example, these functions may
be defined using technological network (the restithe phase 1) and possible control-
ling mechanisms (the result of the phase II).

12|t is easy to create incentive mechanism undepbete information: costs of maximal
efficient employees are compensated and wageshef etnployees equal to zero. Some
incomplete information intensive mechanisms areflyrdiscussed in the final section.

13 In several papers terms M-form (multi-divisionairh) and U-form (unitary form) are
used instead of divisional and functional hierarggpectively.
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(1992) explain mathematically advantages of thesitimal hierarchy
over the functional hierarchy. Harris and Ravivd2pdevelop a model
with two “process lines” and two “workers” in ealtihe (for instance,
design and marketing sections in Norway and USYhé&ir model all
possible hierarchies controlling these four “woseare compared. But
one can not use this approach for larger firms leeaf huge number
of possible hierarchies.

In this paper we show that divisional, functionaheatrix hierar-
chy is optimal for any size of the firm in someccimstances. This fact
is important because in general these hierarchigshave much greater
costs than an optimal hierarchy. We prove that mersaon lower
hierarchical tiers must control the most intenglogvs because it helps
to decrease the strategic managers’ costs (Hands Raviv (2002)
prove similar principle). Also we show that if eriment stability or
standardizatioff decreases then the matrix hierarchy becomes dptima
Thus, the matrix hierarchy is stable with respecstandardization and
stability decrease. On the contrary, divisional amtttional hierarchies
are stable with respect to standardization andli¢yaicrease.

With the help of the model introduced in this papame can
analyze dependences between the type of the optireedrchy and
horizontal integration (for example, the buying #amfirms in other
regions), vertical integration (for example, theyibg vendors or
customers), production volume or functional linktensity change, etc.
We prove that the divisional hierarchy is stablethwrespect to
horizontal integration and production volume ins®a Vertical
integration or functional links intensity increas@y cause restructure.
On the contrary, the functional hierarchy is stabligh respect to
vertical integration and functional links intensitycrease. Horizontal
integration or production volume increase may caasgucture.

Dependences mentioned above take place in manyfires.
Many examples without formal proof are consideradrianagement
science literature (see, for instance, Mintzbe8y@)). These principles
are proved formally in this paper. So, the propossatlel explains
some effects in real firms.

1 n this paper standardization means, for exanjpledescriptions, products’ require-
ments, common skills and knowledge, etc. Mintz{@@y9) considers different types of
standardization in detail.
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The optimality of divisional, functional or matrikierarchy is
proved for particular case of sectional cost fuortiintroduced in this
paper. Sectional functions are also interestingnftbe mathematical
point of view: any additive (with respect to manggeddition) and
anonymous (with respect to manager’'s permutatioalatchies’ cost
function can be represented in sectional form (Misiind Voronin
(2003), Mishin (2003b)). In this paper we explopimization methods
that can be used to obtain the optimal hierarchyfomerous classes of
sectional cost functions regardless of functiopscificity and practical
interpretations.

This paper falls into three chapters. Chapter foéhices basic
definitions and propositions and considers illusteaexamples. Chap-
ter 2 proves the optimality of divisional, functadror matrix hierarchy
under particular constraints. In Chapter 3 we exglgeneral model
with arbitrary sectional cost function and solvdimgl hierarchy prob-
lem for several cases. The optimization methodsodhitced in this
chapter are used to analyze cost functions cornebpg with different
types of interactions between manager and immedidierdinates.

Brief summary of this paper and possible extensadrthe intro-
duced model are discussed in final section.

All mathematical proofs of the presented below falrmatate-
ments are published in Mishin (2004c) and can bsnttmaded using
the following stable URL:

http://www.mtas.ru/uploads/optimal_hierarchies_ fsqudf

15 Manager's cost depends only on sets of workersrated by immediate subordi-
nates.
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1. Basic Model

In this chapter we define a hierarchy controllingea of workers.
Manager’'s cost depends on flows between controlletkers. Exam-
ples show, how we can model with such cost functiewveral effects
that can be observed in real firms.

We can compare costs of different hierarchies,nggsn the val-
ues of this cost function. If the function confortosa firm then we can
calculate costs of “typical” hierarchies and obtéihe best” typical
hierarchy. But it is much more important that wa éarmulate optimal
hierarchy problem. The optimal hierarchy cost isiimal among all
possible hierarchies controlling given set of weskeThe optimal
hierarchy cost may be much less than the costeobést typical hierar-
chy. Therefore, it is very useful to obtain optinfderarchy (solve
optimal hierarchy problem). In general this problemextremely com-
plicated®. But in some cases we can solve it using hieraogiimiza-
tion methods introduced in this paper.

In the basic model we find optimal hierarchy collng symmet-
ric process line. This result is used in ChapteM&re complicated
technological networks are not considered in thechmodel because it
is more convenient to research the general modeter 3).

Sections 1.1-1.6 define optimal hierarchy probleamsidered in
the basic model. These definitions are used beto@Hapters 2 and 3
(only cost function type is changed). Results oft®a 1.7 allow to
exclude non-optimal hierarchies by applying optihadrarchy condi-
tions. In Section 1.8 sufficient condition of twiett hierarchy (with
single manager) optimality is provénin Section 1.9 we describe some
examples with practical interpretations of the basodel. These exam-
ples demonstrate how the model can be used toideswme practical
effects in firms. In Sections 1.10 and 1.11 themoalk hierarchy control-
ling symmetric process line is obtained.

6 Several similarly problems are described in Goubkal Mishin (2002), Mishin
(2004b).
17 Below in Chapter 3 this condition is generalizeddrbitrary sectional functions.
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1.1. Workers and Technological Network

Let N={wy,...,w} be a set ofworkerswho can interact with each
other. Letwe,, be anenvironmeninteracting with the workers. Typical-
ly we denote the workers ag,w',w'IN .

A flow functionis a function given by:

f (N O{w,}) x(NO{w,,}) - R". (1)
Thus, for any pair of workersv',w'OJN vector f (w',w') means the

flow intensitybetweenw andw" (p-dimensional vector with nonnega-
tive real components). Each component is an intemsione type of
workers interactions or one type of flow (e.g., engl, informational or
other type of flow). For example, the first compohmay denote some
material flow and the second one — the flow of infation. Thus, the
vector f(w',w'") = (1,0) defines material flow of unit intensity and

absence of information flow betweew/ and w". The vector

f(w',w') =(21) may be interpreted as greater flow than (1;0).sTlau

technology defines the flow functidnor weightedtechnological net-

work £ For anywON the valuef(wen,W) is a flow between the worker
w and the environment.

Flows between workers will be calléldws inside technological
network Flows between environment and workers will bdechilows
between technological network and environment

We suppose that the technological networltridirectedbecause
flow direction is of no importance in our model. UEh
f(w,w")=fWw"w) foranyw' ,w'ON O{w,,} .

There is nolink between w and w' if and only if

f (W, w')=0."2So,w andw" arelinkedif and only if there are some
flows betweenw and w'. Also for any wON O{w,,} we suppose
f(w,w)=0 (loop-free network).

For example, consideN={w;,w,,w;} and p=1 (there are three
workers and only one type of flow). Let the netwdrkve four links
fw,,,wW)=4, f(w,w,)=4, f(w,,w,)=4, f(w,w,,)=A4, where
A is a flow intensity vector. This technological wetk is shown in
Figure 1.

18.e. all vector components equal to zero.
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The environment node,, is not shown in the figure. So, the
links (WenwW1) and (vs,Wen) are external. This network can be corre-
sponded with process line (“business process”). Wiwkerw; gets raw
materials from the vendors and executes some ptioduoperation.
After that the workew; passes the results of his or her operation to the
worker w,. The workerw, executes the next production operation and
passes the results to the next worker, etc. TheaMaker (v;in Figure
1) executes the last operation and dispatcheshédigproducts to the
customers.

A w A w A ow A

1 2 3
Figure 1. Symmetric Process Line

Such technological network with workemd={ws,...,w} and
flows  f(w,,w)=4, f(w_,w)=4 for each 2<is<n,
f(w,,w,,)=A will be calledsymmetric process liné

Flows of different intensity are possible in then-symmetric
process linelntensity changes may be caused by the spedifigre of
interactions at different production stages.

1.2. Managers and Hierarchies

Let M denote a finite set ahanagerswho control workers’ in-
teractions. Typical managers will be denotedas',m",m,m,,...0M .

Let V=NDOM denote a set of aimployee®f the firm (workers and
managers).

For each manager we need to define his or her dirtades
(workers or other managers). Let’'s define a setutfordination edges
EOV xM . Any edge(v,m)JE means that the employeglV is an
immediate subordinatef the managem(M . Thus, the edge is di-
rected from the immediate subordinate toithmediate superior

An employeevV is a subordinateof the managermIM
(managem is a superiorof the employe®), if there exists a path from

19 All other flows in process line are equal to zero.
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v to m. So, there exists such sequence of managens,,...,m OM
that the employe® is an immediate subordinate of the manager
((v,m)OE), the managem; is an immediate subordinate of the man-

agerm,, ((m;,m,)0E) for eachl< j<k-1, m =m. We will say

that any superiocontrols his or her subordinates (any subordiniate
controlledby his or her superiors).
Now we can define the hierarchy formally.

Definition 1. A directed graphH =(N 0O M,E) with a set of
managers M and a set of subordination edg§ds (N O M)xM s the

hierarchy controlling the set of workers N if Hasyclic, any manager
has at least one subordinated employee and somagaagontrols all
workers. LetQ(N) be the set of all hierarchies

Acyclicity prevents a “vicious circle”. Assume tleeexists some
cycle of managersm,m,,...m OM ((m,m,)0E for each

1< j<k-1, (m,m)OE). Then each manager is a superior and sub-

ordinate of another managers. Such cycle contsathet main point of
the term “subordination”. So, Definition 1 ex ambtecludes graphs with
cycles.

Also Definition 1 excludes the “managers” withoubsrdinates.

According to Definition 1 there exists a managentoalling all
workers. Therefore, any set of workers has a comsoperior and any
hierarchy is able to control all workers’ interacts.

In Figure 2 there are two examples of the hieraisr the pro-
cess line with four workers. The hierarchy a) helassical” form. Each
employee has only one immediate superior (excepttdp manager,
who has no superiors). In Figure 2b) one of the leyges has two
superiors. Moreover, in Figure 2b) some manageve hath immedi-
ately subordinated manager and immediately subatelihworker. Such
hierarchies may arise in real firms (effects of timstibordination and
interactions between different tiers).

14
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a) b)

my m,

wWoooWw, w2 W, W W W W,
Figure 2. Examples of Hierarchies over the Protess

1.3. Subordinated Groups of Workers

To define manager’s cost we have to formalize hises labor of
managing in the firm (for example, work content)e\Wuppose that
administrative (controlling) labor depends on whatrkers are subor-
dinated to the manager. Below we define group ofiett by a manag-
er.

Any nonempty set of workersO N will be called agroup of
workers

Definition 1 implies that in a hierarchy any managem has at
least one immediately subordinated employee. We start from a
managem and consider his or her immediate subordinateterAhat
we can consider their immediate subordinates, Eically we can
determine the set of workers subordinated to theag@rm. This set
s,(m)ON is calledmanager’'s msubordinated group of workern

other words any manager controls the elementary group of workers
s4(m) in any hierarchyH OQ(N).

Acyclicity implies that any manager has at least snbordinated
worker. Therefore, any manager controls non-empiy of workers.

We will leave out inferior indexM” in notation sy(m) if it is
clear what hierarchy we analyze.

It will be convenient to think that any workerCIN has a subor-
dinated “group”sy(w)={w} which consists of this worker only. In other
words the workew[ON “controls” the elementary groug(w)={w}.

In Figure 3 the horizontal plane corresponds Wit technologi-
cal network. A hierarchy is constructed over thiang (network). In
Figure 3 the part of hierarchy subordinated torttamagemm is shown.
This part consists of immediate subordinates ofla@agem and his

15
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or her subordinates not controlled immediatelyigure 3 the subordi-
nated group of workers;(m) is outlined by ellipse.

managem

immediately
subordinated employee

immediately
subordinaté
employee

subordinated employ; subordinated employee

subordina]:[e 7§ X/H)-
roup o
\9vorkl(35r sq(m) .

Figure 3. Manager and Subordinated Group of Workers

Consider the simple lemma. It will be necessarthfen:

Lemma 1. For any hierarchy H and any managen(0M the
equality s,(m)=s,(v,)O...0s,(v,) holds, where ..., are all
immediate subordinates of the manager m. For angl@me v subor-
dinated to the manager m the inclusign(v) O s, (m) holds.

Let’s illustrate the lemma using the example. Igure 2a) man-
agerm has two immediate subordinateg andm,. The group of work-
ers s(m)={wy,W,,ws,W,} is subordinated to the manager The groups
s(my)={w;,w,} and s(my)={ws,w,} are subordinated to the managens
andm, respectively. Thus, the grogfm) is divided into the subgroups
s(my) and s(my): {wiy,Wo,Wa,Wat ={wi,Wo} O {wz,wy}. In this example
subgroups do not overlap. In general case subgrcaipsntersect (see
Figure 2b)).

1.4. Types of Hierarchy, Span of Control
Let’s define some types of hierarchy and span ofrob

Definition 2. A hierarchy is a tree, if only one manager m has no
superiors and all other employees have exactlyimmeediate superior.
The manager m will be called the root of the tree.
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An example of the tree is shown in Figure 2a). afielny in Fig-
ure 2b) is not a tree because one manager hasrtmediate superiors.
Consider one more lemma. It will be necessary &irth

Lemma 2 Consider a hierarchy H, which has only one manager
without superiors. Hierarchy H is a tree if and pnf any manager’'s
immediate subordinates control non-overlapping goof workers

Thus, in the tree (and only in the tree) the imratdsubordinates
of any manager do not “duplicate” each other (dbaumtrol the same
worker).

Definition 3. A hierarchy is called r-hierarchy if any manager
has no more than r immediate subordinates, whrerel is some inte-
ger numberlf r-hierarchy H is a tree then H will be calledtree.

The term “span of control” is often used in managetscience
literature.Span of controls the maximum number of immediate subor-
dinates, which can be controlled by one managehelfspan of control
equalg then the hierarchy ishierarchy.

Lemma 2 implies that immediate subordinates of mapager in
a tree control non-overlapping groups. Thus, th&imam number of
immediate subordinates equais(if all immediate subordinates are
workers). So, the span of control in any tree dostsexceech. And
two-tier hierarchy with single manager controlling all workers (see
Figure 4) has the maximal span of control.

Vvl WZ W3 ..... anz anl Wn
Figure 4. Two-Tier Hierarchy
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1.5. Flow Control

In the basic model manager's cost depends on téudioal
flows (technological network). Consider some exptaoms before the
formal definition.

In practice the flow intensity between workers aeswith time.
But average month or annual intensity is ratheblstaSuppose this
average intensity does not change. Thus, we suppatéhe technolog-
ical network (functionf) is given and fixed. For example, some plant
can produce and sell 1000 tons of goods per ydas. i$ the value of
the functionf (flow intensity). To implement this production vaohe,
managers need to control interactions between trkess.

Each manager controls the flows between his oshkordinated
workers. One interpretation of managers’ administealabor is the
implementation of some plans. Managers at the tomidlate opera-
tional plan, which they want to implement. For exdem this plan can
include day or week sales and purchases volunmesflows between
workers and environment. During the process ofgdjsegation, man-
agers on each tier add new details to their pdrteeoplan. For exam-
ple, to fulfill the sales volume, planned by toprmager, the production
director can create the plan of production flowfteAall tiers of dis-
aggregation workers implement the final detailednplAt the same
time, each manager monitors his or her plan impigateon. Thus, each
manager controls (e.g., plans and monitors) somesflin the techno-
logical network.

Consider some example to explain manager’s flows.

Suppose a conflict causes violation of some intemadetween
workersw, andws (see the hierarchy in Figure 5). Thus, actual flow
intensity betweem, andws; may be less than necessary flow intensity
f(wo,Ws). The workerw, informs the immediate superion, about this
interaction problem. The managercan not solve the problem because
the workerw; is not subordinated toy. Similarly the managem, can
not solve the problem after reception of workevsinformation. As a
result, managensy andm, inform their common immediate superior
about the problem. The managemakes some decision. Managers
andm, pass this decision to the workews andws. In such a way the
interaction problems (conflicts) are eliminatedmiarly we can con-
sider the planning of the flof{w,,w;). Managem passes the plan of
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the flow f(w,,ws) to managersy andm, who pass the plan to the work-
ersw, andw; correspondingly. The results of the plan implemeota
come to the managemin the reverse order.

Therefore, the managen controls the flowf(w,,ws) and manag-
ersm, andm, participate in this flow control. No managers ecthe
managenm, participate in flowf(wy,w,) control becausen, makes all
the decisions about this flow independently. Sirlano managers
except the managem, participate in flowf(ws,w;) control.

my m,

Vvl W2 W3 W4

Figure 5. Controlling Tree over the Process Line

Managersm; and m participate in the external flowi(Wen,W:)
control (for example, the purchasing plan is credtg the managen,
detailed by the managem and implemented by the workes). Simi-
larly only managersn, andm participate in the external floww,,We,)
control.

Thus, managersh, m; andm, cost may depend on the following
total flows:

my: F(wi,Wo)+ (F(WenwwWi)+ f(Wo,W3)),

My: f(Wa, i) + (F(W2, Wa)+ f(Wa,Wen)),

M f(wa,Wa) + (F(WenwWi)+ f(Wa,Weny).

The example discussed above shows that a mandfis fob-
ligations” of two following types:

1. The manager controls such flows within subor@didagroup
that are not controlled by subordinated manageos. éxample, in
Figure 5 the managen controls the flowf(w,,ws).

2. The manager participates in control of the fldwe$ween the
subordinated group and all other workers, the floetsveen the subor-
dinated group and the environment. In the expressgiven above
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these flows are shown in parentheses. For exanpl€jgure 5 the
managemy participates in flow$(wen, W) andf(w,,ws) control.
Let's define manager’s “obligations” formally.

Definition 4. In the hierarchyH OQ(N) any manager m oper-
ates with the following two types of flaws

1. m controls the flows between subordinated workers
w',w'0s, (m) that are not controlled by subordinated managditse
sum of such flows will be called an internal flofnlee manager m and
denotedF}" (m);

2. m participates in control the flows between eaghosdinated
worker wls, (m) and each non-subordinated worke/TIN \ s, (m)
or the environment'=w,,,. The sum of such flows will be called an

external flow of the manager m and denofef (m).

Thus,a manager controls internal flow and participatesm ex-
ternal flow control. Total internal and external flows will be called
the flow of the manager

The definition implies that the external flow of nagerm is giv-
en by:

Fm= Y fw,w). (2)
W NS W)

The result of the following simple lemma allowsdalculate the

internal flow.

Lemma 3. Let v,...,« be all immediate subordinates of the man-
ager m in the hierarchy H. Then the manager’s rariml flow is given

by:
F(m) = Z f(w,w'). 3
{ wwi}Os, (m),
{ W, W}Os; (v;)for eachs j<k
Thus, we need to sum the flowE(w',w") inside the group

s4(m), which are not controlled by immediately suboeded managers
(i.e. each immediately subordinated manager doegordrol bothw
and w"). In this case (and only in this case) any othérosdinated
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manager does not control this flow, therefdrén',w") is included in

manager’sn internal flow.
Thus, for any giverN andf manager’'sm internal and external
flows depend only ors, (v,),...,s,(v,) — the groups of workers con-

trolled by immediate subordinates of the manager

Definition 1 implies that in any hierarchy there exists a manag-
er m controlling all workers. Definition 4 implies th&br any workers
w,W'TON the flow f(w',w") is controlled either by the manager
himself or by his or her subordinated managerssTéany flow inside
the technological network is controlled by at leasbne manager in
any hierarchy.

So, any hierarchy controls all flows. But the numbemanagers
and administrative efforts of each manager diffezafly in various
hierarchies. Therefore, it is necessary to find thest” hierarchy
among all hierarchies fro@(N). This problem is described formally

in the next section.

1.6. Control Cost and Optimal Hierarchy

Each manager bears cost because of flows contrbhdic model
we assume that manager’s cost depends only on itd&inal and
external flows. Let's define it more formally.

Definition 5. The cost of the managan(IM in the hierarchy
H OQ(N) is given by
oS, (V) Sy (V) = @(FF (m) + FS(m) (4)
where v,...,\k are all employees immediately subordinated tontfaa-
ager m, g(v1),...,5(vi) are the groups controlled by the employees
vi,...,.\,, :RP - R, is non-decreasing function froR" to R..

Thus, the manager’s cost is defined by the func#¢h depend-
ing on the total manager’s flow. The fact that tinection ¢() is non-

decreasing means that manager’'s cost does notagecrehen one or
several flow components rise. In other words, mariagcost does not
decrease when “volume” of labor rises. Moreovernagger's cost is
non-negative.
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Hierarchy’s cost equals to total cost of all mamag®ptimal hi-
erarchy minimizes this total cost. Let's definenibre formally.

Definition 6. Cost of the hierarchyH =(NOM,E)OQ(N)
equals to total cost of all managéts
o(H)=Y s, (W) S (V) = D AR (M) + F2(m)), (5)
where y,...,\t are all immediate subordinates of the manager m
A hierarchy H™ 0 Arg TDiQC(H) with minimal cost will be called

the optimal hierarchy

Several optimal hierarchies may exibhis paper focuses on the
problem of searching out some optimal hierarchy (opmal hierar-
chy problem). Below we suppose that the $¢tof workers is given.
We need to search out an optimal hierarchy (thebeurof managers
and their subordination) from@2(N), which minimizes the cost of

control of the workers.

We assume that after searching out an optimal ficleyat is pos-
sible to hire necessary managers and only competisait costs. So, a
manager will control flows if his or her cost isnepensated (for
example, if we pay out wages). It is clear thatnged to know manag-
er's cost to compensate it. Optimal incentive madra in a complete
information framework is described by Mishin (20R4&his mecha-
nism provides minimal payments, which equal toltotanagers’ costs.
Also in that paper some mechanisms have been ofsshfor the case
of incomplete information.

Below in this paper we assume that manager’s cwsitibn c(l)

is known completefi. Cost function may be determined directly (for
example, using accounting information about mariagerst). Moreo-
ver, some “typical” cost functions may be conside(ér example,
below we analyze power function). We can obtainhsiéunction’s

20 |n expression (5x(y means both manager’s cost and cost of total luieyar

21 Some “rate of profit” can be included in the masrgicost function. It is necessary if
we need to pay some profit to the managers for #winistrative labor.

22 Cost may consist of manager's wage and any adaitioost (for example, wage of
maintenance staff).
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parameters that function’s values have minimal ateas from real
managers’ costs.

In the basic model manager's cogf) depends only on given
technological flow& and the functiong(l). Expressions (2) and (3)

imply that internal and external manager’s flowpetad only on groups
controlled by immediately subordinated employegs.. vk. Thus, the
manager’s cost function (4) depends only on grosyfe,),...,Sq(V).
Below such functions will be called sectional (slee formal definition
on page 79). Thereforé basic model we consider an example of
sectional cost function

It is clear that even in simple cases it is veff§ialilt to find op-
timal hierarchy using enumerative technigue (seanfipte 1 on page
27). In this paper we develop analytical methodsictv help to search
out an optimal hierarchy under some restrictionsnjethods, which
allow to reduce the set of hierarchies containimgatimal hierarchy).

1.7. General Form of Optimal Hierarchy

In this section we prove the proposition, thatwaoto exclude
from consideration certainly non-optimal hierarchi€fo prove the
proposition we use the following lemma.

Lemma 4. Let m be any manager in the hierarchy H and. v\
be all employees immediately subordinated to thenager m. If
s, (v;) O's, (v,) then the following inequality holds

oSy (V2)i-- 84 (Vo)) < Ay (V)-8 () -
So, we can remove the subordination eflgem) with no manager’'s
cost increase.

If the groups4(vy) is embedded into the grogg(v,) then Lemma
4 allows to remove the grougy(vs) from arguments with no cost
as, (v),...,s, (v,)) increase (with no managens cost increase). It
may be explained in the following way. The employgedoes not
control any flow outside the groug(v,). But v; can “burden” the

2 As stated above in the introduction, technologilcal/s can be determined using, for
example, function modeling methodology IDEFO.
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managem with interaction problems inside the grosiv,), although
all these problems are solved by the emplogee

Managers’ cost function does not depend on therafigroups
SH(V1),...,.5(W). Therefore, the lemma holds for any pair of enadeed
groups. Edgev,m) removal does not change the groups controlled by
the managers in the hierarchy. Thus, only managecsst can change.
The inequality in the lemma leads to no cost ineee&0, such edges
can be removed with no hierarchy’s cost increasgndJthis fact we
can prove the following important proposition.

Proposition 1 For any hierarchyH, Q(N) there exists such
hierarchy H, OQ(N) that c¢(H,) < c(H,) and the following conditions

are satisfied
() all employees control different groups of wenk
(i) only one manager has no superiors. All otmeanagers
and all workers are subordinated (maybe non-
immediately) to this manager
(i) immediate subordinate of a manager does cuitrol any
other immediate subordinate of this manager
If H, is r-hierarchy, tree or r-tree thenHs r-hierarchy, tree or r-tree
respectively

The proposition is proved using consecutive regaoctbns of
the hierarchyH; with no cost increase. As a result, we obtainhileear-
chy H, satisfying conditions (i)-(iii). IfH; is r-hierarchy, tree or-tree
then after a reconstruction we obtathierarchy, tree or-tree respec-
tively.

The proposition also holds in general model if ieeatl cost
function satisfies the inequality in Lemma 4.

The condition (i) means that there is no pair ohagers fully
duplicating each other’'s administrative labor. they words, there are
no managers controlling the same group of workergzigure 6a) the
example of such duplication is shown. Two managergrol the same
group of workers v, W,,wz}. We can eliminate one of these managers
and subordinate other manager to all immediatergupeof the elimi-
nated manager. The cost of the hierarchy doesnuoease after this
reconstruction. Particularly, the condition (i) dsato the fact thaany
manager has at least two immediate subordinatggtherwise Lemma
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1 implies that the manager and his or her only idiate subordinate
control the same group of workers).

The condition (i) means that exactly one managé@as no supe-
riors. This manager controls all workers, ((m)=N) and all other

managers in the hierarchy. The managevill be calledtop manager
So, the condition (ii) corresponds to the pract€erganization

design: there is one and only one top manager wihesisions must be
implemented by all other managers and workers €k@mple, the top
manager can eliminate a conflict between any sengfloyees in the
firm). In Figure 6b) there are two managers withsoperiors. So, the
condition (i) is violated. Obviously the “redundamrmanager can be
removed with no cost increase.

a) b) c) m
W W wWoowowWw, wWoow W W,
Figure 6. Hierarchies a)-c) Violate Conditions({i)y Respectively

The condition (iii) can be interpreted as followsssume the
managemy is immediately subordinated to the managemhenm does
not immediately control the subordinates of the aggmm,. The condi-
tion corresponds with “normal” activity of the firrwhen any manager
controls subordinated employees only by meansobhher immediate
subordinates, but not directly. In Figure 6c) top managem directly
controls the workersv, andws, although these workers are also con-
trolled by subordinated managemg and m,. Lemma 4 implies that
edges\,,m) and (vs,m) can be removed with no cost increase.

Proposition 1 implies thahere exists optimal hierarchy satis-
fying conditions (i)-(iii).?* It simplifies optimal hierarchy problem
because we can ignore hierarchies that violateitiondji), (ii) or (iii).

24 If H, is optimal hierarchy then Proposition 1 leads e hierarchyH, satisfying
conditions (i)-(iii). And cost oH5 is less than or equal to costléf. ThereforeH; is
optimal hierarchy.
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Moreover, Proposition 1 leads to the following fdtthere ex-
ist optimal r-hierarchy, tree or r-tree then there correspondingly
exist optimal r-hierarchy, tree or r-tree satisfying conditions (i)-(iii).

All optimal hierarchies obtained in this paper sigticonditions

()-(Gii).

1.8. Two-Tier Hierarchy Optimality Condition

Consider sufficient condition of two-tier hierarcbhptimality in
basic model.

Proposition 2 Let the cost functiop() be subadditive, i.e. for

any x yORP the inequality ¢(x+y)<¢@(x)+¢@(y) holds. Then
two-tier hierarchy with single manager is optimal

The subadditivity condition means that cagf{x+y) of one
manager controlling total flow+y does not exceed cog(x) + ¢(y) of

two managers controlling partsandy of the total flow. In this case the
optimal hierarchy consists of the single managentrodling all flows
between the workers. This manager’s cost is lesms th equal to total
cost of managers in any other hieraréhy.

Lemma 5. For one-dimensional flow§=1) concave cost func-
tion ¢() is subadditive

Lemma 5 and Proposition 2 imply thetst function concavity
leads to the optimality of two-tier hierarchy if all flows in the tech-
nological network have the same type (flow intgnsiector has only
one component). For multi-component flows thisnisoirrect. Below we
consider an example of concave cost function arténap hierarchy
with individual manager controlling each type aivil. This hierarchy is
optimal due to the managers’ specialization (drsiof managers’
labor, see Example 3 on page 31).

% |In Section 3.3 the subadditivity condition is geieed for arbitrary sectional
functions. Using this generalization we obtain oyatiity conditions for two contrary
types of hierarchy: two-tier hierarchy with singlanager and 2-hierarchy with maximal
number of managers.
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Two-tier hierarchies (so called “simple” hierarchieintzberg
(1979)) prevail in small firms. But when the firmogvs the total flow
increases. When the total flow is sufficiently largingle manager is
overloaded. Thus, he or she has to hire “assistatite hierarchy
becomes multi-tier hierarchy. For example, in Sectl.11 for power
cost function we find the optimal hierarchy conlfirgj symmetric
process line. In this case we prove that optimadarchy has many tiers
for sufficiently large firm (with large number ofoskers).

1.9. Some lllustrative Examples

Consider some examples to illustrate the basic hafdde op-
timal hierarchy.

Example 1. The expediency of multiple-subordinationfor
asymmetric process line.Consider the asymmetric process line with
four workers and the following flowsf(Wen,wWi)=3, f(w,w,)=1,
f(wa,W3)=5, f(wa,wW4)=1, f(Ws,Wen)=3. Consider manager’s cost function
#(x) =x%, wherex is the value of the manager’s flow. For this exlEmp

the optimal hierarchyd is shown in Figure 7. The managey has two
immediate superiors. So, there exists optimal higsawith multiple-
subordination.

3w 1 w, 5 w 1 w, 3
Figure 7. An Example of Optimal Hierarchy over
Asymmetric Process Line

Let’s calculate the flow and the cost of each manag
my: c({wah{ wah)= gIF" (m) + (F“(m)] =[5+ L+1)]° =343;
my: c({wikh{ wowah)= IR (m,) + (F(m,))] = [1+ (3+D)]° =125
me: c({wah,{ wo,wa})= B[F" (my) + (F(my))] = [1+ (1+3)]° =125
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my: ((wawo it { wowswit)= IR (m,) + (F(m,)] =[0+ 3+3)° =216.
Thus, the total cost of the hierarchy equals:

c(H)= c({wa},{ wah)+ c({wih{ wo,wsh)+ c({wa},{ wz,Wa})+
'|C({ W1,W2,W3},{ W2,W3,W4})=343+125+125+216=809.

Let’s prove that the cos{H)=809 can not be further diminished.
Let H" be any optimal hierarchy satisfying conditions(iii)- of Propo-
sition 1. In the hierarchifl” there exists at least one managewrith no
subordinated managers.

If m controls three or more workers then the managefflew is
greater than or equal to 10. So, this manager’s isogreater than or
equal to 1000 (manager’s cost is more tém)=809). Thereforem
should control exactly two workers in the optimedrarchy.

If m controls non-consecutive workers in the process (for in-
stancew; andws) then F,[* (m) =0 (m only participates in external flow

control but does not control internal flows). Instltase we can elimi-
nate m and subordinate the workers fros).(m) to the immediate

superiors of the managerwith no change of their costs. It contradicts
to the optimality of the hierarchii’. So, managem in the optimal
hierarchy may control only consecutive workershia process line.

If managerm controls workersy; andw, (or w; andw,) then
manager’'sm cost equals &729. Moreover, the top manager partici-
pates in control of the flows between the techniclighetwork and the
environment. So, his or her cost is greater thaequal to =216 and
the inequalityc(H)>729+216=945 holds. It contradicts to the optimali
ty of the hierarchyH". Thus, in the hierarchi” there is a single man-
agerm on the second tier (with no subordinated managergnmedi-
ately controls workerss, andw;. Therefore, the managercontrols the
maximal flowf(w,,ws)=5.

The example illustrates the following general piprez flows
with maximal intensity must be controlled by the maagers on low
tiers of the hierarchy. This principle is well known in real firms and
described in management science literature (see, irfistance,
Mintzberg (1979)). In the example we consider exgecase, when
maximal flow must be controlled by special manageon the second
tier.
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The managemis the only manager on the second tier. Therefore,
m is subordinated to all other managers in the hitgg® Then the
workersw, andw; are immediately subordinated only to the manager
because otherwise the condition (iii) of Propositib is violated. So,
after we hire the manager we have to construct the optimal hierarchy
H’ over three employeess, m, w,. BesidesH (see Figure 7) there exist
three such hierarchies satisfying conditions (i)-@f Proposition 1.
These hierarchies are shown in Figure 8.

S AR

W W W W Wwow ww W W W W
Figure 8. Non-Optimal Hierarchies over Asymmetriodess Line

It is easy to calculate costéH;)=811,c(H3)=811,c(H,)=855. All
hierarchies in Figure 8 are non-optimal becac@#€=809. Thus, the
hierarchyH=H"is the only optimal hierarcf}

One interesting questions discussed in this papttrei optimality
of trees. Tree is a typical hierarchy for many riahs. Example 1
shows that in some cases the minimal cost treensoptimal. Thusin
some cases there does not exist optimal hierarchynang the trees
Below we prove the optimality of the tree for tharsnetric process
line (see Section 1.10). Moreover, in Section 3€2consider sufficient
tree optimality condition. If the optimal tree esigthen we can find the
optimal hierarchy using the algorithms of searchinigimal cost tree
(Mishin and Voronin (2001, 2003)). These algorithere described
briefly in Section 3.2.

% Consider some managen'# m. Managerm' has an immediately subordinated
managerm' (otherwisem' is a manager on second tier, ire.=m). If m"# m then
m'"" has an immediately subordinated manager too anchweepeat reasoning. In such
a way we can construct the path fromto m'. So, the managen is subordinated to
any other managem'.

27 We consider only hierarchies satisfying the cdadi (i)-(iii) of Proposition 1.
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Example 2.Firm growth with control cost decrease Consider
the asymmetric process line with four workers, filogvs f(Wen,wi)=1,
f(we,Wo)=5, f(wa,Ws)=1, f(ws,W,)=5, f(ws,Wen)=1 and the manager’'s cost
function ¢(x) = x*, wherex is the value of the manager’s flow.

To start with we suppose that the technologicalwoek
N={w,,ws} consists only of workersv, andws. So, workersv; andw,
are not part of the firm (for example, the vendod &ustomer). Then
there exists the only hierarchy that satisfies @@t (i)-(iii) of Propo-
sition 1 (page 24). This hierarchy is shown in Fég8a).

Assume we can extend the firm by adding workersand w.
This extension can be interpreted as follows. Kangle, large whole-
sale company buys the production firm (the “worker) and the chain
of shops (the “workeriv,) to control all the stages from production to
the ultimate consumer. Large floffw;,W,)=5 may be caused by pur-
chasing problems, e.g. large quantity of defecgigeds. Similarly the
large flow f(ws,w4)=5 may be caused by some selling problems, e.g.
customers often return defective goods.

a) b)

5w 1 W5 T W5W1Wws W1

Figure 9. Firm Growth with Control Cost Decrease

Thus, after the extension the firm controls the Mattechnologi-
cal networkN={wy,w,,Ws,W,;}. SO, we can reconstruct the hierarchy as
shown in Figure 9b). We can hire two managers ensttond tier and
give them the responsibility to control the greafksvs f(wi,w,)=5 and
f(ws,w4)=5. Let’'s compare costs of hierarchies in Fig@a&psand 9b):

a) (5+1+5f=121,

b) (1+5+1§+(1+5+1f+(1+1+1f=49+49+9=107.

So, control cost can decrease with the technologicalvork growth

(including new workers, which were part of the eomiment). It could
be a reason to buy some unprofitable business bedawan reduce
cost of control of the main business. Such fadtsnobccur in practice.
For example, in ninetieth years of the XX centurgny Russian food
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plants were transformed in vertically integratednpanies by acquisi-
tion of farms in the corresponding region. Thegenfawere unprofita-
ble but provided regular supplies of cheap raw nelte(see, for exam-
ple, Khramova and Wehrheim (1997)).

Example 3. Multi-component flows Lemma 5 and Proposition
2 imply that two-tier hierarchy is optimal for cawe cost function and
one-dimensional flows. Below we show that this leamisinot valid for
multi-dimensional flows. Consider two-dimensionkdws (p=2). The
first flow component corresponds to the materialwB. The second
flow component corresponds to the informationalvBBo The technolog-
ical networkN={wy,w,,Ws,W,} is shown in Figure 10.

The workerw; obtains raw materials from the vendors and pro-
duces some components. After that the workepasses these compo-
nents to the workew,. The workerw, assemblies the components and
dispatches finished product to the customers. Hitensity may de-
pend on the number of different material types. t8e,workerw; gets
raw materials of the one type and produces compsridrthree types.
The workerw, assembles these components and dispatches thieefini
product of the one type. Thus, material flé&w,,w-) inside the techno-
logical network is greater than material flof{®/en,W1) and f(w,,Wen)
between the technological network and the enviraime

(01) w: (03) Wi+ (01)

1.0 w: (30 W (1,0

Figure 10. Example of Technological Network
with Two-Component Flows

The workemw, negotiates with customers, prepares and concludes
contracts, accounts for the payments, shipmerts, et

The workerw, passes the information about the required produc-
tion volume to the workews. Using this information the workens
generates raw materials orders, accounts for themraterial procure-
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ment, makes payments, etc. Also the wonkgrcan pass information
(required to calculate price and time of delivenv,.

Informational flow f(ws,wy) inside the technological network is
greater than informational flongwen,Ws) and f(ws,wen) between the
technological network and the environment. For gXanthe number of
internal documents can be significantly exceednilber of external
documents.

Assume  manager's cost function is given by

#(xy) =-/x+./y +./xy, where ky) is vector of total manager’s flow.

The function is concave. For example, a few effares required from
the manager and his or her flow increase decrehsemarginal cost

The iteme7y may correspond to the manager’'s specializations Th

item equals to zero if the manager controls flowsrme type (for in-
stance, the manager controls either productioncmuighents circula-
tion). In this case the manager specializes iniquaar area of control-
ling labor. So, the manager can control the floffectively and the
controlling cost is minimal. If the manager consréhe heterogeneous
flows then his or her efficiency decreases becafisgon-specialized
controlling labor. So, the cost of such managerdases. Thus, the
division of controlling labor decreases manageo'st.c

Consider the two-tier hierarchy; shown in Figure 11a). There is
a single manager ihl;. His or her total flow equals (5,5). So, hierar-

chy’s cost equals(H,) = ¢ (55) = 2./5+5.

a)

/M
woooWw,

Figure 11. a) Non-Optimal Two-Tier Hierarchy,
b) the Hierarchy with Specialized Managexsandm,

Consider the hierarchi, with tree managers. This hierarchy is
shown in Figure 11b). The managmrcontrols the production only. So,

28 Or manager's cost per unit flow.
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my controls workersv; andw,. Manager’sm, flow equals (5,0) and his
or her cost equalg (50) = 5. Similarly the managem, controls the

documents circulation (informational flows). $a, controls workersvs
and wy. Manager'sm, flow equals (0,5) and his or her cost equals

@05 = 5. Managersm, andm, are subordinated to the top manager

ms. The managemy participates in control of heterogenous flows
f(WenwWy), f(Wo,Weny), f(WenwWs), f(Ws,Wen) between the technological
network and the environment. Swg only participates in control of
relationships with customers and vendors becausiowals inside the
technological network are controlled by subordidateanagersn, and

m,. Thus, manager'sx cost equalsp (2,2) = 2/2+2. The hierarchy’s
cost equals(H,) =2/5+2/2 +2.
We can see that the inequalityH,) <c(H,) holds. Therefore,

if the flows in the technological network have seval components
then the cost of two-tier hierarchy can be reducedy hiring of
several specialized manager@ven with concave cost function).

Above examples show that using basic model we cathemati-
cally describe some effects in real firms. But thegsamples also show
that optimal hierarchy problem is very complicatkdthis chapter we
solve this problem only for particular case — syririo@rocess liné’

1.10. Optimal Hierarchy Controlling Symmetric Line

Consider optimal hierarchy problem for the symneepiiocess
line (see, for example, Figure 1 on page 13). Tikithe simplest
technological network. Some flows move along time.liFor example,
the first worker gets raw materials, executes sproduction operation
and passes semi-finished products to the seconéiewan the line.
Similarly the material flow moves further down teetlast worker in the
line. The last worker dispatches finished productscustomers. In
addition to the material flows the process line maclude

29 This result will be used below in Chapter 2. Ojiition methods for more compli-
cated cases are described in Chapter 3 for anpiseational cost function. Therefore,
we do not consider such methods in basic model.
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informational flows or flows of other types. In shiase each flow in the
process line consists of multiple componeptsl().

In contrast to arbitrary technological network ymsnetric pro-
cess line the following important conditions hold.

1. The flows processing is sequential. So, eactkevanteracts
only with the previous worker and the next workethe line.

2. The flow intensity is the same in all productjgmases. So, in-
teractions intensity does not change along the line

In practice conditions 1 and 2 may be violated fdddnt techno-
logical routes are possible. Defective goods magebhgrned to the first
worker in the line for revision. The flow intensitan increase and
decrease (for instance, it is very simple to cdritie raw material of
the same type in the first phase of the process lwt it is hard to
control many components in the middle phases ofpitegess line).
However, in many cases the technological networkiigilar to the
symmetric process line. In this section we find dpdmal hierarchy for
such a network. If technological network is morenptex then we can
use the other methods described in Chapter 3 tbtfie optimal hierar-
chy.

Now we consider the set of workels={wy,...,w;} with flows

f(w,,,w)=4, f(w_,w)=A foreach2<i<n, f(w,,w,)=A.

env?

Proposition 3. There exists the optimal tree H controlling sym-
metric process line and satisfying the followingditions

1. the cost of H is less than or equal to totalt@isany managers
controlling all flows inside the process lile

2. in the hierarchy H any manager controls the grad consecu-
tive workers in the process line

3. if cost function is convex then in the hierar¢hyhe numbers
of immediate subordinates of all managers are equaliffer by one

Proposition 3 implies thate can search the optimal hierarchy
among the trees(non-tree hierarchies can be excluded). Example 1
described above shows that this conclusion is met for asymmetric
process lines.

%0 In other words cost dfl is less than or equal to total costs of any marsagentrol-
ling all flows, even if these managers are not eréhichy (even if the top manager
controlling all workers does not exist).
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Let's explain condition 1 of Proposition 3. In ammjerarchy
Q(N) managers control all flows inside the technologicetwork.

However, some managers can control all these flaven if these
managers are divided into several hierarchies (b@tarchy can con-
trol only the part of the process line). For exaenph Figure 12 some
decentralized structure without single top manageshown. In this
structure the managens, andm, control different parts of the process
line, but m; and m, have no common superior. Such decentralized
structured' are used in real firms very seldom because of ddtke top
manager authorized to control any employees itfithe

Proposition 3 leads to the fact that cost of tike it is less than
or equal to total cost of any managers controliiglows inside sym-
metric process line. Thereforepst of optimal tree is less than or
equal to the cost of any decentralized structure whout single top
manager.

Definition 1 implies that any hierarchy has the topnager (has
centralized control). Optimal hierarchy minimizd® tcost among all
structures controlling all flows inside symmetriopess liné&.

nm,

My

— —

T W/ w7 w il ow 4w 4w 4w/

Figure 12. Example of Decentralized Structure witho
Single Top Manager

Let’'s explain condition 2 of Proposition 3. Thisnclition implies
that we can restrict our attention only by the dresewhich every man-
ager controls consecutive workers in the process For example, we

%1 1n this paper centralized control (centralizedistire) means that there exists the top
manager control of all the employees in the firmt 8oes not mean that this manager
has all controlling authorities.

%2 This result is used below in Chapter 2 to constamtimal hierarchy controlling
several process lines with functional links.
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can exclude hierarchies where some manager conthasgroup
{wg,Wo,wg}. Consider Figure 13. Let’s subordinate the workgto the
managemy instead of the workews. And vice versa let's subordinate
to the managem, the workerw; instead of the workew,. Then we
obtain the following results:

1. The costs of managers andm, increase.

2. The managem, does not control the flo(w,,ws), but only
participates in contrdl. Similarly the managem, does not control the
flow f(ws,ws), but only participates in control. Thus, the gugreman-
agermg has to control these flows. So, the vaf(ue,ws)+f(ws,ws) is
added to manageris; flow. Therefore, manageris; cost increases.

N

T

T WA w4 wid w 4w 4w 4w/

Figure 13. Example of Hierarchy Controlling
Symmetric Process Line

This example illustrates the result of Propositgrihe subordi-
nation of non-consecutive workers in the process increases the cost
of hierarchy. The interpretation of this propesyevidentEach man-
ager has to control onepart of the process linef we try to subordi-
nate different parts to one manager then hierascbgst increases and
the hierarchy becomes non-optimal.

In Figure 13 the managem controls the groupwi,w,,ws} with
three workers. There are floi(sven,W1) andf(ws,w,) between the group
{w,Wo,w3} and the other workers and the environment. Thfter hire
of the managem, he or she can be viewed as a worker from the point
of view of superior managers. As the managehas three subordinat-
ed workers, the length of the process line is “oedli by two elements

33 After described reconstruction this flow is exerfor the managem,.
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because three workers are “replaced” by one man@germanagem,
“reduces” the length of the process line againtelad of three workers
we can subordinate the managerand two workers to the manager.
In this case the hierarchy’s cost does not chaBgesimilar subordina-
tion causes the increase of the number of the rfoieial tiers. There-
fore, preferable hierarchy is shown in Figure 13.

If a managem in the treeH hask immediate subordinates then
the groupsy(m) is divided intok subgroups (controlled by the immedi-
ate subordinates). So, some part of the processidirdivided intok
“subparts”. Then the managercontrolsk—1 internal flows and partici-
pates in control of two external flows. Therefoilejn the tree any
manager controls the group of consecutive workerhe process line,
then the cost of the manager withmmediate subordinates is given by:

p((k +1)1). (6)

If we subordinate some number of worker$o the managem;,
then the process line is “reduced” by-1 (r, workers are “replaced”
by one manager). Similarly we can hire the manageand subordinate
to himr, workers or managers not subordinated yet, etalllyime hire
the top managem'h34 to control all the process line. He or she is the
single manager without superiors. So, the prodessi$ “reduced” to
one managem. Thus, the equalityn—(r, =) —(r,-)-...—(r, =) =1
holds. Using this equality we obtain the followiognstraint on number
of immediate subordinates of managers in any tree:

r+..+r,=n+q-1 1)

Formula (6) implies that managers’ costs equal

¢((r, +DA),...,¢((r, +DA) . To obtain optimal hierarchy we need to

solve only the following optimization problem:
p((r, +DA) +...+o((r, +DA) - min, (8)
with constraints (7)r1,...,rq >2,1<g<sn-1.
Thus, for symmetric process line optimal hierarchy problen
is reduced to constrained optimization problem with criterion

function (8) depending ong integer variables(such problem must be
solved for eacly). To solve the problem (8) we can use classicad di

3 qis total number of managers in the hierarchy.
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crete optimization methods or algorithms of mininoakt tree search
(Mishin and Voronin (2001, 2003)). These algorithoigain the tree
with minimal cost for arbitrary sectional functin

Proposition 3 implies that the problem (8) can blved analyti-
cally for convex cost function. In optimal tree thembers of immedi-
ate subordinates of all managers are equal ordiffene. So, numbers
ry,...,[q are equal or differ by offe Letr be minimal number of imme-
diate subordinates of a manager. Then any manageeither or r+1
immediate subordinates. Let>0 be the number of managers with
immediate subordinates. Theprgq—q; is the number of managers with
r+1 immediate subordinates. Left-hand member in esgioe (7) is
given by q,r +q,(r +1) =qr +q,. Therefore, the following equalities
hold:

qr+q, =n+q-1, r=|(n+q-1)/q].% 9)
If =1 containgy (the residue of division—1 by g equals to zero) then
0,=0 and all managers have the same numbertg—1)/q of immediate
subordinates. Otherwise formula (9) leads to tleetfaatr is floor, g, is
residue of divisiom-1 byq.

Thus, if cost function is convex ands fixed then formula (9) al-
lows to calculate the numbers...,rq, and formula (8) allows to calcu-
late the cost of the tree. Therefore, to solvenogtihierarchy problem
we have to find only the optimal number of managessg<n-1. It

can be done im-1 steps. In other word&r any convex function we
can obtain the optimal tree controlling symmetric pocess line by
comparing costs ofn—1 trees If g=1 then the tree is two-tier hierarchy
with maximal number of immediate subordinates. If g=n—1 then the
tree is 2-hierarchy with minimal number of immediatubordinates=2.

In the following section we consider important parar case
(power cost function). For this case optimgehindr can be found ana-

35 Algorithms are briefly described in Section 3.2.

3 |f two numbers differ by two or more then in theogf of Proposition 3 maximal
number decreases and minimal number increaseswiihicrease of cost of the tree.
¥ The formula [(n+q-1)/q] means floor of the numbefn+q-1)/q (maximal
integer is less than or equal e+ q-1)/q)-
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lytically (there exists optimal span of contre] which does not depend
onnandA).

1.11. Optimal Span of Control for Power Cost Function
and Symmetric Line

In economic science power cost functions are u$th.oOne of
well-known functions is quadratic cost function.I@ in this section
and in Chapter 2 we obtain optimal hierarchy fowgp cost function
that depend on manager’s total flow.

Consider symmetric process line (see, for exanfire 1 on
page 13) with one-dimensional flows. Flow intensitythe line equals
to some non-negative valué= 0 (for example, material flow intensi-
ty). Then we can consideranager’s power cost function

() =x", (10)

wherex is non-negative total manager’s fi§va = 0 is an exponent.

The exponentr will be interpreted asnvironment instability

Consider an example, when manager’s cost dependsstabil-
ity. Suppose the firm produces only one modifigatod a product in a
stable environmefit If market capacity is limited and unstable thiea t
firm has to produce several modifications of thedorct and require-
ments may change permanently. Suppose the requireber of modi-
fications equals to the environment instability Manager’s total flow
X may be interpreted as number of components, whosguction is
controlled by the manager. The manager must ddwise many com-
ponents should be used to produce each modificalioms, the manag-
er must decide thad < x, < x components should be used to produce

the first modification,0 < x, < x — to produce the second modification,
etc. There are many options of choosing numbers., x,. Order of

%8 For example, if manager controls and participatentrol ofk flows thenx = k/ .
% For example, in this case production of one modifon may be most profitable (if
production capacity is limited and market capaistynlimited).
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greatness of these number of options equdl$.** To analyze each
option manager has to calculate, for example, ds¢ af production of
each fromx components taking into account technological aairsts'”.
Therefore, labour intensity of optimal option cloimay groW as x°.
So, this value may correspond to the manager’s cost

Considered example illustrates that manager’'s castbe mod-
eled using function (10), where the exponentcorresponds to the
environment instability. In the example the expdnenequals to the
number of modifications demanded by unstable mathenhany practi-
cal cases the exponeat may be less than number of modifications
because the most of modifications may be similarespect to manag-
er’'s cost (for example, costs of manufacture amdiyction techniques
of some modifications may be equal). Moreover, rgana cost may
depend on over instability factors (fluctuationpgfrsonnel, raw materi-
als quality, fluctuation of vendors, etc.). Therefowe suppose that the
exponenta >1 equals to some generalized index of environmestain
bility and manager’s cost is determined by (O)Ve suppose values
a <1 correspond with stable environment.

40 For example, ifz =2 then there exists+1 option of choosing the number. After
choosingx; the numberx, can be calculated using the equakityxo=x. If a =3 then
number of options equalg® /2+ 3x/2+1. Therefore, the order of greatness is equal to
x“* again, etc.

4! For example, components for one modification nngsproduced only by some lots
but not one by one. If we produce some number ofpaments not divisible by size of
the lot then costs of manufacture increase (théitpdecreases). Therefore, “optimal”
choosing of numbers,,...,x, may depend on different technological factors.

42 At the beginning of some planning period (for epéen at the beginning of the
month) the manager must plan production of suchifications that have never been
produced before (because of market instability)eréfore, optimal plan (numbers
X,,...,X,) May be unknown. Simple methods of optimal plaarce may be unknown
too. So, the managers must analyze all possiblerapt

43 S0, we suppose that instability increase causdacrease and vice versa. Also the
exponentg may depend on many other factors (for examplesgued abilities of the
manager or such factors as environment “complexitydstility” described in manage-
ment science literature). But below in this paper éxponenty will be interpreted as
environment instability.
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Thus, in stable environment witr =1 manager’'s cost grows
linearly if the flow controlled by the manager iaases (each additional
flow unit causes the same cost).df>1 then environment instability
causes convexity of the cost function (each adutidlow unit causes
increasing cost).

If a <1 then cost function (10) is concave. Therefore pBst
tion 2 and Lemma 5 lead to the fact that two-tierdrchy with single
manager is optimal in a stable environment.

Let’s obtain optimal hierarchy controlling symmetgrocess line
in unstable environment.

Consider only trees satisfying the following corafis: any man-
ager controls one part (the group of consecutivekers) of the process
line andthe numbers of immediate subordinates of all marsagee
equal or differ by one. Proposition 3 implies thiagre exists optimal
hierarchy among such trees because power costidaristconvex for
a>1.

If some manager hasimmediate subordinates then for power
function formula (6) leads to the following expriessfor the manager’s
cost:

P((r+DA) =(r+DA". (11)

If =1 is divisible by humber of managearsn optimal tree, then
formula (9) leads to the number of immediate suinates
r =1+(n-1)/q of any manager. In this case total cost of all aggens

in the tree is given by:
(r+D)°A“(n=-H/(r -7, (12)
where (—1)/(—1) is the number of managers.

Expression (12) allows to suppose that optimalan@ry can be
found by choosing of optimal span of contm| which minimizes

(r+D“/(r -2 . The following proposition confirms this hypothesi

Proposition 4. For symmetric process line with one-dimensional
flows and power cost function with>1 the optimal span of control

equals to one of two integer numbers closest to tadue
(@+)/(a-1.
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If n-1 is divisible byr. -1 then r.-tree H is the optimal

hierarchy. In H each manager controls one part of the processdime
has exactlyr. immediate subordinates. Cost of the tréeefuals(12)

with r=r, . For arbitrary n formula(12) gives a lower bound of cost of
control of all flows inside symmetric process line.

In the proof of the proposition we prove that smdncontrol
r, =(@+1)/(a-1) minimizes the function {(r)=(r+1)°/(r-1).
However, the value, may be non-integer. Therefore, equals to floor
integer valuer_ :|_r0j (maximal integer is less than or equal to
(a+1)/(a-2)) or ceil integer valuer, =(r0—\ (minimal integer is
greater than or equal téa +1)/(a —-1)). Among floor and ceil we
choose the value that minimize the functiéfr) . Thus, Proposition 4
leads to the following@ptimal span of control
r_,ford(r) <<(r.),
{n,forf(n) <4(r).
Proposition 4 leads to optimal-tree with each manager having

exactlyr. immediate subordinates. Sbgre exists optimal hierarchy
with span of control r, if n—1 is divisible byr, —1. For example, for

r, =3 the following values oh are possiblen = 3579.... Forn=7 the

(13)

optimal tree is shown in Figure 13. if=(r,)’ then we can construct
optimal symmetric tree with+1 hierarchical tiers. In this tree any
manager on the second tier has exactlymmediately subordinated
workers. Each manager on the next tier has exactlimmediately
subordinated managers from the previous tier. Eor3 and n=9

optimal symmetric tree is shown in Figure 14.

If n—1 is not divisible byr.-1 then there does not exist a tree
with each manager having exactlyimmediate subordinates. Proposi-
tion 4 implies that for any the cost of an optimal hierarchy is greater
than or equal to the following value:

(n=DA(r. +D)“ /(r. -2). (14)

Moreover, Proposition 3 implies that the cost ofotimal hier-
archy is less than or equal to the cost of any mtegézed structure
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controlling the process line. Therefotetal cost of any managers
controlling all flows inside symmetric process linds greater than or
equal to (14)

wooowoow oW W W W w, W
Figure 14. Example of Symmetric Hierarchy over®mnecess Line

If n—1 is divisible byr, -1 then optimal hierarchy cost reaches its
lower bound (14). In this case optimat, -tree consists of
g=(n-1/(r. -1) managers and each of them controls exagtiyn-
mediate subordinates. ffis arbitrary then the number of managers in
optimal tree can be equal to one of two integer menm closest to
(n=2/(r. =1) . In this case in optimal tree the numbers of marslg
immediate subordinates are given by formula (9). &bitraryn the
cost of the optimal tree can not exceed its lowarra (14) more than
1+(r, -1)/(n-1) time$”. For sufficiently largen the exceeding of the
lower bound (14) is insignificantBelow we suppose thatnh -1 is
divisible by r.—1, so (14) is the optimal hierarchy cost

Formula (13) defines the dependence between thmalppan of
control and the environment instability. This dependence is shown in
Figure 15. Besidegs. (a) the curve (a +1)/(a -1 is shown in the
figure too.

Figure 15 shows thahe optimal span of control decreases
when environment instability increases This principle is well-known

in practice and described in management scieneealitre (see, for
instance, Mintzberg (1979)).

4 We can calculate upper bound of the cost of the by choosing the nearegtn
such thatn, -1 is divisible byr, —1. The inequalityn;—n< r. —1 holds. This inequality

leads to the estimation mentioned.
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If environment stabilizesd tends to one) then optimal span of
control tends tot o (one manager controls more and more employees).
Particularly, two-tier hierarchy becomes optimal §oeatem (for firms
with greater size). In the limitg{=1) it turns into result for stable
environment: two-tier hierarchy with single manageoptimal for any
size of the firm. Howevegven for small instability (o >1) multi-tier
hierarchy is optimal for sufficiently large size ofthe firm.

Figure 15 shows that values> 2.5 correspond to thextremely
unstable environmentn this case the optimal span of control equals 2
Thus, in optimal tree each manager has only two ddiaie subordi-
nates. Total number of managers equedsl. Therefore, optimal tree
contains maximal number of managers and each aof gwtrols only
one internal flow. So, if the environment is extedynunstable then we
have to hire individual manager to control eacthefflows.
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Figure 15. Optimal Span of Contral(a) Depending
upon Environment Instability

Usually in real firms each manager has from thoeeh immedi-
ate subordinates (see Mintzberg (1979)). In sonseséhe number of
immediate subordinates can increase up to hund8ajsin real firms
the hierarchy hits between mentioned above extreases (two-tier
hierarchy and 2-tree). Thereforimstability rangel<a < 25 corre-
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sponds with most of hierarchies in real firms. Igufe 15 the optimal
span of control increases by discrete steps ifrenmient instabilitya
decreases from 2.5 to 1.

If a firm grows (number of workens increases) then the number
of managers and optimal hierarchy cost (14) ine@dasearly. There-
fore, using the model with power cost function @mgle process line
we can not determine limits of the firm growth. 8slin Chapter 2 we
modify the basic model and obtain optimal hierarfdnyseveral process
lines with functional links. This model implies thae must replace the
tree (restructure the firm) by more complicatedrdniehy if the firm
exceeds the limits of growth.

Consider some factors changing intensityof the flows con-
trolled by managers. In Section 1.5 we note thadiaf managing may
consist of operational planning and monitoring loé flows. For such
manager’s labor Mintzberg (1979) uses the tdimact supervision and
authority. In other words, this is manager’s labor, whiclhhésessary to
achieve operational goals of the firm.

Usually managers do not need control (directly suipe) all
flows in the technological network. Some part oé fitows does not
require the control because workers can controlthiemselves.
Mintzberg (1979) argues that in real fistandardizatiorincreases the
part of the flow, which does not require manageaositrol. Thus, stand-
ardization decreases the cost of direct supervisiod authority.
Mintzberg considers somgpes of standardization

1. Standardization of skills and knowledge providesrkers’
self-dependent coordination because the workers bame knowledge
and habits of work in standard situations.

2. Standardization of output defines requiremeotsefich work-
er's product. Due to the standardization of outpuorkers can solve
routine problems with low-quality products with participation of the
managers.

3. Standardization of work processes defines the gderiptions.
These descriptions regulate worker’s activity amgrdase manager’s
participation in the work processes.

Therefore, all types of standardization decreasepidwrt of the
flow, which requires managers’ control.
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In basic model standardization can be taken intsiceration us-
ing appropriate cost function. For example, legfime standardization
index 0<s<l. In this case we can consider cost function

?(X) = (x(L-9))” instead of the functio@(x) = x”. If standardization

index equals to zero then all flows must be colawblif standardization
is complete €=1) then direct supervision and authority becomeegn
essary. But it is more convenient to suppose ttatdsirdization does
not change the cost function but changes the iityeatthe flows (in
the example all flows are multiplied by 9-It does not change optimal
hierarchy problem from mathematical point of vidwf the results can
be interpreted easily.

Thus, we suppose thdr symmetric process line flow intensi-
ty A is maximal with no standardization and equals to ero with
the complete standardization So, A is the intensity of flows, which
require managers’ control (direct supervision auith@rity).

In some real firms increase of standardization du@schange
the span of control but decreases managers’ chBigzperg (1979)).
Basic model with power cost function and symmepriacess line leads
to similar results. Increase of standardizationrel#sesd and manag-
ers’ costs (see expression (14)). But increastaoflardization does not
change the optimal span of contrel(see expression (13)). So, basic
model explains these practical effects.

On the whole basic model defines terminology anola®s op-
timal hierarchy problem considered in this papdre Tesults obtained
for symmetric process line are used in Chapter &tee optimal hier-
archy problem for several process lines with fuorai links (for this
problem we prove optimality of divisional, functiginor matrix hierar-
chy). Basic model and Chapter 2 show that usingeseramples of
sectional cost functiofis depending on flows we can model many
practical effects observed in a real firms. Thtigs important to ana-
lyze the whole class of sectional functions. In @bka 3 we explore
general model (arbitrary sectional cost functions).

4 Let's remind that sectional cost function depemady on groups controlled by
immediate subordinates of a manager (see the fatefaition on page 79).
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2. Functional, Divisional and Matrix Hierarchy Optimality

Advantages and disadvantages of divisional, funeli@and ma-
trix hierarchies depend first of all on nature afrikers’ interactions
(see management science literature, for instandefzberg (1979)).
For example, these advantages and disadvantagedapagd on flows
of technological network. Therefore, in Chapter & @onsider techno-
logical network composed of several process lingls functional links
between workers in different lines. For some costfions such type of
the network allows to prove optimality of typicakharchy (divisional,
functional or matrix) for any size of the firm. Maver, using these
cost functions and network we can model many ecglidependences
well known in practice. For example, we model dejgstes between
type of optimal hierarchy and environment instafpilstandardization,
intensity of product and functional flows, horizahind vertical inte-
gration, etc.

Sections 2.1 and 2.2 describe flows of technoldgiework
composed of process lines with functional links. Section 2.3 all
managers are divided into several types. Divisidaepartment and
typical hierarchies (divisional, functional and nigt are defined for-
mally. Sections 2.4-2.6 describe type and propexieconsidered cost
function. For this function in Section 2.7 we progptimality of a
typical hierarchy. Section 2.8 compares differgpidal hierarchies and
analyses dependences between type of optimal tigrand different
parameters of the model.

2.1. Process Lines with Functional Links.
Product and Functional Flows

In Section 1.11 for power cost function we obtatitmal hierar-
chy controlling symmetric process line. Below wee ukis result to
obtain optimal hierarchy controlling more complechnological net-
work with several process lines and functional dinkVe describe
mathematical model, which allows to define and carapdivisional,
functional and matrix hierarchy controlling thichmological network
(see Figure 16).
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Suppose the technological network is composddoaficess lines
(1= 2). Each process line produces some product (origee\services
for some region, customers, etc.). The productguires some techno-
logical operations. Supposeworkers carry out these operations. Each
process line contairmsworkers (1= 2).

So, in the technological network the set of workisrgiven by
N={wi;}, where 1<i<l|, 1< j<n. The indexi is the number of the

process line, which contains the worker. The indéxthe number of

the worker in the line (or the number of the ogeraperformed by the

worker). Thus, the séd consists ohl workers. Each worker is defined
by two inferior indexes, j.

Figure 16. Process Lines with Functional Links
(Network with Product and Functional Flows)

Consider the process line with numbeMWorker w;; may, for
example, purchase raw materialg; passes raw materials to the next
worker wi, in the line. Workerw;, executes some technological
operation and passes its results to the next watkgretc. The last
worker w;, in the process line may, for example, dispatchsiied
product to the customers. So, we suppose that drengroduct flows
between the workew;; and nearest-neighbor workesg.; andw;j. 1 in
the process line. These flows allow to producesfied product of the
process line. There is product flow between th&t fivorker in the line
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and the environment (for example, purchasing rawteri@s) in
addition to the flow between the first and the setworkers. Similarly
there is product flow between the last worker i fine and the
environment (for example, dispatching finished pretdl Suppose
intensities of all product flows are the same. Thu® consider
symmetric process lines with the same flow intgnisitdifferent lines.

Suppose workers with the same number perform girtélghno-
logical operations in different process lines. @orkers with the same
number have similar professional skills, may usmmon equipment,
etc. For example, in all process lines first wosker, W1, ...,Wi .11, Wi 1
are responsible for purchasing raw materials. Tbhegethese workers
must have skills that allow to interact with venglotompare different
business offers, choose the best vendors, etc., Wrkers with the
same number interact with each other and therf@ms (information-
al, material, etc.) between these workers. For @k@na workemw, ; is
able to gather from another first workers inforroatiabout price
change, about new type of raw materials on the etadbout the best
vendors, etc. And we suppose that a worker mayegathch infor-
mation only from workers in “nearest-neighbor” kne~or example,
process lines may be located as it is shown inrBidis. In this case
“nearest-neighbor” lines are lines with previousl arext numbers. So,
we suppose that there dwenctional flowsbetween the workew;; and
workers wi;; and wi.1; in nearest-neighbor process lines. There is
functional flow between the worker in the firstdiand the environment
(for example, professional contacts with expertsother firms) in
addition to the flow with the worker in the secdirk. Similarly there
is functional flow between the worker in the laisiel (with numben)
and the environment. Suppose intensities of akttional flows are the
same. Thus, we consider symmetrfarictional line$ with the same
flow intensity in different lines. Functional linese numbered from 1
to n (the first line may correspond with purchasing thst line may
correspond with production distribution).

So, the technological network in Figure 16 considftprocess
lines with functional linksLines with product and functional flows are
crossed. Each worker belongs to one process lideoas functional
line. For example, a process line may contain riatdélows and a
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functional line may contain informational flows sestial for providing
material flows and producing finished products.

Let N={wi1,...,w;n} be the process line with the numbetnion
of process lines Ny,...,N, is the whole set of workers:
N=N,O...0N,.

LetN "={w1,j,...,w|,j} be the functional line with the numberun-
ion of functional linesN!,...N" is the whole set of workers:
N=N'O..ON".

In the following section we define intensity of e in the tech-
nological network.

2.2. Product and Functional Flows Intensity

Just as in Chapter 1 (basic model) in this chapgesuppose that
managers’ cost depends on flows of the technolbgiedwork. In
Section 1.11 we note that manager’s labor may spard with “direct
supervision” of the flows. Standardization decreatiee intensity of
flows, which require managers’ control (direct suysion).

Let A >0 be the intensity of such part of the product fknat
must be controlled by managers

Let >0 be the intensity of such part of the functionahflthat
must be controlled by managers

Supposestandardization decreases both part of product flow
and part of functional flow that must be controlled Without stand-
ardization all flows must be controlled. In thisseadl and 8 are maxi-
mal values, that correspond with all flows in teettnological network.
If standardization is close to complete, then istides A and € are
close to zero.

Usually intensitiesA and @ are related. If product flow (produc-
tion volume) increases, then functional flow (fuantl interaction)
may increase too. It corresponds with practice,mpr@duction volume
increase causes increase of cost of managers imgtriooth product
and functional flows. We suppose nothing about tiea between
intensities of product and functional flows. Ingteave explore the
model for anyA and 6.

Generally both product and functional flows may siehof sev-
eral components (for example, different types ofamal flows). Thus,
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A and § may be some vectors. However, below in Chaptee Zup-
pose thatany flow has single-componentSo, A and 6 are some
positive real numbers.

Therefore, the flow functionf () is given by the following ex-

pressions. For each< i <| andl< j <n the workemw; has four links:
f(vvi,j—l'vvi,j) = f(Wi,j ’\Ni,j+1) =1,

W) =6, (15)

If in expressions (15) indej-1 equals to zero (or indgx1 is greater

thann), then we mean that the “workew: ;=w; ,.;=W>*" is part of the

environment linked with workers by product flows** will be called
product environment Similarly we mean that the “worker”
WO,,-:VVM,J-:Wf“m is part of the environment linked with workers by

env

Fwiy,w ;) = fw

functional flows.w™™ will be calledfunctional environmentAll flows

env

are defined by expressions (15). There are no diwes in the techno-
logical network.

Expressions (15) imply that each process line éostaroduct
flows with intensity A. Each functional line contains functional flows
with intensity 8. For the first process line and the first funcéibhne
intensities are shown in Figure 17. For other limesnsities are similar.

(o
[
%

D
p——e o o

6 e o o
A A A A A A A A

Figure 17. Intensities of Product and Functionald in the First
Process Line and the First Functional Line
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The technological network (see Figure 16) and spdtiw in-
tensities (see Figure 17) strongly restrict techggl Particularly, all
process lines must contain the same number of wenk&Vorkers with
the same number must perform similar operationshave functional
links. Real firm may differ from this model. Forample, one worker
may purchase raw materials for all process lineagths of process
lines may differ; some lines may contain workersfgrening unique
operations, not essential in other lines, etc. Hia@nsity may change
for different lines or different parts of a lineowever, in some cases
technological network of real firm may be approxieta modeled using
process lines with functional links. Such type lné hetwork allows to
explain optimal hierarchy problem analytically. tichnological net-
work is much more complex then to obtain optimaraichy we can
use methods described in Chapter 3 (general model).

Considered technological network (see Figures 161amn allows
to define divisional, functional and matrix hieraies formally (see the
following section).

2.3. Divisions and Departments. Typical Hierarchies

Each manager of a hierarchy controls some groupertechno-
logical network. Using this fact we define sevdygles of managers.

Divisional manageis a manager controlling only workers in one
process line. If a divisional managarcontrols all workers in the pro-
cess line then manager will be calleddivision head Managem and
all subordinated employees will be calldigision

Suppose the number of the division equals to nurabére pro-
cess line controlled by this division. If in theeharchy there is no
manager controlling all process line then therends division with
corresponding number (even if different divisionanagers control all
process line by parts).

If mis divisional manager, thes(m) O N, , wherel<i<| is the
number of the process lingjm) is the group of workers controlled by
m. If some managemm, is subordinated to the managsr, then
s(m) O s(m) (see Lemma 1). So, a divisional manager may cbntro

only divisional managers or workers.
Similarly we can define managers controlling fuantl line.
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Functional manageis a manager controlling only workers in one
functional line. If a functional managen controls all workers in the
functional line, then managen will be calledhead of department
Managem and all subordinated employees will be catlegartment

Suppose the number of the department equals to emuoilthe
functional line controlled by this department.rifthe hierarchy there is
no manager controlling all functional line, theretd is no department
with corresponding number (even if different func@l managers
control all functional line by parts). A functionalanager may control
only functional managers or workers.

Divisional and functional managers will be calledddle-tier
managersMoreover, let's define two types sfrategic managers

1. Manager controls interactions between divisioghgach im-
mediately subordinated manager controls one prdoeséthis manager
is the division head) or several process lines.

2. Manager controls interactions between departméhtsach
immediately subordinated manager controls one fonat line (this
manager is the head of the department) or sevanatibnal lines.

Consider process lines with functional links (tkegworkN).

Divisional hierarchyis a hierarchy fromQ(N) consisting ofl

divisions and strategic managers controlling irdBoas between
divisions.

Functional hierarchyis a hierarchy fromQ(N) consisting ofn
departments and strategic managers controllingadotens between
departments.

Matrix hierarchyis a hierarchy fromQ(N) consisting ofl divi-

sions,n departments and the top manager immediately déngall
division heads and heads of all departments.

Consider an example with=3 andn =9. Thus, there are three
process lines with nine workers in each line (wiitre functional lines).

An example of divisional 3-hierarchy is shown igliie 18. The
hierarchy contains three divisions. Each divisiamtools one process
line (controls all flows for one finished produdBach division consists
of the division head, three immediately subordidateanagers and
workers of the process line. Divisional hierarchyHigure 18 contains
single strategic manager. He or she controls iotienas between three
divisions.
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An example of functional 3-hierarchy is shown igutie 19. The
hierarchy contains nine departments. Each depattoentrols one
functional line (controls all flows for one kind @fctivity, i.e. flows
between workers with the same number). Each depattoonsists of
the head of the department and workers of the imak line. Function-
al hierarchy in Figure 19 contains four strategianagers. The first
strategic manager controls interactions betweeartdments 1, 2, 3, the
second one — between departments 4, 5, 6, the ¢imed— between
departments 7, 8, 9. These three managers are iatelgdsubordinated
to the top manager. This manager controls otheractions between
departments.

A—_______’

Figure 19. An Example of Functional 3-Hierarchy

An example of matrix hierarchy is shown in Figufe Zhe hier-
archy contains three divisions. Each division colstone process line
(similarly with the divisional hierarchy in Figurg8). Moreover, the
matrix hierarchy contains nine departments. Eaghadment controls
one functional line (similarly with the functionaierarchy in Figure
19). Dotted lines correspond with functional linked subordination
edges in departments. The definition implies that atrix hierarchy
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contains single top manager immediately controlfigdivision heads
and heads of all departments. To simplify Figurev20do not draw the

top manager.
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Figure 20. An Example of Matrix Hierarchy
(the top manager is not drawn)

Divisional, functional and matrix hierarchies wile calledtypi-
cal hierarchiesbecause such hierarchies are often used in mea$ fi
(Mintzberg (1979)). To compare different hierarghieis necessary to
define managers’ costs. In Sections 2.4, 2.5 aBdw& define cost
function for different types of managers and disdangerpretations.

2.4. Fixed and Variable Cost
In Section 1.11 for power cost function we findiogl hierarchy
controlling single process life Below we use these results. To define

46| e. the line, which is not linked with other s technological network.
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fixed and variable cost let’'s consider a single syatric line with flow
intensity A.

Let k be the number of manager’s flows. All flows hake same
intensity A. So, the power cost function defines manager’'s icothe
following way ¢(kA) =(k1)?, where a is exponent (environment
instability, see expression (10) on page 39).

Thus, in Section 1.11 we consider manager’s cqstmiding only
on total intensity of the controlled flows. If tlrensity equals to zero
then manager’s cost equals to zero too. Howevepyractice there is
some non-zero fixed cost for each controlling lieden if the flow
intensity equals to zero for this link. Therefoire,contrast to Section
1.11 below in this chapter we consider more rdalist function with
fixed and variable cost for each link controlled thyyg manager. Let's
define formally variable and fixed cost.

So, consider a manager who controls and participates in con-
trol of k flows with the same intensity . Thenvariable cost(kA)? of

the manager m depends on total intensity of theagers flows
Supposeén stable environment there exists some fixed obiimg
cost ¢, >0 for each link For example, the manager can periodically

make reports about actual flow for the link. Suolstadoes not depend
on flow intensity because such manager’'s effortsndo depend on
intensity value in reports. Suppose the constaig the same both for
product and for functional flows. So, fixed costpdeds on neither
intensity, nor type of flow.

For the managen there is fixed cost for each bflows. Thus, in
stable environment fixed cost of the manager edk@lsThis cost may
depend on environment instability. For exampletalbgity may change
forms of reports. The manager must adapt to nemdoThe more
instability, the more both variable and fixed cobBherefore, we sup-
pose thafixed cost of the manager m equés;, ) .

So, in this chapter we consider the followinganager’'s cost
function
(kA +(kg)* =k*(A" +cq), (16)
wherek is the number of manager’s flowd, is the intensity of each
flow, cy is fixed cost for each flow in stable environmept>1 is
environment instability.
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In the basic model (Chapter 1) we consider managmxst func-
tion ¢(F™(m) + F*(m)). For symmetric line with the intensity this
function is given byg((k, +k,)A), wherek, andk, are numbers of
internal and external flows of the managerFor power functiong(l)
and symmetric line the cost of the manager equdld’, where
k = ki+k; is the number of manager’s flows. In expressid) {he cost
of the manager equals” (A” +c;) . So, we only change the multiplier

A? to the multiplier (A +c¢g) for all managers of any hierarchy. Also

for the cost of any hierarchy the multiplidf are changed to the multi-
plier (A° +cy). Thereforefor the function (16) with variable and

fixed cost the optimal hierarchy controlling singlesymmetric line is
the same as for the power cost function (10Yhus, all propositions
introduced in Section 1.11 hold for cost functid6); Let's briefly
describe several facts that are used below.

Optimal span of contral- is given by expression (13) (see page
42). In expression (14) the multiplie¥” is changed to the multiplier
(A” +c7) . So,total cost of any managers controlling all flows ieide
symmetric line is greater than or equal to the fobbwing value

(=D +c)(r. +D“ /(r. -1). (a7)

If n—1 containg.—1, then for single symmetric lime-tree with
each manager immediately controllingsubordinates is optimal hierar-
chy. The cost of this tree is given by expresgiof). Below we consid-
er process and functional lines. And we supposehtbidon —1 andl -1
containsr- —1. Thus,both for single process line and for single func-
tional line r--tree is optimal hierarchy.

2.5. Middle-Tier and Strategic Managers’ Flows and Cost

In Section 2.3 we define two types of middle-tiemmagers and
two types of strategic managers. In this sectiordefine flow and cost
for each type of manager.

Cost of Divisional Manager and Optimal Division
Any divisional manager controls only workers in opeocess
line. Let m be some divisional manager controlling workersttie
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process line with number(s(m) O N, ). There are only product flows

inside the grou(m) controlled by the manager. Sodivisional man-
ager controls only internal product flowghere are product flows
between workers in the growgm) and other workers itN; or product

environmentw”* . Thus,a divisional manager participates in control

env

of external product flows of the groufimg. Moreover, there are func-
tional flows between workers in the gros(m) and other process lines

or functional environmenw,"™. However, the divisional manager does

env

not participate in control of functional interagt®because he or she is
responsible only for the product of the process.|Bo, we suppose that
a divisional manager does not participate in cohtvbfunctional flows

For example, a division is shown in Figure 21slpart of the di-
visional hierarchy (see Figure 18). Managerimmediately controls
three managersmn;, m, and mg. m controls two internal product flows
and participates in control of two external prodilatvs (thick lines in
Figure 21). Howeverm does not participate in control of external
functional flows (dotted lines in Figure 21).

Figure 21. An Example of Division

So, the cost of a divisional manager equals toctst of corre-
sponding manager controlling single process lind Wow intensity A .
Therefore, expression (16) implies thidwe cost of the divisional
manager is given by

(kA)? +(ke,)* =k (A" +¢j), (18)
wherek is the number of manager’s product flows.

Total cost of the whole division equals to the awfsthe corre-
sponding hierarchy controlling single process lifiderefore,rs-tree
with each manager immediately controllingsubordinates is the divi-
sion with minimal cost. This tree will be callegtimal division The
division controlsn workers and product flows with intensity (see
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Figures 16 and 17). So, expression (17) implies tiwe cost of the
optimal division is given by

(n=D(A" +c)(r. +D)“/(r. -1). (19)
This is the minimal possible total cost of any ngera controlling all
product flows of the process line with the length

Cost of Functional Manager and Optimal Department

Let's define cost of a functional manager.

In the firm a functional manager is responsibledpe type of ac-
tivity. This manager controls workers in one fuootl line. These
workers perform similar operations. Letbe some functional manager
controlling workers in the functional line with niserj (s(m) O N').

There are only functional flows inside the grafm) controlled by the
manager. Soa functional manager controls only internal funcii
flows There are functional flows between workers in gineup s(m)

and other workers ifN’ or functional environmentw*™. Thus, a

env

functional manager participates in control of extalr functional flows
of the group 6M). Moreover, there are product flows between warker
in the groups(m) and other functional lines or product environment

w  However, the functional manager does not pasdieipn control

env

of product interactions because he or she is rediplenonly for control
of interactions between workers performing simibgrerations inside
the functional line. So, we suppose thdunctional manager does not
participate in control of product flows he cost of the functional man-
ager may be related with production volume indlyedt the intensity
of product flows changes, then the intensity ofctional flows may
change too. But for fixedd and 8 we suppose that the cost of the
functional manager does not depend on product flotessity.

For example, a department is shown in Figure 28. paart of the
functional hierarchy (see Figure 19). Managemmmediately controls
three workersw; j, w,j andws ;. m controls two internal functional flows
and participates in control of two external funoabflows (solid lines
in Figure 22). Howevenn does not participate in control of external
product flows (dotted lines in Figure 22).

So, the cost of a functional manager equals tactst of corre-
sponding manager controlling single functional lmgh flow intensity
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6. Therefore, expression (16) implies tliae cost of the functional
manager is given by

(kO)" +(ke,)* =k (6” +c7), (20)
wherek is the number of manager’s functional flows.

Figure 22. An Example of Department

Total cost of the whole department equals to tret obthe cor-
responding hierarchy controlling single functionate. Therefore,
r.-tree with each manager immediately controlliingubordinates is the
department with minimal cost. This tree will beledloptimal depart-
ment The department controlls workers and functional flows with
intensityd (see Figures 16 and 17). So, expression (17) @npliathe
cost of the optimal department is given by

(I =-D@" +cg)(r. +D7 I(r. -1). (21)
This is the minimal possible total cost of any ngara controlling all
functional flows of the functional line with thenigthl.

Cost of Strategic Manager Controlling

Interactions between Divisions

Let m be some strategic manager controlling interactimig/een
divisions. Any his or her immediately subordinatednager controls
one division or several divisions. For example,Figure 18 the top
manager immediately control three managers. Eactheh controls
one division. Managem controls several divisions. In Figure 18 first,
second and third division heads are immediatelyosiibated tom.
Generally each of immediately subordinated manageay control
several divisions.

Let's define the flows of the manager His or her subordinates
control all product flows inside subordinated pisdines. Therefore,
m controls only functional flows inside subordirchggroup $m). So,m
controls only functional interactions between pssénes (for exam-
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ple, in Figure 18 the top managarcontrols eighteen internal function-
al flows). Alsomanager m participates in control of external fuocal
flows of the groug(m) (in Figure 18 there are eighteen functional flows
between divisions and the functional environmekijreover, there are
product flows between each division and the prodertironment.
Immediate subordinates of the strategic managéhair subordinated
managers participate in these flows control. Supploese managers are
entirely responsible for output of products. So,suppose that manag-
er m does not participate in control of product flawshus, subordi-
nates “hide” the problems of output of each spegifioduct from the
strategic manager.

Intensity of total functional flow between two nest-neighbor
divisions equalsd. Therefore, expression (16) implies that the ofst
the strategic manager controlling interactions leetwdivisions is given
by:

(knd)? +(kg,)* =k*((n6)” +c3), (22)
wherek is the number of such functional interactions lestwdivisions
that the manager controls these interactions dicfzates in control.

Suppose there atedivisions in the hierarchy and strategic man-
agers control all functional interactions betwebase divisions. If a
strategic manager immediately controls a divisianahager, then this
manager is division head. Therefore, the strateggmagers actually
control “line” with | division heads and functional flows with intensity
nd. For example, in Figure 18 the top manager cosittimhe” with 3
division heads and functional flows with intens® We can substitute
corresponding values in expression (17) and oltenower bound of
total cost of strategic managers controlling fupail interactions
between | divisions

(I =-D((nO)" +c)(r. +D“ /(r. -1 . (23)
Moreover we can construct-tree with cost (23), that controls division
heads instead of workers and consists of strategicagers (each of
them hag. immediate subordinates). Sestree is the hierarchy, that
consists of strategic managers and with minimal coscontrols
functional interactions betweenl divisions.
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Cost of Strategic Manager Controlling

Interactions between Departments

Similarly we can define cost of strategic managartmlling in-
teractions between departments. hebe such strategic manager. Any
his or her immediately subordinated manager cantoole department
or several departments. For example, in Figure HE9tbp manager
immediately controls three managers. Each of themtrols three
departments.

Let's define the flows of the manager His or her subordinates
control all functional flows inside subordinatedétional lines. There-
fore, m controls only product flows inside subordinatedup {m). So,

m controls only product interactions between funwdiolines (for
example, in Figure 19 the top managecontrols six internal product
flows). Also manager m participates in control of external produ
flows of the groups(m) (in Figure 19 there are six product flows be-
tween departments and the product environment) ebar, there are
functional flows between each department and tinetfonal environ-
ment. Immediate subordinates of the strategic mamagtheir subordi-
nated managers participate in these flows conBoppose these man-
agers are entirely responsible for functional iattions. So, we sup-
pose that managen does not participate in control of functional flaws
Thus, subordinates “hide” the problems of eachifipeaperation from
the strategic manager. For example, the strategicager can define
production plans for subordinated departments aoditor only the
fact of plans realization but not the realizationgess.

Intensity of total product flow between two neanesighbor de-
partments equalb1. Therefore, expression (16) implies that the obst
the strategic manager controlling interactions leetw departments is
given by:

(KIA)* + (k) =k ((1A)" +¢7), (24)
wherek is the number of such product interactions betwsrartments
that the manager controls these interactions dicgzates in control.

Suppose there anme departments in the hierarchy and strategic
managers control all product interactions betwéese departments. If
a strategic manager immediately controls a funeliomanager then this
manager is the head of the department. Therefoeestrategic manag-
ers actually control “line” withn heads of departments and product
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flows with intensitylA. For example, in Figure 19 strategic managers
control “line” with 9 heads of departments and praidflows with
intensity 34 . We can substitute corresponding values in exjme$$7)
and obtainthe lower bound of total cost of strategic managarstrol-
ling product interactions between n departments

(n=DND)" +cg)(r. +D“ /(r. -1 . (25)
Moreover we can construcktree with cost (25), that controls heads of
departments instead of workers and consists diegiiamanagers (each
of them hag. immediate subordinates). Sostree is the hierarchy,
that consists of strategic managers and with mininacost controls
product interactions betweenn departments

2.6. Cost Function

Expressions (18) and (20) define costs of midadiedthanagers.
Expressions (22) and (24) define costs of strategimagers. Using
these expressions we can define the cost functivarfy manager in a
hierarchy.

For arbitrary hierarchyH O Q(N) controlling process lines with
functional links the cost of the manageris given by the following
function:

oSy (V)84 (W) =
k[ (A" +c; ) for divisionalmanager;
k; (6" +c; ) for functionalmanager;
ks (1A)7 +c; ) for strategiananager
controllinginteractimsbetweerdepartmery;  (26)
Ky (n@)” +c; )for strategiananager
controllinginteractimsbetweerdivisions;
0,for othermanagersvith F" (m) = O;
+ oo, for othermanagersvith F." (m) > 0,
where vy,...,Vx are immediate subordinates of managerk; is the
number of flows of the divisional managks s the number of flows of
the functional manageks is the number of such product interactions
between departments that the manager controls thnésections or
participates in controlk, is the number of such functional interactions
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between divisions that the manager controls theeeactions or partic-
ipates in control.

Expression (26) implies that the cost of the mandgeends on-
ly on groupssy(vi),...,su(vi) controlled by immediate subordinates of
the manager. Indeed, grou (m) =s, (v,)...0s,(v,) controlled by

m depends only on these groupssdfm) is embedded into a process or
a functional line them is divisional or functional manager correspond-
ingly. If each of groupssy(vi),...,.s4(Vk) consists of process lines or
functional lines themm is strategic manager with corresponding type.
Also valuesk;, ky, ks, ks and manager’s internal flowr," (m) (see
Lemma 3 on page 20) depend only on grosi§®),...,s4«(v) and the
groupss,(m).

Thus, cost function (26) is given in the form ottienal func-
tion*” c(sy(Va),...,s4(Vi)) just as the cost of the manager in the basic
model (see expression (4) on page 21). The basiehamd the model
described in this chapter illustrates that sectidoactions can be
useful for modeling optimal hierarchies in firmshéel class of all sec-
tional functions is explored in Chapter 3. Belowthis chapter we solve
optimal hierarchy problem for function (26).

For cost function (26) we can construct a hierarcbgtaining
managers that do not control any internal flo/((m) =0). The cost

of such manager equals to zero. For example, imakix hierarchy
the top manager immediately controls all divisi@atis and all heads of
departments. All flows inside the technologicalwmtk are controlled
by subordinates of the top manager. Therefore,uppase thathe top
manager of the matrix hierarchy does not particgat control of any
flow. The top manager performs some other functions ¢f@mple,
makes decisions in the case of conflict betweersidiv heads and
heads of departments). However, in the basic maaelin this chapter
the manager’s cost depends only on flows of thernelogical network.
Thus, we suppose that in the matrix hierarchy thst of the top man-
ager equals to zero because he or she does noblchowvs. Similarly
we suppose that the cost of any manager equalsraoifzthis manager
does not control internal flows.

47 See the formal definition on page 79.
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Cost function (26) prohibits the hierarchies with sme
manager controlling both product and functional flows (the cost
of such manager equals to infinity). So, we supphbaéthe cost of a
“universal” (non-specialized) manager is too higlkcduse the
manager performs too diversified functions. Sucmagar is shown

S
/8%

Figure 23. The Manager Contr both Product armtfonal Flows

Using function (26) we also suppose thaty strategic manag-
er can control interactions between divisions or deartments. It is
necessary that skilled subordinated managers hstptegic manager.
For example, consider some strategic manager dlmgranteractions
between divisions. Division heads and subordinaeshagers control
all product flows inside the division. And the s$égic manager only
controls functional interactions between divisionf.only parts of
divisions are organized (there are no division Bedlden the cost of a
manager controlling these parts is too high becdieser she must
participate in control of both product and functbfiows.

So, cost function (26) prohibits the hierarchiethviome manag-
er controlling interactions between several paftdifferent depart-
ments or divisions (the cost of such manager equaisfinity). For
example, in Figure 24 managens andm, control interactions between
parts of divisions instead of the whole divisiom$ierefore, managers
m; and m, are neither strategic managers nor middle-tier agars.
Thus, function (26) implies that their costs edoahfinity.

Consider cost function (26) and some optimal h@rarcontrol-
ling process lines with functional links. Any praduflow inside a
process line is controlled by some managefSo, this flow is internal
for managem. Therefore,F™ (m) >0. The cost of managen is finite

because he or she is a member of the optimal blegramhus, function
(26) implies thatm is either divisional manager or strategic manager
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controlling interactions between departments. Sirhyilwe can consider
a functional flow.

Figure 24. Managensy, andm, Control Interactions
between Parts of Divisions

As a result, we obtain the following statements. ¢ast function
(26) in an optimal hierarchy any product flow isntolled by a divi-
sional manager or a strategic manager controllgractions between
departments. Any functional flow is controlled byuactional manager
or a strategic manager controlling interactionsween divisions.
Therefore, for cost function (26ye can consider only hierarchies
with all flows controlled by middle-tier managers @ strategic
managers Using this fact we obtain the optimal hierarchytlie next
section.

2.7. Typical Hierarchies Optimality

Let's consider a divisional hierarchy (see the gxanin Figure
18) with minimal cost among all divisional hieraieh A strategic
manager can immediately control division heads eandl not immedi-
ately control other divisional managers. Therefamy division can be
reconstructed independently from other divisiond atrategic manag-
ers (i.e. costs of other divisions and strategioagars do not change).
If there is non-optimal division in the hierarchyet we can reconstruct
this division and decrease the cost of the whotganchy. Thus, the
divisional hierarchy with minimal cost contains ymptimal divisions.
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The cost of an optimal division is given by express(19). Minimal
total cost of strategic managers controlling fuordl interactions
betweenl divisions is given by expression (23). She divisional
r«-hierarchy H ... has minimal cost In this hierarchy each manag-

er controlsr- immediate subordinates. The cost of this hierarishy
given by:
(r. +1“
r.-1
wherer- is optimal span of control depending on environniestabil-
ity (see expression (13) on page 42). For exanmple,=2 then the
divisional 3-hierarchy (see Figure 18) has minimast. In expression
(27) the first item corresponds with total cost divisions. The second
item corresponds with total cost of strategic mamsgcontrolling
interactions between divisions. The common mukipls taken out of
the brackets.

We can repeat similar reasoning for functional dvehy (see the
example in Figure 19) with minimal cost among athdtional hierar-
chies. Therefore, the functional hierarchy with imal cost contains
only optimal departments. The cost of an optimglagdenent is given
by expression (21). Minimal total cost of strategianagers controlling
product interactions betwe@ndepartments is given by expression (25).
So, the functional r«-hierarchy H has minimal cost The cost

C(H avisonal) = [I(n=D(A" +c5) + (I =D((n6)" +¢5)],  (27)

functional
of this hierarchy is given by:
(r. +1“

functional) =
r,—1

c(H [N =" +c7) +(n-D(IA)* +c7)] . (28)
For example, ifa =2 then the functional 3-hierarchy (see Figure 19)
has minimal cost. In expression (28) the first itearresponds with
total cost ofn departments. The second item corresponds withdosa

of strategic managers controlling interactions lesmdepartments.

Let’s consider a matrix hierarchy (see the exampleigure 20)
with minimal cost among all matrix hierarchies. Thierarchy consists
of | divisions, n departments and the top manager who immediately
controls division heads and heads of departmeni®refore, both
divisions and departments can be reconstructedperdiently from
each other. Thus, the matrix hierarchy with minimast contains only
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optimal divisions and departments. 8w matrix r«-hierarchy H
has minimal cost The cost of this hierarchy is given by:

) = E =00 + 6y +n D@+ (29

matrix

c(H

For example, ifa =2 then the matrix 3-hierarchy (see Figure 20) has
minimal cost. In expression (29) the first item responds with total
cost of | divisions, the second one corresponds with totet ©f n
departments. The internal flow of the top manadehe matrix hierar-
chy equals to zero. Therefore, expression (26)iesphat his or her
cost equals to zero too.

The following key proposition of this chapter exaes optimali-
ty of divisional, functional and matrix hierarchies

Proposition 5. For process lines with functional links and cost
function (26) there exists the optimal divisional, functional r&atrix
hierarchy.

The proposition implies that one of typical hietaes (division-
al, functional or matrix) has minimal cost amongtaérarchies from
set Q(N). Thus,it is not necessary to consider more complex hier-

archies; it is enough to compare typical hierarchis, which are often
used in real firms.

For example, in Figure 25 non-optimal hierarchgh®wn. This
hierarchy is more complex than typical hierarchiébere are two
divisions in the hierarchy. Division heads are indragely subordinated
to strategic managem, controlling functional interactions between
divisions. Also there are three departments inhieearchy. Heads of
the departments are immediately subordinated tdegfic managem,
controlling product interactions between depart®sent

In Figure 25 three product flows inside the thirdgess line are
controlled neither by the strategic manager nordbgsions. These
flows are controlled by individual managens andm, that are not part
of a division. Similarly three functional flows acentrolled by individ-
ual managers, mg andm,. Each of them is not part of a department.
The top manager immediately controls manageysn,. To simplify
Figure 25 the top manager is not shown.

68



Optimal Organizational Hierarchies in Firms
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Figﬁre 25./An Exa{mple df Non?TypicaI Hierarchy
(the top manager is not drawn)

Proposition 5 implies that the cost of such hidmgras shown in
Figure 25 is greater than or equal to the mininest o©f typical hierar-
chies. The proof of Proposition 5 bases on compartf the cost of

any optimal hierarchy with costs of typical hietaes.
In the next section we compare costs of typicaldnhies. It al-
lows to obtain the optimal hierarchy for differerstiues of parameters

of the model.

2.8. Divisional, Functional and Matrix Hierarchies

Optimality Conditions

Proposition 5 implies that divisional, functional matrix hierar-
chy is optimal. In any casthe optimal span of control equalst-. r-
depends only on environment instability (see Figliseon page 44).
Extremely unstable environmentr & 2.5) minimizes the optimal span
of control (r. =2). If the environment stabilizes then increases. In
Figures 18, 19 and 20 there are examples of higemavithr.=3 (for
example, fora =2 one of them is optimal). Below we consider only
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divisional, functional and matrix hierarchies witiptimal span of
controlr-.

To solve optimal hierarchy problem it is enougtcémpare min-
imal costs of typical hierarchies. Using expressi¢a7)-(29) we can
simplify conditions c(H,__.)<c(H c(H_..)<c(H

and c(H gicona) < C(H neiona) - SO, We obtain the following inequalities:

matrix divisional ) ' matrix funclional)

n’-n cl <X "= ander TN 7D
n-1 -1 n-1 | -1

Thus, we can obtain optimal hierarchy by comparuadues
°(n“ -n)/(n-2), A°(1“-1)/(1-2) and cy . If 8°(n“ =n)/(n-1) is
minimal value then the divisional hierarchy is omi. If
A7(17=1)/(1-1) is minimal value then the functional hierarchy is

a a
C, <60

optimal. If ¢; is minimal value then the matrix hierarchy is opl.

This result can be shown graphically (see Figuie PBe matrix
hierarchy optimality conditions are given by:

1 1
cos{n"—nJa andcos(la_lJa. (30)
1] n-1 A -1
The conditionc(H ,ona) < C(H funciona) 1S 9iven by:
1 1
CO{”H_”JHSCO{'“'J”. (31)
Al n-1 g\ 1-1

Using expressions (30) and (31) we can draw themaity dia-
gram with abscissa axis, /6 and axis of ordinates, /A . Thus,the
abscissa corresponds to the ratio between fixed an@riable cost of
one functional link control in the stable environmat. Similarly the
ordinate corresponds to the ratio between fixed angariable cost of
one product link control. So, optimality of divisional, functional or
matrix hierarchy does not depend on “scale” (uhimeasurement) of
cost, but depends on ratios between fixed and hlarizost.

Expressions (30) imply that the matrix hierarchyiroplity re-
gion is located at the left below the point with oodinates
(I(n" =n)/(n=D)1"*;[(1* =1)/(1 =1)]"*). Consider the line with this
point and the coordinate origin (0;0). Expressi@i)(implies that
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below this line the cost of the divisional hierardh less than the cost
of the functional hierarchy. So, divisional, furmetal or matrix hierar-
chy optimality diagram looks like Figure 26.

A
ol A

g= =4
-1

functional

hierarchy

instability,

L horizontal
J integration

matrix ./
hierarchy

, . .
¢ standardization

¢

K fized cost
. decregsifig

4_

instability,
vertical integration
—t

divisional e
hierarchy .-
’s't’andardizati oty

product flows
increasing

Figure 26. Divisional, Functional and Matrix
Hierarchies Optimality Regions

Let's consider the case with the same numbers ofgss and
functional linesn = 1. In this case in Figure 26 the angle of the bounda
line (between optimality of divisional and functadrhierarchies) equals
45°, Costs of the divisional and the functionalraiehies depend on
product and functional flows intensity and @. If product flows have
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more intensity than functional flowsi(> ) then the divisional hierar-
chy is preferable than the functional hierarchy am# versa. There-
fore, we prove the following general rulmiddle-tier managers have
to control the most intensive flows in order to de®ase costs of
strategic managers This rule is well-known in practice (for example,
Mintzberg (1979) argues that managers on low terse to control the
most complex (most intensive) links because themeagers “hide” the
complexity from managers on higher tiers). Fordhsen =1 =2 Harris
and Raviv (2002) also prove this rule. Figure 26vehthat the matrix
hierarchy is optimal if both product and functiofialvs intensity is too
high. So, in this case middle-tier managers haveotdrol all techno-
logical flows and to “hide” the complexity from thep manager.

The following lemma defines the behavior of boundames of
matrix hierarchy optimality region.

Lemma 6. If n>2 and a>1 then value[(n® —n)/(n-1)]"°

monotonously increases both witland witha .

Also the lemma implies that valugl? -1)/(1 -1)]Y monoto-

nously increases too. Thereforenifor a increases then the vertical
boundary shifts to the right. Similarly lifor & increases then the hori-
zontal boundary shifts upward.

Let's consider the case with the same intensityproiduct and
functional flows: A = 8. In Figure 26 this point belongs to the line with
the angle 45° (this line divides all diagram intves). Ifn > | then the
cost of the functional hierarchy is less than tbhet®f the divisional
hierarchy and vice ver€a So, if intensity of product and functional
flows is the same then middle-tier managers have twntrol shorter
lines to decrease intensity of the flows controlledy strategic man-
agers Indeed, ifn>1| then the functional hierarchy (see Figure 19) is
preferable because middle-tier managers controrteshdines and
strategic managers control interactions with intgndA between
functional lines. In this case in the divisionat¢tairchy (see Figure 18)
strategic managers control interactions with intgns1d =nA >1A

8 |f n>| then the angle of the boundary line between regafroptimality of divisional
and functional hierarchies is less than 45f<ifthen the angle is greater than 45°.

72



Optimal Organizational Hierarchies in Firms

between “long” process lines. Similarly if< | then the divisional
hierarchy is preferable than the functional hiengrc

Suppose the firm grows “in both directions” (bdtlandn in-
creases). In this case the matrix hierarchy optiynagégion expands
(see Lemma 6 and Figure 2@).n and| increase than costs of strate-
gic managers both in the divisional and in the furtional hierarchy
increase too. Therefore, the matrix hierarchy becoms optimal

Let's note that large increase wmfandl can be compensated by
small decrease of flows’ intensity. For langeand| boundary lines of
matrix hierarchy optimality region increase @§™'“and | “™’ , If the
environment is too unstablex(=2) then double increase of and|
(four times increase of the number of workers) @snpensated by

/2 =14 times decrease of flows’ intensiti#s and A. In this case in
Figure 26 the poin{c,/8d;c,/A) shifts to the right upward proportion-
ally with boundary lines of matrix hierarchy optilitya region. It does
not change the type of the optimal hierarchy. & #€mvironment stabi-
lizes then small decrease of flows’ intensity congages even higher
increase of the size of the firm. For examplegif 1.1 then double
increase oh andl is compensated by 7% decrease of intensities.
The described rule may be interpreted as limitgrofvth of the
firm with tree-like hierarchy. If the environmerst quite stable then the
firm with divisional or functional hierarchy canay infinitely. In real
cases with instabilitghe growth of the firm with tree-like hierarchy
is limited because increase of strategic managers’ costecéur® of
additional middle-tier managers controlling allvit® (the matrix hierar-
chy becomes optimal).

Lemma 6 implies thaif environment instability a increases
then the matrix hierarchy becomes optimal(see Figure 26). Man-
agement science (see, for instance, Mintzberg (}%tgues that un-
stable environment leads to the matrix hierarchys Empiric depend-
ence can be explained using the introduced moudleinstable environ-
ment strategic managers can not control many flamg hire middle-
tier managers to control it. If environment instiyiis too large then
boundary lines of matrix hierarchy optimality regitend ton andl. So,
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in extremely unstable environment the matrix highgris optimal for
any reasonable ratios between fixed and variat#é’co

On the contrary in the stable environment the mdtieérarchy is
not optimal. If @ =1 then boundaries of matrix hierarchy optimality
region equal to zero (see Figure 26). Moreovesstable environment
the cost of the divisional and the functional hiehy is the same. In
this case optimal span of control infinitely incsea (see Figure 15 on
page 44). Thus, either divisions or departmentdwoetier hierarchies
and the single strategic manager controls thegraations.

Let’'s consider dependence between standardizatidritee type
of optimal hierarchy. In Section 2.2 we argue tktdandardization
increase decreases intensity of both product andtifinal flows that
must be controlled by managers. Therefore, stamidn increase
proportionally decreases and & .

Consider point in divisional hierarchy optimality region in Fig-
ure 26. Standardization increase shifts pdirdlong the line far from
the coordinate origin. In Figure 26 this shift sndted by the arrow to
the right upward ofA. Therefore, standardization increase does not
change optimality of the divisional hierarchy. ®we tontrary, standard-
ization decrease shifts the point in matrix hieyaoptimality region.
Similarly we can consider a point in functional faiehy optimality
region. So, we obtain the following results. Staddation increase
does not change optimality of the divisional or dtional hierarchy.
Standardization decrease leads to optimality ofrth&rix hierarchy.

The following empirical dependence is well-knowm:réal firms
the matrix hierarchy is preferable for little standization (see, for
instance, Mintzberg (1979)). The introduced modgla&ns this empir-
ic dependence in the following way. Little standaation causes large
costs of strategic managers. To reduce these @oisnecessary to
increase number of middle-tier managers that cofiws.

If the parameters of the model change then the afjpptimal hi-
erarchy can change too (see regions on page 26jislease the hierar-
chy in the firm becomes non-optimal and we haveestructurethe

49 Fixed cost of one link control is less than orado variable cost of control all links
inside a process line or a functional line.
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firm (have to change non-optimal hierarctlyUsually the restructure
requires large money and time. Therefore, it igriggting to analyze
stability of the optimal hierarchy with respectdimange of key parame-
ters of the model.

The matrix hierarchy is stable with respect to decease of
standardization and environment stability. Increaseof these pa-
rameters causes restructure of the matrix hierarchy

The divisional hierarchy and the functional hierarchy are
stable with respect to increase of standardizatioand environment
stability. Decrease of these parameters causes apdlity of the
matrix hierarchy .

Similarly we can consider the type of optimal hiehy for dif-
ferent fixed costc,. Figure 26 shows thaty change causes the same
effects as standardization change. Therefore, tagixmhierarchy is
optimal for small fixed cost. Either the divisionhlerarchy or the
functional hierarchy is optimal for large fixed to8onverse statements
hold for proportional change of variable cogtsand A. So, the divi-
sional hierarchy and the functional hierarchy deble with respect to
increase of the ratio between fixed and variablg.dDecrease of this
ratio causes optimality of the matrix hierarchyriigaand Raviv (2002)
prove similar dependence between decrease of xbd tiost and opti-
mality of the matrix hierarchy. Let's explain tidgpendence. A strate-
gic manager controls total flow between divisionslepartments with-
out taking into account details of flows betweediwidual workers.
Thus, from his or her point of view there is on&lwith large intensity
between two “nearest-neighbor” divisions or deparita. Otherwise,
middle-tier managers must control many individuaks with small
intensity. Therefore, if fixed cost increases tremsts of middle-tier
managers increase more than costs of strategicgeeman this case
the matrix hierarchy with maximal number of middler managers
becomes non-optimal.

%0 Wwithout restructuring the firm can lose competitibecause its effectiveness is less
than the effectiveness of competitors with optihiatarchies.
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Let's definetwo types of growth of the firm

1. Horizontal integrationcorresponds with increase of the num-
berl of process lines. The firm can buy similar plaloisated in other
regions, producing similar products, etc. For examan oil-processing
company can buy one more refinery to increase velofroutput or to
occupy new regional market.

2. Vertical integrationcorresponds with increase of the length
of process lines. The firm can buy vendors or qusts. As a result, the
length of the whole process line increases (thebmunof operations
from purchasing raw materials to finished productréases). For
example, an oil-processing company can buy oil{petidn firms and
gasoline stations to control all process line froiproduction to ulti-
mate customer.

Many examples of horizontal and vertical integnatiare de-
scribed in managements science literature. Letfdoe® dependences
between different types of integration and the tgpéhe optimal hier-
archy. Suppose there is optimal divisional hiergiichthe firm (there is
some point in the region of divisional hierarchytiopality). Horizontal
integration increasdsand expand the regions of divisional and matrix
hierarchy optimality (see Figure 26). Thereforeeahorizontal integra-
tion the divisional hierarchy remains optimal. Veat integration
narrows the region of divisional hierarchy optimalilt can cause
restructure of the initial divisional hierarchy fonctional or matrix
hierarchy. Thus, for the firm with divisional hiecAy horizontal inte-
gration is more reasonable because vertical intiegracan cause re-
structure.

Let’'s consider dependences between the type dadptimal hier-
archy and change of flows. Increase of product $l@arresponds with
production volume increase. If we can increase yectdn volume with
no increase of functional flows then in Figure 28np A shifts down-
ward. In this case the divisional hierarchy remaipgmal because only
costs of middle-tier managers increase, but cdstérategic managers
do not change. On the contrary, increase of funatiflows increases
costs of strategic managers. It can cause resteu@eintA in Figure
26 shifts to the left). So, we prove the followiiagts.

The divisional hierarchy is stable with respect tahorizontal
integration and increase of production volume withno functional
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flows increase. Vertical integration and increasefdunctional flows
cause restructure of the divisional hierarchy

Similarly we can consider the firm with optimal fitironal hier-
archy (in Figure 26 there is some point in the argof functional
hierarchy optimality). So, we prove the followiragfs.

The functional hierarchy is stable with respect tovertical in-
tegration and increase of functional flows. Horizotal integration
and increase of production volume (product flows) ause restruc-
ture of the functional hierarchy.

On the whole Chapter 2 describes the cost fundiwh proves
that one of typical hierarchies is optimal for tHisction. Typical
hierarchies are often used in practice. Therefibre,main proposition
of this chapter — optimality of divisional, functial or matrix hierarchy
— corresponds with many real firms. It allows todabmany depend-
ences between the type of optimal hierarchy andr@mwent instabil-
ity, standardization, intensities of product anddtional flows, hori-
zontal and vertical integration, etc. All these elegiences are modeled
using the example (26) of sectional cost functioBo, Chapter 2 shows
that exploration of the class of sectional funcsianay be useful for
modeling real firms. Such exploration is describetbw in Chapter 3.

®1 Manager's cost depends only on sets of workersrated by immediate subordi-
nates. See the formal definition on page 79.
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3. General Model

In this chapter we consider the hierarchy optinigafproblem
for arbitrary sectional cost function. So, the ngaTs cost is given by
c(su(Ve),..-,Su(), where sy(vy),...,s4(v) are groups controlled by
immediate subordinates of the manager

In Chapters 1 and 2 special sectional functiongpddding on
flows) were considered. There was shown that usirgy cost functions
we can model many practical effects occurring ial f/ms and de-
scribed in management science. Below we give sdimer interesting
examples of sectional functions that do not depmnflows (for exam-
ple, manager’s cost depends on type of interadigtween immediate
subordinates). So, using sectional functions we cael various
optimal organizational hierarchy problems.

The class of all sectional functions is also inddrg from the
mathematical point of view: any anonymous (withpexg to manager’s
permutation) and additive (with respect to additidmanagers) hierar-
chy cost function is sectional (see Section 3.1).

For arbitrary sectional function optimal hierargimpblem is very
complicated. But in some cases we can find opthierarchy for wide
classes of sectional functions using methods af ¢thapter. The meth-
ods can be used to research various applications.

Section 3.1 defines the sectional function and icems some in-
terpretations. Sections 3.2, 3.3 and 3.4 contadortical methods for
solving optimal hierarchy problem for special ckssof sectional
functions. Examples of sectional function are déscr in Section 3.5.
We find optimal hierarchy for these examples udimgpretical meth-
ods. In Section 3.6 we introduce method to findtiee with minimal
cost. Section 3.7 analyses optimal hierarchy tbatrol several given
groups of workers. In this case optimal hierarctgbfem is much more
complex, but for some sectional functions we calvesit using the
methods of Sections 3.3 and 3.4.

%2 See the formal definition of sectional functionmage 79.
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3.1. Definition of Sectional Cost Function

Definition 7. Cost function of the managendM in the hierar-
chy H=(NOM,E)0Q(N) is called sectional if it is given by
C(sH(Va), -, 81(Vi)), (32)
where Vv,....\t are all immediate subordinates of the manager m,
SH(V),-..,.si(W) are groups controlled by employees. v\, c()) is a
non-negative real function of set of grodp<Cost of total hierarchy
equals to total managers’ costs

c(H) =2, oS (V)-8 (%)) - (33)

Hierarchy’s cost function§33) is also called sectional.

Definition 7 generalizes Definitions 5 and 6 (sestn 1.6) be-
cause in Definition 7 we do not specify the funitagsy(vy),...,$:1(V))-
So, the basic model is generalized.

Manager’s cost (32) depends only on the groups ofkers
("section”) controlled by his or her immediate sttioates.

W,oWw, Wws W, ws T w,
Figure 27. Part of Hierarchy

Let's explain Definition 7 using an example (see gart of hier-
archy in Figure 27). The managercontrols the groupwy,w,,ws,w,}
with the help of two subordinated managexsandm,. Managersm

3 The function c()] depends on the ses{vy),...,si(()} of groups and does not

depend on order of these groups. So, the managestsioes not depend on numeration
of his or her immediate subordinatgs..,\. Some of groupsy(v),...,$/(Vik) may be the
same. In this case the “se{vy),...,5(V)} contains repeated elements.

*In expression (33) and below the symiagl)] denote both manager’s and hierarchy’s
cost.
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and m, control the groupswWi,w.} and {ws,w,} respectively. Suppose
managersrn, andm, cope with controlling of the subordinated employ-
ees. In this case the cost of the manageioes not depend on control-
ling methods inside the groupsvfw.} and {ws,w,}. For example, the
managersmn, andm, can control subordinated workers immediately or
with the help of some subordinated managers.df i importance for
manager’'sm cost because direct interactions betwaeand workers
are not necessary.

Definition 7 implies thathe cost of the manager depends only
on division of subordinated group of workers betwee immediately
subordinated employees In the example noted above the group
{w,wo,ws,ws}  is  divided into non-overlapping  subgroups
{wig, W, w3, Wat={ wi,wo} O {ws,W,}. So, the cost of the managerequals
c({w,wo}{ wa,wg}). Thus, we suppose that the cost of a manager de-
pends only on thesectiori®® controlled by the manager immediately. In
Figure 27 the “section” of the managarconsists ofm and subordinat-
ed managersy andm,. The cost of the manager does not depend on
other parts of the hierarchy.

Moreover, we suppose that the cost of the managgerdls only
on the “guantity” of administrative labor (for expha, planning and
monitoring). So, the cost of the manager does apedd on individual
efficiency of managers. Thus, a sectional functioas not change with
any permutation of the managers with no modifigatid subordination
edges. So, a sectional functionaisonymousvith respect to manager’'s
permutation. Also manager’s cost does not depentuareration of his
or her immediate subordinates. For example, inr€i@r the manager’'s
m cost depends only on the set{w.},{ ws,w4}} of groups (the equali-
ty c({wi,wah,{ wa,Wa})=c({ws,wa},{ wi,Wo}) holds).

Definition 7 implies that a sectional functionadditive a hierar-
chy cost equals to total costs of all managerhérhierarchy.

Mishin and Voronin (2003), Mishin (2003b) considabitrary
cost function depending on hieraréhy Anonymity and additivity

%5 For example, department, division or some oveirtass unit.
%6 |n other words an arbitrary functiom: Q — R, is considered (the applicable domain

of the non-negative real functiag)) is the set of all hierarchies).
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conditions are generalized for such functions.sltproven thatany
anonymous and additive hierarchy cost function isectional.

Hence the class of all sectional functions is tadewUsing of
sectional functions we can model various optimalrdnichy problems
(see Chapters 1 and 2 and examples below). Soaweuppose that
sectional functions are useful to model organizetiohierarchies in
firms. Therefore, it is important to research sww@i functions and find
the optimal hierarchies. Some results are desciiedalv in this chap-
ter. Generally the cost of the manager can depenthdividual effi-
ciency, hierarchical tier, superiors or the wholerdwchy. Such cost
functions are not sectional and not consideretlimygaper.

In Definition 7 some of the groupsi(vi),...,s(V) can be the
same or nested one into another. Suppssés) Us, (v,). So, the

employeev; controls part of the group subordinated to theleygeVv,.
Thus, one immediate subordinate of the manageuplicates part of
the labor of another immediate subordinate. Inlibsic model such
duplication does not reduce managericost (see Lemma 4 on page
23).

Below we consider only sectional functions satisfyy the
condition of Lemma 4. So, if s,(v,) Os,(v,) then the following
inequality holds:

Ay (V)0 Sy (W) < S, (V)08 (%)
For example, “auxiliary” immediate subordinatecan waste manager’s
m time discussing some problems inside the greif@,) (such prob-
lems are completely controlled by the managgrSo, we can remove
subordination edgev{,m) with no increase of managems cost. After
removal costs of other managers do not change becgiwups con-
trolled by all managers do not change.

The proof of Proposition 1 holds true for any sauail function
satisfying condition of Lemma 4. Therefore, Proposi 1 (page 24)
holds true for concerned sectional functions.\#®,can consider only
hierarchies satisfying conditions (i)-(iii) of Propsition 1: all manag-
ers control different groups of workers, all em@eyg are subordinated
to the single top manager, any manager’'s immediatterdinates do not
control one another. All optimal hierarchies obgainbelow satisfy
conditions (i)-(iii).
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Below in some cases the sectional cost functiagivisn by sim-
plified notationc(s,...,g) instead oft(s4(V4),...,51(W)). The value of the
function ¢sy,...,5) corresponds with the cost of some manager with
immediate subordinates controlling the grosps..,%.

3.2. Tree Optimality Condition

As it is shown in Section 1.9 (see example on @&fein some
cases there is no optimal hierarchy among the .tidewever, in other
cases the minimal cost tree can be optimal. Fomple the tree is the
optimal hierarchy controlling the symmetric procdisge (see Section
1.10). The tree (divisional or functional) can bptimal hierarchy
controlling the process lines with functional linksee Section 2.8).
Moreover, the trees are typical organizationaldrgmnies in many firms.
Therefore, it is important to obtain the conditianisen some tree is the
optimal hierarchy. Below we consider the sufficieonhdition for tree
optimality. This is the so-called group-monotorggndition.

Definition 8. A sectional cost function is called group-monotonic
if the manager's cost does not decrease with thgamsion of the
groups controlled by the immediate subordinates waitd the addition
of new immediate subordinates. So, for any groyps,s the following
inequalities hold:

ds,.S,,.--»S) < dSS,,...,S,), Where s contains §s, [I S);

ds,,S,,---»S) < dsS,...,S.), where s is any group
m

My m ms

I\

W W, W3 W, Ws Ws W7 Wg
Figure 28. The Explanation of the Group-Monoto@yndition

Let's explain Definition 8 by the example. Let o managem
be the chief of the hierarchy shown in Figure 28t the immediately
subordinated managers;, m, and m; control the supply department
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(the group {vi,wWo}), the manufacturing department (the group
{ws,wW4,W5,Wg}) and the marketing department (the grouws{vs})
respectively.

The chiefm controls all the firm with the help of his or hien-
mediate subordinates,, m, and ms. Thus,m communicates with the
heads of the departments, m, andms to solve interdepartment inter-
action problems. Also the managercan solve part of problems inside
each of the departments. Therefore, the cost ofntheagerm can
consist of the following two parts.

1. The first part of the managems cost can be concerned with
the controlling of immediate subordinates’ interacs. Let this part
depend on the number of immediate subordinatess,Ttha first part of
the cost is determined by some non-decreasingiumgt(l) . The cost

X (3 of the managem corresponds to the controlling of manageng’
m, andny interactions. The functiory(l) type depends on the business

area, possible communication mechanisms betweemahager and his
or her immediate subordinates, etc. Consider ampbeaa Suppose the
heads of the departments usually communicate with ether directly.
In the case of communication problems the headhefdepartments
resort to the help of the immediate superior. ltet tommunication
problem appear with the probability 6<1. If only paired communica-

tions are possible then the first part of the managcost can be given
by x(k) =x0,k(k-1)/2, wherex; is the average cost of solving one

communication problernk is the number of immediately subordinated
employees,k(k —1)/2 is the number of their paired communications.

So, the first part of the chiefi: cost may be equax,d, (see Figure

28). If communication problems can appear betwéwaet four and
more employees then the functigrfl) can grow exponentially.

2. The second part of the managen'sost can be concerned with
problems inside the groups controlled by the immedsubordinates.
For example, the manager can perform some adnatistriabor when
any subordinated worker is dismissed (interviewhwitew worker,
signature of some documents, etc.). Thus, the separt of the cost
depends on the number of subordinated workersth®aecond part of
the manager's cost is determined by some non-dgagedunction
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c(\sl 0...d s(\) depending on the size of the grogd!...Os, , where

s,..., are the groups controlled by immediate subordsatk the
manager. The type of functiogl) depends on the business area, man-

ager's responsibility, etc. Consider an examplet &® employee be
dismissed with the probability @)% <1. Letx, be the average manager’s

cost in case of one dismissal. Then the secondgbdtie manager’s
cost can be given by,d,ls 0...0s,|. So, the second part of the

chief'sm cost may be equdx,o, (see Figure 28).
Thus, sectional function can be given by:
oS- 8) = X(K) +¢(s, 0...08,) (34).

Let's include the workews into the supply department. Nowg
is immediately subordinated to the managerandm, (ws is a member
of both supply and manufacturing departments).tis® supply depart-
ment is expanded. The managex controls the expanded group
{w,W,,w3} instead of the initial groupv;,w.}. Thus, the chief’'an cost
equalsc({w,, w,, wg, {w,, w,,w;,wg, {w,,w,}) = x(3)+¢(8). The cost
does not change. Similarly function (34) does netrdase with any
expansion of the grouss,...,S. So, cost function (34) satisfies the first
condition of Definition 8.

Let's change the hierarchy in Figure 28 in somesothay. We
hire three new workers,,wio,w;; and managem,. Then we organize
the fourth department consisting of these employeew department
consists of new workers immediately subordinatethtomanagem).
Finally we immediately subordinate the manageto the chiefm. So,
the chief'sm cost is given by:

C({Wl’WZ}’ {W37W4’W5’W6}' {W7’W8}' {WQ'Wlo'Wll}) :X(4) +C(1:D "

Thus, the chief'an cost does not decrease. Similarly function
(34) (manager’s cost) does not decrease with aditiaa of new im-
mediate subordinatés So, cost function (34) satisfies the second
condition of Definition 8.

%" In some practical situations a manager can deetieiasor her cost by increasing the
number of immediately subordinated managers (“&s#is’). However, if the “assis-

tants” coordination cost is sufficiently high thiéns reasonable to model the firm with
the help of group-monotonic function.
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Therefore, function (34) is group-monotonic. Thigoup-
monotonic function and some other examples below aarespond
with the cost of the manager in real firm. It iseiresting to obtain an
optimal hierarchy in the case of group-monotonye Thain result is
given by the following proposition.

Proposition 6. If sectional cost function is group-monotonic then
there exists optimal tree

According to this propositionif cost function is group-
monotonic then optimal hierarchy can be found amonghe trees
So, in the optimal hierarchy the immediate subattia of common
manager control non-overlapping groups of workéilse immediate
subordinates of common manager do not “duplicaéeheother admin-
istrative labor.

Therefore, to find optimal hierarchy we can vetiife inequali-
ties of Definition 8. If these inequalities holdethwe can consider only
the trees. In this case optimal hierarchy problemuich simpler.

Using Proposition 6 we can find the type of the lghaptimal hi-
erarchy by means of manager’'s cost function aralysiequalities
verification).

The cost function in the basic model (see Definit® on page
21) is not group-monotonic as illustrated by thiofeing example. Let
the workerswy,...,wg in Figure 28 be linked with some process line.
Manager’'sm internal flow equals to the sum &fv,,ws) and f(wg,w-).
Let's subordinate the workew; to the managemy,. The group con-
trolled by the managemn, is extended. So, instead mfthe managem,
controls the flowf(w,,ws). Therefore, manager’'s cost can be reduced
after expansion of the group controlled by the imdiate subordinate. It
contradicts Definition 8.

Thus, basic model cost function is not group-monigtoBut in
some cases the tree with minimal cost is optimad éxample, in the
case of symmetric process line, Section 1.10). ®e group-
monotonity is sufficient condition but not requirement for the tree
optimality .
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Proposition 6 implies that if the cost functiorgibup-monotonic
then we only need to find minimal cost tree. Thisetis the optimal
hierarchy.

Minimal cost tree can be found using the algorithmsdevel-
oped by Mishin and Voronin (2001, 2003). For an arbitrary sectional
cost function the exact algorithm’s complexity @® thigh (the minimal
cost tree can be found only for 15-20 worR8rsConsider the cost

function given by the expressiod\sl,..., sk\). So, the manager cost

depends only on the span of contkolnumber of immediate subordi-
nates) and on the numbe\@,..., sk\ of workers in the groups con-

trolled by the immediate subordinates (but notrativiidual workers in
these groups!). In this case the exact algorithmdsfithe minimal cost
tree for 70-100 workers. For example, function (84h be given by

os,....s ). So, for cost function (34) the algorithm finds @ptimal

hierarchy if the number of workers is less thaeaqual to 100.

Mishin and Voronin (2001) also prove that it is imsgible to suf-
ficiently reduce exact algorithm’s complexity. Théare, in the paper
noted above some heuristic algorithms are developeese algorithms
have much less complexity and find trees with apipnately minimal

cost. For arbitrary function given by(\sl,..., sk\) two heuristic algo-

rithms are developed. Their complexities growmaandn®.

If the cost function is group-monotonic then optirhérarchy
problem can be solved using the algorithms. Foerotbst functions the
tree obtained by the algorithms may be non-optimedarchy. But this
tree is useful, for example, to compare the bes with actual hierar-
chy in the firm.

Because of some reasons we can consider phigrarchies
(span of control or number of manager’'s immediatgosdinates is less
than or equal to) *°. Noted above algorithms can findree with mini-
mal cost. For fixed the algorithms’ complexity is much less. If thesto
function is group-monotonic then the tree obtaibgdthe algorithms

%8 Using personal computer in several minutes.

%9 For example, in some firm a manager cannot comuare than 10 immediate subor-
dinates. In this case we can consider the costibtmuwith infinite value for 11 or more

immediate subordinates. But it may be difficultifvestigate this function. So, it is
easier to consider only dflerarchies.
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has minimal cost among alhierarchies (it can be proved similarly to
the proof of Proposition 6).

In the following section we consider minimal andxinaal span
of control optimality conditions.

3.3. 2-Hierarchy and Two-Tier Hierarchy Optimality Condi tions

In this section we consider narrowing and widerdogditions. If
cost function is narrowing (widening) then we catmase (increase)
number of any manager’'s immediate subordinates withhierarchy
cost increase. Many sectional functions are narrgwir widening (see
examples in Section 3.5). Therefore, it is impartan find optimal
hierarchies for such functions.

Definition 9. Sectional cost function is narrowing if for any
manager m with immediately subordinated employges u, k=3 it
is possible to resubordinate several employees fvgm. v, to new
manager mand immediately subordinate; to the manager m with no
hierarchy cost increase. Sectional cost functiowigening if any such
resubordination does not decrease the cost of maidhy.

Let’'s explain Definition 9. In Figure 29a) managehas three or
more immediate subordinates... k. Consider a narrowing cost func-
tion. With no hierarchy cost increase we can hee immediate supe-
rior my for j (1< j <k) employees fromv,,...,v. After the hire the
managem controls these employees with the help of new meamna,

but not immediately. For example, the result of Eygesv,,...\v,
resubordination is shown in Figure 29b).

Vi VY, Via Vi VJ'+1 Vi vV, V, 0t \ERY VJ.Jr; ot Vk

Figure 29. Resubordination for Narrowing or Widenost Function
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Generally any employees can be resubordinated. So, there exists
such permutationi{,...,i) of numbers (1,..k) that employees, —

are resubordinated. If cost function is narrowihgrt for any groups
S =Su(Ve),-.,Sc =Su(vi) controlled by employeesg,..., vk some of them
can be resubordinated with no hierarchy cost irs@ea
Thus,definition of narrowing cost function can be wrttas fol-
lows For any groups,...,S, k=3 there exist such numbér j <k

and permutationi{,...,iy) that the following inequality holds:
os,.-8)2ds,,....s )+ds U...0s ;s ....5,). (35)

Left-hand member of the inequality is the costha&f mmanagem before
resubordination (see Figure 29a)). Right-hand merabthe inequality
equals to sum of managens cost ds, ,...,s,J) and manager’'sn cost

ds, U...0s ,s ,..s ) after resubordination (see the example in

Figure 29b)). Other managers’ costs do not chaBgeinequality (35)
holds if and only if cost of total hierarchy does increase.

Inequality (35) may be explained as follows decrease nar-
rowing cost function we can hire manager’'s assistant m; undertak-
ing part of administrative labor. After that thenmoer of manager'sn
immediate subordinates decreases. So, the hierbetgmes “narrow-
er” (the span of control decreases).

Consider a widening cost function. Definition 9dedo the fact
that any described above resubordination doesawedse the cost of a
hierarchy. So, for any groupgs...,S, k=3, any numbed< j <k and

any permutationi{,...,iy) the following inequality holds:
s, S8)sds,,....s )+ds U...0s ;s ,...5). (36)

Inequality (36) may be explained as follow®r widening cost function
it is impossible to decrease the cost of a hiergrelith the help of
hiring “assistants

Consider part of hierarchy in Figure 29b). bebe the only im-
mediate superior of the managey. In this case we can decrease widen-
ing cost function with the help of excess “assitan, dismissdl.

€0 After the dismissal the managerundertakes administrative labor of the manager
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After that the number of managersimmediate subordinates increas-
es. So, the hierarchy becomes “wider” (the spatoafrol increases).

If inequality (35) or (36) is violated on some de@ping groups
Si,.... but held on any non-overlapping groups (sgl1s; =0 for all

i #]) then cost function is calletharrowing on non-overlapping
groupsor widening on non-overlapping groupsspectively.

Proposition 7. If sectional cost function is narrowing then there
exists optimal 2-hierarchy

Corollary (from Propositions 6 and 7If. sectional cost function
is narrowing on non-overlapping groups and grouprmionic then
there exists optimal 2-tree

Proposition 7 can be proved using described above
resubordination for an optimal hierarchy with tharemore immediate
subordinates of a manager.

The corollary can be proved similarly using resuliration for
an optimal tree (Proposition 6 leads to the faeit tthe optimal tree
exists). To resubordinate employees in the treky, marrowing on non-
overlapping groups are required because in a tregpg controlled by
immediate subordinates of a manager do not ovése@ Lemma 2 on
page 17).

Therefore, to find optimal hierarchy we can verifiequality
(35). If inequality (35) holds then the cost function is\arrowing and
we can consider only 2-hierarchies with each managéaving two
immediate subordinates (minimal span of control) beause there
exists optimal 2-hierarchy In this case optimal hierarchy problem is
much more easier.

So, using Proposition 7 we can find the type ofwihele optimal
hierarchy by means of manager cost function arglfiasequality (35)
verification). If cost function is group-monotortiten we have to verify
inequality (35) only on non-overlapping grougs..,s. If the inequali-
ty holds then the corollary leads to the fact tthedre exists optimal
2-tree. So, 2-tree with minimal cost is optimal.niihal cost 2-tree can
be found using the algorithms developed by Mistid ¥oronin (2001)
(see brief description in Section 3.2).
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Proposition 8. If sectional cost function is widening then twa-tie
hierarchy is optimal.

Corollary (from Propositions 6 and 8f. sectional cost function
is widening on non-overlapping groups and group-gtonic then
two-tier hierarchy is optimal

Proposition 8 can be proved using dismissal of ex¢assistant”
of the top manager until the top manager immedjatantrols all
workers.

The corollary can be proved similarly using disralder an op-
timal tree (Proposition 6 leads to the fact tha d¢iptimal tree exists).
To dismiss excess “assistant” from the tree, onigewing on non-
overlapping groups is required because in a treapy controlled by
immediate subordinates of a manager do not overlap.

Therefore, to find optimal hierarchy we can verifiequality
(36). If inequality (36) holds then the cost function isvidening and
two-tier hierarchy with single manager is optimal §inge manager
controls all workers immediately, span of control $ maximal).

So, using Proposition 8 we can find optimal hiengrby means
of manager cost function analysis (inequality (8éjification). If cost
function is group-monotonic then we have to veitifgquality (36) only
on non-overlapping groups,,...,S. If the inequality holds then the
corollary leads to the fact that two-tier hieraréhypptimal. An example
of Section 3.5 shows that inequality (36) may hmhidnon-overlapping
groups and violate on overlapping groups. Thus,cibwllary can be
useful to analyze some sectional cost functions.
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Figure 30. Optimal Hierarchy Examples for Narrow{ag
or Widening (b) Cost Function

Propositions 7 and 8 show thaarrowing functions contrast
with widening functions. Narrowing condition implies 2-hierarchy
optimality (see the example in Figure 30a)). 24miehny contains the
most humber of managers. Each manager performsnalimjuantity of
administrative labor (controls only two immediatgbsrdinates). The
span of control is minimal (equals 2). On the cantwidening condi-
tion implies two-tier hierarchy optimality (see tesample in Figure
30b)). Two-tier hierarchy contains single managerfgrming all ad-
ministrative labor (the manager controlsralvorker immediately). The
span of control equats

Therefore, narrowing and widening conditions impiyp extreme
cases: minimal and maximal span of control. Mashdi have “interme-
diate™ hierarchies (Mintzberg (1979)). But examples irctba 3.5
show that narrowing and widening conditions areywsseful because
for many sectional cost functions we can obtairravaing and widen-
ing parameter regions (extreme cases). In otheanpater regions the
function can be used to model most firms.

Consider the cost functiog(l) from basic model (see Definition

5 on page 21). So, the manager’'s cost depends sonrhier flows.
Suppose functiorp() is subadditivé? Let’s prove that inequality (36)

holds (cost function is widening). Lek, be the hierarchy before excess
“assistant’my, dismissal (see Figure 29b}j; be the hierarchy aftamn
dismissal (see Figure 29a)). Left-hand member 6f {8the cost of the
managem after dismissal. Right-hand member of (36) eqt@mksum of
manager’sm, cost and manageria cost before dismissal. Then for the
cost functiong(l) the following inequalities hold:

#(Fl (m) + Fo(m) + @ (R (m) + F2(m) =
2 ¢(F (m) + RN (m) + R () + FS(m) 2 g(FT (m) + F2(m).

0

®1 Span of control is more than two and less than
%2 For any x, y(JRP the inequalityg(x + y) < #(x) + ¢(y) holds.
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The first inequality holds because of subadditivitile second inequali-
ty holds because the functigh(l) is monotone increasing, internal flow

of the managem in the hierarchyH; is less than or equal to sum of
managers’ m and my internal flows in the hierarchyH,

(FI'(m) < R (m)+F}"(m,)), external flow of the manager does not
change £5°(m) = F2(m) ). So, inequality (36) holds.
Thus, if ¢(0) is subadditive then cost function is widening.@?ro

osition 2 (page 26) implies that two-tier hierarcksy optimal for
subadditive functiong([). Proposition 8 implies that two-tier hierarchy

is optimal for any widening cost function. Swjdening condition
generalizes subadditivity condition for all sectbfunctions®®

Consider interrelation between classes of groupeatamic, nar-
rowing and widening cost functions.

8 Let's change Definition 5 (page 21) in such wasttimanager's cost depends only on
his or her internal flow. In this case ¥([) is superadditive then cost function is
narrowing and if ¢([) is subadditive then cost function is widening (Mis and

Voronin (2003)). So, narrowing/widening conditions generalize
superadditivity/subadditivity ~ conditions  or  convig¥¢oncavity  conditions
(superadditivity/subadditivity are equivalent tangexity/concavity for one-dimensional
flows and ¢ (0) =0).
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sectional

/Widening "/ narrowing ﬂ:.&\

Figure 31. Interrelationship Between Classes of
Group-Monotonic, Narrowing and Widening Cost Fuocs

As noted in Section 3.2 cost functigi{l) (depending on flow) is
not group-monotonic. Power functiop(l) may be widening (because

of concavity, see Lemma 5 on page 26), may be ewitiidening nor
narrowing (because of optimal span of cont2at r, <+, see Section

1.11). Also there exist narrowing functions whicke anot group-
monotonic (see Section 3.5).

Examples of Section 3.5 show that group-monotooist ¢unc-
tion may be narrowing, widening or neither narragyimor widening.
Moreover, in extreme cases a sectional function bealpoth narrowing
and widening.

Interrelationship between classes of group-monotamrrowing
and widening cost functions is shown in Figure By{pes of optimal
hierarchies for different cases are shown in tigeré too (a tree is
optimal for group-monotonic functions, two-tier raechy is optimal for
widening functions, a 2-hierarchy is optimal formaving functions, a
2-tree is optimal for group-monotonic and narrowfagctions).
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In the next section we consider strong narrowingdion and
prove optimality of special 2-hierarchy.

3.4. Consecutive Hierarchy Optimality Condition

In Section 3.3 we show that there exists optimhaie2archy for
narrowing cost function. In this section we considaarticular
2-hierarchies (the so called consecutive hierasjhiBelow we define
strongly narrowing cost functions. For such funesiothere exists
optimal consecutive hierarchy. Optimization methddscribed in this
section allow to obtain optimal hierarchy for selarost functions (see
examples in Section 3.5).

Definition 10. 2-hierarchy is consecutive if any manager in the
hierarchy immediately controls at least one worker.

Similarly with Proposition 1 we can prove the foliog fact: for
any consecutive hierarchy; there exists the consecutive hierarthy
such thatc(H,) < c(H,) and conditions (i)-(iii) of Proposition 1 (see
page 24) are satisfied. Thus, there are no managekscontrolling the
same group of workers, all managers are subordirtatéhe single top
manager, immediate subordinates of a manager dacomtol each
other. Therefore, among consecutive hierarchie®tegists the hierar-
chy with minimal cost satisfying conditions (i)#{ii Let’s explain the
form of hierarchyH,.

Condition (i) and Definition 10 imply that iH, any manager has
exactly two immediate subordinates. Top manageén H, controls all
workers: s, (m) = N. Managerm immediately controls some worker

w and some managem'. Thus, s, (m) =N =s, (m){w} (see
Lemma 1 on page 16). Condition (iii) implies theamagerm' does not
control the workemw' . Therefore,s, (m') = N\ { w} . Similarly manager

m' immediately controls some workex" and some managem'',
s, (M") =N\ {w,w'}, etc. So, the consecutive hierarchy looks like the

hierarchy in Figure 32.
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Mh1
Mh3 Mh
m2 ]
ydl
Wooowoow T W W W
Figure 32. General Form of the Consecutive Hienarch

The consecutive hierarchy is shown in Figure 32y consecu-
tive hierarchy the workenss,...,w, are ordered in some way, ..., W, ,

where (i,...,in) IS some permutation of numbers (1n).,Thus, the
consecutive hierarchy has-1 managerM={my,...,m.1} (see Figure
32). The first manager immediately controls the keos w, and w; .

The second manager immediately controls the firahager and the
worker w, . The third manager immediately controls the seaoadag-

er and the workew, , etc. The top managem,, immediately controls
the Workervvin and the previous manages.,.

Consecutive hierarchies may be interpreted in iffe ways.
Consider several examples.

In a consecutive hierarchy the managers can contrajuality
of conveyorized assemblyEach manager can control quality of some
components, semi-finished or finished products. slimaplify quality
control (to decrease cost) a manager can use sasguylirevious control
stages. For example, the managgrcan inform the managen, about
results of tests of weld seams strength. Usingethesults the manager
m, can calculate strength of assembled product. Witltlvese results
the managem, must test the whole product strength and quatitytrol
cost may increase. Thus, the cost of quality céntray depend on
order of controlling operations performed by mamag®anagers in a
consecutive hierarchy controls quality of produater each stage of
assembly (after operations of each worker). Theeefoost of quality
control may depend on the permutatian. (. ,i,).
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Also a consecutive hierarchy may be interpreted as infer
mation processing graph Let's briefly describe several information
processing models.

Marschak and Radner (1972) explore the followingdehtoof
managers processing information incoming frersources. This infor-
mation may characterize the state of the firm. &ample, the sources
of this information may be interpreted as worker®iming managers
about some problems. The managers have to prockssation and
obtain common control action for the whole firmfdmmation pro-
cessing may be modeled as calculation of some imaif incoming
variables (each source is some variable). Assweeidfiinctions are
considered (one of the simplest associative funstis addition). So,
the function value does not depend on order ofutations.

In Marschak and Radner model the managers are ineghim a
tree. Each manager gets information from immed&ibordinates,
spends some time to calculate value and passegiintediate superior.
Spent time linearly depends on number of immedmibordinates
(number of incoming variables). The top managecuates the final
control action. The number of managers and totaltation time (total
delay) characterize the tree. It is necessary taimwlthe tree with opti-
mal balance between these two characteristics.ekample, we can
consider some cost function depending on delaynamcber of manag-
ers (Keren and Levhari (1989)). Also we can considere complex
case with periodically repeated information progegsin this case idle
managers may begin to process next informationrbafther managers
finish to process previous information. So, itriseresting to obtain the
minimal cost tree, which copes with processing lbfreoming infor-
mation.

Above cited models are considered in many papes, ®r in-
stance, Keren and Levhari (1983, 1989), Radner 3j199an Zandt
(1996)). Different trees are optimal depending emesal conditions.
For example, Bolton and Dewatripont (1994) prowat thptimal organi-
zational hierarchy may combine a “conveyer belgetyf structure with
such tree that only employees on adjacent tieesant directly.

Thus, it may be interesting to interpret a conseeutierarchy as
information processing graph. In a consecutive an@y (see Figure
32) the first manager processes his or her infaomathen the second
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manager processes his or her information, etc.aBany time point
only one manager processes information and otheageas are idle in
this time point.

Therefore, the consecutive hierarchy may correspeitid con-
secutive processing of information incoming fromrkeys. Total calcu-
lation time is large for such hierarchy. Howevéinformation incomes
periodically then such hierarchy may cope with pssing of frequently
incoming information.

Associativity of the calculated function leads be tfact that any
consecutive hierarchy calculates control actiorremily because the
value of the function is the same for any permatafi,i,,....in) (@any
control order). However, time or cost of processimigprmation from
various workers may differ. Thug, consecutive hierarchy with min-
imal cost may correspond with effective consecutivenformation
processing

Let's considerthe problem of searching out consecutive hierar-
chy with minimal costin many cases this problem can be solved analyt-
ically (see Section 3.5). A consecutive hierarchyétermined by the
permutation ig,...,i,) (see Figure 32). For arbitrary sectional function
n!/2 consecutive hierarchies may have different asksowever, to
obtain optimal hierarchy it is not necessary to pare costs of all these
hierarchies. Mishin and Voronin (2002b, 2003) idtroe algorithm,
which obtain minimal cost consecutive hierarchyhwitomputational
complexity 2. For arbitrary sectional function this algorithifows to
solve the problem for 30-40 workéts

In information processing models it is very inté@s to obtain
optimal hierarchy, which calculates more then ouecfion. Radner
(1992) notes that by now methods solving this groblre unknown.
Mishin and Voronin (2002b, 2003) describe algorithahich obtain
minimal cost consecutive hierarchy calculating savéunctions (see
brief description in Section 3.7).

® There exisn! different consecutive hierarchies. But the fiasid the second workers
(see Figure 32) may be permuted with no hierarasy change. Thusl/2 consecutive
hierarchies may have different cost. It is easgdostruct such sectional function that
costs of all these hierarchies differ.

8 Using personal computer in several minutes.
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Consider the sufficient condition for optimality ebnsecutive
hierarchy. It is a strong narrowing condition.Hfg condition holds then
optimal hierarchy problem can be solved analytjcal using the cited
above algorithm, which gives consecutive hieranafith minimal cost.
Let's define and explain strong narrowing condition

Definition 11. Narrowing cost function is strongly narrowing if
for any groups s $ containing two or more workers at least one of the
following conditions hold

a) for eachwlls;: ds§,s)2ds\{wW, s,) + d(s\{w) Us,{w),
b) for eachwls,: ds,s))2 s,s\{w) +ds O (s,\ {w){w}).

If the cost function is narrowing then there existstimal
2-hierarchyH (see Proposition 7). Conditions a) and b) of Dé&fini 11
allow to reconstruci into optimal consecutive hierarchy. Let's explain
this reconstruction using Figure 33.

If in 2-hierarchyH any manager immediately controls at least
one worker then this is consecutive hierarchy (Badinition 10).
Otherwise consider a managerwith two immediately subordinated
managersn, andm, (see Figure 33a)). If there exist several managfers
this type then consider the manager on lowest@ier managensy and
m, immediately control at least one worker. In Fig88a) managem,
immediately controls workew/' and employee/ . Managenm, imme-
diately controls workew” and employee/” .

Strong narrowing condition (see Definition 11) alkto recon-
struct hierarchy shown in Figure 33a) with no costrease. Let
si=s4(My) and s,=s4(,) be the groups controlled by managexsand
m, respectively. Then employe€ controls groups\ {w} and em-

ployeeVv’ controls groups,\ {w'} .%°

6 Condition (i) of Proposition 1 leads to the fakat all employees control different
groups of workers. Therefore, employge can not control workew' because other-
wise employeey’ and managemy control the same groups. Thus;, (v') =s,\ {w'}.
Similarly s, (V") = s,\ {w'} .
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a)

Figure 33. 2-hierarchy Resubordination for
Strongly Narrowing Cost Function

If for groupss; ands, condition a) of Definition 11 holds then the
hierarchy can be reconstructed into the hierartioyve in Figure 33b).
So, we can hire managekr and immediately subordinate manager
and employee/’ to managems. After that we can immediately subor-
dinate workerw/ and managems to managem. Before the reconstruc-
tion manager’sn cost equals(s;,s,) (the left-hand member of inequali-
ty a) of Definition 11). After the reconstructiohet sum of managers’
ms and m costs equalsds\{w}, s,) +c((s\{w}) Os, {w}) (the

right-hand member of inequality a) of Definition)1Dther managers’
costs do not change.

Thus, condition a) of Definition 11 allows to immatdly subor-
dinate workerw' to the managem with no hierarchy cost increase.
Similarly if condition b) of Definition 11 holds &m we can immediate-
ly subordinate workerw” to the managem with no hierarchy cost
increase (see Figure 33c)).

Proposition 9. If sectional cost function is strongly narrowing
then there exists optimal consecutive hierarchy

Proposition 9 can be proven using the describedrealvecon-
structions of optimal 2-hierarchy (this hierarchyisés because of
Proposition 7) till optimal consecutive hierarclyconstructed.

Proposition 9 leads to the fact that if for narrowing cost func-
tion inequality of Definition 11 hold then it is erough to obtain
consecutive hierarchy with minimal cost to solve dpmal hierarchy
problem. As cited above consecutive hierarchy with minimadt can
be found analytically (see examples in Section 8t5)sing algorithms.
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The class of strongly narrowing functions is ldsmtthe class of
narrowing functions. However, many cost functiome atrongly nar-
rowing (see examples in Section 3.5).

sectional

narrowing

narrowing

group-monotonic

Figure 34. Interrelationship between Classes oLi@#donotonic,
Strongly Narrowing, Narrowing and Widening Cost Etions

By definition the set of strongly narrowing funci® is
embedded into the set of narrowing functions. EXampf Section 3.5
show that there exist narrowing functions, whicle awot strongly
narrowing. In extreme cases a sectional functiog beboth strongly
narrowing and widening. Moreover, strongly narragvifunction may
be either group-monotonic or not. Interrelationshgiween classes of
group-monotonic, strongly narrowing, narrowing awgdening cost
functions is shown in Figure 34.

In the following section we consider several exaspf section-
al cost functions and obtain optimal hierarchiesgisheoretical meth-
ods of Sections 3.2, 3.3 and 3.4.

3.5. Examples of Cost Function for Different Types of Ieraction
Suppose for each workew[ N some worker’s complexity
L1 (W)>0 (positive real number) is given. Complexity mayrrespond
with “work content” of the worker, his or her pre&onal skills, etc.
Complexity of arbitrary groumf workers sC0 N may be defined as
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total complexity of all workers is: u(s) = ZmSy(w). For example,

complexity of the group may correspond with totalotk content” of
all workers in the group. Sectional cost functioepends only on
“quantity” of administrative labor (for example,goining and monitor-
ing interactions between groups of workers corgwblby immediate
subordinates). So, manager's cost depends only roopgs;,...,S
controlled by all his or her immediate subordinaiese Section 3.1).
Let's consider several examples of such sectionat éunction that
manager’s cost depends only on complexities:

oSy, 8) =[H(8) 7+ p(s,)" —max(u(s) ... 4(s) )7, ()

oS,.18,) SLU(S)7 +...+ 1(8)° 1, (1
oSy,--08,) =[H(9)” Max(u(s)” ..u(s)") -1, (Il
As08) =[S - i), (V)
ASy0e08,) = 4(S)° I MIN(U(S)” .. 4(5,)") V)

where s=s 0...0s, is the group controlled by the manager,
H(S),...,1(s,), u(s) are complexities of corresponding groups,
a, f >0 are some positive real numbers (parameters diitietion).

Manager’s cost functions (1)-(V) depend on comgiesi (“work
content”) of employees of theséctiori (department, division or some
over business unit) controlled by the manager imately. Consider
several meaningful interpretations of cost funci@if-(V).

In different firms immediate subordinates (sectiamy be con-
trolled using different mechanisms. Thus, inte@ctibetween the
manager and his or her immediate subordinatesiértbie section) may
be organized in many ways. Below functions (I)-(M)l be interpreted
as manager’s cost for different ways of interacttbimmediate subor-
dinates inside the section. In management scigteratlre many such
ways are considered (see, for instance, DaviesthSamd Twigger
(1991), Manz and Sims (1987), Peters (1987), Oldarash Hackman
(1981), Jago and Vroom (1975)). Below we attemptdéscribe it
mathematically.

Suppose there exists aémi-leader among immediate subordi-
nates (inside the section). This semi-leader cep#shis or her tasks
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completely even with no superiors’ control (see,ifstance, Jago and
Vroom (1975)). Function (I) may correspond withstivay of interac-
tion. Manager’s cost (l) depends on complexitiegm@ups controlled
by all immediate subordinates except the semi-lealfe mean that the
immediate subordinate with maximal complexity (theximal “work
content”, professional skills, etc.) is a semi-kerad

Suppose therdoes not exist aleadel’ among manager’'s imme-
diate subordinates. Thus, the manager spends sfianes éo control
each of his or her immediate subordinates. Thegefmanager’'s cost
may depend on complexities of all groups controllsdimmediate
subordinates. Function (II) may correspond witls thiay of interaction.

Suppose there exists deadef among immediate subordinates
(inside the section). The “leader” helps to solvebpems of other
immediate subordinates (for example, using his ar éxperience or
authority). Therefore, the cost of immediate suprenf the leader
decreases (see, for instance, Jago and Vroom (L9&hction (II)
may correspond with this way of interaction. Man&geost (lll) de-
pends on complexity of the whole group controllgdte manager and
complexity of the group controlled by the leadehjsh is immediately
subordinated to the manager. Among all immediateolinates the
leader controls the group with maximal complexityr (example, the
leader may have maximal professional skills). Theater is this com-
plexity, the greater is the importance of the leadaong other immedi-
ate subordinates and the less is the cost of inateduperior. There-
fore, in function (lll) the complexity of the grougontrolled by the
manager is divided by the complexity of the grooptoolled by imme-
diately subordinated leader.

Function (IV) corresponds with cost afdividual interactions
between the manager and all his or her immediateosiinates The
cost depends on differences between complexithefjtoup controlled
by the manager and complexities of groups contlobg immediate
subordinates. Consider an example. A manageontrols grougs,(m).
In process of individual interaction with his orrimmediate subordi-
natem; the managem may informmy, about the part of the growa(m),
which is not controlled byrn,. The volume of this information may
depend on difference of complexitigs(ss(m)) and u (s4(My)). Manag-

102



Optimal Organizational Hierarchies in Firms

er's cost (IV) depends on the sum of such volunfesformation for
all immediate subordinates.

Suppose, among immediate subordinates (inside ¢tdon)
there exists an employee, that controls the gratip small complexity.
This employee may hauvdétle qualification. Other immediate subordi-
nates have greater qualification because they @ontore complex
groups. Low-qualified immediate subordinate mayéase manager’'s
cost. To control this subordinate the manager np@nd much effort.
So, manager’'s cost may increase because he orsdtigeirted from
solving more complex problems (just such problemstnbe solved by
this manager). Function (V) may correspond witls tviay of interac-
tion. Manager’s cost (V) depends on complexity led twhole group
controlled by the manager and complexity of theugraontrolled by
the low-qualified employee, which is immediatelybetdinated to the
manager. The less is the minimal qualification Wiardinated employ-
ees the greater is the cost of immediate supértmrefore, in function
(V) the complexity of the group controlled by thamager is divided by
the minimal complexity of the groups controlled ibynediately subor-
dinated employees.

So, functions (I)-(V) may correspond with managest in real
firms. Let's solve optimal hierarchy problem forefe functions. For
functions (1)-(IV) we use theoretical methods désed in Sections 3.2,
3.3 and 3.4. For function (V) we use continuousrapimation method
(see Section 3.6).

Obviously functions (1) and (Il) are group-monotorand func-
tions (I, (IV) and (V) are not group-monotonicet’'s examine nar-
rowing, widening and strong narrowing conditions fieese functions.
To examine these conditions we use the followiragjiralities:

(X +..tx) =2x'+..+x foranyx =0,...,x, 20 andy =1, (37)
(x +..+X) sx' +..+x foranyx =20,...,x, 20 andy <1. (38)

The inequalities (37) and (38) are particular caslethe Minkovski
inequality (see, for instance, Hardy, Littlewoodidtolya (1934)).
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Proposition 10 Function(l) is widening forf <1, is narrowing
for =1, is strongly narrowing for8=1 andaf =1.

To prove Proposition 10 it is enough to examinayiradities for
narrowing and widening conditions (see inequali(i@s) and (36) in
Section 3.3), inequalities for strong narrowing dition (see Definition
11 in Section 3.4).

Proposition 10 allows to obtain optimal hierarchy function (I).
If B <1 then two-tier hierarchy is optimal (see Proposit®). If S=1
then 2-tree with minimal cost is optimal (see claryl from Proposi-
tions 6 and 7). We can find this tree using alfong described in
Mishin and Voronin (2001). If#=1 and af =1 then consecutive

hierarchy with minimal cost is optimal (see Progiosi 9). Mishin and
Voronin (2003) prove that a consecutive hierarclih wnaximal com-
plex worker in the first position (see Figure 32isiminimal cost (the
order of other workers is unimportant). Figure BGstrates optimal
hierarchies for function (I).

So, for cost function (I) Propositions 7, 8 andli@wa to obtain
optimal hierarchy analytically for all cases, excpe parameter region
£ >1 and af <1. In this region optimal hierarchy problem is toaah

simplified (it is enough to obtain 2-tree with mimal cost) and there
exist algorithms solving the problem.
Line B =1 draws a distinction between narrowing and widening

regions. If £=1 then function (I) both narrowing and widening. So,

two-tier hierarchy with single manager and somee2-withn-1 man-
agers are optimal hierarchies. £ increases, then only 2-tree is opti-

mal. If £ decreases, then only two-tier hierarchy is optiribk region
L =1, a=1 shows that cost function may be both widening and
strongly narrowing.
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Figure 35. Forms of Optimal Hierarchy for Functidn

Proposition 11 Function(ll) is widening for 3 <1, is widening
on non-overlapping groups fof3 >1 and a =1, is neither widening
nor narrowing for §>1 and a <1.

To prove Proposition 11 it is enough to examinayiradities for
narrowing and widening conditions (see inequali{i@s) and (36) in
Section 3.3).

Thus, if <1 or f>1 and a =1 then for function (Il) two-tier
hierarchy is optimal (see Proposition 8 and corg)laFigure 36 illus-
trates optimal hierarchies for function (ll).

So, for cost function (II) Proposition 8 allows abtain optimal
hierarchy for all cases, except the parameter negficc1 anda <1.

In the region3 >1 and a <1 Proposition 11 implies that func-

tion (I) is neither widening, nor narrowing even aon-overlapping
groups. Therefore, for this region Proposition @ &can not help to
obtain optimal hierarchy. However, function (IlI) gsoup-monotonic.
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Thus a tree with minimal cost is optimal (see Psifian 6), we only
need to obtain such tree.

2 T T

15 tree 7]

0ar —

I I I
0 a 0.4 1 1.5 2

Figure 36. Forms of Optimal Hierarchy for Functigdin

In Section 3.6 we describe such analytical metthad allows to
obtain minimal cost tree for several cost functidisreover, for arbi-
trary sectional cost function we can obtain minincakt tree using
algorithms described in Mishin and Voronin (200D032) (see brief
description in Section 3.2). Let's illustrate algom’s result for an
example.

Consider seventy workersi£70) with equal complexity (so all
workers are identical for the cost function). Ledjsply exact algorithm
for function (Il) with parametergr = 05 and S =15. For this case the
optimal hierarchy is shown in Figure 37. The woskir the figure are
denoted by numbers.

In the optimal hierarchy workens,..., w4, are grouped in sec-
tions with four workers (four workers are subordé@thto one manager
on the second tier). Workes,,..., Wy are grouped in sections with
five workers. There are sixteen managers on thensktier. These
managers are controlled by symmetric 4-tree (4 gaisaon the third
tier and the single top manager)nif 4°= 64 then symmetric 4-tree is
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optimal. In the considered case=70 six “additional” workers are
distributed between managers on the second tidr mat modification
of managers’ subordination.

Joleleleolelele Yoo
OO OO OO ©

HOOOEOO 5606.66000

0]6]0]0)00IeI®) ®EEEO®®E®®
Figure 37. The Optimal Hierarchy for Function (II)
with a =05 and S =15

If all workers have equal complexity then in mamges optimal
hierarchy looks like symmetrietree (for example, if = 25,n= 125 or
n= 625 then symmetric 5-tree is optiffal If B equals to one then

function (ll) is widening and two-tier hierarchy dmmes optimal
(r =+0). If B increases, then 2-tree becomes optimat 2). In the

considered example 2-tree is optimal {Be 3.
Let's consider cost function (lll).

Proposition 12 Function(lll) is strongly narrowing forg =1.

To prove Proposition 12 it is enough to examineajiradities for
narrowing condition (see inequality (35) on page &8d strongly
narrowing condition (see Definition 11 on page 98).

®7 Forn=125 andch=625 the tree is obtained using heuristic algorithm
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Figure 38. Form of Optimal Hierarchy for Functidh)(

Proposition 12 allows to obtain optimal hierarcloy function
(I and B=1. In this case consecutive hierarchy with mininmadtas

optimal (see Proposition 9). Mishin and Voronin 2P prove that
consecutive hierarchy with the following propertgshminimal cost.
The complexity does not increase from the workethn second posi-
tion (see Figure 32) to the worker in the last posi Thus, to solve
optimal hierarchy problem it is enough to find twerker for the first
position. Figure 38 illustrates optimal hierarchby function (llI).

So, for cost function (Ill) ang3 =1 Proposition 9 allows to ob-

tain optimal hierarchy analytically.
For /<1 we can find the tree with minimal cost using algo-

rithms. But this tree may be non-optimal becausetion () is not
group-monotonic. By now methods to solve optima&r&ichy problem
for function (lll) and £ <1 are unknown.

Proposition 13 Function(1V) is narrowing for 5 >1.

To prove Proposition 13 it is enough to examinequadity for
narrowing condition (see inequality (35) on pagg 88
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Narrowing cost function may be not strongly narmogvi To
prove it let's consider an example. lret4 and all employees have the
same complexityu(w,) =... = u(w,) =1. Consider cost function (IV)
with parametersa =1 and S=1. If narrowing cost function (IV) is
strongly narrowing, then the consecutive hieraneftiy minimal cost is
optimal (see Proposition 9). In the example allssmutive hierarchies
have the same cogf +3” +4” (see Figure 39a)).

a) b) m
my m,
wWooow,  ow W, Wow, W, W

1 2 3 4

Figure 39. Non-Optimality of Consecutive Hierarchfer
Cost Function (IV)

2-tree is shown in Figure 39b). The cost of thee texjuals
27 + 2% + 4% Thus, the cost of the 2-tree is less than the cbs
consecutive hierarchy. Therefore, consecutive helgais not optimal.
So, in the considered example narrowing cost foncis not strongly
narrowing

Proposition 13 allows to obtain optimal hierarcloy function
(IV) and g =1. In this case 2-hierarchy with minimal cost isioat

(see Proposition 7). Figure 40 illustrates optitmakarchy for function
(V).

By now methods to solve optimal hierarchy problemféinction
(IV) and <1 are unknown. If§=1, then Proposition 7 allows to
simplify the problem (it is enough to obtain 2-fierhy with minimal
cost). By now it is unknown if 2-tree with minimabst is optimal
hierarchy or not. The tree with minimal cost may di#ained using
algorithms solving this problem for arbitrary secil function. But in
some cases for function (1V) there exists much nedfieient algorithm.
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Figure 40. Form of Optimal Hierarchy for FunctidW(

Voronin and Mishin (2003) prove that for functiob/) with
a =1 and B =1 the problem of searching out tree with minimal

cost is equivalent to the problem of construction@imal alphabetic
code This is well-known problem of discrete mathemmtidhere is
given some alphabet with symbols. The probability of each symbol
appearance is also given. It is necessary to defuwh code word
(several bits) for each symbol that any coded textld be uniquely
decipher and expectation of length of code wordlad/dse minimal (so
the expectation of coded text length would be matitoo). The work-
ers may be interpreted as symbols and worker’'s ategs may be
interpreted as probabilities of symbol appearamceany 2-hierarchy
there are two incoming edges for each manager (eadé except the
first tier). If we write zero in one edge and oneanother edge then any
path from the top manager (the top node) to thekerofcorresponding
with the symbol) defines the code word. For funet{®V) with a =1
and B =1 the cost of the 2-hierarchy equals to expectatidength of

code word. Thus, 2-tree with minimal cost corregfgomwith optimal
alphabetic code.
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Therefore, for function (IV) withe =1 and 8 =1 we can obtain

2-tree with minimal cost using Huffman algorithmeés Huffman
(1952)). Two workers with minimal complexity arebsudinated to one
manager. Then this manager is considered insteadcofubordinated
workers and the algorithm continues similarly. Aseault, we obtain
2-tree with minimal cost. Function (IV) is narrowirfsee Proposition
13). Thus, the cost of the 2-tree obtained by thgersthm is minimal
cost among all trees. Complexity of the algoritroqmads nlogn.

For a =1 and =1 the example of minimal cost tree (obtained

by Huffman algorithm) is shown in Figure 39b). hist example work-
ers have the same complexity and the number of @met equals to
the power of 2. Therefore, symmetric 2-tree hasimah cost. In this

tree immediate subordinates of any manager cognmmlps with the

same complexity. In other cases the minimal cos¢ tmay be non-
symmetric. However, in any case Huffman algorithdivitdes” the

group controlled by a manager into two subgrough tépproximately

equal” complexities. For example, in Figure 39b)nagerm controls

group N={wy,W,,Ws,Ws} with complexity 4. This complexity is “divid-
ed” into halves between managensandm, immediately subordinated
to the managam.

On the whole Section 3.5 shows that theoreticalhods de-
scribed in Sections 3.2, 3.3 and 3.4 allow to abtgitimal hierarchy
for many cost functions. However, in several cabese methods can
not help to solve optimal hierarchy problem. In thext section we
describe continuous approximation method, whiclovadl to obtain
minimal cost tree for the so called homogeneous ftrstions. Func-
tion (V) is analyzed using this method.

3.6. Continuous Approximation Method for
Searching the Tree with Minimal Cost

In Section 3.3 we show that widening and narrowfmgctions
imply optimality of two extreme hierarchies: tweiti hierarchy and
2-hierarchy. Usually in real firms there are sormgermediate” hierar-
chies with span of contro <r <+« . Therefore, to model many real
firms we have to examine neither widening nor namg cost func-
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tions. Thus, it is important to solve optimal hietay problem for this
case. In this section we describe a method of Beaymut tree with
minimal cost. If the cost function is group-mondtothen this tree is
optimal (see Proposition 6). For other functionis tis the best tree.
Bellow we use continuous approximation method t@nere cost
function (V) (see Section 3.5).

Optimal hierarchy problem is discrete optimizatipnoblem.
Therefore, it is difficult to solve it analyticallyOne possible way of
solution is to consider corresponding continuowsbfam with continu-
um set of workers. The exploration of continuousbigm of searching
out minimal cost tree for sectional cost functiomas pioneered by
Goubko (2002). In some cases after the continuoobklgm is solved
we can prove that corresponding tree minimizes &msthe original
discrete problem.

Suppose we have to obtain minimal cost tree ant foostion
c(sy,...,S) depends only on complexities of groups..,s. Thus, the
cost function is given by(u(s,).....u(s,)) (see, for example, functions
()-(V) in Section 3.5§®,

Consider onlyhomogeneousost functions satisfying the follow-
ing condition. For anyy>0 the equality c(yu(s,),...,yu(s,)) =

=g(y)e(u(s,),....u(s,)) holds, whereg() is some continuously in-

creasing function. It can be proven (Goubko (200B3t ¢(y) =y’,

wherey is homogeneity coefficientf a cost function is homogeneous,
then scale of complexity is of no importance. If meltiply all work-
ers’ complexities by the same multipligrthen costs of all hierarchies
are multiplied byy'. Therefore, scale of complexity does not affect on
optimality of hierarchies.

Let’'s define continuous problem corresponding witl discrete
problem.

Let x=p(w,) +...+ u(w,) be total complexity of workers in the

discrete problem. Suppose in the continuous prolthenset of workers
equals to the segmen=[0;X]. An individual worker is a point of this

® For any tree the groupss,...S are non-overlapping. So,

u(s O0...0s,)=u(s) +...+ u(s,) and we may suppose that functions (I)-(v) depend
only on z(s)),...,u(S) -
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segment. The top managercontrols all segment (all workers). The
segment is divided into parts among managers.., m, immediately
subordinated to the top manager. Each of the masage.., mc con-
trols some part of the segmet Thus, the segmem is divided into
smaller segments with lengths,... x>0 controlled by managers
My, ..., Mg correspondingly x;+...+x=x. The segment with lengtk;
controlled by the managean is divided into smaller segments con-
trolled by his or her immediate subordinatés,i < k. These segments
are divided again, etc. The tree infinitely “growsh the tree each
manager corresponds with a segment. The lengtheo§égment equals
to complexity of the group subordinated to the ng@nalf manager’'s
immediate subordinates control segments with lengih.. xc then
manager’s cost equat$x,,...,x). Cost of a tree equals to total cost of
all managers in the tredt is necessary to obtain infinite tree with
minimal cost

S4(m)=N=[0;1]

Si(my)=[0;y4] Si(my=(yr+...+ Yia;1]

(Mp)=(ysyatys]

Figure 41. The Top Piece of Self-Similarly Treelwit
Proportionys,...,yx andx=1

Goubko (2002) proves th&r any homogeneous cost function
there exists self-similarly treeH with minimal cost. In H each seg-
ment is divided in the same proportigy...,y,>0 regardless of hierar-
chical tier,y;+...+y,=1. The top piece of self-similarly tree is shown i
Figure 41. Controlled segments are shown insteadavfagers. Imme-
diate subordinatesy,...,m; of the managem control segments with
lengths yix,...,yix. Therefore, manager'sm cost equalsx'c(ys,...,Yu)-
Total cost of managersmy,...,m¢ equals X'c(y,....y)( Y, +...+y)).

Expression in the brackets squares for the managfetise next tier,
cubes for the manager of the next tier, etc. jrorl such expressions

are geometric series with multipliey, +...+y/ <1 (this inequality
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follows from inequality (37) on page 103 becayse...+y,=1). Thus,
the cost of self-similarly treel equals to the sum of infinitely decreas-
ing geometric series:

c(H) = Xy, Y IL=D ¥ - (39)
One of such trees minimizes cost. So, it is enaiagfind k=2 and

proportionys,...,y«x minimizing expression (39). Corresponding tree is
desired infinite tree with minimal cost.

Let's obtain tree with minimal cost for function YMn any tree
immediate subordinates of common manager controtaverlapping
groups (segments). For any non-overlapping graups.,sc equality
M(s, O...0s,) =u(s)+...+ u(s,) holds. Therefore, function (V) is
given by:

CU(S) - M(S)) = (|(s) +...+ ((S))" I min(s,)” ..., u(s)) . (40)
Expression (40) implies that function (V) is hompgeus. Homogenei-
ty coefficienty equalsa — 8. Thus, we can minimize the cost (39) and

obtain infinite tree with minimal cost.

Proposition 14 Let r. denote one of two integer numbers closest
to the value ¢=((o—1)/8)"“*™. For continuous problem with cost
function (V) and o—$>1 symmetric +-tree minimizes cost. In this tree
any manager has exactly immediate subordinates controlling groups
with equal complexity.

In the proof of Proposition 14 we show that fordtian (V) val-
uesy;=...=y,=1/k minimize expression (39). So, symmetric tree mini-
mizes cost. Thus, it is enough to fikdninimizing expression (39). The
minimum point re=((o—1)/8)***™® may be non-integer value. There-
fore, r- is maximal integer less than or equalrgoor r- is minimal
integer greater than or equalrgto definer. it is enough to substitute
these two values in expressions (39) and (40)).

For function (V) witha—3>1 Proposition 14 solves the continu-
ous problem. Consider corresponding discrete proligh number of

workersn=r,) (nis some power af.) and the same workers’ complexi-
ties p(w,)=...=u(w,)=1/n. In this case top tiers of the infinite
symmetricrs-tree are just discrete tree controlling workers...,w,
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(these workers correspond with the fiet). And cost of this part of the
infinite tree equals to cost of discrete tree. Efae, forn=r,) and

workers with the same complexity symmetria--tree minimizes cost
for the discrete problenf®. Thus, in this case we solve the discrete
problem using continuous approximation method. $tletion may be
shown using the diagram.

In Figure 42 the ling=0—1 is shown. The region below this line
is divided into regions with the same In each of these regions optimal
span of control does not change. In the top righion symmetric 2-tree
minimizes cos?P. In the region below symmetric 3-tree minimizestco
In the next region symmetric 4-tree minimizes cest, If parameters
tend to the point (1;0) then grows infinitely (forr-<10 in the figure
regions are denoted by numbersk Ihcreases then in Figure 42 curves
exponentially decrease. In Figure 42 2-tree ante@-are shown. In
these trees the group controlled by a manager iigsd&tl” into sub-
groups with the same complexity among manager ' srslitates. Trees
for morer. may be shown similarly.

2
0.8 7

0.6
0.4 -

0.2 -

0.0 ) | 1 1 | 1 1 | | I
1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 44

Figure 42. Minimal Cost Trees for Function (V)

89 Otherwise we can reduce the cost of the infiniée using the discrete tree with less
cost to construct toptiers of the infinite tree.
0 Also this tree minimizes cost for sufficiently dro, § in any linep=b(a—1), O<b<1.
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Paramete3 may be interpreted as degree of unfavorable influ-
ence of little qualification. I3 tends to zero then we can subordinate
low-qualified employees (controlling groups withWlacomplexity) to
the manager with no his or her cost sufficientigréase (see expression
(40)). Therefore, if tends to zero then optimal span of contkdiends
to +o. Thus, for sufficiently smalp two-tier hierarchy with single
manager minimizes cost (0 then function (V) is widening and two-
tier hierarchy is optimal for any number of worRers

There exists the limit of the valug (see Proposition 14) by pa-
rameters tending to the critical liflsa—1. This limit equals %*. So,
parameter regions with fixed “reach” the critical line.

For special cost function Qian (1994) also considee problem
of searching out minimal cost tree. If real numbeimmediate subor-
dinates are possible, then Qian (1994) proves dipdmal span of
control equalse (each manager hasimmediate subordinates). This
result coincides with the result for function (V)ithv o=2 andp=1
(limr, =€"# =e).

Figure 42 shows that for any= 2 there exists such region of pa-
rameterso andp that symmetria-tree has minimal cost. In many real
firms span of control ranges from several immed®ibordinates to
hundreds immediate subordinates (Mintzberg (1979f)e values
2<r < +o0 may be interesting to model such firms.

The method described in this section allows to iobtieee with
minimal cost analytically for neither widening noarrowing homoge-
neous cost functions. If such cost function is grawonotonic, then the
obtained tree is optimal.

3.7. Optimal Hierarchy Controlling Several Groups of Workers

Definition 1 implies that in any hierarchy therdsts the manag-
er controlling all workers. Proposition 1 impligsat there exists opti-
mal hierarchy with single manager controlling ater employees. So,
there exists the single top manager with authanigyr all employees.

Definition 1 is quite reasonable if a hierarchy masntrol all
workers’ interactions. But the following more complproblem may be
considered too. Suppose there is some technologgamfds production
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(for example, there is some technological netwogkveen the work-
ers). Not all workers but only some of them maydouce each good
according to the technology. So, for thth good there exists some
group of workerss who produce this good. In some cases there is no
need for one manager controlling all workers. Todpice thé-th good
it is enough to control all interactions in the gps. Therefore, manag-
ers must control interactions in some given gra4ps ,S.

Consider the following example. We have to prodivee goods.
Workersw; andw, supply all firm by raw materials. Workeng andwg
sell all produced goods. Workeng andw, produce the first good. And
workers ws and ws produce the second good. Suppose there are no
interactions between workers producing differeraidgo To supply raw
materials, produce and sell the first good it icassary to control
interactions inside the groug={wi,W,,WsW4,W-,Wg}. Similarly to
supply raw materials, produce and sell the secamdi gt is necessary
to control interactions inside the grosys{ Wi, W, Ws,Ws,W-,Wg}.

my m,

Mg my

W, W3 W, ws Wg Wg
Figure 43. An Example of Hlerarchy Controlllng
Two Groups of Workers

If there is no need for one manager controllingwadrkers then
the hierarchy in Figure 43 controls production wbtgoods. In the
hierarchy the head of the supply department (manageand the head
of the sales department (managaj take part in both goods produc-
tion. These managers are immediately subordinatedahagersy, and
m,, who control all employees taking part in the atpf the first and
the second goods respectivaty. andm, immediately control workers
producing corresponding goods. Thus, we can consiue following
formal definition.

Definition 12. A directed graphH =(N O M,E) with a set of
subordination edge& O (N O M) xM is called the hierarchy control-
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ling given groups of workers,s..,s if H is acyclic, any manager has at
least one subordinated employee and for each gfaup g,...,5there
exists a manager controlling this group in ket Q(s,,...,s) be the set

of all such hierarchies

Managers’ costs and costs of hierarchies from tl s
Q(s,,...,S) may be defined using a sectional cost functioe 3efini-

tion 7 on page 79) just as costs of hierarchies ftioe setQ(N). So,

we can consider the problem of searching out sgptienal hierarchy,
which has minimal cost among all hierarchies fr@ts,,...,s)

If a hierarchy must contain a manager controllitignarkers,
then Definition 12 may be interpreted too. In tbése we can add the
group s..=N to the groupss,....5. Then any hierarchy from
Q(s,,...,5,S,,) satisfies all conditions of Definition 1 (the haechy

contains the manager controlling all workelsg).this case managers
controlling groups s;,...,5 may correspond with heads of some
sections(departments, divisions, etcthat must be organized

In the example considered above (see Figure 48aytbe neces-
sary that in any hierarchy there are managers ading all employees
taking part in the output of each of goods and ke#dhe supply and
sales departments. Thus, in any hierarchy thest exanagers control-
ling the following groups: S1={ Wi, Wo, Wa, Wy, W7,Wg},
So={ Wi, Wo, Wi, We,W7,We}, Ss={Wi,Wo}, S={W;,Wg}. In this case we can
consider a set of hierarchi€}(s ,...,s,) or a setQ(s,...,s,,N) —ifa

hierarchy must contain a manager controlling altkeos.
m m

WW2W3WWW6W7W8
Figure 44. Two-Tier Hierarchy Controlling
Two Groups of Workers

Set Q(s,,...,s) is too large regardless of the fact that Defimitio
12 applies restrictions. Therefore, it is very idifft to find optimal

118



Optimal Organizational Hierarchies in Firms

hierarchy using enumerative technique. So, it isessary to develop
methods, which under some restrictions help tockeaut an optimal
hierarchy controlling given grouss,...,S.

Also a hierarchy controlling grougss,...,5 may be interpreted in
the following way. In Section 3.4 we briefly dedmi information
processing model (Marschak and Radner (1972)). Sofeemation
incomes fromn sources corresponding with workers. The managers
have to process information and obtain common obuattion for the
whole firm (have to calculate some function). As@sative function is
considered (for example, addition). So, the functi@mlue does not
depend on order of calculations. In all known medhk calculation of
singe function depending on all n sources (varghbkeconsidered (see,
for instance, Keren and Levhari (1983, 1989), Radi®93), Van
Zandt (1996)). But in real firm it may be necessargalculate several
control actions (several functions depending ofediht parts of varia-
bles). For example, let the grogp correspond with some workshop.
Then managers have to gather information from wesrkd the work-
shop and calculate some control action for the sluoks; only. Simi-
larly it is necessary to calculate control actiémsworkshopss,,...,s.
Only a hierarchy controlling groups,...,s calculates all control ac-
tions. Optimal hierarchy minimizes calculation cd®f now methods of
searching out optimal hierarchy calculating sevédualctions are un-
known (Radner (1992)). Therefore, even such metlfadgery special
cases may be interesting.

If groupss,,...,s are non-overlapping then the problem of search-
ing out optimal hierarchy controlling groupgs...,5 decomposes tb
independent optimal hierarchy problems. Managergraoling groups
s ands for i # j have no common subordinates because in this case

groups s and § have common workers. So, a hierarchy from set
Q(s,,...,s) decomposes td independent hierarchies from sets
Q(s),..,Q(s) . In this case it is enough to obtaioptimal hierarchies

controlling one group. So, the problem is completedduced to the
problem considered above.

If groupss,,...,s overlap, then the problem is much more compli-
cated. For example, in Figure 43 managersand m, control groups
SI={ Wq,Wo,Wa,Wg,W7, W}  and  S;={wq,Wo,W5,Ws,W7,Wg}  respectively.
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Groups overlaps=s, n's, ={w,,w,,w,,w,} . We can hire a manager
controlling the groups=s, n's, and immediately subordinate him or

her to managersy andm,. Or we can hire managers controlling parts
of the groups and immediately subordinate them to managerandm,
(for example, managers; andmy in Figure 43). Managensy andm,
may control subordinated group independently (uséudpordinated
managers or immediately, see Figure 44). Also #te(Xs,,s,) con-

tains many other hierarchies. So, when we constiiuet hierarchy
controlling single groups; we must keep in mind that some managers
may be used to construct the hierarchy controltimg groups; if it
decreases the cost of total hierarchy. For arlyitgaoupss,,...,5 inter-
section structure may be too complex. Therefore,toblem is very
complicated. Managers controlling the subgroupssafi ... n' 5 may

be subordinated to dlimanagers controlling grougs...,s. Similarly it
is necessary to analyze every intersection of grosip,,...,s (general-
ly there are 2-1 such intersections).

However, regardless of problem’s complexity somsults de-
scribed above can be generalized for the problenseafrching out
optimal hierarchy controlling several groups.

Proposition 15 If sectional cost function is narrowing then there
exists optimal 2-hierarchyd 0 Q(s,,...,s) controlling groups s...,S.

Proposition 15 can be proven in the same way aggoonding
proposition for hierarchies controlling one groged Proposition 7 on
page 89). To prove the proposition we can recoastn optimal hier-
archy in the following way. If any managerhas three or more imme-
diate subordinateg,,...,v, then we can hire new immediately subordi-
nated managem’' controlling two or more employees from,... V.
After that managem immediately controls other employees from
vy,...,Vk and managem’. Narrowing cost function implies that such
reconstruction does not increase cost. Therefdre, reconstructed
hierarchy is optimal.

For several groups we can similarly reconstrucinagthierarchy
because we only hire new managers and do not eimimanagers
(these managers may be necessary for several topgers controlling
different groups). Converse proposition (two-tiéerarchy is optimal
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for widening cost function, see Proposition 8) risdrrect for several
groups. For example, consider Figure 43 and widpoost function. If
workersw; andw, are immediately subordinated to managgr then
manager’'sm, cost is less than total cost of managexsand ms in
Figure 43. But managers is necessary for both manager and man-
agerm,. Therefore, elimination of managex can increase the cost of
the hierarchy even for widening cost function.

For narrowing cost functions Proposition 15 sintifthe prob-
lem of searching out optimal hierarchy controllsgyeral given groups.
In this case it is enough to consider only hiermghvith each manager
having two immediate subordinates. Strong narrowiogdition (see
Definition 11 on page 98) allows to simplify theoptem even more.

Proposition 16 If sectional cost function is strongly narrowing
then there exists optimal consecutive hierar¢ty] Q(s,...,5) con-

trolling groups g,....S.

Proposition 16 can be proven in the same way aggoonding
proposition for hierarchies controlling one grosed Proposition 9 on
page 99). The proof is based on reconstructions mgt elimination of
managers (only new managers are hired). Theretfeeeyroof of Propo-
sition 9 is correct for several groups.

For strongly narrowing cost function Proposition ifrgplies that
consecutive hierarchy with minimal cost is optirh@rarchy control-
ling several groups of workers. Thus, it is enodghconsider only
hierarchies with each manager having one immegiagebordinated
worker and other immediately subordinated employee.

Mishin and Voronin (2002b, 2003) introducdgorithm of
searching out minimal cost consecutive hierarchy earolling sever-
al given groups of workers For arbitrary sectional function the com-
plexity of the algorithm grows liken2'3'. Thus, complexity grows
exponentially by number of workers and by number of groupls
Testing of the algorithm shows that average conifyleg lower for
small n andl: the algorithm solves the problem forandl less than
10-207* Usually the number of groupsis not large (for example,
usually the number of workshops, that must be drgah is less than

1 Using personal computer in several minutes.
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10). The restriction by is much more important because large firm
may contain hundreds or thousands workers. Congidgicular case
with sufficiently decreased complexity of the aligfom.

Suppose all workers are identical. Thus, we comsidle cost

function given by expression(\sl sk\). So, manager’s cost depends

only on the span of contr&land on the numbelfsl sk\ of workers

in the groups controlled by immediate subordingbes not on individ-
ual workers in these groups!). For example, fumdiql)-(V) (see

Section 3.5) are given bxzz(\sl sk\) if complexities of all workers

are identical. This case is important because ofterkers may be
considered as identical from the point of view @nagers’ costs. For
identical workers Mishin and Voronin (2002b, 20@®yoduce modifi-
cation of the algorithm of searching out minimalsca@onsecutive
hierarchy controlling several groups of workerseTdomplexity of the
modification depends only on number of groligdoes not depend on
number of worker®). The complexity of the modified algorithm grows
like 2?*3'. For identical workers the modified algorithm dhgathe
minimal cost consecutive hierarchy if the numbergodupsl is less
than 10-20 regardless of the number of workers

If the cost function is strongly narrowing then algrithms ob-
tain optimal hierarchy controlling several given groups of workers

On the whole Chapter 3 shows that it is possiblexglain sec-
tional cost functions analytically. Regardless lo¢ fact that optimal
hierarchy problem is too complicated, in some céisesssolved (opti-
mal hierarchy type is obtained). The methods sgl¥ire problem may
be used for wide classes of sectional functionsusTtproblems of
different fields of application may be solved usthg same theoretical
methods. Therefore, we can mathematically explagralchies in many
firms.

122



Optimal Organizational Hierarchies in Firms

Brief Summary and Concluding Remarks

The study of hierarchies helps to solve variousctpral man-
agement problems in firms. In management scieteratiire numerous
papers focus their attention on organizationaldnigiies. By now too
many empiric facts are gathered. These facts allewo make different
hypotheses about relationships between the typgheobptimal hierar-
chy and the kind of business, parameters of enwiem, the size of the
firm, the “age” of the firm, etc. (see, for instandintzberg (1979)).
Therefore, it is important to construct mathematioadels, which are
able to examine and systematize these facts armthsges.

In some papers optimal hierarchy problem is sofegatly with
construction of control mechanisms. To obtain tbrit®n of such a
joint problem it is necessary to introduce certadsumptions (e.g. any
hierarchy is a tree, only employees on adjacert tiey interact direct-
ly, employees on one tier are identical, etc.)this paper we dispense
these stringent assumptions, but we do not congdatrol mecha-
nisms. The proposed approach allows to constrecthitoretical meth-
ods and to solve optimal hierarchy problem for enparatively general
framework. These methods can be used to solve meshlems that
have numerous applications in economics. Partigtilave model
various effects occurring in real firms: relatioipghbetween the type of
the optimal hierarchy and environment instabilgtandardization, the
intensity of technological flows, horizontal andtieal integration, etc.

So, one can model many empirical relationshipsgusigctional
cost function& introduced in this paper. Moreover, the classeatisn-
al functions can be analyzed analytically and thenaal hierarchy can
be found in several cases. Therefore, the sectmstlfunction appears
to be a useful compromise between detailed degmmipf the real firms
and possibility of mathematical modeling. Thustlier development of
the methods of the optimal hierarchy search foticeal cost functions
seems perspective, among the following other gérdiractions of
future research.

1. Mechanism design. It is important to construwitml mecha-
nisms that minimize total wage of employees, whégaals to the cost

2 Manager's cost depends only on sets of workergrathed by employees immediately
subordinated to the manager.
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of the optimal hierarchy (this is minimal possildest). Particularly,
appropriate incentive mechanisms can be useful.

Mishin (2004a) constructs such mechanism in a cetaghfor-
mation framework. This mechanizm provides mininathk wage by
compensating the managers’ costs. For the casacofmiplete infor-
mation it is necessary to take the “worst cased icnsideration. For
example, it may be necessary to compensate maxatadl cost of all
managers (this maximal cost depends on informati@ilable for some
metacenter, for instance, the owner of the firmpwver, in some
cases excess incentives provide stability witheesto cost increase. If
managers’ cost increase, then a manager can regsgube subordinat-
ed part of the hierarchy with no assistance (aettpense of manager’s
own resources). It allows to “adapt” the firm te tbost modifications.
Moreover upper tiers are the most stable (see Mig004a)).

2. Dynamical models of the optimal hierarchy. Partars of the
cost function, the number of workers, certain woskeinteraction
schemes (e.g. technological network) can change tivite. Therefore,
the initially optimal hierarchy can later becomenraptimal. However,
the reconstruction of the hierarchy is associatél large cost. So, in
dynamical models one has to compromise the totstl aoall managers
and the reconstruction cost. Thus, in the dynammuadel the hierarchy
with little reconstruction cost may be optimal evénotal managers’
cost is not minimal. Mishin (2002b) introduces atmigeon the set of
hierarchies. This metric is one of possible wayddfine mathematical-
ly the reconstruction (restructuring) cost. Usihig tmetric it is possible
to model the restructuring effects numerically (Mis(2002a, 2003a),
Mishin and Voronin (2002a)). However, analyticalthuls for solving
the dynamical problem of the optimal hierarchy am&nown so far.

Ideally the development of mathematical models khbelp to
construct effective organizational hierarchies éalrfirms. In modern
economy this problem is very important. We hope théaper will be
useful for its solution.
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Appendix (mathematical proofs)

Proof of Lemma 1 v is subordinated ton. So, any worker
wlls, (v) is subordinated ton because the path from to v can be

extended up to the path fromto m. That iswOs, (m). Therefore,

s, (v) Os, (m).
If wOs, (m) then there exists the path framto m. This path
contains the nodg for somels< j<k as {,m),..., (wm) are the only

edges incoming to m So, wOs,(v)). Therefore,
sy(M Os,(v)O...0s,(v,) - sy(v;)Os,(m) asy is subordinated to
m for eachl< j<k. Thus, the equalitys, (m)=s,(v,) O...05s,(Vv,)
holds.m

Proof of Lemma 2 Let H be a tree. Assume
s, (v) ns,(v,)20 for some managen and two of his or her imme-

diate subordinatesv; and v,. Then there exists a worker
wis, (v,) n s, (v,). The workemw is subordinated to the employegs

and v,. So, there are two different paths framto m (the first path
contains the node; and the second path contains the nedleThese
paths diverge at some nod@é&IN [0 M . Thus, the employeehas more
than one immediate superior. It contradicts Dafnit2. Thus, in the
treeH any manager’s immediate subordinates control nemlapping
groups of workers.

Let's prove converse proposition using the methbéhduction
by number of workers. Let any manager’s immediate subordinates
control non-overlapping groups of workers in therarchyH. Letm be
the manager without superiors. By conditions ofrteam is the only
manager without superiors.

When n =\N\ =1 all managers control the same group containing
single worker. If some employee has two immediatpesors then
there exist two different paths from this employeem. These paths
converge at some manager. So, this manager haisniwediate subor-
dinates controlling the same group. It contradibts condition above.
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Therefore, each employee bnot has the single immediate superior.
Thus, the hierarchi is a tree.
Suppose the converse proposition is true for eact for some

number|>2. Let [N|=1. The equalitys;(m)=N holds because there

exists manager controlling all workers and all ngra are subordinat-
ed tom. If m has single immediate subordinate thenm' controls the
groupN too. The managem may have single immediate subordinate
too. So, we can construct such path with singleosiibation down to
the managersn” having two or more immediate subordinatgs.. vy,
k>2.

The equalitys, (v)) n s, (v,) =0 is true for each # j . Moreo-
ver, Lemma 1 leads to the fact that the equality
N=s,(v)O...0s,(v,) holds. So|s, (v,) <|N|=I for eachl<i<Kk.

Let H; be the subgraph of the hierardHyconsisting ofv; and all his or
her subordinates. Lat' be an employee of the hierarcHyand v"' be
an employee of the hierarchi for somei # j. ThenV #Vv" andV' is

not subordinated te" in H (otherwises, (v)) Os, (v') Os, (v,), but it

is impossible becauss, (V') Os,(v;) and s, (v)ns,(v;)=0). So,
the graphsHg,...,H have no common nodes and no edges from one
graph to another. Ih; single employe®; has no superiors. Therefore,
induction hypothesis leads to the fact thitis a tree controlling the
workers from the group(Vv;) andy; is the root of this tree.

With the exception ofn" and his or her superiors each employee
v of the hierarchyH is an employee of the hierarchy for some
1<i<k becauser is subordinated ton and m". So, the hierarchy
consists ok independent trees and there exist edges fromoibts of
these trees ton" . AndH can contain the path fromn" to m with single
subordination. Thug{ is a tree and the lemma is provan.

Proof of Lemma 3 Consider the set of two workers subordinat-
ed to the managen: {w, w'} O0's,, (m).

Let {w,w'} Os,(v,) for somel< j<k. Then the workersv
and w" are subordinated t§. So, the flow f (W',w") is not part of the
internal flow controlled by the manager

126



Optimal Organizational Hierarchies in Firms

Let{w,w'} Os,(v,) for eachl< j<k. Supposes andw" are
controlled by some subordinatem' of the manager m
{w,w'}Os,(m)). Then m is not immediately subordinated to the
managem. Therefore,m' is subordinated t®; for somej (the path
from m' to m contains one of the immediate subordinates ofithrag-
erm). Lemma 1 implies thatw, w'} O's, (m) Os, (v,) . It contradicts
the above assumption. So, both and w" are controlled by none of
the subordinates of the managerThen the flow f (w',w") is part of
the internal flow controlled by the manager

Thus, the sum Z f (w',w") contains the internal flows of
{ wwiDs (m),
{ W W}Osy (v)) s Beex 1< j<k

the managem and only such flowsa

Proof of Lemma 4 Lemma 1 implies that
s,(m)=s,(v)0...0s,(v,). We can remove the growp(v) from

this equality with no modification of the groupy(my) because
sy (v) Os,(v;). Thus, the external flowF“(m) does not change. In

the expression for the internal flow" (m) (see Lemma 3) the flows
for all {w,w}Os,(m), {w,w}Os,(Vv),..{w,w}0Os,(v,) are
summarized. The condition{w',w'} O's,(v,) is sufficient for
{w,w? Os,(m). So, if we remove the groug(vi) (the condition

{w,w" Os,(v,) is removed) then the internal flo®" (m) does not
change. The flow of the managaralso does not change. Therefore, the
equality ds, (v,),...,S, (v)) = ds, (v,),....s,(v,)) holds. Thus, the
inequality in the lemma statement holds. In thadamdel the inequal-
ity holds as equality. In other cases the inequatihy hold strictlys

Proof of Proposition 1 Let two employees; andv, control the
same groups, (v,) =s, (v,) in the hierarchyH,. Acyclicity of the
hierarchy implies that the employeedoes not control the employege
or vice versa. Suppose does not control,. Then consider the imme-
diate superiom, of the employee.,. If v, is immediately subordinated
to my then the edgev4,m;) can be removed with no hierarchy cost

127



Mishin, 2005

increase (see Lemma 4).\f is not immediately subordinated b
then the edgev{,m;) can be replaced to the edgerty). The equality
Sy, () =s,, (v,) implies that the cost of the manager does not

change. So, the cost of total hierarchy also da¢schange. Thus, in
both cases the edge,(m) can be removed. Similarly, we can remove
all edges outcoming fromp. After that the employe® has no superiors
and the employee, can be removed with no hierarchy cost incr€ase
If in the obtained hierarchy some employees corttiel same group
then we can repeat the removal described abovallfFiwe obtain the
hierarchyH' with employees controlling differing groups. Thasndi-
tion (i) holds forH'. The cost ofH' is less than or equal to the cost of
Hi: c(H')<c(H,).

If some managem, in the hierarchyH' has no superiors and
controls the grougs,. (m,) # N then this manager can be removed with

no hierarchy cost increase. We can repeat suchvanms a result, we
obtain the hierarchyH". In H" any manager without superiors con-
trols the groupN. Definition 1 and condition (if imply that there is the
single such managen in the hierarchyH" .” At least one edge out-
comes from any node # m in the hierarchyH" . Acyclicity implies
that we can construct the path frerto m. So, all employees are subor-
dinated tom. Thus, conditions (i) and (ii) hold for the hiechy H" .
The cost of the hierarchid” is less than or equal to the costldf.
So, the cost ofH" is less than or equal to the cost Hif:
c(H")<c(H,).

Let the employees; andv, be immediately subordinated to the
common managems in the hierarchyH"” and the employees; be
subordinated to the employeg Then s, .(v;) 0s,.(v,) (see Lemma
1). Lemma 4 implies that the edge, (™) can be removed with no
hierarchy cost increase. After removal the employdeas at least one
immediate superior becauggds subordinated tw,. We can repeat such

73 Definition 1 is fulfilled because the maximal gpM is controlled by some manager
(if v, controls the groupl in the hierarchyd, thenv; controls this group too).

"4 We have removed some managers without violaticsongition (i).

S We cannot remove this manager because in thisefieition 1 is violated and the
graph is not hierarchy controlling the set of waoske.
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removal. As a result, we obtain the hieraréhyin which condition (iii)
holds. The modifications described above do nonghagroups con-
trolled by the managers. The manageis the only manager without
superiors. Thus, conditions (i), (ii) and (iii) klofor the hierarchyH,.
Moreover, the cost of the hierarchig is less than or equal to the cost
of H". So, the cost oH, is less than or equal to the cost Hf:
c(H,) sc(H,).

Described above reconstructions do not increasentingber of
immediate subordinates of any manageH;lfs ar-hierarchy them, is
r-hierarchy too and conditions (i), (ii) and (iiiphal.

By definition conditions (ii) and (iii) hold for antree’® Let H;
be a tree.

Suppose there exists a managarwith the single immediate
subordinatev. So, the equalitys, (v) =s, (m,) holds. Consider two

cases.

1. If my has the immediate superiog then from condition (iii)
we find thatv is not subordinated immediatelyns. Therefore, we can
resubordinate the employaeimmediately to the managens and re-
move the managan, with no change the groups controlled by other
managers.

2. If the managemy has no superiors then he or she can be re-
moved also. After this removal only the employebas no superiors.
Any other employee has exactly one immediate saperi

In both cases the obtained hierarchy is a tree Pedmition 2).
And the cost of this tree is less than or equah&ocost ofH;. We can
repeat such removal. As a result, we obtain theHgewith each man-
ager having at least two immediate subordinategebieer, the cost of
the treeH; is less than or equal to the costHyt c(H,) <c(H,). So,
we have to prove only condition (i) fét.

Consider the managen, which has no superiors in the tride
The managem controls the groupl and hask =2 immediately subor-

8 Any tree has single manager without superiors.chcyy implies that there exists a
path from any other employee to this manager. Botteer employees are subordinated

to this manager. If one immediate subordinate of some manager controls other
immediate subordinat¥'' then V' has two or more immediate superiors. It contradict
Definition 2.
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dinated employeess,....vi. Lemma 2 implies that these employees
control non-overlapping groups. Therefore, any sdinate ofv, and
any subordinate of; cannot control each other for any j. And any
subordinate ofy, and any subordinate of cannot control the same
group. So, there afeindependent subtrees with the roets..,vx and
we have to prove that condition (i) holds in theabtrees. Each of the
employeesy, ...,V controls less group than the grolpcontrolled by
the managem. Thus, we can use the method of induction by the of
the group, controlled by the root of the tree (bglagy with the proof
of Lemma 2).

Therefore, conditions (i), (ii) and (iii) hold fdine treeH,.

The reconstructions described above do not incréssaumber
of immediate subordinates of any managertifis r-tree thenH, is
r-tree too and conditions (i), (ii) and (iii) hoid.

Proof of Proposition 2 Consider hierarchy
H=(M ON,E)OQ(N). Let M={my,...,m;} be the set of managers of
this hierarchy. Letx =F,"(m)+F(m) be the sum of internal and
external flows of the managst, 1<i<q. Letx be the sum of all flows
inside the technological network and flows betwdélem network and
environmentxzzmw,)DN fw,w)+>  fww,,). Any flow inside
the network is controlled by one or more managerthée hierarchy.

Top manager participates in control of all flowdvieen the network
and environment. So, the inequality+... + x, > x holds.

There is single managen in two-tier hierarchy. The sum of in-
ternal and external flows of the manageequalsx. So, the cost of two-
tier hierarchy equals@(x). Cost of the hierarchyH equals

p(x)+...+9(x,). The function ¢()) subadditivity implies that the
following inequality holds:

P +P(%) ...+ P(X,)2P(X +3,) +P06) +...+P(X,) 2. 2P(% +...+X,).
The inequalityx, +...+ X, 2x and non-decrease of the functigr)

imply that the following inequality holds:
P(x)+P(x) +...+P(x,) 2 (%)
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So, the cost of two-tier hierarchy is less tharegual to cost of
any other hierarchy. Thus, two-tier hierarchy i§ropl.m

Proof of Lemma 5 By definition of concave function for each
z,z,0R, and each yO[01] the inequality
oz, + A-Yz)2 (7)) + L-y)¢(z,) holds. Let's prove that the
inequality ¢(x+ y) < ¢(X) + ¢(y) holds for eachx, yOR, . It is obvious
for x=y=0. Let’s define the valueg=0, z=x+y>0. Consider the follow-
ing values ofy: y/(x+y) and x/(x+Yy). So, the following inequali-
ties hold:

P(X)2pOQ)y/(x+y)+d(x+ y)X/(x+y);

P(y) 29 (OQ)x/(x+y) +p(x+ y)yl/(x+Yy).
Let's add these inequalitiegt(x) + @(y) =@ Q) + (X +y) 2 @(X+ V).
Thus, for one-dimensional flows concave cost fuorctig(l) is
subadditivem

Proof of Proposition 3 Consider a set of managers
M={m,...,mg} controlling all flows inside symmetric procesadi with
minimal total costs. Managers from $étcan immediately control the
workers or can be organized in more complex midti$tructure. But
we do not suppose that managerMiare organized in hierarchy. Let
be the number of internal flows controlled by themagem, 1<i<q.
Let|; be the number of external flows of the managegim participates
in these flows control). Then the internal flowtbé managem equals

F™(m) =4k and external flow equal& ®‘(m) = Al,. So, the cost of

the managem equalsg@((k +1,)A). Total costs of all managers M
equal g((k, +1)A) +...+ o((k, +1,)4).

Let's prove that any manages participates in control of two or
more external flows. Lety, N be the worker with minimum number

subordinated to the managsy. Then the flowf(wi.q,Wi) (Or f(Wen,W1)

for k=1) is external for the manages. Similarly we can consider
manager'sm subordinated worker with maximum number. So, the
inequalityl, =2 holds.
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Considern-1 flows f(w_,w)=A for each2<i<n. Each

flow controlled by one or more managers,...,m,. Thus, the flow
f(w_,w)=A is internal for one or more managers. So, theuabty

k +...+k, =2n-1 holds. Moreovek <n-1.
Let's construct the treéd =(NOM',E') in the following way.

At the beginning there are no managers. In anydesd worker must
be immediately subordinated to exactly one manalget's hire the
managerm, and immediately subordinate tm k;+1 workers with

minimal numbers: 1,2,.k;+1. So, s, (m]) :{wl,...,wklﬂ} . The manag-
er m and each of the workens, ,,,...,w, must be immediately subor-

dinated to exactly one manager. Thus, after hiaghghanagerm, we
have n-k, non-subordinated employees. Let’s hire the manager
and immediately subordinat®, andk, workersw, ,,,...,W, ., to m.

So, after hiring of managem, we haven -k, —k, non-subordinated

employees. Let's repeat similar hire and subor@natin the end we
can obtain the following two results:
1. In case ofk +...+k,=n-1 g'=q managers are hired. The

U

managerm,._,

and k. non-subordinated workeng,

etk +270

W, are
immediately subordinated to the managgr.

2. In case ofk +...+k, >n-1 g's g managers are hired. The
manager m,, and no more thank, non-subordinated workers
W . uk, s20--» W, are immediately subordinated to the managgr

In both cases the managet, controls all workers. So, the tree

H OQ(N) is constructed. By construction each managét tontrols

the group of consecutive workers in the process. li@onsider the
managerm’ for somel<i<q'. Letv,,...,; be all immediate subordi-

nates ofm . Lemma 2 implies that the employees..,v; control non-

overlapping groups. Lemma 1 implies that the etyali
Sy (M) =s,(v,)0...0s,(v,) holds. So, the pars, (m/) of the pro-

cess line controlled byn is divided into partss, (v,),...,s,(v;) con-
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trolled byvs,...,v;. Thus, the managen’ controls j -1 internal flows

and participates in control of two external flow&e cost of the man-
ager m equalsg((j +1)A). The managem controls no more than

k. +1 immediate subordinates. Therefore, the cost ofntheagerm

is less than or equal w((k, +2)A) . So, the following inequality holds:
c(H) < g((k, +2)A) +...+ p((k, +2)A) < §((k;, +1,)A) +...+ d((K, +1)A).
There are no more thap managers in the treld. Non-negativity of
#(0) implies that additional items do not decrease.copfk, +2)A) is
the upper bound of the manag®} cost. So, the first inequality holds.
Non-decrease of([) andl, =2 proof the second inequality.

So, the constructed tré¢ has no more managers than theMet
and the cost of a managerHhis less than or equal to the cost of corre-
sponding manager M. Thus, the cost dfl is less than or equal to total
costs of any managers which control all flows irssmmetric process
line.

Let ¢([) be a convex function. Lét' be the number of immedi-
ate subordinates of the manager, 1<i<q'. If there exist two man-
agers with the difference of their immediate subwates numbers
greater than 1 then for sonie<i, j < -1 the inequalityk/ +1<Kk;

holds. In the described above tree constructioncare hire managers

U U

mj,...,m; in any order with no cost change. At the beginrafighe

tree construction we can hire the managerwith k! immediate sub-
ordinates. After that we can hire the managerwith k; immediate

subordinates. All other managers can be hired y @der. So, the
numbersk; ',...,kq.' are permuted in the new tree. Thus, in the new tre

(after the permutation) the inequaliky'+1< k', holds. By construction
of the tree the managen, has immediately subordinated works; .,
near by the grougs, (m) . Then we can resubordinate,,, immediate-

ly to the managem, instead of the managen),. After that each man-

ager still controls the group of consecutive woskier the process line.
After the resubordination only managers; and m, costs have been
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changed. The managen, has k; +1 immediate subordinates. The
managerm, hask;, —1 immediate subordinates. Follow we prove that

the resubordination cannot cause increasing ofréeecost. So, we can
repeat similar resubordinations. In obtained treertumbers of imme-
diate subordinates of the managens and m, are equal or differ by
one. The described above modifications reduce digpe of the num-
bers klkq Thus, we can repeat modifications. In obtaineg the

numbers of immediate subordinates of all managersqual or differ
by one. The cost of obtained tree is less thanqoaleto the cost of
initial tree.

To prove the proposition we only have to prove thatinequali-
ty @k, +2)A) + gk A) < @g((k; +DA) + ¢((k;, +1)A) holds. Let's
define the following valuesz, =k; +1, z, =k, +1. By definition of
convex function for eaclz,,z, R, and eachy1[01] the inequality
¢z, + A-Y)2,)A) < W(z2A) + 1~ y)$(z,1) holds.

Let's define the following valuesy,=(z,-z -1)/(z,-2z),
¥, =1(z,-z). Then 0<y,,y, <1 and the following equalities hold:
ntv,=1, yz+Q-y)z,=z+1, y,zz+Q-y,)z,=z,-1. Let's
substitutey,,y, in the above inequality:

(2. +DA) < 1 (24) + A= y)P(2,4),
(2. —DA) < y,#(24) + A= ,)P(2A) -
Let's add these inequalities:
(2. +DA) +¢((z, ~DA) < §(24) + §(2,4) .
So, the inequality ¢((k; +2)A) + g(k;A) < p((k; +DA) + @((k; +1)A)
holds.m

Proof of Proposition 4 In expression (12) the cost of the tree
depends on the valué(r) = (r +1)° /(r -1). So, we have to minimize
&(r) to minimize the tree cost. Let's calculate theiddive of the
function &(r) :

&) =la+)(r =D - (r +)“/(r -1)* =
=(r+)" " [(a-Dr —a-1/(r -1)>.
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The conditiona >1 implies that the inequality¥’'(r) <0 holds with
r<(a+1)/(e-1) and the inequality &'(r)>0 holds with
r>(@+d/l(a-1). So, r,=(a+1)/(a-1) is a single minimum point
of the functioné(r) . r is an integer number. So, the functié(r) is
minimized by one of the following integer numbeesther r_ =|_roj
(maximal integer is less than or equakgpor r, =|_r0—\ (minimal inte-
ger is greater than or equalttg). If &(r.) <é&(r,) thenr, =r_ is the
minimum point of the functiof(r) . If £(r_)=&(r,) thenr, =r, is the
minimum point of the functiorf(r) .

Thus, the functioré(r) is minimized by the value. r- is one of
the two integer numbers nearest with+2)/(a -1 . If (a +1)/(a -1)
is an integer number then=r_=r,.

The inequalityé(r) = £(r.) holds for any integer number>1
because- is the minimum point of the functioé(r) .

Let n—1 containr, —1. LetH be any tree with each manager hav-

ing exactlyr. immediate subordinates and controlling a grougaf-
secutive workers in the process line. Expressi@) (thplies that the
number of managers i equals(n-1)/(r, —1) and the cost dfi:
(r.+D“A"(n=D/(r. —) =(n-DA"&(r.). ™*

Below we prove that the cost of an optimal hiergrishgreater than or
equal to (*) for anyn. So,H is an optimal hierarchy and the cost equals
(*) if =1 containsr, —1. Moreover Proposition 3 implies that the cost
of an optimal hierarchy is less than or equal tet€®@f any managers
which control all the flows inside symmetric prosdime. Therefore, for
anyn expression (12) with=r. is a lower bound of controlling cost.

To prove the proposition we have to prove thatdb& of an op-
timal hierarchy is greater than or equal to (*) &oryn. The power cost
function is convex because af >1. Convexity and Proposition 3

imply that there exists an optimal tre¢ . Numbers of immediate
subordinates of all managers i are equal or differ by one. Moreo-
ver, in H™ each manager controls the group of consecutivéevsiin
the process line. Letn,...,m, be all managers oH". Theng;>0

managers have immediate subordinates amgd managers havet+1
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immediate subordinates, whergq,, ¢, are integer numbers such that
2<r n, 1*+0=q, 2<r <n. Conditions (9) implies that the following
equality hold:

(r-Dg+q, =n-1. (**)
Thus,g=(n-2)/(r -1 —q,/(r -1 . Expression (11) implies that costs
of q. managers equalg,(r +1)“A%, costs of g, managers equal
0,(r +2)“ A7 . Therefore, the following equalities hold:
C(H') =[a(r +)7 +0,(r +2) 14" =[(a=0,)(r +D7 +q,(r +2) 711" =
_yh-1_rq,
‘[(ﬁ r-1
=[(n=D&(r) +a,((r +2)7 —r(r +)% /(r ~1))]A".
If (r+2)7-r(r+)“/(r -1 =0 thené&(r) = &(r.) proofs the inequality
c(H") = (n-1)A7&(r,) . So, the cost of optimal hierarchy is greater than
or equal to (*) for any.
We have to consider the cage+2)” —r(r +1)“/(r -2) <O0.
Let’s obtain lower bound far(H") using the following upper bound for
gz Equality (**) implies that the equalityy, =n-1-(r —1)g holds.
The maximum ofn-1-(r —-1)g corresponds with the minimum.
Taking into accountq=(q, we can writeq, <n-1-(r -1q,. Thus,
0, < (n-1)/r . Let’s substitute this upper bounddgH"):

T +D +a,(r +2) 714" =

c(H) 2[(n-1)¢(r) +nr_1((Ir +2)" —r(r+D7/(r A =

=[(n=0)¢(r) =(n=D¢(r) +(n=D(r +2)/r]A” = (n-1¢(r +NA".

The inequality&(r +1) = £(r.) holds because, is the minimum
point of the function &() for all integers r=1. Thus,
c(H)=(n-1)A"&(r.). So, the cost of an optimal hierarchy is greater
than or equal to (*) for any. m

Proof of Proposition 5. Consider an optimal hierarchy
H=(NOM,E)OQ(N) controlling process lines with functional

links. In compliance with Section 2.6 (see costction (26) on page
63) inH any product flow is controlled by divisional maeagr strate-
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gic manager controlling interactions between depants. Any func-
tional flow is controlled by functional manager strategic manager
controlling interactions between divisions.

Suppose at least in one process Na¢he flow f(wij,wij 1) is not
controlled by divisional manager. Then this flowcantrolled by the
strategic manager controlling interactions betwdepartmentg and
j*+1. So, the departmenjtandj+1 are organized iAl and some strategic
manager controls all product flows between thespadments. Let
jul2,--., ], be all such indexegs ny is a number of indexgswith flow

f(wij,Wij+1) not controlled by any divisional manager at lemstone
process lineN;, 0<n <n-1. If n,=0 then all flows are controlled by

divisional managers. Ih;=n—1 then for eachl< j<n-1 the flow

f(wij,Wij+1) is not controlled by divisional manager at leiasbne pro-
cess lineN,. Let's estimate costs of functional, strategic andsional
managers in the hierarcl

1. Suppose>0. If indexes)y,jo,-. are consecutive numbers

.
then there are;+1 or more departments kh If not then there are more
thann;+1 departments il (up to 2y). Thus, the hierarchid contains
at leastn;+1 departments. Each department controls the fmatiline
with | workers and flow intensity . Expression (21) implies thabsts

of functional managers are greater than or equath® following value
X =N +D(1 D@ +cy)(r. +D“ /(r. -1).
If n;=0 then the lower bounx] is not used below.
2. If n;>0 then item 1 leads to the fact that there ateastn;+1
departments in the hierarcihy. If indexesjy,j,,..., j, are consecutive

numbers then department chiefs are linked in lirih ywroduct flow
intensity 1A. These flows (department interactions) are coletoby
strategic managers. Expression (25) implies thatnimimal costs of
strategic managers controlling interactions betwdepartments are
equal to the following value:

X, =N (1) +cg)(r. +D/(r. —1).
If indexesjy,ja,--., jnl are inconsecutive numbers then all set of indexes

can be divided into sets of consecutive indexes. K.e.. k be the
numbers of indexes in each Set...+k=n;. The first set corresponds
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with k;+1 department. Therefore, in the expressipthe numben, is
replaced byk;. For the second set the numipelis replaced b,, etc.
Total costs for all sets equal 1. Thus,x, is the minimal costs of
strategic managers controlling interactions betwedgpartments If
n,=0 thenx,=0 is a lower bound too.

3. If ni<n—1 then in each process line there are at leaktn;
product flows controlled by divisional managers.thiese flows are
consecutive then the divisional managers cont®bptrt of process line
with at leasth—1-n; product flows inside the part. So, the part corgai
at leastn—n; workers. Each of process lines contains such part. The
flow intensity equalst . Expression (19) implies that costs of divisional
managers are greater than or equal to the followathge:

X =I(n=n =DA" +c5)(r. +D7 /(r. —1).
If described above flows are not consecutive these flows can be
divided into sets of consecutive flows. Lat... .k be the numbers of
flows in each setg+...+k= n—1-n,. The first set corresponds with the
part of process line witk;+1 workers. Therefore, in the expressian
the numbem—-n, -1 is replaced bk;. For the second set the number
n—n—1 is replaced big, etc. Total costs for all sets equakioThus,x;
is the minimal costs of divisional managelt nj=n-1 thenx;=0 is a
lower bound too.

Similar reasoning is true for functional flows. Isetrepeat it
briefly. Suppose at least in one functional Ikethe flowf(wi;,wi. 1)) is
not controlled by the functional manager. Then flosv is controlled
by the strategic manager controlling interactioeswieen divisions
andi+1. So, the divisionsandi+1 are organized inl and some strate-
gic manager controls all functional flows betwekese divisions. Ldf
be the number of indexeswith flow f(wi;,wi.1;) not controlled by any
functional manager at least in one functional INg§ 0<I, <I-1.
Let's estimate costs of divisional, strategic andctional managers in
the hierarchyH.

1. Supposé;>0. The hierarchyd contains at leadt+1 divisions.
Each division controls the process line witlworkers and flow intensi-
ty A. Expression (19) implies thatosts of divisional managers are
greater than or equal to the following value
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Y, =, +D(n-D(A* +cy)(r. +D“/(r. -1).
If 1,=0 then the lower boung is not used below.

2. If ;>0 then item 1 leads to the fact that there aleastl;+1
divisions in the hierarchyd. Division chiefs are linked in line with
functional flow intensity nd. Expression (23) implies thatosts of
strategic managers controlling interactions betwedivisions are
greater than or equal to the following value

Y, =1,((N)7 +c5 )(r. +D /(r. —1).
If 1,=0 theny,=0 is a lower bound too.

3. If I1<l-1 then in each functional line there are at ldéast;
functional flows controlled by functional managelfsthese flows are
consecutive then the functional managers contlpdut of functional
line with at leasti—1-; functional flows inside the part. So, the part
contains at leadtd,; workers. Each oh functional lines contains such
part. The flow intensity equal8. Expression (21) implies thabsts of
functional managers are greater than or equal te fbllowing value

Y, =n(l =1, =@ +c5 )(r. +D7/(r. -1).
If described above flows are not consecutive thencan repeat the
reasoning described above for the valudf 1,=1-1 theny;=0 is a lower
bound too.

Therefore, in the hierarchi total strategic managers costs is
greater than or equal te+y,. And we have two lower boundts andys
for costs of functional managers and two lower latsy and x; for
costs of divisional managers. Thus, the followingqgualities hold:

C(H)2x, + X3 +y, +y; andco(H) 2 x, + X, +y, +y,. (¥

The lower boundc(H)=x, +x,+y, +y, can be used only in case
n;>0 andl;>0. To prove the proposition it is enough to prthat one of
lower bounds (*) is greater than or equal to thetoaf divisional,
functional or matrix hierarchy. Expressions (228) (29) imply that
the following equalities hold:

C(H guisionar) =[I(N=D(A" +¢g) + (I =1((n6)" +cg)I(r. +17 /(r. =1,

C(H unciona) = [N =1)(7 + ) + (N =D)((IA)* +c5)I(r. +D*/(r. -1),

C(H ) =[N =A™ +c7) +n(l =)(87 +cg)I(r. +)7 /(r. -1).
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Below the multiplier (r. +1)“ /(r. -1) is omitted because this

multiplier is in all expressions and is of no im@mrce. We consider
sequentially the cases with matrix, divisional, dmdictional hierarchy
cost minimizing. The lower bound(H) =2 x, +x, +y, +y, from (*)
will be used.

1. Suppose the inequalitiesc(H

C(H ras) < C(H
(@) +cy)=2n(@” +c;) and ((1A)7 +¢c;) =1(A" +c;) hold too. The
inequality x, + X, +y, +y, =2c(H,..,) IS given by:
n((A)* +cg) +1(n=n, =D(A" +c7) +1,(NO)* +c5) +
+n(l =1, -1(@ +c;) 2 1(n—-D(A” +c;) +n(l =1 +cy).
To prove the inequality it is enough to substitatéhe first member the
expressiong(nd)’ +c;) =n(@° +c;) and ((I4)7 +¢g) =1(A +¢7) .
2. Suppose the inequalitiesc(H,,,,,) < c(H and
Cc(H, i) 2 c(H hold. Thus, the following inequalities
(N +c5)=n(@” +c;) and (A7 +c;) = ((1)° +¢c;) hold too. The
inequality X, + X, + Y, + Y, = C(H ;,.ciona) 1S 9iVEN bY:
n((A)* +cg) +1(n—n, =D(A* +¢7) +1,((NO)7 +¢5) +
+n(l =1, -D(@" +c;)=n(l -)(87 +c;) +(n=-D((1A)* +c5).
To prove the inequality it is enough to substitatéhe first member the
expressiong(nd)’ +c;) =n(@° +c;) andl(A” +c;) = ((14)7 +¢3) .
3. Suppose the inequalitiesc(H,,,.)=c(H and
C(H i) S c(H hold. Thus, the following inequalities
n@’ +c;)=((n@)” +c;) and ((IA)* +c;)=21(A" +¢;) hold too. The
inequality X, + X; + Y, *+ Y5 2 C(H j0na) IS given by:
n,((4)° +c5) +I(n=n, DA +¢7) +1, ()" +¢7) +
+n(l =1, -D@° +c5) = I(N-D)(A* +c;) + (1 —D((nB)” +cy).
To prove the inequality it is enough to substitnt¢éhe first member the
expression(@” +c;) = ((n6)” +c;) and ((IA)7 +¢cy) =2 1(A7 +¢3) .

matrix) < C(H and
hold. Thus, the following inequalities

divisional )

functional)

divisional )

functional)

divisional )

functional)
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We have to consider only the casgH ..) > c(H ) and
) > C(H (,ciona) - SO, the following inequalities hold below:

n(@” +c5) >((NO)* +cg), 1(A" +¢5) > (1) +c5) (7).

divisional

c(H

matrix

1. Consider the cas&(H ,, 0na) < C(H

a) The lower boundc(H) = x, +x, +y, +y, from (*) will be
used. The inequality, + X, + Y, + Y, 2 ¢(H 4 50na) 1S 0iven by:

n((A)* +cg) +1(n—n, =D(A* +c7) +1,((NO)7 +¢5) +

+n(l =1, -D(@° +c;) = I(n-D(A" +c;) +( —D((nH)” +c5).
Let’'s group the first item on the right with thecead item on the left,
and the second item on the right with the thirchiten the left:
n (A7 +¢g) +n(l =1, =D(E" +c5) 21(A" +c)n, + (1 -1, ~D(("O)" + ;).
Let's group the first item on the right with thest item on the left, and
the second item on the left with the second itentherright:

(I =1, =D[n(@" +c5) —((nG)" +c)]2n,[I(A" +c) = ((A)" +c7)].

The inequalityc(H ,,cona) < C(H ) leads to:

I(n=D)(A" +cj) + (I ~D((nE)" +cj) sn(l ~1)(87 +¢;) +

+(n=D(1)* +c5).
So, we can evaluate the lower bound of the exmeseisquare brack-
ets in the left-hand member of the inequality. Toweer bound is given
by (n=)[1(A" +c;)—((A)" +¢c5)]/(1 -1). Let’'s substitute the lower
bound in the inequality:
(-,-D(n-D=( -Dn,.

The expression in the square brackets is positee (**)). So, this
expression is cancelled. Thus, if the inequality
(I-1,-9/(1-1) 2n,/(n=-1) holds thenc(H) = c(H ,,sona) -

b) Consider the casg -1, -1 /(I -2) <n, /(n-1) . If n,=0 orl,;=0
then this condition is violated becauke<| -1 and n, <n-1. There-
fore, in the concerned casg®>0 and |,>0. So, the lower bound
c(H)=x +x,+y, +y, from (*) can be used.

The inequalityx, +x, +y, +y, = c(H ) is given by:

functional) '

functional

divisional
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(n +D( =D +cj) +n ((1A)7 +cg) + (I, +D(n=1)(A7 +¢5) +
+1,((n6)" +cg) 2 I(N=D(A" +c5) + (I ~1((nO)" +c).
Let’s group the first item on the right with therthitem on the left, and
the second item on the right with the fourth itemtloe left:
(n +D( =" +c7) +n((11)" +¢j) 2

2 (1 =1, =D(n=-D(A" +¢5) +((nO)* +c7)].

The inequalityc(H o) < ¢(H ) leads to:
I(N=D(A" +¢5) + (I =D((NB)" +¢5) sn(l =D(F° +¢c7) +
+(n=1((IA)° +c7).

We can substitute-1 instead of in the first item. So, we can evaluate

the upper bound of the expression in square bradkethe right-hand
member of the inequality. The upper bound is givgn

[(N=D(A" +c5) +((n6)" +cj)]l <
< —D@" +cg)+(n=D((IA) +cy)) /(1 -D.
Let’s substitute the upper bound in the inequality:
(n +D( =" +cj) +n,((1A)" +¢j) 2
2( -1, -D[n( -)(@" +c)+(n=D((1A)" +c)]/(I -1).
Let’s group the items:
(@7 +co)l(n +(1 =) -n(l =1, -1)] =
2 (1A +e ) -1, -D(n-D /(1 =D —n,].
We consider the cagé -1, -1)/(I -1) <n, /(n-1) . Therefore, the right-
hand member is negative. Moreover(l -1) > (I -1, -D(n-1). Let’s
addl-1 to both members:
(n+D(-D)>(1 -1, -Dn—-1+1 +1+I-1=(1 -1, -Dn+l,.
So, the left-hand member of the inequality is negative. Thus, in the
case (I -1,-1)/(1 -1) <n,/(n-1) the inequality c(H)=c(H
holds too.

functional

divisional)

2. Similarly consider the last cas€H . iona) < C(H givisional) -
a) It follows from (*) that the inequalitg(H) > x, +x, +vy, +V,
holds. The inequality, + x, +y, +y, 2 c(H ) is given by:
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n((IA)* +cg) +1(n—n =D(A” +¢j) +1,((nO)* +cj) +
+n(l =1, -1(@" +c5)=n(l -)(@° +c;) +(n-D((1A)" +cy).
Let's group the first item on the right with theufth item on the left,
and the second item on the right with the firaniten the left:
I(n=n, —D(A" +¢5) +1.(NG)" +¢c5) =n(6” +¢g)l, +(n—n, ~H((A)" +c3).
Let's group the first item on the right with thecead item on the left,
and the first item on the left with the second itemthe right:

(n=n, =D (A" +¢5) = (A +c§)] 2 L@ +¢7) = ()" +c5)].
The inequalityc(H ,.iona) < C(H visionar) 1€2S tO:
n(l =% +¢7) +(n=((A)" +c7) s I(n=D(A” +¢c7) +
+(I =D((n)* +cy).

So, we can evaluate the lower bound of the exprasgni square brack-
ets in the left-hand member of the inequality. Tdwer bound is given

by (I -1)[n(@” +c;)—((nG)” +c;)1/(n-1). Let's substitute the lower
bound in the inequality:

(n—-n -0 -2) =(n-1)I,.
The expression in the square brackets is positee (**)). So, this
expression is cancelled. Thus, if the inequality
(n—-n, -Y/(n-1) =1,/(1 -1) holds thenc(H) = c(H ,ciona) -

b) Consider the casgn—n, -1)/(n-1) <1, /(1 =1) . If ;=0 orn,=0
then this condition is violated becausg< n-1 andl, <| -1. There-
fore, in the concerned casg®>0 and |,>0. So, the lower bound
cH)zx +x,+y,+y, from (*) can be used. The inequality
X+ X, + Y Y, 2 C(H ngiona) 1S given by:

(ny + D)1 =16 +)+n, (1A +c5)+(, +D(-D(A" +5) +
+1,((NO)7 +¢7) 2n(l =D(6” +c7) +(n=D((IA)* +c5).
Let’'s group the first item on the right with thesfi item on the left, and
the second item on the left with the second itertherright:

(I, +D(N-D(A” +c) +1,((n6)" +¢5) 2
2 (n—-n, -~ =B +c5) +((A)* +c7)].
The inequalityc(H ;,qiona) < C(H yisionar) 1S given by:
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n(l =@ +c5) +(n=-H((A)” +c5) < I(n-D(A" +¢c7) +
+(I1 =D((nG)" +c7).
We can substitute—1 instead oh in the first item. So, we can evaluate

the upper bound of the expression in square bradkeihe right-hand
member of the inequality. The upper bound is given

[(1 =D(@" +cg) +((A)7 +¢5)] <
S((N=-DA" +c5)+( —D((nO)” +c3))/(n—-1).

Let's substitute the upper bound in the inequality:

(I, +D(-D(A" +cg) +1,((NO)7 +¢5) 2

2 (n=n =D[I(n-DA" +cj) +( =D((nO)* +¢;)l/(n-1).
Let's group the items:
(A7 + el + (=D = I(n-n, -] =
2((n6)" +c)l(n—n - -H/(n-D -1].

We consider the cag@—n, —1)/(n—-1) <I, /(I -1 . Therefore, the right-
hand member is negative. Moreovg(n-1) >(n—-n, -1)( -1). Let's
addn-1 to both members:

(,+D(n-)>(n-n =Dl —-n+n +1+n-1=(n—-n -l +n,.
So, the left-hand member of the inequality is negative. Thus, in the
case (n—n -1 /(n-1) <I,/(I -1 the inequality c(H) =c(H
holds too.

functional)

Thus, in all cases the cost of the hieraréhys greater than or
equal to the cost of divisional, functional or mratinierarchy. There-
fore, the inequality c(H) = min(C(H jysona) C(H tunciona) s C(H mawix))

holds. So, divisional or functional or matrix higrly is optimal=

Proof of Lemma 6 Consider  the function
(@) =[(n“ =n)/(n-1)]"“. Conditionsa >1 and n> 2 imply that the
inequality £(a) >0 holds. Let’s find the logarithm and differentidtg
a:
alné(a)=In(n” =n)-In(n-1),
a'(a)l (@) =("Inn)/(n” —n).
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It follows from a >1 that the inequality’(a) >0 holds. Thusé(a) is
monotonously increasing by .

To prove that the valugn? - n)/(n-1)]"“ is monotonously in-
creasing by n it is enough to prove that the function
¢(n) =(n” —=n)/(n-1) is monotonously increasing loy Let’s differen-
tiate byn:

¢'(n) =[(en™ =D(n-1) - (n" —n)}/(n-D*.
We have to prove the inequality’'(n) >0 or non-negativity of the
expression in the square brackets:
(@-Dn? =(an“* -1)>0.

Left-hand member is monotonously increasingndyecause it's
derivative is positivea(a -1)n“?(n-1) >0. If n=1 then the left-hand
member equals to zero. ff= 2 the inequality holdsa

Proof of Proposition & Proposition 1 implies that there exists an
optimal hierarchyH = (N 0O M,E) 0Q(N), which satisfies conditions
(i)-(iii) (see page 24).

If each of the employees except the top manageekastly one
immediate superior theid is an optimal tree (see Definition 2 on page
16). Otherwise there exists an employwgeé N [0 M with two or more
immediate superiors. If there are several such eyepk then let's
consider the employee on the highest tier. So, eathe superiors of
the employeev except the top manager has exactly one immediate
superior.

Let v; andu; be some different immediate superiors of the em-
ployeev. Condition (ii) of Proposition 1 implies that tieenployees/,
and u; are subordinated to the top managerThus, there exists the
path fromv; to m and the path fronu; to m.”” Therefore, there exists
two different paths frorw to m. These paths diverge in common nede
and converge in other node(in m or one of subordinates of the man-
agerm). Letv—v;—...— v, andv-u;—...— u, be the parts of these

paths fromv to u. These parts have common first nageommon last
node v, =u, =u and different intermediate nodes. It follows from

7 One of these paths can contain one nosgsih or u;=m.
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choice of the node that each of the managers...,v, , has exactly

one immediate superior — the next node in the pitrs is true for the
managerdl,...,u, , too. Corresponding fragment of the hierarchy is

shown in Figure 45.

Initial hierarchyH satisfies conditions (i)-(iii) of Proposition 1.
Below we describe the reconstruction that doesnwease the cost of
the hierarchy. After each reconstruction obtainéeranchy will be
denotedH just as the initial hierarchy. All reconstructeabrarchies
satisfy condition (ii) of Proposition 1. So, all ployees are subordinat-
ed to the top manager. Therefore, different paths fromconverge and
the fragment of any reconstructed hierarchy lodkes the fragment in
Figure 45.

Figure 45. Optimal Hierarchy Reconstruction with
Group-Monotonic Cost Function

There are two possible options of hierardHyreconstruction
(Figure 45 explains these options).

a) Supposa,(V)=s4(v1).” So, the employeesandv; control the
same group of workers. Let’s remove the managelf v is not imme-
diately subordinated to the managerthen let's immediately subordi-
nate the employee to the managev, instead of the managey. After
removal the groups controlled by the managers atemodified. So,

8 In some cases reconstructed hierarchies do risfysabndition (i) of Proposition 1.
So, the equalitg,(v)=s4(v1) can hold.
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only the cost of the manages can be modified. This cost does not
increase because of group-monotony. Thus, the rautahierarchy is
optimal.

After v; removal some employees may have no superiors. Such
employee is not a worker because all workers abersiinated to the
top manager. So, aftef removal in addition to the top manager some
other managers may have no superiors. Such manzayeise removed.
The obtained graph is an optimal hierarchy. Afemoval new manag-
ers may have no superiors. These managers camiovad too, etc.
Finiteness oM implies that we obtain the optimal hierarchy wittilyo
top manager having no superiors. Thus, conditigrofi Proposition 1
holds.

b) Supposa,(v) # sy(v1). So, the manager controls wider group
then the employee s,(v) LI s4(v1). Thus,v; has at least two immediate
subordinates. Let's remove the edggij. After removal the manager
v, still has subordinates. The grosigs,(v1) controlled by the manager
v; can be changed to the new grogjpif some workers from the group

s4(v) are not controlled by the managerafter removal. Howeven;
controls workers from the groug which are not part of the group
s4(V). Thus, s Os, (s;\s) s, (v). There is exactly one edge out-
going from the nodes;. The modification of the groupi=s4(v1) can
cause the madification of the grosgFsy(v») controlled by the manager
V,. Let s, be the modified group. As described above onlykexs
from s,4(v) can be removed from the grogp So, only such workers can
be removed from the group. Thus, s, Os,, (s,\s,) Os, (V). Simi-
larly for eachi =3 n, —1 the groups=s.(v;) controlled by the manager
v; changes to the groug), s’ O's, (s \s) Os,(v).

Consider the groups, (v, ) . This group equals to the union of the
groups controlled by all the immediate subordinatethe managew,
(see Lemma 1 on page 16). Among these groups belgtoups, _,

controlled by the manager, , can be changed after the edgej

n-1
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removal’® It follows from (Sy-1 \S,0) O'sy (V) that only workers from
the groups.(v) can be removed from the groug_, . However, these
workers are the part of the gros (v, ,) . Thus, the grougs, (v, ) is

not changed. Therefore, the groups controlled leyshperiors of the
managerv, are not changed too.

So, removal of the edgev,;) can change the groups
Sy (V)84 (V,,,) only. Thus, the top manager still controls all the

workers, each manager has subordinates and thénedtgraph is
acyclic (edge removal cannot cause cycles). Thexefihe obtained
graph satisfies all conditions of Definition 1. Wetain the hierarchy.

Moreover, each employee except the top managestHaast one
immediate superior. All employees are subordinsoetthe top manager
because of acyclicity. So, the hierarchy satisfimsdition (ii) of Propo-
sition 1.

The number of employees immediately subordinatetthéoman-
agerv,; decreases by one. The number of employees subtedirio
each of the managers,...,v, does not change. However, the group

controlled by immediate subordinate of the managean be reduced,
i=2n . So, costs of managens,...,v, do not increase because of

group-monotony. Thus, the cost of total hierarchgsinot increase too.
So, the obtained hierarchy is optimal.

Both in the option a) and in the option b) we abtdie optimal
hierarchy satisfying condition (ii) of Propositidn Therefore, we can
repeat the reconstruction a) or b) while therenigmployee with two or
more immediate superiors. After each reconstructtom number of
edges decreases at least by one. Finiteness efifgeseE implies that
the reconstructions come to an end after finite bemof steps.

In the obtained optimal hierarchs only top manager has no su-
periors. Each of the other employeesHnhas exactly one immediate
superior. SoH; is an optimal tree. Proposition 1 implies thatr¢he

S Among manager'sv, immediate subordinates only__ controls the managers
1 1
V...
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exists a tredd” satisfying conditions (i)-(iii) (see page 24). Mower,
the cost oH’ is less than or equal to the costhf
Thus,H’ is an optimal tree satisfying conditions (i)-(i

Proof of Proposition 7 Consider an optimal hierarchy
HOQ(N). Let k be the maximal number of employees immediately

subordinated to common manager.ki2 then the required optimal
2-hierarchyis H. If k>2 then consider a managerwith k immediately
subordinated employees,,... k. Let s=s4(v1),....S=H(W) be the
groups controlled by the employees...,v. As the cost function is
narrowing there exist a number of employéesj < k and permutation
(iy,...,ix) satisfying inequality (35). Let’s reconstruct theerarchyH:
hire new managem;, and immediately subordinate the employees
ViV to my instead ofm, immediately subordinatey, to m (see the

example in Figure 29). Inequality (35) implies tlla¢ hierarchy cost
does not increase. Thus, the obtained hierarcbgtisal. The manager
m, hasj<k immediate subordinates. The managehas k- j +1<k

immediate subordinates. So, in the obtained hibyatbe number of
managers withk immediate subordinates decreases by one. We can
repeat such reconstruction while there exists theager withk imme-
diate subordinates. As a result, we obtain thenmtihierarchy with
maximal numberk'<k of employees immediately subordinated to
common manager. k'> 2 then we can repeat reconstructions.

As a result we obtain the optimal 2-hierardHy Proposition 1
implies that there exists 2-hierarchy satisfying conditions (i)-(iii)
(see page 24). Moreover, the cosHofis less than or equal to the cost
of H,. Thus,H’ is an optimal 2-hierarchy satisfying conditions({ii).
|

Proof of corollary (from Propositions 6 and 7). Proposition 6
implies that there exists an optimal tree becabsecbst function is
group-monotonic. In the proof of Proposition 7 ves consider this tree
as initial optimal hierarchyH. Lemma 2 (see page 17) implies that
immediate subordinates of any manager control nemlapping groups
of workers. Therefore, there are no overlappingugsoamong the
groupssy,...,S in the proof of Proposition 7. So, we can recarwtthe
hierarchy because the cost function is narrowingnon-overlapping

149



Mishin, 2005

groups. After the reconstruction (see proof of Bsifion 7) we obtain
some tree (new manager and each of other emplaypampt the top
manager have exactly one immediate superior). Assalt, we obtain
the optimal 2-tree. Similarly with the proof of Pasition 7 we can
obtain the optimal 2-tree satisfying conditions-({ii) of Proposi-
tion1.m

Proof of Proposition & Proposition 1 implies that there exists an
optimal hierarchyH O0Q(N), which satisfies conditions (i)-(iii) (see
page 24). According to condition (ii) there exigtanagem controlling
all other employees.

If mis a single manager in the hierarchy théns an optimal
two-tier hierarchy. Otherwise there exists a manageimmediately
subordinated to the manager Let vy,...,v; be all immediate subordi-
nates of the managens,. Let $,=s4(v4),...,5=S4(Vv;) be the groups con-
trolled by the employees,...,v;. As the hierarchyd satisfies condition
(i) of Proposition 1 each manager has at leastitaroediate subordi-
nates. Soj >1 and the managen has other immediate subordinates
besidesm. LetV,.s,...,i, K= 3 be all such immediate subordinates. Let
S+1=S4(Vi+ 1), ....S=SH(Vi) be the groups controlled by the employees
Vir 1y Vke

Suppose the managan has some immediate superiams be-
sidesm. So, there exist two different paths fram to m: the first path
contains only two nodasy, andm, the second path contains the manag-
er m. Besidean, the second path contains one of the managers imme-
diately subordinated ten. Thus, the second path contains one of the
employeesvs,....\. So, this employee controls the manager It
contradicts condition (iii) of Proposition 1 (immiatk subordinates of
common manager do not control each other). Thezefop managem
is the single immediate superior of the manamer

Condition (iii) of Proposition 1 implies that theage no immedi-
ate subordinates of the manageamong the employees,....v; (oth-
erwise immediate subordinat®; controls other immediate subordi-
nate). So, there are no identical employees anieng. v andvy, ... v;.
Thus, the described fragment of the hierarchy Idiiesthe fragment in
Figure 29 b).
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Inequality (36) holds for any grougs,...,S k=3, any humber
1< j<k and any permutationi,(...,i,) because the cost function is
widening. If §4,...,i)=(1,... K) then inequality (36) is given by:

ase-»S) < ds,..,8) +ds 0...08;,S,,...8,) - *

Let’s reconstruct the hierarchy: immediately sulooate the em-
ployeesv,,...,v, to the managen instead of the managaemw, and remove
the managem,. Obtained fragment of the graph looks like thefnant
in Figure 29 a). The managen controls all workers as before the
reconstruction. So, the obtained graph is a hiagarthe groups con-
trolled by other managers do not change too. Inothtained hierarchy
the cost of the mangen (first member of the inequality (*)) is less than
or equal to costs of the managensand my in the initial hierarchy
(right-hand member of inequality (*)). Thus, thetaibed hierarchy is
optimal.

The obtained hierarchy satisfies conditions (gl &) of Propo-
sition 1. But condition (iii) may be violated besgusome of the em-
ployees v;,....v; may be subordinated to some of the employees
Vie1,.- Wk Suppose the employeg is subordinated to the employee

v, ,1<j <], j+1<j,<k.Lemma 1 (see page 16) leadssto] s, .
Lemma 4 (see page 23) implies that “excess” elgem) can be

removed with no hierarchy cost increase. After remhdhe employee

v, is subordinated to the top manager but not imntelgigthrough the

employeev, ). We can repeat such removal. As a result, weirobie

optimal hierarchy satisfying conditions (i), (iiné (iii) of Proposi-
tion 1.

The obtained optimal hierarchy contains less marsatien the
initial hierarchy because the manager has been removed. We can
repeat similarly reconstructions while there are v more managers
in the hierarchy. As a result, we obtain the optitas-tier hierarchy
with the single managen. m

Proof of corollary (from Propositions 6 and 8). Proposition 6
implies that there exists an optimal tree becabsecbst function is
group-monotonic. In the proof of Proposition 8 vem consider this tree
as initial optimal hierarchyH. Lemma 2 (see page 17) implies that
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immediate subordinates of any manager control neml@pping groups
of workers. Therefore, there are no overlappingugsoamong the
groupssy,...,S in the proof of Proposition 8. So, we can recarwtthe

hierarchy because the cost function is wideningnon-overlapping
groups. After the reconstruction (see proof of Bsifion 8) we obtain
some tree (each of employees except the top mamhageexactly one
immediate superior). As a result, we obtain theénaoglt two-tier hierar-
chy.m

Proof of Proposition 9 Proposition 7 implies that there exists an
optimal 2-hierarchyH; because the cost function is narrowing. Proposi-
tion 1 implies that there exists an optimal 2-hielhg H satisfying
conditions (i)-(iii) (see page 24). Below in theopf condition (i) will
be used. So, all employees in the hierarchy cowfiftérent groups of
workers. Particularly, each manager has exactly immediate subor-
dinates.

A manager will be callethcorrectif he or she has two immedi-
ately subordinated managers. If there are no iecormanagers i
then each manager has at least one immediatelydinhted worker. In
this caseH is an optimal consecutive hierarchy. If there im@rrect
managers irH then we will decrease the number of such managers
because of reconstruction with no hierarchy casiease.

Consider an incorrect manager which controls only correct
managersm has two immediately subordinated managersand m.
Correct managem, immediately controls the workew' and the em-
ployee v' . Correct managem, immediately controls the workew”
and the employee” . Corresponding fragment of the hierarchy looks
like the fragment shown in Figure 33 a).

Let s;=s4(my) ands,=s4(m,) be the groups controlled by the man-
agersm, andm,. Condition (i) of Proposition 1 implies that theagloy-
ee v' cannot control the workew' because in this case, and V'
controls the same group. So,s,(V)=s\{w?}. Similarly
Sy (V) =s,\ {w"}.

If the groupss, ands, satisfy the condition a) of Definition 11
then we can reconstruct the hierarchy with no cogtease. Let's hire
new managems and immediately subordinate employeesandm, to
me. Let’'s immediately subordinate the worket and the managen; to
152



Optimal Organizational Hierarchies in Firms

the managem. The fragment of obtained hierarchy is shown ig-Fi
ure 33b).
New managems controls the groug(s,\ {w}) Os,. Before the

reconstruction the cost of the managerequalsc(s,,s;). After the
reconstruction manageris; cost adds to the cost of the hierarchy. But
manager’'sm cost decreases. Thus, the difference betweenadsteot
initial hierarchy and the cost of obtained hiergrclequals
as,,s,) - ds\{w}, s,)—c((s\{w}) Os, {w}) 20. So, the cost of
hierarchy does not increase. Therefore, the oldalimerarchy is opti-
mal.

If the groupss; ands, satisfies the condition b) of Definition 11
then the hierarchy can be reconstructed similahg: worker w" is
immediately subordinated to the managerThe fragment of obtained
hierarchy is shown in Figure 33c).

So, if the cost function is strongly narrowing thewe can con-
struct the optimal 2-hierarchy with correct managetn the obtained
hierarchy condition (i) of Proposition 1 may be leied because the
managemy and some other manageY may control the same group.
In this case we can immediately subordinate to m and remove the
managem:.®° The obtained hierarchy is optimal and satisfigsdition
(). The managemis correct in the obtained hierarchy.

If mgz is a correct manager (ons has been removed) then the
number of incorrect managers in obtained hierarishiess than the
number in initial hierarchyd. Suppose the obtained hierarchy contains
the incorrect managemns. m controls wider group of workers tham.
So, the new incorrect manages controls smaller group than the initial
managerm. We can repeat the reconstruction with the manager
instead ofim. The number of workers controlled by the incormenag-
ers decreases after each reconstruction. As a,resibbtain the opti-
mal hierarchy with less number of incorrect managban the initial
hierarchyH.

8 m s an only immediate superior of the managegr Thereforem; removal does not
change the groups controlled by the managers irigrarchy. So, the costs of these
managers do not change too.
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We can repeat described above reconstructions whiele exist
incorrect managers. As a result, we obtain thenwgdtihierarchyH,
without incorrect managers. The optimal hierarehys consecutive.

After Definition 10 we show that Proposition 1 rsié for con-
secutive hierarchies. So, there exists the conisecitierarchy H'
satisfying conditions (i)-(iii) of Proposition 1d4e page 24). And the
cost of the hierarchyl” is less than or equal to the cost of the hierarchy
H,. So,H" is optimal consecutive hierarchy (see Figure &2).

Proof of Proposition 1Q Consider a groups,,...,S, k=3. Let
z, andz be the left-hand member and the right-hand merobéne-
qualities (35), (36) (see Section 3.3). The ineitjeal correspond with
narrowing and widening cost functions (see Defimitd on page 87).

Supposef <1. Let's prove inequality (36) for any< j <k and

any permutation i{...,i). Inequality (36) is given by
s, S) = ds,,....s )+ ds U...0s ;s ,...s ). Let's define the

following values: x, =pu(s )",..., xj=,u(s,l)”, X' =maxy, ...,X),

X=Xt X, Yia =H(S )" Y = H(S )0 Y = H(S,)
Y =max@1,..- Y, Y=Yt HV s=s 0.0 S, - Then the left-hand
member and the right-hand member of inequality é36)given by:
z = (x+y-max(x,y"))”,
z, = (x=X)" +(u(s)" +y-max(y', 4(s)"))”.
Inequality (38) and fF<1 imply that the inequality
Z, > (x+y+u(s)” —x' —max(y', 4(s)))” holds. To prove inequality
(36) (z, 2 z)) it is enough to prove:
Xx+y-maxX,y') < x+y+u(s) —x —max(y', u(s)").
This inequality is given byx'+ max(y’, 4(s)?) < u(s)” + max(x',y') .
If y'<u(s)? then the inequality is simplifieds’ < max(x’, y') . So, the
inequality holds. If y'> u(s)” then the inequality is given by
X +y' <u(s)” +max,y'). The inequalities y' < max(x',y’) and
X' < p(s)” hold becauses=s [0...0 s, - Thus, inequality (36) holds.
So, if <1 then function (I) is widening.
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SupposefS=1. Let s, be the group with maximal complexity:

H(s)) = maxu(s,),...,1(s,)) (otherwise we can renumber the groups
S;,.--.5)- Consider the groups;, s (j=2) and the permutation
(1,2,...K). Let's prove inequality (35) which is given by:
as,...,S) = ds,s,)+ s 0s,,s,,...,S.) . The left-hand member and
the right-hand member of inequality (35) are gively:
Z, = (U(S,) +.. + p(S)7)’ 2, = H(S) ™ +(u(sy)" +...+ u(s)")”.
Inequality (37) andf =1 lead to z, > z,. Thus, inequality (35) holds.
So, if 8=1 then function (I) is narrowing.

Supposeaff=1 and [ =1. Let's prove that function (l) is

strongly narrowing (see Definition 11 on page 98}lus set of parame-
ters. Lets; ands, be any groups with two or more workers in each
group. Consider the case(s,) < ((s,). Letz andz be the left-hand

member and the right-hand member of inequalityf &edinition 11.:
z,=ds,,8,), z, = ds\{W, s,) +c((s,\{W) Os,, {W) ,
wherew is any worker from the groug. Let's define the following
values: x=u(s), y=m(s\{W), z=p({wh). So, z=x%,
z, = y¥ +z% | x=y+z. Then inequality a) of Definition 11z( > z,) is
given by (y+2)% = y? +2z%. Inequality (37) andaf =1 lead to
z,22,.
If u(s)=u(s,) then inequality b) of Definition 11 can be

proved similarly §;, ands;, replace each other).
Therefore, if 821 and af =1 then function (1) is strongly nar-

rowing.m

Proof of Proposition 11 Consider a groups,,...,S, k=3. Let
z andz be the left-hand member and the right-hand merobéne-
quality (36) (see page 88). The inequality corresisowith widening
cost function (see Definition 9).

Let's prove inequality (36) for any< j <k and any permutation

(i1,...,i). Inequality (36) is given by:
oS-, 8)<sds,...,5 ) +ds U...0s .5 ,....8).
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Let’s define the following values: s=s [U..0Us,
X=p(s ) +... + (s, ), y= ,u(s,m)” +...+ (s ). Then the left-
hand member and the right-hand member of inequéd®y are given
by: z, = (x+y)”, 2, =X +(u(s)" +y)”.

If B<1 then (38) leads ta, < x” +y” <z,. Thus, inequality
(36) holds. So, if3 <1 then function (ll) is widening.

If the groups s,....5 are non-overlapping then
H(S)=p(s)+...+u(s). If a=1 then (37) leads to

H(S) =z (s ) +...+ u(s ) =x. Thus, the inequality

z, = (x+y)? =z (inequality (36)) holds too. So, if>1 anda =1
then function (ll) is widening on non-overlappinggps.

If the groupss,,...,sc are overlapping then inequality (36) may be
violated. For example, s={w;,Wo},  S={W1,Wa},..., Sc={ Wi, Wi},
SE{Wier},  p(w) = p(w,,,) =1, p(w,) =...= u(w,) =0. Consider the
numberj=k-1 and the identity permutation (1,k)., Thenx=k-1, y=1,
H(s)” =1. The left-hand member and the right-hand membenef
quality (36) are given byz, =k” and z, =(k-1)” +2”. Inequality
(36) is given byz -z, <0 or k” —(k-1)” <2”. For any 8>1 the
left-hnand member increases wkhlif k is large enough then inequality
(36) is violated. So, if>1 and a =1 function (ll) is widening only

on non-overlapping groups.
Let’'s prove that if 5>1 and a <1 then function (Il) is neither

widening nor narrowing. Let’s prove it on non-owgbing groups.
Consider the groups s ={wWi}, S={Wa}, ..., s={wil,
Hw)=...=u(w,) =1, wherek>1 is an even number. Consider the
number j=k/2 and identity permutation (1,k), Then x=k/2, y=k/2,
H(s)” = (k/2)?. The left-hand member and the right-hand member of

inequality (36) are given by, =k”, z, = (k/2)” +((k/2)" +k/2)”.

Inequality (36) is given byz, <z or 1 E+ i+1 ’ >1. If
Y e s a 2 27k 2) T

a <1 then the left-hand member decreases Wwitlicrease. Ik is large
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enough then the value of the left-hand member lirary closely to
1/2°7 . If B>1 then1/2°" is less than 1. Thus, Kis large enough
then inequality (36) is violated. So, f>1 and a <1 then function
(1N is not widening even on the non-overlappingugrs.

Consider the  groups s={w}, S={ W}, ss={Wa},
Hw) = u(w,) =1 u(w,) =0. Let's prove that for any number
1< j <3 (i.e.j=2) and any permutation,f,iz) inequality (35) is vio-
lated. Inequality (35) is given by:

oS, 8)2ds ..., )+ ds O...0s 5 ,..8).
If the permutation equals (1,2,3) or (2,1,3) theequality (35) is given
by 27 > 27 + 2%, For all other permutations inequality (35) isegivby
27 21+ 27, Thus, there does not exist numldet j <3 and permuta-
tion (i1,i5,i3) satisfying inequality (35). So, function (Il) ot widening
even on the non-overlapping groups.

Proof of Proposition 12 Supposef =1. At first let’s prove that

function (Ill) is narrowing. Consider a grougs...,S, k= 3. Letz and
Z be the left-hand member and the right-hand mermbeanequality
(35) (see page 88). The inequality corresponds wélrowing cost
function (see Definition 9). Led; be the group with maximal complexi-
ty:  u(s) =max(s,),...,4(s,)) (otherwise we can renumber the

groupss,,...,S). Consider the groups, $; (j=2) and the permutation
(1,2,...K). Let's prove inequality (35) which is given by:

ds,.-:8) 2 dS,,8,) + 45, 05,,5,,....8,)

Let's define the valuesx= (s O...0s)7, y=u(s Os,)?,
z=u(s)”. Then z<y<x. The left-hand member and the right-hand
member of inequality (35) are given byz =(x/z-1”,

z, =(y/ z-1)* +(x/ y-1)* * Inequality (37) and8 =1 imply that the
inequality z, < (y/z—1+x/y-1)” holds. Using this estimation we can
prove inequality (35)z, < z,) with the help of proving the inequality
xlz-=1-vylz+1-x/y+1=0. This inequality is given by:

81If z=0 then z, =+ . So, the inequalityz, > z, holds. Below we suppose> 0.
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(xy+yz—y* - x3/yz=(x-y)(y-2)/ yz=0.
Thus, inequality (35) holds. So, =1 then function (lll) is narrow-
ing.
Let's prove that function (lll) is strongly narrawg (see Defini-
tion 11 on page 98). Let; ands, be any groups with two or more
workers in each group. Consider the cags,) < u(s,). Letz andz

be the left-hand member and the right-hand membareguality a) of
Definition 11:

z, = ds,;,S,), 2, = ds\ {wh s,) +o((s\ {wh) s, {w) ,
wherew is any worker from the groug. Let's define the following
values: x=u(s Us,)?, y=u((s\{w) Us,)*, z=u(s,)”. So,
zsy<x, z=(x/z=-1)”, z, =(y/z-1)” +(x/ y-1)” . The following
inequality (x/z-1)* =(y/z-1)* +(x/y-1)” was proven above.
Thus, the inequality, = z, holds.

If u(s)=u(s,) then inequality b) of Definition 11 can be

proved similarly by replacing by s, and vice versa.
Therefore, if 8 =1 then function (lll) is strongly narrowina.

Proof of Proposition 13 Supposef =1. Let's prove that func-
tion (IV) is narrowing. Consider a groups...,S, k= 3. Letz andz
be the left-hand member and the right-hand membareguality (35)
(see page 88). The inequality corresponds withomang cost function
(see Definition 9). Consider the groupss; (j=2) and the permutation
(1,2,...K). Let’s prove inequality (35) which is given by:

AS;,-8) 2 ASy,8,) + As US,,8;,.08,) -

Let's define the valuesx=u(s O...0s)", y=u(s, Os,)?,
X = U(s),...X = u(s,)”. The left-hand member and the right-hand
member of inequality (35) are given by =(kx-x —...=X.)”,
Z,=Q2y-% %)’ +(k-Dx-y-x,—..—x)”. Inequality (37) and
B =1 imply that the inequalityz, < (k-1)x+y-x, —...—%.)” holds.
The right-hand member is less than or equal teecausey < x. Thus,
inequality (35) (z, <z) holds. So, if #=1 then function (IV) is

narrowing.m
158



Optimal Organizational Hierarchies in Firms

Proof of Proposition 14 The equalityy=0— holds for function
(V). Let’s substitute expression (40) (function (M) non-overlapping
groups) in expression (39). Then the cost of itditiee is given by:

X (Y, + oty ) minCyy v vl ()

The numerator in the brackets equalsg/t (.+y,=1). To minimize the
expression it is enough to maximize the denomindtas obvious that

the expressiomin(y/,...,y’) reaches maximum wheg=...=y,=1k.
With the help of the simplest mathematical analysethods we
can prove that foy>1 the expressior(l—zi:ﬁ y/) reaches maximum

wheny,=...=y,=1k.

Thus, the symmetrik-tree minimizes cost function (V). In this
tree each manager has exadtlynmediate subordinates. These subor-
dinates control the groups with the same compleXty, we have to
find optimal k. Without the constantx’ expression (*) with
yi=...=y,=1k is given by the functiog(k):

E(K)=KY/ (1K K= K Y (K=1) =Y (kP-1).
Let’s differentiate the function byand ignore the positive multiplier:

& (=(0—LK K1) —@-p-1KP?Kk=

=k [(a-1) [P 1)—@—p-1KP]= K [ K ~(a-1)].

The sign of the derivative depends only on the sigihe expres-
sion in the brackets. The derivative equals to zeshen
k=ro=((a—1)/ B)V*. If k<r, then the derivative is negative (the cost of
the tree decreases) becauser-g—1>0. If k>ry then the derivative is
positive (the cost of the tree increases). Thyis, minimal point. Ifrg is
not an integer then one of the nearest two inteigarénimal point (the
maximal integer is less thaig or the minimal integer is greater thigh
To obtain the minimal point it is enough to comptre values o€(k)
in these two pointas
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