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Editorial 
 

In the middle of the 20th century a group of gifted scientists including 
D.Malcolm, L. Roseboom, C. Clark and W. Fazar, suggested a new method of 
project management based on network analyzing. This method which acquired 
world-wide popularity under the name PERT provided excellent application re-
sults in managing complex space- and defense-related projects “Apollo” and 
“Pollarius”. In the 60-s and 70-s, many scientists from all over the world did 
their best to further develop theoretical and application aspects of the PERT 
methodology. 

Yet, as soon as in the early 80-s the promising PERT legacy began transmit-
ting distress signals. The main problem boiled down to the growing gap between 
the latest theoretical PERT achievements, on one hand, and the rather poor level 
of practical field implementations based on insufficient and improper assump-
tions, on the other. The latter almost reduced the universal PERT method to 
merely managing models of deterministic type only. All other models of manag-
ing complex R&D projects not only including random stochastic elements and 
restrictions but also displaying stochastic structure being subject to random in-
fluences and disturbances, either disappeared from the scientists’ working table 
or became subject to fierce and often justified practitioners’ criticism. As a mat-
ter of fact, from the very first days of PERT implementations a number of vigi-
lant and emphatic scientists warned [13,101,128,142,152] the broad interna-
tional PERT community about difficulties and even principal failures originating 
from infertile attempts to implement complicated probabilistic models on the ba-
sis of primitive assumptions reducing their profound stochastic nature to a cheap 
determinate palliative. When the latter scenario was chosen, any kind of moni-
toring the project’s model became virtually impossible; as a result, the pregiven 
due date was most commonly unmet. 

Following the regarded misfortunate developments, the PERT method 
through recent years ceased to meet its primary objective, namely, providing a 
powerful on-line control method for complex stochastic network projects; in-
stead, it downgraded to a kind of advisory information system with control ac-
tions linked to managerial decisions only. The Russian delegation to the 22nd 
World Symposium of the International Project Management Association (Rome, 
2008) mentioned that every complex system being denied its scientific basement 
ceases to be creational and vibrant. Nowadays, the Russian Federation decided 
to create within its borders a science-oriented future-city Skolkovo aimed at de-
veloping pioneering high-tech projects of immense complexity and importance. 
That is why we may be nothing but proud to accommodate the Publishing House 
to issue the new scientific monograph by Golenko-Ginzburg Dimitri on monitor-
ing complex and often unique stochastic network projects. The author made an 
ambitious and at the same time successful attempt to demonstrate that it is his 
theory and that of his scientific school developed and cherished through the last 
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50 years first in the USSR and later on in Israel with fruitful links to colleagues 
and followers in the nowadays Russian Federation, that suits mostly the novel 
innovative projects developed at Skolkovo, which require modern probabilistic 
models of multi-choice and stochastically-driven nature. 

Referring to the monograph’s contents, it can be well-recognized that practi-
cally all top questions related to: 

• planning stage modeling; 
• on-line control models; 
• stochastic network project scheduling under chance constraints; 
• hierarchical control models for several stochastic network projects, 
 - have been explicitly and thoroughly outlined. All types of presented mod-

els are applicable to both types of stochastic R&D projects, namely: 
a) projects with fixed structure and random activities’ durations; 
b) projects with alternative structure and stochastic multi-variant outcomes. 
Thus, a conclusion can be drawn that the monograph represents a useful re-

search which is published in due time and within the right scientific community 
which is by all means mature to make the utmost benefits from its legacy. 

The monograph can be used as tutorial for graduate scholars specializing at 
“Project Management”, “Industrial Engineering”, “Operations Research”, as 
well as in Academic Institutions and Design Offices. 

 
Scientific Editor 
Vladimir Voropaev - Professor, SOVNET President, 
Academician of the Russian Academy of Natural Sciences 

 
 
 
 
 
 



 
 

9 

 
Preface 

 
It is important for me to share with my readership the reasons which brought 

me to the decision to write this book. Circa five decades ago a scientific group in 
the former USSR under my supervision started undertaking research in the area 
of managing stochastic network projects. In the 60’s and 70’s I was responsible 
for R&D stochastic network projecting linked to the Ministry of Aviation. After 
my immigration to Israel in 1985 the group proceeded with the research, being 
ultimately joined by gifted Israeli scholars. Today, thanks to my ongoing par-
ticipation in the major world conferences held by the International Project Man-
agement Association (IPMA), I am well-informed about the current state of 
things in my research area. The resulting picture is neither one-sided nor simple. 

It can be well-recognized that the initial period of excitement caused by the 
effectiveness of the primary network models applied to world-renowned R&D 
projects “Pollarius” and “Apollo” (1960-1970), gave way to a phase of sobering 
not to say disappointment. At that period it became clear enough to anybody in-
volved that the variety of existing projects can be subdivided into two different 
types. The first one is characterized by a very low level of indeterminacy, more-
or-less simple graph structure with a well-known, standard project’s goal. This 
type of projects comprises, e.g., construction enterprises aimed at providing 
standardized living houses in populated areas, where all activities entering the 
network projects, have practically deterministic durations. In order to monitor 
such projects one has merely to substitute the duration of a certain activity 
(when necessary) by its mean value. Thus, the network project becomes in fact 
deterministic, and can be easily managed. There is no need in on-line control, 
and the project manager is fully satisfied by receiving periodically advisory in-
formation. 

The second type of projects is characterized by high indeterminacy and is 
usually aimed at creating new unique high-technology products, which have no 
prototypes in the past. The project’s activities’ durations are random values with 
a large variance range. Projects may comprise branching nodes of random or de-
terministic types and milestones of deterministic type (decision nodes). Monitor-
ing such projects cannot be facilitated by means other than on-line control mod-
els. Representative examples of this type can be found among R&D projects, es-
pecially those linked to innovative technologies. 

Over the years run, the fate of both projects’ types was different. Non-
complicated projects nowadays are lucky to benefit from the world-wide support 
of above 350 software packages available on market, with the annual sales reve-
nue of over 25 billion dollars [158]. On the contrary, complicated R&D projects 
have very much of a feel of being left behind. 

From the beginning, in the early 80’s, an attempt was made to manage 
unique complicated projects by merely the same techniques as those which did 
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so well for the case of simple deterministic projects. This attempt, however, 
proved very soon to become a major failure. Within more than a decade this 
shortcoming has been the subject of a prolonged professional debate involving 
also sharp and sometimes emotional criticism [101,128,143, etc.]. 

In our opinion, the main reason for the nowadays situation when complicated 
projects are all usually completed late and remain, in practice, uncontrolled, 
boils down to the very fact that they are carried out under random disturbances 
(new estimates of random nature without any prior experience, random activi-
ties’ durations, periodical revisions of networks over time due to random emer-
gency situations, etc.). However, project managers usually [128] avoid probabil-
istic terms since they are not sufficiently trained. They are trying to control 
highly complicated projects with uncertainty by using deterministic techniques. 
This leads to biased estimates that underestimate the actual time required to ac-
complish the project. Therefore the targeted project’s due date can rarely be met. 

Since I am undertaking research mainly for that (second) type of projects, I 
was often asked about the reasons of such inconsistencies. The question be-
comes even more challenging in view of the well-known fact that many of our 
Japanese colleagues demonstrate over years convincing success of numerous re-
alized innovative projects with a high level of indeterminacy [141,148]. That is 
why I carefully examined the situation to compare results accumulated by our 
scientific group with those stemming from Japanese conceptions. 

As a result of this cross-over examination, it became evident that as far as our 
scientific group is concerned, our main research philosophy is not only non-
contradictive but even close to the basic Japanese conceptions of planning and 
controlling with uncertainty. Moreover, they supplement each other. 

What is the essence of the Japanese philosophy when controlling a system 
with uncertainty and being at the outset of something which is basically inde-
terminate? Many examples from high performance practice in Japan show that 
under such circumstances the control system should not work to a predetermined 
plan, but should be inherently adaptable, seeking at each decision node to assess 
the best route forward, reconfiguring if appropriate the ultimate goals. 

Note that the subproblem of determining the best route may be very difficult 
and complicated, especially for systems with a high level of indeterminacy. 
Solving this subproblem usually results in solving the general control problem. 

Further, what is our philosophy in project planning and control with indeter-
minacy? We are not predetermining the initial network model; moreover, in cer-
tain cases the structure of such a model may be indeterminate. At the initial 
stage of the project’s realization, the network may be restricted to a source node 
and several alternative sink nodes (goals) together with some milestones (a deci-
sion-tree model). Various activities are usually of random duration. Such a sto-
chastic alternative network is renewed permanently over time, including changes 
in the ultimate goals. At each decision node our techniques enable us to choose 
the optimal outcome. Decision making is repeatedly introduced for the renewed 
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network at every sequentially reached decision node. 
Thus, the modern project manager should not fear indeterminacy but on the 

contrary, has to treat the latter the way the Japanese do, i.e., as a friend and as-
sistant, and avoid excluding indeterminacy from the international Project Man-
agement community like the devil being banished from church. 

In 1996 I was appointed key speaker of the NATO workshop “Managing and 
Modeling Complex Projects” [68]. From the broad spectrum of various planning 
and control problems for stochastic network projects, within several days of dis-
cussion it was decided to choose and recommend for practical usage four mile-
stones, namely 

1. Alternative network models. 
2. On-line control models. 
3. Stochastic network project scheduling. 
4. Multilevel control models for several stochastic network projects. 
Since that forum 15 years have elapsed but little was done if at all to resolve 

the above mentioned stochastic project management contradiction. In certain 
senses, the situation even became more critical [158]. As a matter of fact, former 
PERT creators [117] have been brilliant scientists, both in mathematics, indus-
trial engineering and management. Nowadays, their majority are not with us any 
longer. New project managers have certain experience in managing industrial 
enterprises but nothing more than that! Most of them are not trained either in 
cybernetics (including the probabilistic area) or in industrial engineering. Some 
of them prefer undertaking voluntaristic decisions which are not based on any 
theoretical grounds. This leads to an extremely dangerous situation when sci-
ence is emasculated de-facto from PM. 

It can be well-recognized that in the last several years a variety of countries, 
especially those entering the BRIC group (Brasilia, Russia, India, and China), 
exercise a great effort to boost and modernize their industries. This, in turn, 
causes for the necessity to carry out ambitious innovative projects, the majority 
of them belonging to the regarded class of complicated stochastic network pro-
jects. Taking into account that since 1977, when the excellent monograph by S. 
Elmaghraby [40] has been published, not a single book on managing stochastic 
network projects has been presented to the readers, it becomes clear why I de-
cide to write this book. The general idea is to summarize all the results devel-
oped by our scientific group within five decades in order to help the innovative 
projects companies to carry out their projects on the basis of scientifically 
grounded planning, control and scheduling techniques. 

This is not a text-book but a monograph. The difference between the two 
causes me to refrain from rewriting anew classical theoretical grounds devel-
oped and presented so well like [40]; instead, I use to quote appropriate refer-
ences. 

This monograph refers not only to R&D projects but to all other complicated 
projects under random disturbances, which are innovative in nature. For exam-
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ple, the venture of constructing the Trans-Siberian pipe-line from the Arctic 
coast to China cannot be catalogued as an R&D enterprise; yet, it definitely in-
volves a great amount of sophisticated models of alternative type with branching 
outcomes. Thus, to carry out such a project successfully the manager really has 
to be experienced in stochastic network control and participate in a great amount 
of “brain-storming”. Another example may be associated with developing a 
multi-well major oil/gas field with variable well capacities, to minimize the pro-
ject’s total expenses as well as consecutive exploitation costs, etc. 

The structure of the book is as follows. We have subdivided the monograph 
into five main parts. The first part “General Concepts of Stochastic Network 
Projects” comprises the first three chapters. In Chapter 1 a brief characteristic of 
the most essential models to monitor stochastic network projects, is presented. 
In Chapters 2-3 a justification of determining the main parameters of stochastic 
network projects by means of analytical and simulation methods, as well as their 
usage in planning, controlling and scheduling, is outlined. 

The second part “On-Line Control Models for Stochastic Network Projects” 
considers the mostly used on-line control models, namely: 

• models based on sequential statistical analysis (Chapter 4), 
• models based on risk averse decision-making (Chapter 5), and 
• models based on the chance constraint principle (Chapter 6). 
The third part “Alternative Stochastic Network Models” is the core of the 

book and comprises four chapters. Chapter 7 presents the general description of 
an alternative stochastic model, Chapter 8 - the fully divisible controlled alterna-
tive activity network (CAAN), Chapter 9 - the non-divisible controlled GAAN 
model. Chapter 10 outlines a two-parametrical optimization algorithm for the 
CAAN model. 

The fourth part “Resource Constrained Project Scheduling for Stochastic 
Network Projects” comprises three chapters. Chapter 11 considers various re-
source supportability models without predetermined resource delivery schedules 
in advance, while Chapter 12 presents deterministic resource delivery schedules, 
i.e., before the project actually starts. In Chapter 13 various resource support-
ability models of mixed type, which can be used both on planning and control 
stages, are outlined. 

The fifth part “Hierarchical Models for Planning and Controlling Several 
Stochastic Network Projects” comprises four last chapters. Chapters 14-15 pre-
sent a hierarchical on-line control model for PERT-COST projects. In Chapter 
14 the planning stage models are outlined, while Chapter 15 presents local on-
line control models together with a unified three-level hierarchical model includ-
ing planning, on-line control and scheduling stages. In Chapter 16 two hierar-
chical decision-making models for a CAAN type alternative model are pre-
sented. Both cases of cost resources (a hierarchical PERT-COST model) and re-
newable resources are considered. Thus, Chapters 14-16 cover our basic results 
in creating hierarchical on-line control models as well as hierarchical support 
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models. In Chapter 17 novel harmonization models to estimate the stochastic 
network projects’ utility, are outlined. Here the concept of utility signifies the 
quality of the project’s functioning.  

 
In conclusion, I would like to thank my gifted pupils N. Archangelski, 

D.Blokh, A. Gonik, V. Kuzmin, S. Livshitz, A. Malisheva and Sh. Sitniakovski 
who helped me in preparing the book’s material. 

 
I am deeply obliged to Prof. Vladimir Voropaev for his valuable editorial as-

sistance as well as to Dr. Avner Ben-Yair for his excellent secretarial duties. 
 
I am privileged to thank my colleagues Profs. Vladimir Burkov and Sergey 

Barkalov for their great help and support in the course of compiling the mono-
graph. 
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PART  I  
 GENERAL CONCEPTS OF STOCHASTIC NETWORK 

PROJECTS 
 

Chapter 1.  A Survey of Planning, Controlling and Scheduling  
Models in R&D Innovation Projects Under Random 
Disturbances 

 
§1.1  Alternative stochastic network projects 
1.1.1  Basic stochastic network models for innovative projects 
From the broad spectrum of various planning, control and scheduling models 

for stochastic network R&D projects the following ones can be considered [68]: 
1. Alternative network projects under random disturbances with various alter-

native outcomes in key nodes. The control model chooses the optimal outcome 
direction at every decision node that is reached in the course of the project’s re-
alization. 

2. On-line control models for network projects, for which the project’s pro-
gress can be evaluated only by means of inspection in control points. The pro-
ject’s due date and the chance constraint to meet the deadline are pregiven. An 
on-line control model determines both the control points and the control actions 
to be introduced at those points to reorient the progress of the project in the de-
sired direction. 

3. Stochastic network project scheduling with several non-consumable activ-
ity related limited resources. Each activity is operated at a random speed that 
depends on the resource capacities assigned to that activity. The model deter-
mines, for each activity entering the project, both starting time values and corre-
sponding resource capacities. The model’s objective is to minimize the expected 
project duration. 

4. A multilevel control model for several stochastic network projects which 
unifies the models outlined above. 

 

1.1.2  Alternative network projects under random disturbances 
While the literature on PERT and CPM network techniques is quite vast, the  

number of publications on alternative networks remains very scanty. Various au-
thors, e.g., Eisner [37], Elmaghraby [38-40], Pritsker [131-133], Whitehouse 
[161], etc., introduced the concept of a Research and Development (R&D) pro-
ject as a complex of problems and actions towards achieving a definite goal. 
Several adequate network models for such projects have been considered. The 
first significant development in that area was the pioneering work of Eisner [37] 
in which a “decision box” with both random and deterministic alternative out-
comes was introduced. Elmaghraby [38] introduced additional logic and algebra 
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in network techniques, while Pritsker, Happ and Whitehouse [131-133,161] de-
veloped the GERT techniques for alternative network models with stochastic 
outcomes in key nodes. Xespos and Strassman [166] introduced the concept of 
the stochastic decision tree, while Crowston and Thompson [28-30] and later on 
Hasting and Mello [99] suggested the concept of multiple choices at such alter-
native nodes, when decision-making is of deterministic nature (Decision CPM 
models). Lee, Moeller and Digman [111,123] developed the VERT model that 
enables the analyst to simulate various decisions with alternative technology 
choices within the stochastic decision tree network. Golenko-Ginzburg [53-57] 
has developed a unified controlled alternative activity network (CAAN model) 
for projects with both random and deterministic alternative outcomes in key 
nodes. At each routine decision-making node, the developed algorithm singles 
out all the subnetworks (the so-called joint variants) that correspond to all possi-
ble outcomes from that node. 

Decision-making results in determining the optimal joint variant and follow-
ing the optimal direction up to the next decision-making node. However, the 
techniques thus far developed can only be applied to fully-divisible networks 
that can be subdivided into non-intersecting fragments. The CAAN model does 
not include non-fully-divisible networks. Thus, the model is not relevant to most 
R&D projects, since the latter are usually structured from non-divisible subnet-
works. Golenko-Ginzburg and Blokh [67] have developed a more universal al-
ternative network - the Generalized Alternative Activity Network (GAAN 
model). All types of the previously developed alternative network models, 
namely, Eisner’s model, GERT, Decision-CPM, VERT and CAAN networks, 
are particular cases of the GAAN model. 

 

1.1.3  The GAAN model 
Let’s take a brief overview of the GAAN model. A detailed description of the 

latter will be presented later on, in Chapter 9. 
A GAAN model is a finite, oriented, acyclic activity-on-arc network ( )ANG ,  

with the following properties: 
I. ( )ANG ,  has one source node 0n  and no less than two sink nodes 'n . 
II. Each activity ( ) Aji ∈,  refers to one of the following three different types: 

Type 1: activity ( )ji,  is a PERT activity (PA) with the logical “must fol-
low” emitter in node i  and the “and” receiver in node j ; 

Type 2: activity ( )ji,  is an alternative stochastic activity (ASA) with the 
logical “exclusive or” emitter in node i . Each ( ) Aji ∈,  of ASA 
type corresponds to a probability 10 ≤≤ ijp , while node i  com-
prises a set of at least two probabilities ijp , 1=∑

j
ijp ; 

Type 3: activity ( )ji,  is an alternative deterministic activity (ADA) with 
the logical “exclusive or” emitter in node i . Node i  is a decision-
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making node, and the sum of the corresponding transfer prob-
abilities (at least two of them) is assumed to be unity. 

III. Activities of all types may come out of the same node Bi ∈ . Thus, 
unlike the CAAN model, the GAAN model is not a fully-divisible net-
work. 

IV. Activities of all types may enter one and the same node. 
A joint variant of the GAAN model ( )ANG ,  is a subgraph (subnetwork) 
( )∗∗∗ ANG ,  satisfying the following conditions: 
1. ( )∗∗∗ ANG ,  has one source node coincident with that of graph ( )ANG , . 
2. If ( )∗∗∗ ANG ,  comprises a certain node i , i.e., ∗∈ Ni , then ( )∗∗∗ ANG ,  com-

prises all activities ( )ji,  of types PA and ASA leaving node i . 
3. If ( )∗∗∗ ANG ,  comprises a certain node i  having alternative outcomes of 

ADA type in the GAAN model ( )ANG , , then ( )∗∗∗ ANG ,  comprises only 
one activity of this type leaving that node. 

4. ( )∗∗∗ ANG ,  is the maximal subgraph satisfying conditions 1-3. 
Call a full variant of joint variant ( )∗∗∗ ANG ,  a subnetwork of PERT type 
( ) ( )∗∗∗∗∗∗∗∗∗ ⊂ ANGANG ,,  which can be extracted from the latter by simulating 

non-contradictory outcomes of ASA type in interconnected nodes and excluding 
alternative non-simulated outcomes. 

Call the probability of realizing a full variant ∗∗G  the product of all values ijp  
for all activities of ASA type entering the full variant. 

 

1.1.4  Decision making in CAAN and GAAN -type models 
To control a project, such as any production process, it is necessary to intro-

duce decision-making in order to reach the goal while optimizing a given objec-
tive (the optimized value OV ) subject to certain restrictions (the restrictive val-
ues RV ). When the objective is the project’s duration, the primary restriction is 
usually the project’s cost, and vice versa. For a project represented by a GAAN 
type model decision-making boils down to choosing the directions of the pro-
ject’s progress in controlled nodes (decision-making nodes) with alternative out-
comes of ADA type, since alternatives of ASA type are uncontrollable. Thus the 
optimization problem consists of the following steps: 
Step 1. At each decision-making node which has been reached at moment t  in 

the course of the project’s realization, 
• to determine and to single out all the joint variants from the remain-

ing project tG  at moment t ; 
• to calculate the optimized value OV  and all the restrictive values 

RV  for each variant. 
Step 2. To determine the optimal joint variant and to follow the optimal direc-

tion up to the nearest decision-making node. The problem should be 
repeatedly solved for the reduced network in every sequentially 
encountered decision-making node. 
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1.1.5  Mathematical formulation 
The mathematical formulation of the optimization problem is as follows 

[57,67]: determine the optimal joint variant ( )ANGG opt ,⊂∗  that optimizes the ob-
jective function 

( )[ ] ( )
{ }

( ) { }
{ }
∑

∗∗∗∗
⊂

∗∗∗∗∗




 ⋅=

GGG

opt GGFMaxMinGFE Pr   (1.1.1) 

subject to 
( )[ ] ( ) { }

{ }
v

GG
v

opt
v HGGQGQE ≤



 ⋅= ∑

∗∗∗ ⊂

∗∗∗∗∗ Pr ,  Vv ≤≤1 . (1.1.2) 

Here, ( )∗∗GF  is the objective function of full variant ∗∗G , { }∗∗GPr  is the prob-
ability of realizing ∗∗G , ( )∗∗GQ v  is the v -th constraint criterion, and vH  is the pre-
set restriction  level for that criterion. Note that for certain particular cases, the 
value of V  may be zero, i.e., the optimization problem is unconstrained, or the 
problem comprises only one constraint (1.1.2) without objective function 
(1.1.1). 

Since problem (1.1.1-1.1.2) is NP-complete [10,67], in order to obtain the 
optimal solution one has to develop a lookover algorithm to single out all the 
joint variants. 

The idea to enumerate the joint variants of the CAAN model [57] is based on 
introducing lexicographical order to the set of maximal paths in the CAAN 
graph. The corresponding lookover algorithm is very simple in usage [57,68]. In 
the case of a GAAN network the order on the set of paths has to be substituted 
for the order on the set of subgraphs [67]. To develop the enumeration algo-
rithm, we use the ideas to enumerate the so-called trajectories for assignment 
problems, or special matrices for traveling salesman problems [9,67]. Note that 
singling out the maximal trajectory for an assignment problem is similar to de-
termining the joint variant with the maximal objective value. Since a trajectory 
can be regarded as a vector and the latter, in turn, can be mapped onto a set of 
integer numbers, the trajectories can be enumerated. Similar ideas are used in 
developing a lookover algorithm to enumerate and single out all the joint vari-
ants [67]. 

If the number of joint variants becomes very high, the developed lookover 
algorithms (both for the CAAN and GAAN models) require much computa-
tional time, especially for networks with many alternatives. Golenko-Ginzburg, 
Blokh and Gutin suggested an approximate method which is based on the ideas 
of combinatorial optimization with two parameters [75,82]. Unfortunately, the 
developed method suits only the CAAN type network models. 

Note, in conclusion, that alternative stochastic models (ASM) may be costly 
and complicated in usage. But for modern and complex innovation projects the 
gain from implementing such models may be tremendous. 
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§1.2  On-line control models for network projects 
After determining the optimal joint variant (in the case of an alternative net-

work project) the latter is realized and controlled in order to meet the project’s 
due date on time. A joint variant may be either a PERT, or a GERT type net-
work, usually with random activity durations. For most R&D projects the pro-
gress of the project cannot be inspected and measured continuously, but only at 
preset inspection points. An on-line control has to determine both inspection 
points and control actions to be implemented at those points to alter the progress 
of the project in the desired direction. On-line control is usually carried out to 
minimize the number of inspection points needed to meet the target, since in-
specting the project’s output is usually a costly operation. In addition, on-line 
control for a stochastic network project has to be carried out subject to a chance 
constraint. Thus, the generalized on-line control model has to be formulated as 
follows [64,66,68]: determine both optimal control points gt  to inspect the pro-
ject and optimal control actions ( )gg rtCA ,  to be implemented at those control 
points ( gr  being the index of the control action), in order to minimize the number 
W  of inspection points 

{ }
WMin

gg rt ,
 (1.2.1) 

subject to 
{ } ∗≥ prt gg ,Pr , (1.2.2) 

00 =t , (1.2.3) 
DtW = , (1.2.4) 

∆≥−+ gg tt 1 . (1.2.5) 
Note that if implementing a control action ( )gg rtCA ,  results in determining the 

project’s speed 
gt

v  to proceed with until the next control point 1+gt  and if several 
alternative speeds can be chosen, then the optimal control action enables adopt-
ing the minimal speed while honoring chance constraint (1.2.2) [66,68]. 

It can be well-recognized that control model (1.2.1-1.2.5) is in fact a stochas-
tic optimization problem with a non-linear chance constraint and a random 
number of optimized variables. Such a problem is too difficult to solve in the 
general case. Thus, heuristic control algorithms have been developed [64, 66, 
68, 72] to determine the next inspection point 1+gt . Three algorithms are consid-
ered: 

A. Using sequential statistical analysis to maximize the time span 
ggg ttt −=∆ +1 . 

B. Using the methodology of a risk-averse decision-maker. 
C. Using the methodology of the chance constraint principle. 
Algorithm A [66,68] solves the on-line control problem as follows: to maxi-

mize the objective ( )gg tt −+1  subject to (1.2.3-1.2.5) and 
( ){ } ∗∗ ≥≥ ptVV gttPr ,  1: +≤≤∀ gg tttt . (1.2.6) 
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This problem can be solved by determining the maximal value ∗T  satisfying 
( )







 ≥= ∗

≤<

∗ pqtMaxT tDttg

ψ: . (1.2.7) 

Here 

( ) duex
x

u

∫
∞

−
= 2

2

2
1
π

ψ ,  
( )t

t
t HS

Hq 2= ,  ( )gttt tVVH ∗−= , (1.2.8) 

while tH  and ( )tHS 2  designate the average and variance of random value tH , 
correspondingly. In practice, ∗T  can be calculated by means of simulation with a 
constant step of length ∆ . The procedure of increasing t  step-by-step is followed 
until (1.2.7) ceases to hold. The thus determined value ∗T  satisfies 1+

∗ =+ gg tTt . 
Algorithm B is based on the concept of risk-averse decision-making [68,72]. 

Given a routine inspection point gt , the project’s output observed at that moment 

gtV  and the control action ( )gg rtCA ,  to be implemented at moment gt  up to the 
next inspection point, the problem is to determine that next point 1+gt . As for Al-
gorithm A, the objective is to maximize the time span ( )gg tt −+1 . Value 1+gt  is de-
termined so that even if the project develops most unfavorably in the interval 







+1, gg tt , i.e., with the minimal rate ( )gg rtv ,' , then introducing the most effective 

control action ( )rtCA g ,1+  at moment 1+gt  enables the project to meet its target on 
time, subject to the chance constraints. Here r  is the index of the most effective 
control action, e.g., r  is the index of the highest possible speed to be introduced. 
Value  is determined via “risk-averse” heuristics 

( )( ) ( )( ) ∗
+++ =−+−+ VtDrtvttrtvV ggggggtg 111 ,,' . (1.2.9) 

Note that the minimal rate ( )gg rtv ,'  can be substituted for a p -quantile of the 
random speed ( )gg rtv ,  when the confidence level p  is close to zero. 

Both on-line control algorithms are implemented in real time. However, on 
order to check the validity of any of them, the algorithms’ functioning can be 
simulated. The comparative efficiency of Algorithms A and B has been tested 
on various examples of medium-size PERT projects. A general conclusion can 
be drawn [68] that applying the second algorithm rather than the first results 
both in essentially smaller computational time and in cheaper project realization. 
Both methods honor the chance constraint ∗p  and can be implemented for vari-
ous control models for projects of PERT type. 

Note that the above outlined on-line control models can also be applied to 
control projects of GERT type, i.e., to network projects which comprise various 
random alternative outcomes. For such projects, a certain part of the activities 
will not be carried out in the course of the project’s realization. Golenko-
Ginzburg et al [65] recommend splitting the remaining project into two sub-
graphs at each decision-making node. The first would be a PERT graph that is 
realized before meeting the nearest random alternative node, while the second 
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subgraph is a GERT network. After the next random alternative node is reached 
and the random outcome is simulated, the procedure of subdividing the remain-
ing project is carried out anew. 

However, both models A and B do not support solving cost-optimization 
problems. This shortcoming called for the creation of the on-line control model 
C which is a cost-optimization model and based on the so-called chance con-
straint principle [73,83-84]. 

Given the average processing costs per time unit for each activity to be oper-
ated under each speed, together with the average cost of performing a single in-
spection at the chosen control point, the problem at a routine control point gt  is 
to determine the proper speed ( )kv  and the next control point 1+gt , in order to 
minimize the total processing costs within the planning horizon, subject to a 
chance constraint. At each control point, decision-making centers around the as-
sumption that there is no more than one additional control point before the due 
date. Following that assumption, two speeds ( )1kv  and ( )2kv  have to be chosen at a 
routine control point gt : 

1. Speed ( )1kv  which has to be actually introduced at point gt  up to the next 
control point 1+gt ; 

2. Speed ( )2kv  which is forecast to be implemented at control point 1+gt  up to 
the due date D . 

The couple ( ) ( )( )21 , kk vv  providing the minimal total cost expenses, has to be ac-
cepted. 

The model is particularly effective when each activity can be measured as a 
partial accomplishment of the entire planned program. 

We suggest applying control model C for small- and medium-size projects. 
In cases of large projects, we suggest aggregating the initial model order to 
transfer the latter to an equivalent one, but of medium- or small-size. After ob-
serving the project’s output at a routine control point and introducing proper 
control actions, i.e., determining the new processing speed and the next control 
point, the aggregated network is transformed back to the initial one, and the pro-
ject’s realization proceeds. 

 
§1.3  Stochastic network project scheduling with non-consumable lim-

ited resources 
Golenko-Ginzburg, Gonik and Sitniakovski have developed a variety of algo-

rithms on resource constrained project scheduling under random disturbances 
and with limited resources [68-71,74,78-80,90,93-94]. 

An activity-on-arc network project of PERT or GERT type with random ac-
tivity durations is considered. Several non-consumable activity related re-
sources, such as machines or manpower, are utilized to carry out the project. 
Each activity ( )ji,  in such a project requires resources of various types k  with 
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variable capacities ijkr . Each resource capacity ijkr  assigned to any activity is lim-
ited within pregiven bounds min

ijkr  and max
ijkr . Each type of resource k  is in limited 

supply with a resource limit kR  that is fixed at the same level throughout the 
project’s duration. It is assumed that each activity is operated at a random speed 
that depends on the resource capacities assigned to that activity. 

The problem is to determine, for each activity ( )ji,  entering the project, both 
the starting time values ijS , i.e., the timing of feeding-in resources, and the re-
source capacities ijkr  for each type of resource k  assigned to that activity. The 
problem’s goal is to minimize the expected project duration [71]. 

The problem’s mathematical formulation is as follows: 
( ){ }ijkijrS

rSGTEMin
ijkij

,
,  (1.3.1) 

subject to 
( ) ( )ANGjirrr ijkijkijk ,,maxmin ∈∀≤≤ , (1.3.2) 

( ) ( ) 0, ≥∀≤∗ ttRrStR kijkijk ,  nk ≤≤1 . (1.3.3) 
Model (1.3.1-1.3.3) is a stochastic optimization problem that cannot be 

solved analytically in the general case; the problem allows only a heuristic solu-
tion. Decision-making, i.e., determining values ijS  and ijkr , is facilitated at deci-
sion points ijF  and iT , either when one of the activities ( )ji,  is finished and addi-
tional resources become available, or when all activities ( )ji,  leaving node i  are 
ready to be processed. Thus, both values ijS  and ijkr  are not calculated before-
hand and are random variables dependent on our future decisions. If one or more 
activities ( ) ( ) ( )mm jijiji ,,...,,,, 2211 , 1≥m , are ready to be processed at a routine de-
cision point t  and all of them can be supplied by all types of available resources 
of maximal capacity, the needed resources are fed in and activities ( )qq ji , , 

mq ≤≤1 , start to be operated at moment t , i.e., tS
qq ji = , max

kjikji qqqq
rr = , nk ≤≤1 . 

Otherwise, a competition has to be arranged to choose the optimal subset of ac-
tivities that can be supplied by available resources. 

An important auxiliary procedure precedes holding the competition, namely, 
calculating, for all the competitive activities ( )qq ji , , their conditional probabili-
ties ( )qq jip ,  to be on the critical path in the course of the project’s realization. 
Calculating values ( )qq jip ,  is carried out via simulation: at each decision point, 
all the activities that have not yet started to be operated are simulated using the 
corresponding probability density functions. 

Two cases are considered [68]: 
a) all resource capacities ijkr  for each k -th type of resources are fixed and re-

main unchanged; 
b) values ijkr  may vary within pregiven bounds min

ijkr  and max
ijkr . 
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In the first case random values ijt  do not depend on values ijkr , and the corre-
sponding density functions remain unchanged in the course of the project’s 
simulation. Later on, the critical path of the remaining graph with simulated ac-
tivity durations is determined. By repeating this procedure many times, the cal-
culated frequencies for each activity ( )qq ji ,  to be on the critical path are taken as 

( )qq jip , . Values ( )qq jip ,  enter the zero-one integer programming model to carry 
out the competition [70]. 

For the case of variable resources ijkr  resource capacity values kji qq
r  that will 

be assigned to the activities under competition are unknown beforehand; the 
same goes for all other activities in the remaining project. Thus, we are unable to 
simulate the activities’ durations, that depend parametrically on values kji qq

r . To 
overcome these difficulties, the authors in [71] use heuristics, e.g., by assuming 

( )maxmin5.0 ijkijkijk rrr +⋅= . After calculating conditional probabilities ( )jip ,  the knap-
sack reallocation problem among the competitive activities has to be solved at 
each decision point [71]. 

For the case of fixed ijkr  a classical zero-one programming problem with a 
precise solution can be formulated as follows: determine integer values 

qq jiξ , 
mq ≤≤1 , to maximize the objective 

{ } ( )[ ]
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In the case of variable resource capacities ijkr  a heuristic model is suggested 
[71]. Since the project management has to choose the subset of activities and to 
reallocate among them the available resources in order to maximize the total 
contribution to the expected project duration, the following resource realloca-
tion problem (to be solved at each decision point t ) is suggested: 

Determine optimal values 
qq jiS  and kji qq

r , nk ≤≤1 , mq ≤≤1 , to maximize the 
objective 

( ) ( )
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subject to 
( ) ( )ANGjirrr qqkjikjikji qqqqqq

,,maxmin ∈∀≤≤ , (1.3.7) 
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where 
qq jiξ  is as before. 

Problem (1.3.6-1.3.8) is NP-complete. Both a precise solution facilitated by 
means of a lookover algorithm, and a heuristic solution based on an essential 
diminishing of the set of feasible solutions to be examined, are obtained [71]. 

The resource constrained project scheduling algorithm comprises the knap-
sack problem (1.3.4-1.3.5) or (1.3.6-1.3.8), together with the auxiliary problem 
to determining conditional values ( )jip , . The algorithm to solve problem (1.3.1-
1.3.3) is implemented in real time: namely, all activities can be operated only 
after obtaining necessary resources. Decision moments ijF  and iT  cannot be pre-
determined. However, should the question of evaluating the efficiency of the re-
source constrained project scheduling model (1.3.1-1.3.3) arise, the algorithm’s 
functioning can be simulated by random sampling of the actual duration of ac-
tivities. By simulating the algorithm many times, the average project’s duration 
as well as the probability of accomplishing the project by a given due date (if 
necessary) can be estimated. Intensive experimentation [68] has been carried out 
for various medium-size PERT and GERT projects with several (3÷5) non-
consumable limited resources. A conclusion can be drawn that the algorithm 
performs well and is easy to handle. 

Further progress in the area of developing resource constrained project 
scheduling models has been achieved by the scientific school of Golenko-
Ginzburg [69-74,77-90]. Several types of models have been developed. The first 
model considers a simplified case of several stochastic projects in the form of a 
chain of consecutive operations. Models of the second type consider several si-
multaneously realized stochastic network projects of PERT type. Resource 
scheduling models of the third type also cover PERT type projects, but with two 
different kinds of renewable resources: 

a) extremely costly resources (A-resources) which have to be utilized for a 
short time within the project’s time span. Such resources have to be pre-
pared and delivered externally at planned moments; 

b) renewable resources (B-resources) which are at the system’s disposal. 
In all types of models each project’s activity utilizes several non-consumable 

related resources with fixed capacities, e.g., machines or manpower. Each type 
of resource at the management’s disposal is in limited supply, with a resource 
limit that is fixed at the same level throughout the entire project’s duration, i.e., 
until the last project is actually accomplished. For each operation, its duration is 
a random variable with given density function. Processing costs per time unit to 
hire and to utilize all the total available resources are pregiven. 

The problem is to determine: 
• the earliest starting moment for each project’s realization; 
• the limited resource levels for each type of resources to be stored during 

the projects’ realization; 
• the moment when resources are fed in and projects’ activities start, - 

in order to minimize the average total expenses of hiring and maintaining re-
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sources subject to the chance constraints. 
For the third class of developed models the problem boils down: 
a) to predetermine in advance, i.e., before each projects starts to be realized, 

the deterministic delivery schedule for A-resources which are not at the 
projects’ disposal; 

b) to determine both the starting times and the resource capacities to be util-
ized for activities which require limited renewable B-resources which are 
not at the projects’ disposal; 

c) to determine the starting moment S  of each project’s realization, - 
in order to minimize the average total projects’ expenses subject to the chance 
constraint. 

The problem is solved by means of simulation, in combination with a cyclic 
coordinate descent method and a knapsack resource reallocation model. The 
simulation model comprises three optimization cycles and can be used for small- 
and medium-size projects only. Otherwise, aggregation has to be applied. 

Our basic concept which has been fully supported by the NATO Forum 
“managing and Modeling Complex Projects” (Kiev, Ukraine, December 1996) 
is as follows: 

a) Scheduling and control procedures must not be incorporated in one model. 
b) A control model has to be based on probabilistic approaches and has to 

implement probabilistic terms. Such a model has to be used only at sev-
eral control (inspection) points. We suggest applying the control model 
not to the initial network (which for some projects may comprise a large 
amount of activities), but to a modified one, with a medium amount of ac-
tivities at the utmost. For such a modified model, an activity can be a sub-
network (a fragment) of the initial network. 

c) Scheduling procedures are applied to the initial network and are carried 
out between two adjacent routine control points. They are usually based 
on heuristic procedures (sometimes very doubtful) and may result in bi-
ased estimates and errors. But the latter are periodically corrected by 
means of introducing proper control actions. 

d) Thus, we recommend developing the on-line control model as an addi-
tional tool, as a decision-making support model to assist the project man-
ager carry out the project. On the basis of such a model, the project man-
ager may implement any action he finds reasonable, e.g., to enhance the 
progress of the project. 

 
§1.4  Multilevel control model for several stochastic network projects 

with restricted resources 
For many years the scientific school of Golenko-Ginzburg has undertaken 

extensive research in the area of hierarchical project management [7,53-54,64-
65,68,92]. 

A company realizing several stochastic network projects ( )ANG ,l , d≤≤ l1 , is 
considered. The total budget C  at the company’s disposal to carry out the pro-
jects is limited. A hierarchical control model [68] as presented in Fig. 1.1 is sug-
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gested. At each level the model undertakes optimal control actions as follows: 
• at the company level the control action boils down to optimal budget reas-

signment among the projects (Problem I); 
• at the project level, in case of an alternative stochastic network project, its 

optimal joint variant is determined (Problem II); 
• at the project level, if the project is of PERT or GERT type, optimal con-

trol actions result either in optimal budget reallocation among the project 
activities (Problem IIIA for PERT-COST projects) or in determining op-
timal speed of the project’s realization (Problem IIIB); thus, solving Prob-
lems IIIA and IIIB results in optimizing the progress of the project to-
wards its goal, in order to re-orient the project in the desired direction; 

• at the inspection level, on-line control is carried out, i.e., optimal control 
points to inspect the progress of the project are determined (Problem IV); 

• at the lowest level considered, namely, the scheduling level, resource con-
strained project scheduling is implemented by reallocating, if necessary, 
non-consumable resources among the project’s activities (Problem V). Al-
though Problem V is an optimization one, it cannot be regarded as a con-
trol action. This is because the problem’s solution is not based on the pro-
ject’s output 

gt
V  which is observed at control point gt . 

Optimal budget reallocation (Problem I) can be formulated for two alterna-
tive cases: 

a) projects are of equal importance; 
b) projects have different priorities lη , d≤≤ l1 . 
In case of a), the optimization problem becomes as follows [7,54,92]: 
At any moment 0≥t  reassign budget among projects to optimize objective 

( )[ ]








⋅= ∑
=

d

ttC
CPMaxJ

t 1
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lll
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η  (1.4.1) 

subject to 

t

d

t CC ≤∑
=1l

l , (1.4.2) 

( ) dpCP tt ≤≤∀≥ ∗ llll 1: . (1.4.3) 
In case of b), the problem is as follows: 

( )ttC
CPMinMaxJ

t
llll

=2 ,  0≥t , (1.4.4) 
subject to (1.4.2-1.4.3). Both problems are solved at time 0=t  or have to be re-
peatedly resolved at 0>t , after an emergency is declared at the project level. 
Problems (1.4.1-1.4.3) and (1.4.2-1.4.4) are solved by means of simulation, un-
der additional heuristic assumptions [64]. 
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Figure 1.1.  Multilevel control model (at moment tg) 

 
Problem I is outlined in Chapter 14, while Problem II is considered in Chap-

ter 16. As to Problem IIIA, it can be formulated as follows: 
Given budget tCl  assigned to project ( )ANG ,l  at moment t , determine opti-

mal values ( )jic , , ( ) Aji ∈, , to maximize objective 

( ){ }
( ){ }ttjic
CPMax ll,

 (1.4.5) 
subject to 

maxmin
ijijij ccc ≤≤ , (1.4.6) 



 
 

27 

( )
t

ji
ij Cc l=∑

,

. (1.4.7) 
Problem (1.4.5-1.4.7), together with several related optimization problems, is 

solved by means of simulation [7,54,62,64,92]. 
Problem IIIB can be applied to various stochastic network projects with vari-

able speeds, e.g., to construction projects where each activity can be operated at 
several possible speeds that are subject to random disturbances. Such speeds 
may correspond to different hours a day per worker and, thus, depend on the de-
gree of intensity of the project’s realization. Thus index gr  of the control action 
is the index of the speed to be introduced at each control point gt . For projects 
with variable speeds two optimization objectives may be implemented [66]: 

• to minimize the number of inspection points, and 
• to minimize the average index of the project’s speeds. 
The control model is as follows: at any routine control point gt , determine 

values 1+gt  and gr  to minimize two contradicting objectives 

{ }
( )









+
grt

tWMin
gg ,1 ,

 (1.4.8) 

{ }
( )









+
gg

rt
trMin

gg ,1  
(1.4.9) 

subject to
 

 
∆≥−+ gg tt 1 , (1.4.10) 

( )






 ≥= ∗

≤≤
prtrMinr gggrrg

g

,Pr:
1

. (1.4.11) 

Restriction (1.4.11) means that at each control point gt , the problem is to de-
termine the minimal index of the project’s speed that, with the given chance 
constraint guarantees meeting the project’s due date on time. Thus, the restric-
tion prohibits unnecessarily high intense speeds. The solution of optimization 
problem (1.4.8-1.4.11) is outlined in [66]. 

The solution of Problem IV, i.e., determining control points gt  [68], is out-
lined in Chapters 4 and 15-16. Both algorithms A and B may be applied, but the 
second one is more efficient and requires less computational time [72]. The so-
lution of the scheduling Problem V at the lowest hierarchical level is outlined in 
[70,72]. The solution of Problem I serves as the initial data for Problems II and 
III (at the project level). The solution of Problem III serves, in turn, as initial 
data for Problem IV, which carries out on-line control, i.e., determines the opti-
mal control points to inspect the progress of the project. This is done by deter-
mining the planned trajectories that must be repeatedly corrected in the course of 
the project’s realization. If, at any control point, it turns out that a project devi-
ates from the planned advancement trajectory, an error signal is generated, and 
decision-making takes place based on resolving Problem III to re-orient the pro-
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gress of the project in the desired direction, i.e., to maximize the probability of 
meeting the deadline in time. If the problem’s solution enables the project’s 
deadline to be met, subject to the chance constraint, a corrected planned trajec-
tory is determined and Problem IV is solved again to determine the next control 
point. Otherwise, an emergency signal is generated and decision-making takes 
place at the company level. Problem I is resolved under emergency conditions to 
reassign the remaining resources (e.g., the remaining budget) among the non-
accomplished projects. Thus, in the course of controlling a group of projects, the 
latter are first optimized on line “from top to bottom”. In the case of emergency, 
the generated “bottom-to-top” signals are converted into control actions to en-
able the projects’ due dates to be met on time. 

 
§1.5  A linkage between deterministic and stochastic approaches in pro-

ject management 
1.5.1  The main stages 
It can be well-recognized that controlling a large-scale stochastic R&D net-

work project, e.g., of PERT type, cannot be facilitated by using deterministic 
methods only. Substituting random activity durations by their corresponding av-
erage values leads to unavoidable mistakes, mainly in calculating the project’s 
parameters. Thus, the project remains practically uncontrolled. However, it is 
also practically impossible to apply stochastic techniques to a large-scale pro-
ject, since the existing control procedures usually prove to be unfit for large-
scale organization systems [54,147,149]. Thus, the only possible outcome to be 
suggested is as follows: 

1. First, modify the initial large-scale project to an enlarged aggregated net-
work of medium size (comprising not more than 40÷50 activities). 

2. Second, apply to that aggregated project all the stochastic control tech-
niques under consideration, in order to determine the project’s proper 
speeds and inspection points. 

3. Third, reaggregate the enlarged project to its initial size. 
4. Four, reschedule the activities between the adjacent inspection (control) 

points according to their average values, i.e., implement deterministic 
scheduling techniques for project’s fragments between adjacent decision-
making points. The latter can be utilized as corrective indications. 

Let us examine the main stages of the regarded procedure in greater detail. 
 
1.5.2  Developing enlarged aggregated networks with random activity dura-

tions 
According to the project’s Work Breakdown Structure (WBS) [149], an ini-

tial network is presented in the form of a group of lists of initial activities. The 
name of the activity is taken from the WBS. 

We will henceforth call a fragment a list of activities together with all the 
links both entering and leaving that fragment. The step-by-step procedure [53-



 
 

29 

54] of developing an aggregated network is as follows: 
Given: 
• activities ( )ji,  entering the PERT initial network ( )ANG , ; 
• random activity durations ijt  with pregiven density distribution. 

Step 1. Simulate random durations ijt , ( ) ( )ANGji ,, ⊂ . 
Step 2. On the basis of simulated values ijt  calculate for each Ni ∈  the earliest 

moment of the event’s realization, ( )iT ξ , where ξ  denotes the index of 
the simulation run. 

Step 3. Repeat Steps 1→2 M  times in order to obtain representative statistics. 
Step 4. Calculate 

( ) ( )iTiT
Mear

ξ

ξ ≤≤
=

1
min ; 

( ) ( )iTiT
Mlat

ξ

ξ ≤≤
=

1
max . 

Step 5. By using decomposition methods [49,149,153] subdivide the initial set 
into enlarged fragments. Each fragment comprises a list of detailed ac-
tivities together with all links connecting activities entering the list 
(“internal” links) as well as “external” links connecting the fragment 
with other fragments. 

Steps 6→10 have to be implemented for each fragment ( )ANGF ,⊂  separately. 
Step 6. Determine two events F

sti  and F
fini  which we will call henceforth the start 

and the finish events of fragment F , respectively: 
Fi F

st ∈  delivers the minimum to ( ){ }iTMin earFi∈
, and 

Fi F
fin ∈  delivers the maximum to ( ){ }iTMin latFi∈

, where ( )iTear  and ( )iTlat  
have been calculated on Step 4. 

Step 7. For both events F
sti  and F

fini  calculate the earliest and the latest moments 
(refer also to Step 4): ( )F

stear iT , ( )F
stlat iT , ( )F

finear iT , ( )F
finlat iT . 

Step 8. Calculate the minimal fragment’s duration ( ) ( )F
stlat

F
finearF iTiT −=minτ . 

Step 9. Calculate the maximal fragment’s duration ( ) ( )F
stear

F
finlatF iTiT −=maxτ . 

Step 10. Assume that the fragment’s duration Fτ  is a random variable with a β-
distribution density function  

( )
( )

( )( )2maxmin
4minmax

12 xxxp FF

FF

F −−
−

= ττ
ττ

 

within the range 



 maxmin , FF ττ . The justification of this probability law 

will be demonstrated in Chapter 2. 
Thus, the project is aggregated with random durations of enlarged activities. 
 
1.5.3  On-line control problems for medium-size projects 
For most medium-size network projects under random disturbances the pro-

gress of the project cannot be inspected and measured continuously, but only at 
preset inspection points. On-line control determines both inspection points and 
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control actions to be implemented at those points in order to alter the progress of 
the project in the desired direction. Such control actions may boil down to the 
following: 

1) redistributing the budget among the project activities in order to enhance 
the project’s speed, or 

2) introducing additional shifts, etc., to change the speed of the progress of 
the project without investing additional resources, etc. 

Such control actions are usually aimed at minimizing either the number of in-
spection points, or the average project’s speed subject to a chance constraint to 
meet the project’s due date on time. The corresponding control algorithms are 
outlined in Chapters 4-6 and can be applied to small- and medium-size projects 
only.  

After implementing the control actions the modified aggregated network has 
to be transformed back to the initial network. 

Consider a medium-size PERT type network model with due date D . A de-
sirable probability ∗p  that in practice enables completion of the project in time, 
is pregiven. At each control moment gt  the project management may introduce 
several possible alternative speeds 

gt
v  to proceed with until the next control 

point. Let tV  be the project’s output (project volume) observed at control point 
0>t  and let the project’s target (goal) be ∗V . Denote ( )

gtg vt ,Pr  the confidence 
probability to accomplish the project in time after introducing speed 

gt
v  at con-

trol point gt . 
The main control problem [68] boils down to determining both control (in-

spection) points gt  ( Ng ,...,2,1= ) and speeds 
gt

v  to proceed with from that point 
on until the next adjacent control point 1+gt , in order to minimize number N  of 
inspection points 

{ }NMin
gtg vt ,

 (1.5.1) 
subject to

 
 

{ } ∗≥ pvt
gtg ,Pr , (1.5.2) 

00 =t , (1.5.3) 
NtN = , (1.5.4) 

∆≥−+ gg tt 1 . (1.5.5) 
Pregiven value ∆  is usually introduced to force convergence. 
Note that if introducing control actions results in determining the project’s 

speeds 
gtv  to proceed with until the next control point 1+gt  and if several alterna-

tive speeds can be chosen, then the optimal control action enables implementing 
the minimal speed to develop the project honoring chance constraint (1.5.2). 

Control model (1.5.1-1.5.5) is a stochastic optimization problem with a non-
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linear chance constraint and a random number of optimized variables. Such a 
problem proves to be too difficult to solve in the general case, especially for 
large-size projects. 

 
§1.6  Conclusions 
1. After introducing control actions outlined in §1.2, the modified medium-

size aggregated network is transformed back to the initial network and the 
project’s realization proceeds. 

2. All other procedures at the project’s level, e.g., scheduling procedures, are 
carried out for the initial network between two adjacent control points by 
using traditional deterministic techniques based on the activities’ average 
durations. Although such calculations usually comprise biased estimates 
and evaluation errors, they are periodically corrected by introducing 
proper control actions. That is why those procedures in combination with 
control actions are more effective than without controlling the project in 
inspection points. 

3. The suggested approach has to be implemented as an additional tool in or-
der to help the project manager to realize the project on time. Applying 
the corresponding techniques does not result in undertaking any revisions 
in traditional project management procedures. 

In the next two Chapters we are going to undertake a review of all probabilis-
tic aspects and parameters of stochastic network modeling. Later on we will out-
line in detail the problems of network R&D projecting under random distur-
bances. 
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Chapter 2. Random Activity Durations in Stochastic Project Man-
agement 

 

§2.1  Justification of probability laws for man-machine network activity 
durations 

In all Network Analysis Methods (NAM) applied to planning and control 
while creating a new complicated advanced technology project with uncertainty 
of its activity durations, it is common to assume those durations being in fact 
random variables. In other words, indeterminate activity durations are assumed 
to be randomly distributed with a probability law accepted for the regarded 
NAM and common to all activities engaged. As to parameters of the probability 
law, they are preset for each activity by their responsible executers on the basis 
of either standard values, or a-priori considerations, or their personal profes-
sional experience. Nearly for all NAM the activity durations’ probability density 
function (p.d.f.) is a-priori assumed to possess the following qualities: 

a) continuity; 
b) unimodality; 
c) two non-negative intersection points between the p.d.f. and the x axis. 
The most common probability law conforming to the above requirements is 

the famous beta-distribution which is successfully used in major NAM [7, 22, 
39,46,49-51,98,100,104,116-117,125,146,etc.]. 

The general property of beta-distribution boils down to a variety of insignifi-
cant random factors with only minor influence on the p.d.f. shape, aside a few 
random factors of significant influence. As a result of the latter the resulting 
p.d.f. shape becomes usually asymmetrical. This circumstance becomes domi-
nant when executing the majority of the network activities. This is also the main 
reason to a-priori preference of beta-distribution as the typical p.d.f. for man-
machine operations. 

The relation for beta-distribution p.d.f. may be written down as 

( ) ( ) ( )






><

≤≤−
=

−−

,1,00

,101
,

1
,,

11

xxfor

xforxx
qpBxqpB

qp
 (2.1.1) 

where ( )qpB ,  stands for the beta-function 

( ) ( ) ( ) ( )
( )∫ +Γ

ΓΓ
=−= −−

1

0

11 1,
qp
qpdxxxqpB qp , (2.1.2) 

and the gamma-function ( )zΓ  is determined as 

( ) ∫
∞

−−=Γ
0

1dttez zt ,  

while for integer z  the function ( ) ( ) ( )!11...21 −=−⋅⋅⋅=Γ zzz . The central moment 
of order r  may be calculated as  

( ) ( ) ( )
( )∫
+

=− −−+
1

0

11

,
,1

,
1

qpB
qrpBdxxx

qpB
qpr . (2.1.3) 

For 1=r  we obtain the relation for average ( )xE   
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( ) ( )
( )
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,1 . (2.1.4) 

Variance ( )xV  (for 2=r ) may be calculated as follows: 

( ) ( )
( )

( )
( )( ) ( ) ( ) ( )
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qpqp
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qp

p
qpB

qpBxV  (2.1.5)

It can be well-recognized that specific function properties in (2.1.1) depend 
parametrically on p  and q , while for 2>p  (and, correspondingly, for 2>q ) the 
p.d.f. turns zero in its left (or right) terminal point together with its first deriva-
tive. For 21 << p  (and, correspondingly, 21 << q ) the p.d.f. has a vertical tangent 
in its left (or right) terminal point. For 10 << p  (and, correspondingly, 10 << q ) 
the p.d.f. turns infinity, if values of x  fall into the left (right) terminal point, 
while a vertical line intersecting its left terminal point would be the tangent. For 

0≤p  (and, correspondingly, 0≤q ) the integral in (2.1.2) turns infinity, which 
means the p.d.f. ceases to exist. 

The justification of using probability laws for man-machine operations in or-
ganization systems under random disturbances has been considered in [7,49,54]. 
It can be well-recognized that the outlined results fully comprise the case of ac-
tivity networks in stochastic project management. Two cases have been consid-
ered [7,49,54]: 

• case of one processor to operate a man-machine activity; 
• case of several processors. 
The first case covers a man-machine operation which is carried out by one 

processor, i.e., by one resource unit. The processor may be a machine, a proving 
ground, a department in a design office, etc. 

It is assumed that the operation starts to be processed at a pregiven moment 
0T . The completion moment F  of the operation is a random value with distribu-

tion range [ ]21,TT . Moment 1T  is the operation’s completion moment on condition 
that the operation will be processed without breaks and without delays, i.e., 
value 1T  is a pregiven deterministic value.  Assume, further, that the interval 
[ ]10 ,TT  is subdivided into  n   equal elementary periods with length ( ) nTT 01 − . If 
within the first elementary period ( )[ ]nTTTT 0100 , −+   a break occurs, it causes a 
delay of length ( ) nTT 12 −=∆ . The operation stops to be processed within the 
period of delay in order to undertake necessary refinements, and later on pro-
ceeds functioning with the finishing time of the first elementary period  

( ) ( ) ( ) nTTTnTTnTTT 02012010 −+=−+−+ . 
It is assumed that there cannot be more than one break in each elementary pe-

riod.  The probability of a break at the very beginning of the operation is set to 
be p .  However, in the course of carrying out the operation, the latter possesses 
certain features of self-adaptivity, as follows: 

• the occurrence of a break within a certain elementary period  results in in-



 
 

34 

creasing the probability of a new break at the next period by value  η ,  and 
• on the contrary, the absence of a break within a certain period decreases 

the probability of a new break within the next period,  practically by the 
same value. 

The probabilistic self-adaptivity can be formalized as follows: 
Denote k

iA  the event of occurrence of a break within the ( )1+i -th elementary 
period, on condition, that within the i  preceding elementary periods k  breaks 
occurred,  nik ≤≤≤1 .  It is assumed that relation 

( )
η
η

⋅+
⋅+

=
i
kpAP k

i 1
 (2.1.6) 

holds. Note that (2.1.6) is, indeed, a realistic assumption. 
Relation (2.1.6) enables obtaining an important assertion. Let ( )0

iAP  be the 
probability of the occurrence of a break within the ( )1+i -th period on condition, 
that there have been no breaks at all as yet. Since 

( )
pi

pAP i ⋅+
=

1
0 , (2.1.7) 

it can be well-recognized  that relation 
( ) ( )

( ) pAP
APAP

0
i

k
i

1k
i η

=
−+

 
(2.1.8) 

holds. Thus, an assertion can be formulated as follows: 
Assertion. Self-adaptivity (2.1.6) results in a probability law for delays with a 

constant ratio (2.1.8) for a single delay. 
Let us calculate the probability nmP ,  of obtaining m delays within n  elemen-

tary periods, i.e., the probability of completing the operation at the moment  
( )1211 TT

n
mTmTF −+=∆⋅+= . 

The number of sequences of n  elements with m delays within the period 
[ ]FT ,0  is equal m

nC , while the probability of each such sequence equals 

( ) ( )
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 . (2.1.9) 

Relation (2.1.9) stems from the fact that if breaks occurred within h  periods 
and did not occur within k  periods, the probability of the occurrence of the delay 
at the next period is equal 

( )η
η
hk

hp
++

+
1

 , (2.1.10) 

while the probability of the delay’s non-appearance at the next period  satisfies 

( )η
ηη

hk
k

++
+−

1
1  . (2.1.11) 

Using (2.1.10-2.1.11), we finally obtain 
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 . (2.1.12) 

Note that 0=η , i.e., the absence of self-adaptivity, results in a regular bino-
mial distribution. 

Let us now obtain the limit value nmP ,  on condition that ∞→n . It has been 

shown [49,54] that the p.d.f. of random value 
n
m

n ∞→
= limξ  satisfies 

( ) ( ) ( ) 11 1
,

1 −− −= qp xx
qpB

xpξ  , (2.1.13) 

where ( )qpB ,  represents again the beta-function. Thus, relation (2.1.13) practi-
cally coincides with (2.1.1). 

Thus, changing more or less the implemented assumptions, we may alter to a 
certain extent the structure of the p.d.f. At the same time, its essential features 
(e.g., asymmetry, unimodality, etc.) remain unchanged. 

The considered in [7,49,54] case of several processors enables conclusion as 
follows: 

1. For a broad spectrum of activities being processed by means of several 
identical resource units, the corresponding time – activity density func-
tions prove to be asymmetric functions with finite upper and lower distri-
bution limits. Those p.d.f.’s are close to a beta-distribution p.d.f. 

2. Various assumptions in activity – time analysis (and in risk analysis as 
well!) center on determining a numerous “family” of beta-distributions 
with different versions - parameters p  and q  - of the general p.d.f. (2.1.1). 
Those versions may result in changing certain estimates for certain activi-
ties. At the same time, they have practically no influence on the project as 
a whole. 

3. Thus, a general conclusion can be drawn that a random activity – time 
duration has a very high potential to be close to one of the beta-
distribution probability density functions. The obtained theoretical 
grounds cover a broad variety of activities including the man-machine ac-
tivities (with one processor) and semi-automated activities (with several 
processors). 

 
§2.2  The basic concepts of PERT analysis 
In the course of creating the theoretical and methodological basis for NAM, 

additional information is required. This information should include the probabil-
istic network model of developing the new complicated advanced technology 
project, as well as estimates of parameters entering the p.d.f. of activity dura-
tions ( )jit ,  within the network. 

This section will be dedicated mostly to the description of probabilistic mod-
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els in PERT-type systems. The methodological basis of research and develop-
ment in PERT includes the following assumptions [22-23,25,42,49-51,100,116-
117,etc.]: 

1. Activity duration ( )jit ,  is a random variable distributed on the interval 
[ ]ba,  by the beta-distribution law with p.d.f. 

( ) ( ) ( ) 11 −− −−= qp tbatCtϕ  . (2.2.1) 
2. P.d.f. ( )tϕ  central moments - namely, average ( )xE  and variance ( )xV  - 

may be determined from relations 

( )
6

4
, ijijij bma

jiE
++

= , (2.2.2) 

( ) ( )
36

,
2

ijij ab
jiV

−
= ,

 
(2.2.3) 

where ija , ijb  and ijm  stand, correspondingly, for the optimistic, pessimis-
tic and most probable (modal) duration estimates preset by the responsible 
executers of activity ( )ji, . 

Additional assumptions refer to the methodology of calculating network pa-
rameters in general and would be outlined in the following sections. As demon-
strated below, relations (2.2.2-2.2.3) may be partly considered as being of em-
pirical origin. 

Consider p.d.f. ( )tϕ  with parameters α=−1p , γ=−1q , 0=a , 1=b . We obtain 
( ) ( )γαϕ tCtt −= 1 , (2.2.4) 

where  
( )

( ) ( )11
2
+Γ+Γ

++Γ
=

γα
γαC .  

Standardized parameters ( )xE , xm  and ( )xV  in this case will satisfy 

( )
2

1
++

+
=

γα
αxE , (2.2.5) 

γα
α
+

=xm ,
 

(2.2.6) 

( ) ( )( )
( ) ( )32

11
2 ++++

++
=

γαγα
γαxV .

 
(2.2.7) 

In can be well-recognized that the standardized modal value xm  is connected 
with activity duration estimates ija , ijb  and ijm  by means of relation 

ijij

ijij
x ab

am
m

−

−
= . 

Modal estimate ijm  (together with its standardized value xm ) is preset by re-
sponsible executors and may be regarded as a fixed value; thus, relation (2.2.6) 
enables to express parameter γ  by means of α : 

x

x

m
m−

=
1

αγ . (2.2.8) 
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Since for each considered activity ( )ji,  the ratio 
x

x

m
m−1  is a constant value, it 

proves beneficial to re-write the p.d.f. relation ( )tϕ  in the form of 

( ) ( ) 







−−= 11

1 xmtCtt ααϕ , (2.2.9) 
where the unbound parameter α  determines properties of the curve of the corre-
sponding density function. When diminishing α  the curve becomes more slop-
ing and turns into the uniform distribution law with variance ( )

12
1=xV  and aver-

age ( )
2
1=xE . For increasing values of α  the curve becomes increasingly less 

asymmetrical and approximates the curve shape of normal density distribution. 
For 1→xm  distribution function (2.2.9) approximates the power function αCt , 

for 0→xm  p.d.f. ( )tϕ  approximates the δ -function of Dirac. Abrupt changes of 
xm  cause significant fluctuations of the asymmetry coefficient. Thus, density 

function (2.2.9) satisfies conditions of unimodality, continuity and possesses two 
non-negative intersection points with the x axis. It can be well-recognized that, 
in other words, (2.2.9) conforms to the necessary requirements of network activ-
ity durations distribution law outlined in the previous section. 

Assume ( ) ( )abaxt −−=  and switch over to a non-standardized distribution 
law  

( ) ( ) ( ) 







−−−= 11

xmxbaxNxf αα , (2.2.10) 
where ( ) ( )[ ] 11 1,1

−++ ++−= γαγα BabN . Taking into account (2.2.8), relation 









−= 11

xm
αγ  holds. The modal value m can be easily calculated from relation 

( ) ( )ammb −=− γα . (2.2.11) 
It can be well-recognized [49] that the first and the second central moments 

(average ( )xE  and variance ( )xV , being designated as 1K  and 2K , correspond-
ingly) comply with the following relations 

( ) ( ) ( ) mbamK 222 1 −++++=++ γαγα , 
( ) ( ) 2

1123 KabKbaK −−+=++ γα . 
Central moments of higher orders (for ,...3,2=n ) may be determined by a re-

current relation 
( ) ( ) ( )[ ]11211 ...12 KKKKnKKnKbanKn nnnnn ++−+−+=+++ −+γα . (2.2.12) 

The relation for 1K  may be re-written as 
( )
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, 

and finally we obtain 
( ) ( ) ( )

21 ++
+++

==
γα

γα bamKxE . (2.2.13) 

After carrying out a thorough statistical analysis taking into account both 
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empirical and experimental subjects, the creators of PERT methodology estab-
lished [117] that 4≈+ γα . This enables developing the following modification 
for the recurrent relation (2.2.12) 

( )
( )
( )
( ) ( )










+−+=
−+=

−−+=
++=

.,23
,24
,7

,46

2
23134

2123

2
112

1

etcKKKKbaK
KKKbaK
KabKbaK

mbaK

 (2.2.14) 

Variance ( )xV  on condition 4=+ γα  may be determined from (2.2.14) as fol-
lows: 

( ) ( ) 22

2 263
4

28 



 −

+
−

−
== mbaabKxV . (2.2.15) 

If the modal value appears in the vicinity of the average ( ) 2ba + , variance 
( )xV  may be estimated as ( ) ( ) 282abxV −= ; if, on the contrary, the modal value 

falls close to the border of a , this would result in ( ) ( ) 2525 2abxV −= . Thus, it can 
be well-recognized that the variance is slightly affected by the modal value posi-
tion and may be located in the interval ( ) ( ) 



 −− 25,49 22 abab . The latter cir-

cumstance enabled creators of PERT to replace the more accurate although 
somewhat cumbersome relation (2.2.15) by its much easier approximation 

( ) ( ) 362abxV −≈ . (2.2.16) 
As far as the average is concerned, the first relation from those listed in 

(2.2.14) boils down to the well-known PERT estimate 
( ) ( ) 64mbaxE ++= . (2.2.17) 
A number of researchers (e.g., [23,25,36,42,95,116,146,etc.]) suggest a 

slightly different justification for approximate relations (2.2.16-2.2.17). On the 
basis of estimates 22 +=α , 22 −=γ  or vice versa ( 22 −=α , 22 +=γ ) sug-
gested by Pearson, one may obtain relations (2.2.16-2.2.17) directly from the 
previously established formulae (2.2.11-2.2.12). Although, it should be noted 
that by the latter approach, we are in fact fixing parametrical values xm  quite 
rigidly (the same goes of course for values m as being connected with xm  by 

( ) aabmm x +−= ). This inflexibility contradicts to the principle of empowering 
the responsible executor to estimate values m on the basis of his personal pro-
fessional experience and skills. 

Thus, it can be well-recognized that the theoretical grounds of PERT contain 
certain fundamental contradictions, which would be outlined in greater detail be-
low. These contradictions stem mostly from the fact that it is impossible to de-
rive relations (2.2.16-2.2.17) directly from (2.2.10), since three parameters out 
of four in (2.2.10) depend on assessing values a , b  and m by responsible execu-
tors, while imposing any additional binding assumptions on these three will im-
mediately cause discrepancies with the accepted estimation procedure. 
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Let us consider possible inaccuracies in estimating average ( )xE  and variance 
( )xV  due to assumptions which had to be made in the theoretical grounds of 

PERT. These inaccuracies can be separated into three groups: 
a) a group of errors due to accepting the beta-distribution law as the standard 

probabilistic instrument for man-machine activity durations; we will des-
ignate those errors as type 1; 

b) a group of errors originating from using relations (2.2.16-2.2.17) to 
estimate average ( )xE  and variance ( )xV  on condition that activity 
durations p.d.f. is indeed represented by (2.2.1) - errors of type 2; 

c) a group of errors (call them type 3) caused by inaccuracies of estimating 
parametrical values a , b  and m by responsible executors (experts) on 
condition that both p.d.f. (2.2.1) and relations (2.2.16-2.2.17) are indeed 
applicable. 

McCrimmon and Ryavec [116] conducted research as to possible errors in 
estimating average ( )xE  and variance ( )xV  due to accepting the beta-distribution 
law as the only standard probabilistic instrument for man-machine activity dura-
tions (errors of type 1), on condition that parametrical values a , b  and m are 
predetermined by responsible executors as anticipated. For the sake of simplicity 
consider the standardized distribution interval with 0=a , 1=b , 

( )
2
10 <−−=≤ abammx . While comparing various distribution laws with simi-

larly shaped central moments (quasi-uniform distribution with the average close 
to 0.5, and quasi-delta distribution law with the average matching the modal 
value m), the following marginal total errors have been identified: 

a) for the standardized average ( )xE  error 1∆  equals ( )xm21
3
1

1 −=∆ ; 

b) for the standardized standard deviation xσ  the maximal error 2∆  equals 

6
1

2 =∆ . 

It can be well-recognized that error 1∆  depends parametrically on modal 
value xm ; when xm  gets close to the interval margin 1∆  might become as large as 
33%, while error 2∆  does not depend on the modal value. 

Estimate for 1∆  has been subsequently improved by Lukaszewicz [115] who 
demonstrated that the maximal total error for a single-mode continuous distribu-
tion in interval [ ]1,0  should not exceed 






 −=∆

2
1

3
1

1
xm . Thus, the results by 

McCrimmon and Ryavec, on one hand, and of Lukaszewicz, on the other hand, 
provide a perfect match for distributions with modal values close to zero, but 
they differ substantially for 

2
1≈xm , which as a matter of fact proves to be the 

most common case in practice. 
Consider now [116] maximal total errors in estimating average ( )xE  and 
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standard deviation xσ  for beta-distribution populations caused by assumption 

( )abx −=
6
1σ  and approximation ( ) ( ) 64mbaxE ++= , namely, type 2 errors. Us-

ing relations (2.2.5-2.2.7) for estimating standardized values of average, mode 
and variety, correspondingly, and comparing them with appropriate assessments 
utilized in PERT, we obtain the following relations for errors 1∆  and 2∆  (for 

0=a , 1=b ): 
( )

( )( )
( ) ( )












++

+−+
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+
+

−
+
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.
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 (2.2.18) 

Further analysis of (2.2.18) reveals that depending on parameters involved, 
errors 1∆  and 2∆  may obtain the following highest values: 





=∆
=∆

.%17max
%33max

2

1  (2.2.19) 

Finally, consider type 3 errors 1∆  and 2∆  on assumption that both the beta-
distribution law and relations (2.2.16-2.2.17) are indeed applicable and true, but 
the experts’ estimates of parameters a , b  and m may contain inaccuracies. Fol-
lowing [116], assume that a , b  and m denote true values of the lower and higher 
bounds as well as of the mode of the distribution, while responsible executors 
acting as experts determine approximate estimates at , bt  and mt  of the same satis-
fying ata a 1.18.0 ≤≤ ; btb b 2.19.0 ≤≤ ; mtm m 1.19.0 ≤≤ . Apply additional condition 

2
bama +≤≤  and obtain the worst total estimate for error 1∆  (type 3): 

( ) ( ) ( ) ( )
=







 ++−++++−++
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=∆

6
42.14.41.1,

6
49.06.38.0max1

1
bmabmabmabma

ab
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ab

bma 24
60
1 . (2.2.20) 

In the same way, the corresponding estimate 2∆  for xσ  may be calculated as 
( ) ( )

ab
ababababab

ab −
+

=






 −−−−−−

−
=∆

30
1

6
8.02.1,

6
1.19.0max1

2 . (2.2.21) 

As for previous types of errors, modal value m does not influence the esti-
mate for   2∆ . 

Internal contradictions within the methodology of determining probabilistic 
parameters for network activity durations distribution in PERT caused scientific 
researchers dealing with development and implementation of NAM, to criticize 
the method [22-23,25,36,49,116,etc.]. Some of the critics include recommenda-
tions as to further improvement and modification of the regarded procedure, as 
outlined in the following sections. 
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§2.3  Attempts to refine the PERT assumptions 
To sum up, no one scientific discussion in the last five decades caused so 

much agitation and excitement as the ongoing attempts to improve the PERT 
analysis based on the subjective determination of the “optimistic”, “most likely” 
and “pessimistic” activity-times ( a , mand b , respectively). There are, indeed, 
nothing but a few areas as open until now to such a sharp criticism as in PERT 
applications. 

The creators of PERT [22,44-45,116-117,etc.] worked out the basic concepts 
of PERT analysis, and suggested estimates of the average and variance values 
(2.2.2-2.2.3) subject to the assumption that the density distribution of the activ-
ity time is a beta-distribution (2.2.1). Take once more a brief overlook of the 
heated discussion as to PERT weaknesses and challenges. 

Grubbs [95] pointed out the lack of theoretical justification and the unavoid-
able defects of the PERT statements, since estimates (2.2.2) and (2.2.3) are, in-
deed, “rough” and cannot be obtained from (2.2.1) on the basis of values a , m 
and b  determined by the analyst. Various authors noted [46,49,146,162] that 
there is a tendency to choose the most likely activity-time m much closer to the 
optimistic value a  than to the pessimistic one, b , since the latter is usually diffi-
cult to determine and so is chosen conservatively large. Moreover, it is shown 
[49] that value xm , being subsequently determined, has approximately one and 
the same relative location point in [ ]ba,  for different activities. This provides an 
opportunity to simplify PERT analysis at the expense of some additional as-
sumptions. McCrimmon and Ryavec [116], Lukaszewicz [115] and Welsh [160] 
examined various errors introduced by imposing PERT assumptions, and came 
to the conclusion that these errors may be as great as 33%. Murray [125], 
Donaldson [36] and Coon [25] suggested certain modifications of the PERT 
analysis, but the main contradictions remained. Farnum and Stanton [42] pre-
sented an interesting improvement of estimates (2.2.2-2.2.3) when the modal 
value m is close to the upper or lower limits of the distribution. This modifica-
tion, however, makes the distribution law rather uncertain, and makes it difficult 
to simulate the activity network. However, it can be shown that there are still 
theoretical grounds for improving the estimates without complicating the PERT 
analysis. We will present some modifications of the PERT model under various 
assumptions which may refine the model’s accuracy. 

In our opinion, assumption 4≈+ γα  may become inadequate since the actual 
standard deviation may be smaller than 6

1 , especially in the tails of the distribu-
tion [58]. In order to make the assumption more flexible, we assume that the 
sum γα +  in (2.2.6) is approximately constant but not predetermined, i.e., rela-
tion 

const - Z≈+ γα  (2.3.1) 
holds. From (2.2.6) we obtain 

xZm=α , (2.3.2) 
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and values ( )xE  (2.2.5) and ( )xV  (2.2.7) are  

( )
2

1
+

+
=

Z
Zm

xE x , (2.3.3) 

( )
( ) ( )32

1
2

222

++

−++
=

ZZ
mZmZZ

xV xx . (2.3.4) 

To satisfy the main PERT assumptions we introduce a reasonable statement 
[58]: the average value ( )xmV  for 10 << xm  has to be equal 36

1 , i.e.,  

( )
36
11

0

=∫ xx dmmV . (2.3.5) 

Substituting (2.3.4) by (2.3.5) and solving (2.3.5) for Z , we obtain 55.4=Z . 
Approximating Z  to 5.4  and getting 

( )



−=
=

,15.4
5.4

x

x

m
m

γ
α  (2.3.6) 

we finally obtain  
( )

13
29 +

= xm
xE , (2.3.7) 

( ) ( )2818122
1268

1
xx mmxV −+= , (2.3.8) 

together with the final density distribution function 
( ) ( )

( ) ( ) ( ) ( )xx mm

xx

tt
mm

t −−⋅
−Γ+Γ

Γ
= 15.45.4 1

5.45.515.4
5.6

ϕ . (2.3.9) 

Density function (2.3.9) can be simulated, e.g., by the acceptance-rejection 
method [43], but this requires much computational time. 

For a simplified approximation 5=Z  we, in turn, obtain a simplified beta-
function 

( ) ( ) ( )xx mm ttCt −−⋅= 155 1ϕ  (2.3.10) 
with parameters 

( )
7

15 +
= xm

xE , (2.3.11) 

( ) ( )225256
392

1
xx mmxV −+= . (2.3.12) 

Here coefficient C  stands for 
( )

( ) ( )xx mm
C

5615
7

−Γ⋅+Γ
Γ

= . (2.3.13) 

For the general beta-distribution of activity time, estimates (2.3.7-2.3.8) are 
transformed to  

( )
13

292 bmaxE ++= , (2.3.14) 

( ) ( )
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For the simplified case 5=Z  estimates (2.3.11-2.3.12) are transformed to 
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( )
7

5 bmaxE ++= , (2.3.16) 

( ) ( )
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am
ab
amabxV . (2.3.17) 

Note that when the estimated mode xm  is close to the upper or lower limits of 
the distribution, variance (2.3.8) provides a better approximation to 36

1 , than 
(2.3.12). However, estimate (2.3.8) is essentially more complicated and more 
difficult in usage, especially in simulation modeling. Thus, all attempts to amend 
the PERT analysis models result in raising the complexity of the latter. A con-
clusion can be drawn that a certain compromise has to be agreed upon in order 
to close the acute scientific discussion. At the same time, one has to bear in 
mind that both estimates (2.3.12) and (2.3.8) being more complicated perform 
better (from the theoretical point of view) than the “classical” estimates (2.3.5-
2.3.7). 

Let us turn to another important simplification in PERT assumptions. Ana-
lyzing over a lengthy period different network projects [49], one may come to 
the conclusion that the “most likely” activity-time estimate m is practically use-
less. Its relative location in time interval [ ]ba,  is usually close to the point 
( ) 32 ba + . In the course of the analysis a group of analysts was requested to de-
termine subjectively (for a large number of activities selected from different pro-
jects) for optimistic a , pessimistic b  and most likely m completion times. Af-
terwards two different samples of values m were compared by means of statisti-
cal testing – the one obtained from the analysts’ subjective estimations, and the 
other by calculating ( ) 32 bam +=∗ . This experimentation has been repeated over 
and over again with the same result: the samples under comparison belonged to 
one and the same general population. 

Table 2.1 presents a sample of 20 activities which have been selected from 
one of the R&D projects. The difference between the two samples of m versus 

∗m  under comparison is not statistically significant (even with 0.01 level). 
After the elimination of the “most likely” estimate, the additional improving 

suggestion would be assuming 1=α  and 2=γ . Various statistical experiments 
[49] lead to the conclusion that these additional assumptions are, indeed, reason-
able, since they simplify PERT analysis and do not change essentially the pa-
rameters of the network project. Thus, the general density distribution can be 
modified to 

( )
( )

( )( )2
4

12 tbat
ab

t −−
−

=ϕ  (2.3.18) 

with the average, variance and mode as follows: 
( ) ( )baxE 232.0 += , (2.3.19) 
( ) ( )204.0 abxV −= , (2.3.20) 

( ) 32 bam += . (2.3.21) 
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Table 2.1.  Numerical values of  m versus ∗m  
Value a  Value b  Value m Activity (determined by an analyst) 

Value ∗m  (approximated to integer 
numbers) 

1 16 21 18 18 
2 20 45 30 28 
3 10 25 16 15 
4 6 13 8 8 
5 20 35 24 25 
6 12 20 15 15 
7 15 27 18 19 
8 3 9 5 5 
9 18 28 22 21 

10 10 15 13 12 
11 25 40 28 30 
12 24 40 30 29 
13 25 50 30 33 
14 30 60 35 40 
15 20 35 24 25 
16 20 50 25 30 
17 15 40 22 23 
18 30 55 40 38 
19 30 65 38 42 
20 7 13 10 9 

 

Thus, the PERT statements can be replaced by a simpler methodology, since 
the analyst will be from now on asked to determine only two values – the opti-
mistic and pessimistic activity-times. It goes without saying that for an individ-
ual activity there may be certain deviations in estimating the average and the 
variance when applying the three- and the two-value methodologies. But for a 
project as a whole there is in most cases no practical difference; i.e., for the pro-
ject’s main parameters there is no essential deviation. In practice, values a , m 
and b  in PERT analysis are subjectively determined by the person responsible 
for the completion of the activity. He is usually not a specialist in mathematical 
statistics, as is stated in some PERT studies [49-50], and determining the most 
likely activity-time may become a real problem for him. 

The PERT modification with two values has been introduced in many practi-
cal network-planning systems [49-54] which have functioned successfully for a 
long time. 

The following conclusions can be drawn from the study: 
a) The PERT analysis is efficient, and can be used in project management 

when each activity is carefully estimated by an experienced analyst. Oth-
erwise, the two-value modification with the beta-distribution density func-
tion (2.3.18) and simple estimates (2.3.19-2.3.20) for the average and 
variance is preferable as being simple and not less efficient. 
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b) The commonly used subjective estimates of the average and variance in 
PERT analysis can be replaced by improved estimates (2.3.7-2.3.8) or 
(2.3.11-2.3.12). The latter provide better accuracy if the estimated mode is 
located in the tails of the distribution. 

 
§2.4  A challenge against beta-density? A new approach to the activity-

time distribution in PERT 
2.4.1  Introduction 
Problems associated with computing the density function of the completion 

time of PERT stochastic networks have been discussed extensively in scientific 
literature. Numerous publications refer mostly to three main directions. 

The first one is associated with a direct and general solution of the problem 
of determining the completion-time distribution by sequential reduction of the 
initial network under various assumptions [45,103,107,119]. The activity net-
work is partitioned into standard subnetworks of two different classes – activi-
ties in series and activities in parallel – each subnetwork being later reduced to 
an equivalent arc. The results obtained can be applied to small networks only. 
For large-size networks the solution boils down to interchanging the convolution 
and maximization integral operators, and is too complicated. 

Various research has been undertaken to derive the upper and lower bounds 
of the completion-time distribution for discrete and continuous activity-time dis-
tributions [51,53,102-103]. In the same course, attempts have been made to de-
rive bounds with better accuracy for normally distributed activity-times 
[103,119,135-138], but the results obtained are not far from those of Clark [22]. 
Although this direction still seems to be a promising one, it needs further, more 
successful, achievements. 

The main shortcoming of both directions is the non-stability of the activity-
time distribution with respect to convolution and maximization. We call activ-
ity-time distribution unstable with respect to convolution (maximization) if the 
sum (maximum) of two independent activity-times has another distribution. Un-
fortunately, the beta-distribution, which is generally superior to other activity-
time distributions in project planning, is unstable with respect to both convolu-
tion and maximization. As a result, a new direction has appeared: various re-
search has been carried out either to replace the beta-distribution by another one 
[8,102,162-163], or to explore the errors involved in approximation of both the 
maximum and sum of two independent random beta variables, each by another 
beta variable [51,76]. 

 In our opinion, replacing the beta-distribution by the normal one (which is 
stable with respect to convolution) contradicts the basic principles of PERT 
analysis. As outlined in Section 2.1, activity-time distribution, unlike the normal 
one, is asymmetrical for many reasons [49,51,53-54,60]. Since the activity time 
is always positive, whoever wishes to use normal distribution has to apply it in 
the positive area only. However, the transformed distribution becomes unstable 
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with respect to convolution. 
As to beta-distribution, the error involved in assuming that the maximum of 

two beta variables is also a beta variable can be indicated by the Kolmogorov-
Smirnov one-sample test [75,96]. Various experiments show [75] that the close-
ness of the approximation depends significantly on the ratio r  of the variable 
ranges. If inequality 5.24.0 ≤≤ r  does not hold, the approximation should be re-
jected. Otherwise the error measure ND , fits the test with confidence probability 
close to one. However, even 105 ÷  sequential maximizations may pile up the ap-
proximation error to a substantial value. Thus, beta-distribution can be regarded 
stable to maximization for small networks only. 

In this section we present an asymmetric activity-time distribution which is 
close to the beta-distribution. That distribution is stable with respect to maximi-
zation, and is close to stable with respect to convolution [60]. 

 
2.4.2  Stable distributions with respect to convolution 
By definition, a cumulative probability distribution function (c.d.f.) ( )xF  is 

regarded stable with respect to convolution if for any 0, 21 >aa , 1b ,  2b  there exist 
values 03 >a , 3b  such that, for all x , relation 

( ) ( ) ( )332211 bxaFbxaFbxaF +=+∗+  (2.4.1) 
holds, ( )∗  being the convolution operator. 

It can be shown [51,60,76] that if and only if the distribution is stable with 
respect to convolution, relation 

( ) ( )












+−= αωβγφ α ,1ln t
t
titCtit  (2.4.2) 

holds, ( )tφ  being the characteristic function of the probability density function 
(p.d.f.) ( )xf , α , β , γ , C  constants – namely, 20 ≤< α , 11 ≤≤− β , 0≥C , γ  any 
real value - and 

( )






 ≠
=
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1
2,
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αω  

Value 2=α  corresponds to the normal distribution, values 1=α , 0=β  to the 
Cauchy distribution, values 5.0=α , 1=β , 0=γ  and 1=C  to the p.d.f. 

( )






−⋅=

xx
xf

2
1exp

2
1

23π
,  0>x . (2.4.3) 

Denote henceforth the set of stable distributions with respect to convolution 
by αD , where α  is the characteristic index in (2.4.2). 

Theorem 1 
When ∞→x , the p.d.f. of αD  is asymptotically close to ( )

1

,
+α

βα
x

B , 11 ≤≤− β , 

20 ≤< α , where B  is independent of x . 
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Theorem 1 is proved in [51] by examining different cases of the p.d.f. of αD  
in the distribution tails.  

 
2.4.3  Stable distributions with respect to maximization 
By definition, a c.d.f. ( )xF  is regarded stable with respect to maximization if 

for any 0, 21 >aa ,  there exists a value 03 >a  such that, for all 0≥x , relation 
( ) ( ) ( )xaFxaFxaF 321 =  (2.4.4) 

holds. 
Theorem 2 
The c.d.f. 

( )
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00,,exp υθ
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υ

υ  (2.4.5) 

is stable with respect to maximization on the set of distributions with identical υ . 
Proof 
The proof is obtained by substituting (2.4.5) in (2.4.4).  
Note that mode m satisfies 

υ

υ
υθ

1

1
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=m . (2.4.6) 

For 1>υ  average ( )xE  satisfies 
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When maximizing n  random variables with parameters nθθθ ,...,, 21 , respec-

tively, we obtain the same distribution with parameters υ  and 
υ

υθθ
1

1
max 
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n

i
i . 

Distribution υF  can be easily restricted from below, namely 
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θ
 (2.4.8) 

Denote henceforth the set of stable distributions with respect to maximization 
by υD . 

Theorem 3 
As ∞→x , the p.d.f. of υD  is asymptotically close to 1+υx

A , υυθ=A  being a 

constant independent of x . 
Proof 
The proof is obtained from examining the p.d.f. 
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( )
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θυθ
 (2.4.9) 

Corollary 
As ∞→x , the p.d.f. of αD  is asymptotically close to the p.d.f. of υD  with 

values 20 <=< υα . 
The proof is obvious. A conclusion can be drawn that in the distribution tails 

the p.d.f. of αD  can be regarded as a stable one with respect to maximization, 
and vice versa. This is important, especially as most of the approximation errors 
appear just in the distribution tails. 

 
2.4.4  Experimentation 
In order to examine the closeness of the beta-distribution to the υD  distribu-

tion, various examples were run. Since any beta-distribution can be transformed 
to a standard p.d.f. 

( ) ( )
( ) ( ) ( )nm xx

nm
nmxf −

+Γ+Γ
++Γ

= 1
11

2 ,  10 << x ,  1, −>nm , (2.4.10) 

we examined the closeness between two standard distributions (2.4.9) and 
(2.4.10). This can be achieved [51,53,76] by equating the ( )p−1 -th quantile, 

1<<p , of the υD  distribution (2.4.9) with the upper level of the standard beta-
distribution. Later on, values θ  and υ  are determined, such that the main pa-
rameters (the average, variance, and the most likely values) of both distributions 
under comparison are close to each other, respectively. For example, the p.d.f. 
(2.4.10) with 1=m , 2=n , which is often used in project planning [49], is close 
to the υD  distribution with 2=υ  and 32.0≅θ  ( 1.0=p ); moreover, the main pa-
rameters practically coincide. 

Note that the set of υD  distributions (2.4.9) is preferable for practical applica-
tions since it corresponds to a broad spectrum of beta-distributions and has sim-
ple formulae for calculating the average and most likely values. 

 
2.4.5  Conclusions 
We consider the problem of computing the density function of the comple-

tion time of PERT stochastic networks. An activity-time distribution is sug-
gested which is stable to maximization and close to the beta-distribution. Thus 
classical network-reducing methods, e.g., Martin’s algorithm [119], can be es-
sentially simplified. 

Based on the results outlined above, we recommend using the c.d.f. (2.4.5) 
for activity-time distribution purposes in stochastic PERT networks. Index θ  
varies from activity to activity, while parameter υ  which may be interpreted as 
the uncertainty level for the project as a whole, is kept constant. From the dis-
cussion outlined above, it follows that value 2=υ  is preferable. 
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A subnetwork 1Σ  of n  independent activities ( )ji,  in parallel is thus reduced 

to an equivalent arc with parameters υυ =Σ1
 and 

( )

υ

υθθ
1

, 1

1 







= ∑

Σ∈
Σ

ji
ij . From (2.4.7) we 

obtain that a subnetwork 2Σ  of n  activities in series can be reduced to one arc 
with average  

( ) ( )
( ) ( )

∑∑
Σ∈Σ∈







 −

Γ==Σ
22 ,,

2
1,

ji
ij

ji
jiEE θ

υ
υ

. (2.4.11) 

It follows from the corollary that the c.d.f. 2=υD , being stable with respect to 
maximization, can be regarded as a stable one with respect to convolution too. 
An additional reason for this approximation can be obtained by examining rela-
tions (2.4.7) and (2.4.11) with similar structure. Distribution 2=υD  fits, especially, 
when the analyst estimates the activity time by one value, namely by the most 
likely time m. In this case the corresponding value θ  is immediately determined 
by (2.4.6), parameter υ  being externally pregiven. It goes without saying that 
when each activity is carefully examined and later on estimated by an experi-
enced analyst, the three-value PERT analysis is efficient and can be imple-
mented in project management. But for entirely new innovative R&D projects 
including activities with no similar prototypes in the past, the estimates of the 
pessimistic and optimistic duration times are usually rather poor [49,164], e.g., 
pessimistic assessments are chosen conservatively large, etc. Under such cir-
cumstances PERT analysis estimates may misrepresent the real activity distribu-
tion, and the one-value estimate m is more simple but not less efficient. Since 

( )xFυ  can be easily transformed to distribution range ∞<< xa , the three-value 
activity-time estimates ( a ,b  and m) can also be used when necessary. Note that 
when using ( )xFυ , all the network-reducing methods, e.g., Martin’s algorithm 
[119], are essentially simplified since only one variable parameter, θ , is utilized. 
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Chapter 3. Estimating Parameters of Stochastic Network Models  
 

§3.1  New concepts in stochastic network models’ parameters 
In numerous books (see, e.g., [48-54,121-122,130]) a variety of algorithms to 

calculate the network’s critical path length by means of simulation, has been 
outlined. Simulation methods can be used for calculating other network parame-
ters, which determine the level of intensity for both activities and paths forming 
a part of a network with random activity durations. In [49] we have introduced 
the concept of the p -quantile intensity level of path L  which is calculated as fol-
lows 

( ) ( ){ }LkWLk pp intint. = , (3.1.1) 
where ( )Lkint  determines the intensity level of path L  for a fully deterministic 
network model calculated by 

( ) ( ) ( )
( )LtT

LtLt
Lk

crcr

cr
∗

∗

−
−

=int . (3.1.2) 

Here ( )Lt  denotes the length of path L  connecting the network’s source and 
terminal nodes, while ( )Ltcr

∗  denotes the summarized duration of activities enter-
ing both path L  and the critical path crL  with length crT . To determine value 

( ){ }LkW p int  one should undertake N  multiple simulation runs for all activities en-
tering the considered stochastic network model. In the course of each simulation 
run the deterministic value ( )Lkint  has to be calculated. The p -quantile intensity 
value for any activity ( )ji,  entering the stochastic network can be determined by 

( ) ( ){ }jikWjik pp ,, intint. = , (3.1.3) 
where intensity value ( )jik p ,int.  for activity ( )ji,  entering a deterministic network 
has to be calculated [48-49,53] by 

( ) ( )[ ] ( )
( )max

maxmax
int ,

,,
,

jit
jitjiLt

jik
cr

cr
∗∗

∗−
= . (3.1.4) 

Here ( )max, jit cr
∗  and ( )max, jitcr

∗∗  denote, correspondingly, the summarized dura-
tions of all activities coinciding and not coinciding with the maximal path con-
necting the network’s source and terminal nodes, and passing through activity 
( )ji, . 

In the same way, another level of intensity - the so-called p -quantile reserve 
level [48-49,53] - can be determined by 

( ) ( ){ }jikWjik respresp ,,. = , (3.1.5) 
where ( )jikres ,  has to be calculated for a network with deterministic activity du-
rations ( )jit ,  [49,53] 

( ) ( ) ( )
( )jit

itjtjik latear
res ,

, −
= , (3.1.6) 

values ( )jtear  and ( )itlat  being the earliest and the latest moments for realizing 
events (nodes) j  and i , correspondingly. 



 
 

51 

Implementing the p -quantile concepts enables subdividing the entire set of 
activities entering a stochastic network, into three parts - the critical, the inter-
mediate and the reserve zones. We suggest allocating to the critical zone all ac-
tivities ( )ji,  with values ( ){ }jikW p ,int  exceeding the preset level η−1  ( 0>η ). Note 
that increasing value η  results in increasing the volume of the critical zone. This 
fully corresponds to the concept of confidence level [20] which is widely im-
plemented in mathematical statistics. Thus, practically speaking, using network 
analysis models with random activity durations leads to introducing new con-
cepts in planning and controlling network projects, namely, defining p -quantile 
confidence zones as follows: 

a) p -quantile critical zone comprises activities ( )ji,  with ( ){ } 1int , pjikW p ≥  (in 
real design offices 9.08.01 ÷≈p ); 

b) p -quantile reserve zone unifies activities satisfying ( ){ } 2int , pjikW p ≤  (in 
practice 3.02.02 ÷≈p ); 

c) p -quantile intermediate zone comprising the remaining activities ( )ji,  
satisfying ( ){ } 1int2 , pjikWp p << . 

It can be well-recognized that the easiest means of determining the regarded 
confidence zones for any network with random activity durations and pregiven 
values 1p  and 2p  is to undertake multiple simulation runs by the Monte-Carlo 
method, i.e., by simulating activity durations with p.d.f. (2.2.1) (or any other 
probability law). In the course of each simulation run deterministic values 

( )jik ,int  (using (3.1.4)) have to be calculated for each activity ( )ji,  entering the 
network. After carrying out N  simulation runs statistical empirical frequencies 
for the N -amount sample for each activity to fall into one of the three zones 
have to be calculated. Note that usually such a frequency is determined by 

N
N

p ij
ij = , where ijN  denotes the number of cases (from N  runs) when value 

( )jik ,int , being calculated by (3.1.4), is either less than 2p  (reserve zone), or ex-
ceeds 1p  (critical zone) or belongs to the intermediate zone. For any ( )ji, , by 
means of the statistical hypothesis theory [25], we can compare values ijp , 1p  
and 2p  in order to determine as to what zone does activity ( )ji,  belong. Thus, if 
N  is sufficiently large to provide representative statistics, values ijp  form the 
three confidence zones. 

Similar to intensity estimates (3.1.1-3.1.4), new conceptions based on calcu-
lating the p -quantiles for reserve estimates, have to be implemented in NAM 
with stochastic activity durations. Besides estimates (3.1.5-3.1.6), we suggest 
using [49,53] the p -quantile of a full time reserve for each activity ( )ji,  calcu-
lated by ( ){ }jiRW fullp , , where the full time reserve ( )jiR full ,  for a deterministic 
network (being simulated each time by means of a routine simulation run) satis-
fies 



 
 

52 

( ) ( ) ( ) ( )jititjtjiR earlatfull ,, −−= . (3.1.7) 
Such an estimate is used in various books on network planning [49,53,149]. 

As to introducing the concept of p -quantile of a free reserve for activity ( )ji, , 
the latter may, correspondingly, be calculated by  

( ){ } ( ) ( ) ( ){ }jititjtWjiRW latearpfreep ,, −−= . (3.1.8) 
Finally, the p -quantile of time reserve for path L  may be determined as 

( ){ } ( ){ }LtTWLRW crpp −= . (3.1.9) 
Note that increasing confidence probability p  results always in decreasing 

the corresponding p -quantiles of time reserves ( )jiR ,  and ( )LR . This, in turn, 
averts unreasonable time resource transmissions between network activities 
which may cause unstable equilibrium situations. 

Another concept of estimating time reserves from a probabilistic point of 
view is as follows [49,53]: denote ( )jit pl ,  the planned time to execute activity 
( )ji, . Estimate 

( ) ( ){ } ( ){ } ( )jititWjtWjiW plearpearpp ,, −−=  (3.1.10) 
can be used in various NAM models [49,53] as a pregiven due date for starting 
activity ( )ji, , i.e., as a milestone. Under certain circumstances relation (3.1.10) 
may represent a realistic physical meaning. 

 
§3.2 Estimating the accuracy of probability network parameters by 

means of simulation 
Consider the accuracy of estimating one of the network parameters by means 

of simulation for a fixed and pregiven number N  of simulation runs, namely, by 
estimating the earliest moment of event’s k  realization. Let ( )kti  be the earliest 
moment for event k  to be realized in the i -th simulation run. The sample under 
consideration comprises the set ( ){ }kti , Ni ≤≤1 . A random value 

( ) ( )∑
=

=
N

i
i kt

N
kt

1

1
 (3.2.1) 

is the estimate of average ( ){ }ktE  of the earliest moment when event (node) k  is 
realized. Variance ( ){ }ktV  of random value ( )kt  has an estimate 

( )[ ] ( ) ( )[ ]∑
=

−=
N

i
i ktkt

N
ktS

1

22 1 . (3.2.2) 

Since ( )kti  are independent and ( )[ ] ( )[ ]ktEktE i ≡ , ( )[ ] ( )[ ]ktVktV i ≡  hold, we ob-
tain 

( )[ ] ( )[ ]ktEkt
N

E
N

i
i =







 ∑

=1

1 , 

( ){ } ( )[ ] ( )[ ]
N

ktktV
N

ktV
21 σ

== . 

In accordance with the Lyapunov theorem [27] relations 
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 (3.2.3) 

hold. Thus, for sufficiently large N  relation 

( ) ( )[ ] ( )[ ] ( )z
N

ktSzktEktP Φ≈






 ⋅

≤− 2  (3.2.4) 

holds, where 

( ) .0,
2

exp
2
1

0

2

>







−=Φ ∫ zdttz

z

π
 

For a preset probability value α , from ( ) αα =Φ z2 , one can determine value αz  
satisfying 

( ) ( )[ ] ( )[ ] ( ) ( )[ ]
ααα =









⋅+<<⋅−
N
ktSzktktE

N
ktSzktP . (3.2.5) 

Estimate the accuracy of standard deviation S  as an approximate value of 
( )[ ]ktσ . Analyzing 

( ) ( )[ ]{ } ( ) ( )[ ]{ } ( )[ ] ( )[ ]ktktVktEktEktEktE i
222 σ==−=− , 

( ) ( )[ ]{ } ( ) ( )[ ]{ } 2
2

2
24

22 σµµ =−=−=− ktEktVktEktV i , 
and taking into account 

( ) ( )[ ]∑
= 






 −=

N

i
iN ktEkt

N
S

1

2
2 1 , 

we obtain from the Central Limit Theorem [27] 

( )[ ] ( ) ( )∫ Φ−Φ=








−→



















<
−

<

∞→

1

0

01

2

1
2

22

0 2
exp

2
1 z

z

N

N zzdttz

N

ktS
zP

πσ
σ . (3.2.6) 

This means that value ( )[ ]{ }
2

22

σ
σ NktS N −  for large N  is approximately distrib-

uted with the normal p.d.f. Taking into account that ( ) ( )[ ]{ }222 ktEktSS N −=− , we 
obtain 

( ) ( ) ( )[ ]
2

22







 −=− ktEktNSSN N . (3.2.7) 

From the other side, any ε  as small as possible satisfies [27] 

( ) ( ) 0lim
4

=








>−
∞→ N

ktktP
N

ε , (3.2.8) 

since Chebyshev’s inequality enables 
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[ ]{ } [ ]ξ
ε

εξξ VEP 2

1≤<− . 

For sufficiently large N  we obtain 

( ) ( )[ ] ( )[ ] ( )[ ]
2

2

24 ε
σ

ε
ε

⋅
=⋅<









>−
N

ktktVN
N

ktEktP , 

which, in turn, enables relation (3.2.8). 
Thus, ( ) ( )[ ]{ } 0lim 4 →−

∞→
ktEktNprob

N
 holds, and we obtain probability conver-

gence ( ) ( )[ ]{ } 0lim
2

=−
∞→

ktEktNprob

N
. From analyzing (3.2.6) and (3.2.7), one may 

conclude that values 2
NSN  and 2SN  for sufficiently large N  are asymptoti-

cally normally distributed, i.e., 

( )[ ]
∫
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0
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2

1
2

22
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z
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ktS
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πσ
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 (3.2.9) 

holds. Taking into account that 2
24

2
2 µµσ −= , we arrive at the conclusion that 2S  

is normally distributed with parameters ( )[ ] ( )



 − 2

24
2 1, µµσ

N
kt . Thus, parameter 2S  

can be regarded as an unbiased and sustainable estimate for variance ( )[ ]kt2σ . On 

the basis of probability convergence ( )[ ] 1lim =
∞→ kt

Sprob

N σ
, we finally obtain 
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and value S  for a sufficiently large N  is asymptotically normally distributed, 

with parameters ( )[ ]
( )[ ] 









Nkt
kt

σ
σ

σ
2

, 2 . 

To estimate value 2σ  by substituting central moments 4µ  and 2µ  for their 
sample estimates 4m  and 2m , we finally obtain the approximate equality 

( ) ( )[ ]
( ) ( )[ ]
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1

21

4

22
1
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or, taking into account (3.2.2), 

( ) ( ) ( )[ ]ktSktkt
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S
N

i
i
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22

1
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−=≈ ∑

=

σ . (3.2.11) 

It can be well-recognized [27] that if a random value ξ  is normally distrib-
uted, its central moments satisfy 22

24 2σµµ ≈− . This enables the approximate 
equality 
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( )[ ] ( )[ ] NNNktNktS 22
2

22

22
242 σ

σ
σ

σ

µµ

σ
σ

σ =≈
−

== . (3.2.12) 

Estimates (3.2.3) or (3.2.5), (3.2.10) or (3.2.12) enable calculation of the 
proper sample amount N  (number of simulation runs) required to ensure estima-
tions ( )[ ] ( )ktktE ≈  and ( )[ ] ( )[ ]ktSkt 22 ≈σ  with predetermined accuracy, correspond-
ingly. To determine N  for the case of estimating the average value one has to 
preset the confidence level α  and the accuracy of substituting ( )[ ] ( )ktktE ≈ , i.e., 
inequality 

( ) ( )[ ] αε ≥








<− ktEktP  (3.2.13) 

should hold. By using (3.2.3) and inequality ( )[ ]
εα ≤⋅

N
ktSz , we finally obtain 

( )[ ] ( )[ ]
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(3.2.14) 

By representing the limit error as a quota of the standard deviation value 

( )[ ]kt
q

σ
ε

= , (3.2.14) may be transferred to a simplified form 

21

2
qN 






Φ≥ − α . (3.2.15) 

It can be well-recognized that from similar considerations, (3.2.14) may be 
substituted also for 

( )[ ]
2
1

1
2

21
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ktS
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Φ
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−

α
ε

α

, 
(3.2.16) 

where ( )[ ]ktS
q ε

=1 . 

Similarly, the required number of simulation runs may be assessed by means 
of (3.2.10), (3.2.12). Indeed, from  

( ) α
σ

σ αα ≥Φ=








≤− z
N

zSP 2  

in conjunction with inequality σ
α ε

σ
≤

⋅
N

z
2

, we obtain the restricted from below 

sample value N  estimate 
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(3.2.17) 

or 
21 2

2 σ
α qN 






Φ≥ − ,   

σ
εσ

σ =q . (3.2.18) 

Thus, we have considered the problem of estimating the number N  of simu-
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lation runs to be able deciding with required confidence as to whatever p -
quantile zone each activity ( )ji,  has to be allocated. As outlined in §3.1, two 
probabilities 1p  and 2p , 12 pp < , are pregiven. In case 1pp ij ≥  activity ( )ji,  be-
longs to the critical zone, when 2pp ij <  activity ( )ji,  has to be allocated to the 
reserve zone. For 21 ppp ij ≥>  activity ( )ji,  refers to the intermediate zone. Al-
though put in easy terms, the appropriate decision-making when grounded on 
solid statistical theory [27], becomes not that obvious. The main reason for that 
stems from the fact that in allocating activities ( )ji,  to the three zones, we sub-
stitute the theoretical probability ijp  by its simulated statistical frequency 

NNp ijij =  (see §3.1). To avoid statistical inconsistencies in such a procedure, 
consider the regarded decision-making in greater detail. 

In terms of theoretical probability ijp , assume 1ppij > , i.e., the appropriate ac-
tivity ( )ji,  belongs to the critical zone. With the help of the well-known de 
Moivre-Laplace Theorem [27], we obtain for this case 

( )
∫∫
−

∞−

∞

− 







−=








−−<










 −⋅
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ij dttdtt
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N
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P
2

exp
2
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2
exp

2
111 22

11
1

ππ
. (3.2.19) 

Let us preset the confidence level α , i.e., the probability of the fact that for 
the theoretically true event (namely, 1ppij > ) we will not take a false decision on 
the basis of the simulated statistical frequency NNp ijij =  and will not wrongly 
allocate activity ( )ji,  to the second or third zones (intermediate or reserve). For 
the sake of determinacy, assume 95.0=α . 

From relation ( )
α−<











 −⋅

−< 11 11
1 N

ppkp
N
N

P ij  value k  may be singled out by 

means of 

( )α1−= Fk ;  ( ) α
π

=








−= ∫
∞−

k

dttkF
2

exp
2
1 2

. (3.2.20) 

For 95.0=α  we obtain 65.1=k . Thus, the difference between ijp  and 1p  with 
probability α  should not exceed 

( ) ( )
εα =

−⋅
⋅−

N
pp

F 111 1 . (3.2.21) 

After calculating the deviation value ε , we are able to determine the required 
number of simulation runs N  by 

( ) ( )[ ]21
2

11 1
α

ε
−−⋅

≥ FppN . (3.2.22) 

Thus, after fixing the confidence level α , we determine the deviation limit ε . 
The latter means that after carrying out N  simulation runs, with N  satisfying 
(3.2.22), empirical frequency NNp ijij =  should belong to interval [ ]1;1 ε−p  (for 
the case of 1ppij > ). In other words, to check inequality 1ppij > , one has to carry 



 
 

57 

out N  simulations and later on to compare the calculated value of ijp  with 
ε−1p . If ε−< 1pp ij  the conclusion should be drawn that relation 1ppij >  is false 

and activity ( )ji,  should not be placed in the critical zone. 
All other hypothesis referring to other activities and different zones, have to 

be checked in a way similar to that outlined above. 
 
§3.3  Simulating stochastic network models by means of equivalent 

transformations 
We will outline several algorithms of simulating stochastic networks to de-

termine their critical path length (or, more exact, a statistical analogue of the 
critical path distribution). This is achieved by constructing a transformed net-
work of lower size but with equivalent probability distribution parameters. We 
will henceforth call two stochastic networks equivalent ones if their parameters’ 
p.d.f. practically coincide. Creating an equivalent network model of lower size 
enables simulating the latter by lower computational time. 

Note that the problem of transferring the initial network to one of a smaller 
size, but with similar p.d.f. parameters, has been a common research area for 
many scientists (e.g., [35]). We have not been an exclusion, although all the re-
sults obtained can be used for small- and medium-size networks only. We will 
present an alternative approach outlined in [49]. 

To obtain an equivalent network we have to exclude from the initial one all 
the activities which have no influence on the statistical parameters of the net-
work as a whole. Two methods to develop equivalent stochastic networks will 
be outlined: 

1. Analytical method. 
2. Method based on simulation modeling. 
The first method is based on singling out the subset of activities which theo-

retically cannot belong to a critical path in the course of a routine simulation 
run. The following theorems [49] are at the underlay of the analytical method: 

Theorem I. Given a stochastic network model with activities ( )ji, , each with 
a random duration beta-distributed in the interval ( ) ( )[ ]jibjia ,;,  (all positive val-
ues ( )jia ,  and ( )jib ,  pregiven). All m paths connecting the source and the termi-
nal events, are enumerated and denoted mLLL ,...,, 21 . Let N  simulation runs be 
carried out, and denote: 

• ( )i
kLt  - the duration of path kL  in the i -th simulation run; 

• ( )acrLt  - the critical path length of the deterministic network model with set 
( ) ( )jiajit ,, = . 

The theorem asserts that for each one of N  simulation runs there exists at 
least one path ξL  satisfying ( ) ( )acr

i LtLt >ξ ; here i  stands for the number of the 
simulation run. 

Theorem II. For each simulation run the deterministic critical path length is 
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not less than ( )acrLt . 
Theorem III. Activity ( )ji,  belongs to the subsets of possible critical paths, 

i.e., has a probability exceeding zero to be found on the critical path in the 
course of a routine simulation, if [ ] ( )acrbij LtLt ≥max  holds. Here [ ]

bijLt max  denotes the 

length of the maximal path comprising ( )ji, , for a deterministic network with 
( ) ( )jitjib ,, ⇒ . 

Denote the subset of possible critical paths in the stochastic network under 
consideration, by Q . Thus, it can be well-recognized that a network with struc-
ture Q  is equivalent to the initial network. 

Theorem IV. Activity ( )ji,  belongs to set Q  if its full reserve ( )jiR full ,  calcu-
lated as 

( ) ( ) ( ) ( )
( ) ( )




=
−−=

jibjit
jititjtjiR earlatfull

,,
,,

 (3.3.1) 

for a deterministic network, is less than ( ) ( )acrbcr LtLt − . 
The outlined above theorems [49] enable developing the following step-wise 

algorithm to construct an equivalent network model: 
Step 1. Set ( ) ( )jiajit ,, =  for all activities ( )ji, . 
Step 2. Calculate the critical path length ( )acrLt . 
Step 3. Set ( ) ( )jibjit ,, =  for all activities ( )ji, . 
Step 4. Calculate the critical path length ( )bcrLt . 
Step 5. Using (3.3.1), calculate full time reserves ( )jiR full ,  for all activities ( )ji,  

entering the network. 
Step 6. If ( ) ( ) ( )acrbcrfull LtLtjiR −≥,  holds, exclude activity ( )ji,  from set Q  of ac-

tivities comprising the equivalent network. 
Step 7. In case ( ) ( ) ( )acrbcrfull LtLtjiR −<,  include activity ( )ji,  into set Q . 

Note that implementing the above algorithm does not necessarily result in es-
sential reducing the volume of the initial network. To further improve the proce-
dure, a refined algorithm [49] can be suggested. By the amended procedure, ac-
tivity ( )ji,  should belong to set Q  on condition that in the course of a routine 
simulation run the maximal path in the deterministic network connecting the 
source and the terminal nodes, and comprising activity ( )ji, , is the network’s 
critical path with probability not less than 0>ε . 

In other words, 
( ){ } 0max >≥= εcrij tLtP  (3.3.2) 

holds. 
Denote the average duration of path max

ijL  comprising activity ( )ji,  by 

[ ]






 max

ijLtE  and its variance - by [ ]






 max2

ijLtσ . Several assumptions are implemented 

in the modified algorithm: 
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1. The length of any path L  is normally distributed with average ( )
( )
∑

∈

=
Lji

jitt
,

,  

and variance ( )[ ]
( )
∑

∈

=
Lji

t jit
,

22 ,σσ ; 

2. The p.d.f. of the critical path is similar to the p.d.f. of the maximum of all 
paths entering the network. 

Thus, the network can be regarded as a unification of two paths as follows: 
a) the critical path crL ; 
b) the maximal path max

ijL  comprising activity ( )ji, . 
It is shown [49] that activity ( )ji,  can be included in the equivalent network 

Q  if  
( ) ( )[ ] ( )εσ 212,, 1 −Φ≤ −jiRjiR fullfull , (3.3.3) 

where
 

( ) .0,
2

exp
2
1

0

2

>







−=Φ ∫ zdttz

z

π  
The step-wise procedure of the modified algorithm may be outlined as fol-

lows: 
Step 1. Determine all activities belonging to the critical path, for the case 

( ) ( )jitjit ,, = . 
 

Step 2. Calculate variance ( ){ } ( )[ ]
( )
∑

∈

=
crLji

cr jitLtV
,

2 ,σ . 

 
Step 3. Determine all activities belonging to the maximal path max

ijL , comprising 
activity ( )ji, , for Step 1, i.e., for ( ) ( )jitjit ,, = . 

 

Step 4. Calculate variance ( ){ } ( )[ ]
( )

∑
∈

=
max,

2max ,
ijLji

ij jitLtV σ . 

 
Step 5. Calculate the variance of the full time reserve by 
 ( )[ ] ( )[ ] ( )[ ]max, ijcrfull LtVLtVjiRV +=  (3.3.4) 
 

Step 6. If ( ) ( )[ ]jiRVjiR fullfull ,3, >  holds, exclude activity ( )ji,  from set Q  of ac-

tivities comprising the equivalent network. 
 

Step 7. In case ( ) ( )[ ]jiRVjiR fullfull ,3, ≤  include activity ( )ji,  into set Q . 

Note that using this refined algorithm decreases the volume of set Q  essen-
tially in comparison with its previously outlined initial version. However, both 
methods may be implemented only for medium-size networks (comprising circa 
40-50 activities). 

Determining the equivalent set Q  may be also facilitated by means of simula-
tion modeling. One has only to carry out a comparatively small number of simu-
lation runs in order to single out activities with values ( )jik ,int  exceeding the pre-
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given levels. In the course of simulation we use the models (practically without 
any changes) outlined above, in §3.2. 

 
§3.4  Estimating parameters of stochastic networks by significant paths’ 

analysis 
Consider an analytical method described in [49] which is of certain interest. 

This method is applicable for analyzing the distribution of the earliest accom-
plishment of an arbitrary event k  of a network model (including, of course, the 
terminal event). 

The essence of the method boils down to singling out from the entire set of 
paths entering the regarded event k , the most significant paths having a major 
influence on the distribution law ( )tFk  of the earliest accomplishment of that 
event. It should be noted that the regarded method imposes less “severe” re-
quirements to the knowledge of the distribution laws of the activities’ durations 
than many other methods, including the simulation method. If network simula-
tion requires knowledge of the density distribution function for each network ac-
tivity, for the significant paths analysis it is sufficient to determine average val-
ues t  and variances ( )tV  of the activities’ durations. Thus, it can be well-
recognized that for determining average values and standard deviations both tri-
ple-parametrical PERT estimates as well as double-parametrical ones, can be 
successfully implemented, namely 









−
=

++
=

6

6
4

ab

bmat

tσ
  as well as  









−
=

+
=

5

5
23

ab

bat

tσ
. 

Each event k  of a network model may be regarded as a terminal one with re-
gards to a certain fragment of this model. That is why all further considerations 
are applied to terminal events, since it does not impose on the discussed method 
any real restrictions. 

The earliest possible accomplishment of a terminal event k  of a network 
model may be determined from the following relation: 

( ) ( ) ( ){ }nk LtLtLtT ,...,,max 21= , (3.4.1) 
where ( ) ( ) ( )nLtLtLt ,...,, 21  represent random values corresponding to all paths’ 
lengths of the network model which connect the initial event with the terminal 
one. 

It can be well-recognized that kT  itself may be regarded as a random value, 
while the probability of accomplishing the terminal event by a certain moment t  
may be calculated as  

( ) { } ( ) ( ) ( ){ }tLttLttLttTtF nk ≤≤≤Ρ=≤Ρ= ,...,, 21 . (3.4.2) 
The length ( )µLt  of path µL  may be determined as the sum of all activities’ 

durations entering this path, namely 
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( ) ( )
( )
∑

∈

=
µ

µ
Lji

jitLt
,

, , (3.4.3) 

where ( )jit ,  stands for the duration of activity ( )ji, . 
Since network models comprise usually activities of a similar specification 

level, different values ( )jit ,  may be regarded as comparable by their relative in-
fluence on random fluctuations of the sum ( )µLt  in (3.4.3). According to the 
Central Limit Theorem and taking into account the assumption about independ-
ency of the network model activities’ durations, the distribution of random value 
( )µLt  for a total of 5-7 addendums may be approximately considered as normal 

with mean value 
( )∑=

µ

µ
L

jitL ,  (3.4.4) 

and variance 
( ) ( ){ }∑=

µ

µ
L

jitVLV , , (3.4.5) 

where summarizing is carried out for all activities comprising path µL . 
The joint distribution of random values nLLL ,...,, 21  is also a multidimensional 

normal distribution. Thus, relation (3.4.2) may be represented as 

( ) ( ) n

t t

nN dddftF llllll ...,...,,... 2121∫ ∫
∞− ∞−

= , (3.4.6) 

where ( )nNf lll ,...,, 21  denotes the multidimensional normal density distribution 

with mean 
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 and correlation coefficients matrix 
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nn ρρ

ρ . Here stρ  stands for correlation coefficient between sL  and tL , 

which, in turn, is determined by relation 
( )

( ) ( )ts

LL
st LVLV

jiVt
ts

∑
= ∩

,
ρ . (3.4.7) 

In (3.4.7), condition ts LL ∩  means that summarizing is carried out for activi-
ties common for both paths sL  and tL . If for a given network no paths have 
common activities at all, then values ( ) ( ) ( )nLtLtLt ,...,, 21  become independent (in 
the probabilistic sense of the word). In such a case 

( ) ( )∏
= 













+












 −
Φ=

n

n LV

Lt
tF

1

1
22

1
µ µ

µ , (3.4.8) 
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where ( ) duex
x

u∫ −=Φ
0

22

2
1
π

 is the Laplace function. 

As a matter of fact, network paths usually do have common activities, which 
is a good reason why (3.4.8) is in a general case unfit for determining ( )tF . Be-
sides, the main difficulty in calculating ( )tF  boils down to the fact that even for a 
medium-size network model the total number of paths becomes significantly 
high. Thus, implementing computer algorithms enabling a total lookover of the 
network paths with subsequently determining their dependence (correlation) es-
timates, as well as directly solving the n-dimensional integral (3.4.6), becomes 
an enormously complicated and time-consuming problem. At the same time, ex-
amining random values similar to (3.4.1) shows [49] that when ∞→n  they start 
displaying some asymptotic features, which become substantial already for 

2015 ÷=n . The latter property enables singling out from the entire set of net-
work paths a limited subset of about 2015 ÷  significant paths which have the ma-
jor influence on distribution function parameters. 

As demonstrated by examining real-life network projects [49], model paths 
iL  characterized by the greatest mean values iL  of their durations and possessing 

at the same time the least correlation with the rest of the paths nLLL ,...,, 21 , would 
have the utmost influence on distribution function parameters. 

Thus, to determine the distribution function ( )tF  and its respective parame-
ters, one should establish about 2015 ÷  significant network paths with subse-
quently creating the random value 

( ) ( ) ( ){ }mk LtLtLtT ,...,,max 21=∗ , 2015 ÷=m , (3.4.9) 
representing with sufficient accuracy the theoretical ( )tF . 

In [49] several algorithms to single out the required set of significant paths 
for a given network model, including determining the mean values and variances 
of their durations by (3.4.4) and (3.4.5), are outlined. The below listed network 
model parameters are assumed to be known and are part of the input information 
for the algorithms: 
• mean values ( )jit ,  and variances ( ){ }jitV ,  for all activities’ durations; 
• mean value crL  and variance { }crLV  for the critical path duration. The critical 

path in the network model is the one with the longest duration when 
( ) ( )jitjit ,, = ; 

• full time reserves ( )jiR f ,  for all activities in the network model, when their 
durations ( )jit ,  have been determined by their mean values; it can be well-
recognized that in such a case the full time reserve for any given activity ( )ji,  
may be calculated as the residual between the critical mean values path crL  
and the longest mean values path vL  comprising the regarded activity; in 
other words, ( )

( )
{ }v

Lji
crf LLjiR

v∈
−=

,
max, . 
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3.4.1  Significant paths search algorithm 
The essence of the described algorithm boils down to a lookover procedure 

comprising not the entire set G  of all network model activities but a subset 'G  
comprising activities whose full time reserves are less than a pregiven permissi-
ble level. The amount of activities entering subset 'G  increases along the in-
crease of their full time reserves from the minimal level to the permissible one. 

The permissible level perR  of full time reserves for a given network model 
may be calculated by means of the following empiric relation [49] 

( ) { }crper LVR 0.25.1 ÷= . (3.4.10) 
The significant paths search algorithm consists of the following steps: 

Step 1. For each activity ( )ji,  auxiliary value ijx  is being determined, 
 ( )

( )



∉
∈

=
.,,0

,,1

cr

cr
ij Ljiif

Ljiif
x  (3.4.11) 

Step 2. For all events crLj ∈  parameter jω  is being calculated, equal to the 
accumulated sum of duration variances for all activities on the critical 
path preceding event j : 

 ( ){ }
( )

∑
=

∈
=

=
j

Lk
k

j

cr

ktV
l

l

l
,

0
,ω . (3.4.12) 

Step 3. For the given activity ( )ji,  check condition 1=ijx . If the condition 
holds, go to Step 9, otherwise (e.g., when 0=ijx ) proceed to the next 
step. 

Step 4. For all events i  check condition crLi ∈ . If the condition holds, go to 
Step 5, otherwise proceed to Step 6. 

Step 5. For the considered activity ( )ji,  check whether it belongs to any al-
ready established significant path excluding the critical path. If “yes”, 
go to Step 7, otherwise proceed to Step 8. 

Step 6. The procedure of the step is identical to that of Step 5, with the only 
exception that in case of the positive answer to the question go to 
Step 9, otherwise - to Step 10. 

Step 7. For the considered activity ( )ji,  determine auxiliary value ijα . Set 
( ){ }jitViij ,+= ωα . 

Step 8. For the considered activity ( )ji,  determine auxiliary value ijα . Set 

iij ωα = . 
Step 9. For the considered activity ( )ji,  determine auxiliary value ijα . Set 

( ){ }jitVv iij ,+=α . As to parameter iv , its calculation is outlined in the 
below Step 12. Note that for the initial event (e.g., when 0=i ) 00 =v . 

Step 10. For the considered activity ( )ji,  determine auxiliary value ijα . Set 

iij v=α . 
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Step 11. Check whether auxiliary value ijα  has been determined for all activi-
ties ( )ji,  entering event j . If “yes”, go to the next step, otherwise re-
turn to Step 3. 

Step 12. For the considered event j  calculate parameter jv  as follows: 
 ( )ijjv αmin= . (3.4.13) 
 Activity ( )ji,  for which ijα  reaches its minimal value is being marked 

by assigning 1=ijh . 
Step 13. Check whether parameter jv  has been calculated for all events j . If 

“yes”, proceed to the significant paths laying out algorithm. Other-
wise, return to Step 3. 

It can be well-recognized that the above outlined significant paths search al-
gorithm provides for each event j  of the network model its assigned parameter 
value jv . As a matter of fact, parameter jv  represents the minimal sum of activi-
ties durations variances for activities common to a certain path vL  and the set of 
already laid out significant paths of the network. Minimization is carried out for 
all paths vL  ( kv ,...,2,1= ) entering event j . 

 
3.4.2  Algorithm for laying out significant paths 
Significant path vL  to be determined is laid out through network model 

events with the least values of parameter jv , starting from the terminal event. 
The algorithm comprises the following main steps: 
Step 1. For the given event j  determine set of events { }i  directly preceding j . 

Also determine the corresponding set of activities ( ){ }ji,  connecting 
each i  with j .  

Step 2. Verify marker ijh  values for activities ( ){ }ji,  determined at Step 1 (see 
procedure of Step 12 from the previous significant paths search algo-
rithm outlined above). 

Step 3. Determine event i  from set { }i  from which activity ( )ji,  with 1=ijh  
starts. Check whether event i  is the initial one. If yes, go to the next 
step. If no, assign j  index i  and return to Step 1. 

Step 4. The sequence of events determined on Steps 1-3, together with the 
corresponding set of activities, form the required significant path vL  to 
be laid out. For vL , calculate its respective duration mean value and 
variance: 

 ( )∑=
vL

v jitL , , (3.4.14) 
 { } ( ){ }∑=

vL
v jitVLV , . (3.4.15) 
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3.4.2  Algorithm for determining mutual correlation among significant paths 
The algorithm described in [49] is intended to determine correlation coeffi-

cients of the newly established significant path vL  with each path belonging to 
the set { }µL  of significant paths previously established. For every couple of sig-
nificant paths vL  and µL , correlation coefficient µρ v  is calculated. The procedure 
of the algorithm boils down to the following steps: 
Step 1. Determine the set of activities ( )ji,  belonging jointly both to vL  and 

µL .  
Step 2. Check condition ( ){ } Ø, =ji . If the condition holds, assign 0=µρ v  and 

go to Step 5, otherwise proceed to the next step. 
Step 3. Calculate correlation coefficient µρ v  by relation 
 

{ } { }µ

µ
µρ

LVLV
S

v

v
v

⋅
= , (3.4.16) 

 where µvS  stands for the sum of duration variances of activities ( )ji,  
belonging jointly both to vL  and µL . 

Step 4. Compare calculated value µρ v  with the pregiven permissible target 
9.08.0 ÷=perρ . If inequality perv ρρ µ <  holds, return to Step 1. Other-

wise, when perv ρρ µ ≥ , it can be well-recognized that the newly laid out 
significant path vL  is practically quite similar to the already existing 
path µL  and, thus, wouldn’t have any further influence of the distribu-
tion function ( )tF  of accomplishing the network terminal event. Go to 
Step 5. 

Step 5. The algorithm for determining mutual correlation estimates among 
significant paths terminates. 

Consecutive implementation of the above outlined algorithms enables sin-
gling out from the entire set of paths entering a given event, a subset of signifi-
cant paths { }µL  ( m,...,2,1=µ , 2015 ÷=m ) alongside with their durations mean val-
ues ( )mLLL ,...,, 21 , variances { } { } { }( )mLVLVLV ,...,, 21  and correlation coefficients ma-
trix ijρ . 

As mentioned above, determining ( )tF  is subject to multiple ( n-dimensional) 
integrating of a multi-dimensional normal distribution function, while the sig-
nificant paths method succeeded in reducing the dimensions space of (3.4.6) to a 
total of 2015 ÷=n . Unfortunately, even in the reduced case the existing analyti-
cal solution methods for such problems prove to be extremely complicated, 
which makes their practical implementation virtually impossible. 

For determining statistical moments of distribution function ( )tF  one may 
apply a method outlined in [49]. Its essence is based on the fact that a random 
value { }mk LLLT ,...,,max 21=∗  may be represented as follows: 
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Mean value and variance of 1y  may be determined, in their turn, as listed be-
low: 

( ) ( ) ( )
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 (3.4.18) 

where 12ρ  designates the correlation coefficient between 1L  and 2L . 
On assumption that random value 1y  is distributed normally, similar relations 

apply for determining 2y  and { }2yV . Proceeding analogously, determine eventu-
ally mean value and variance of ∗

kT . Assuming ∗
kT  also distributed normally, one 

may obtain p -quantile assessments of the entire time span for accomplishing the 
project as a whole. 

To implement the regarded procedure, there is need to know the correlation 
coefficient between random values kL  and { }121 ,...,,max −kLLL  at each step of the 
algorithm. This correlation coefficient, in its turn, may be assessed with suffi-
cient accuracy by the multiple correlation coefficient { }121 ,...,, −kL LLL

k
ρ  which de-

termines the dependency measure between kL  and set { }121 ,...,, −kLLL : 

{ }
∆
∆

=
∗

−121 ,...,, kL LLL
k

ρ , (3.4.19) 

where 
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( )

( )
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, (3.4.20) 
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. (3.4.21) 

To assess the accuracy of the discussed method of determining p -quantile 
assessments of the entire time span for accomplishing the project as a whole, the 
methodology of statistical simulation of the random value { }mk LLLT ,...,,max 21=∗  
may be implemented. 

Let us illustrate the latter by numerical example represented in Fig. 3.1. 
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Figure 3.1.  Network model example 

 

Consider a network model comprising activities with randomly distributed 
durations, their mean values and variances being determined by relations 

( )
6

4
, ijijij bma

jit
++

= , (22) 

( )22

36
1

ijijij ab −=σ , (23) 

with the results of the calculations presented in Tab. 3.1. 
Tab. 3.2 represents network paths kL  ( 15,...,2,1=k ) as well as mean values kL  

and variances { }kLV  of their durations: ( )
( )
∑

∈

=
kLji

k jitL
,

, , { }
( )
∑

∈

=
kLji

ijkLV
,

2σ . 

For the regarded numerical example, consider the procedure of applying the 
significant paths search algorithm in conjunction with the algorithm for laying 
out significant paths. 

 

Table 3.1.  Statistical parameters for network model activities 
Activity ( )jit ,  2

ijσ  Activity ( )jit ,  2
ijσ  Activity ( )jit ,  2

ijσ  
(1, 2) 8.0 0.11 (3, 4) 2.0 0.11 (5, 7) 8.0 0.44 
(1, 3) 8.0 0.11 (3, 6) 6.0 0.44 (6, 7) 4.0 0.11 
(1, 4) 10.0 1.00 (4, 5) 2.0 0.11 (6, 8) 8.0 1.00 
(2, 4) 2.0 0.11 (4, 6) 3.0 0.25 (7, 9) 9.0 1.00 
(2, 5) 7.0 1.00 (4, 7) 14.0 1.00 (8, 9) 9.0 1.00 

 

From the paths represented in Tab. 3.2 choose path ( )9,7,4,18 =L  with 338 =L  
and regard it as the critical one crL . Determine the permissible level perR  of full 
time reserves { } 5.32 == crper LVR  and the permissible target value of the correla-
tion coefficient 8.0=perρ . 
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1. From the entire set of activities entering the network single out the subset 
Q  of activities with the full time reserves parameter not less than the per-
missible level perR . It can be well-recognized that this subset doesn’t com-
prise activities ( )5,4  and ( )7,6  which are excluded from further examination. 

2. Determine values ijx : 1794714 === xxx ; for all other activities 0=ijx . 
3. Calculate auxiliary parameter jω  for activities on the critical path: 01 =ω , 

0.14 =ω , 0.27 =ω , 0.39 =ω . 
 

Table 3.2.  Network paths and their durations parameters 
Network paths kL  { }kLV  Network paths kL  { }kLV  

L1=(1, 2, 5, 7, 9) 32 2.55 L9  =(1, 4, 6, 7, 9) 26 2.36 
L2=(1, 4, 5, 7, 9) 29 2.89 L10=(1, 3, 4, 7, 9) 33 2.22 
L3=(1, 3, 6, 7, 9) 27 1.56 L11=(1, 3, 4, 6, 7, 9) 26 1.58 
L4=(1, 2, 4, 5, 7, 9) 29 1.67 L12=(1, 3, 6, 8, 9) 31 2.55 
L5=(1, 3, 4, 5, 7, 9) 29 1.67 L13=(1, 2, 4, 6, 8, 9) 30 1.71 
L6=(1, 2, 4, 7, 9) 33 2.22 L14=(1, 4, 6, 8, 9) 30 2.69 
L7=(1, 2, 4, 6, 7, 9) 26 1.60 L15=(1, 3, 4, 6, 8, 9) 30 1.91 
L8=(1, 4, 7, 9) 33 3.00    
 

 

The below Tab. 3.3 represents the following procedure of sequentially apply-
ing the significant paths search algorithm in conjunction with the algorithm for 
laying out significant paths. 

Accumulated final results of implementing both algorithms are brought to-
gether in Tab. 3.5. 

At the output of computerized analysis of the regarded network model, the 
following paths have been determined as significant (these paths are visually in-
dicated in Tab. 3.2 by grey marker): { }121081 ,,, LLLL . Tab. 3.4 displays the calcu-
lated correlation coefficients matrix µρ v  for the regarded paths (for any pair of 
paths vL  and µL , the correlation coefficient µρ v  is calculated by relation 

{ } { } ∑
⋅

=
µ

σρ
µ

µ
LL

ij
v

v
vLVLV ∩

21 ). 

The results of determining distribution function parameters for the moment 
of accomplishing the terminal event ( )9  are exhibited in Tab. 3.6. 

On assumption that the terminal event’s ( )9  accomplishment is distributed 
normally with mean 16.349 =λ  and standard deviation 53.19 =σ , we may deter-
mine now the probability ( ){ }9earlyttP ≤ , where ( )9earlyt  stands for the earliest mo-
ment of accomplishing event ( )9 , by relation 

( ){ } ( )( )

222.0
2
1exp

2
19
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2
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2
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−=≤ ∫
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dttttP
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πσ
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Tab. 3.7 showcases comparative results of estimating statistical parameters of 
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the regarded network model, by means of three competing methods (the above 
outlined analytical procedure versus classical PERT and the Monte-Carlo simu-
lation method). 

It can be well-recognized that the outlined above method of significant paths 
is essentially closer to the exact results ( 9λ  = 34.20) obtained by means of simu-
lation than the classical PERT methods. 

 

Table 3.3.  Detailed procedure of sequentially applying the search and laying 
out algorithms 

Serial 
Step of 

the algo-
rithm 

Description of procedure 

  Significant paths search algorithm 
1 Step 3 Choose from subset Q  activity ( )2,1 . For the chosen activity 012 =x  
2 Step 4 Check whether event ( )1  belongs to the critical path - “Yes” 
3 Step 5 Check whether activity ( )2,1  belongs to any already established sig-

nificant path - “No” 
4 Step 8 Calculate auxiliary value 12α : 0112 == ωα  
5 Step 11 Check whether auxiliary value ijα  has been determined for all activi-

ties ( )ji,  entering event ( )2  - “Yes” 
6 Step 12 Calculate parameter 2v : 0122 == αv . Activity ( )2,1  is being marked by 

assigning 112 =h  and is excluded from further examination 
7 Step 13 Check whether subset Q  is empty - “No” 
8 Step 3 Choose from subset Q  activity ( )3,1 . For the chosen activity 013 =x  
9 Step 4 Check whether event ( )1  belongs to the critical path - “Yes” 

10 Step 5 Check whether activity ( )3,1  belongs to any already established signifi-
cant path - “No” 

11 Step 8 Calculate auxiliary value 13α : 0113 == ωα  
12 Step 11 Check whether auxiliary value ijα  has been determined for all activi-

ties ( )ji,  entering event ( )3  - “Yes” 
13 Step 12 Calculate parameter 3v : 0133 == αv . Activity ( )3,1  is being marked by 

assigning 113 =h  and is excluded from further examination 
14 Step 13 Check whether subset Q  is empty - “No” 
15 Step 3 Choose from subset Q  activity ( )4,1 . For the chosen activity 114 =x  
16 Step 9 Calculate auxiliary value 14α : 12

14114 =+= σα v  
17 Step 11 Check whether auxiliary value ijα  has been determined for all activi-

ties ( )ji,  entering event ( )4  - “No” 
18 Step 3 Choose from subset Q  activity ( )4,2 . For the chosen activity 024 =x  
19 Step 4 Check whether event ( )2  belongs to the critical path - “No” 
20 Step 6 Check whether activity ( )4,2  belongs to any already established sig-

nificant path - “No” 
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21 Step 10 Calculate auxiliary value 24α : 0224 == vα  
22 Step 11 Check whether auxiliary value ijα  has been determined for all activi-

ties ( )ji,  entering event ( )4  - “No” 
23 Step 3 Choose from subset Q  activity ( )4,3 . For the chosen activity 034 =x  
24 Step 4 Check whether event ( )3  belongs to the critical path - “No” 
25 Step 6 Check whether activity ( )4,3  belongs to any already established sig-

nificant path - “No” 
26 Step 10 Calculate auxiliary value 34α : 0334 == vα  
27 Step 11 Check whether auxiliary value ijα  has been determined for all activi-

ties ( )ji,  entering event ( )4  - “Yes” 
28 Step 12 Calculate parameter 4v : ( ) 0,,min 3424144 == αααv . Activity ( )4,2  is be-

ing marked by assigning 124 =h . Activities ( )4,1 , ( )4,2 , ( )4,3  are ex-
cluded from further examination 

29 Step 13 Continue calculations in the same manner until parameter jv  is deter-
mined for all network model activities. Then switch over to laying out 
significant paths 

  Algorithm for laying out significant paths 
1 Step 1 Choose event ( )9  and determine the set of activities entering this event 

- ( ) ( ){ }9,8,9,7  
2 Step 2 Verify marker ijh  values for activities ( )9,7  and ( )9,8 : 079 =h , 189 =h  
3 Step 3 Locate event ( )8  and check whether it is the initial event - “No” 
4 Step 1 Determine the set of activities entering event ( )8  - ( ){ }8,6  
5 Step 2 Verify marker ijh  value for activity ( )8,6 : 168 =h  
6 Step 3 Locate event ( )6  and check whether it is the initial event - “No” 
7 Step 1 Determine the set of activities entering event ( )6  - ( ) ( ){ }6,4,6,3  
8 Step 2 Verify marker ijh  values for activities ( )6,3  and ( )6,4 : 136 =h , 046 =h  
9 Step 3 Locate event ( )3  and check whether it is the initial event - “No” 

10 Step 1 Determine the set of activities entering event ( )3  - ( ){ }3,1  
11 Step 2 Verify marker ijh  value for activity ( )3,1 : 113 =h  
12 Step 3 Locate event ( )1  and check whether it is the initial event - “Yes” 
13 Step 4 The sequence of activities ( )3,1 , ( )6,3 , ( )8,6 , ( )9,8  forms the required 

significant path to be laid out 
 

Table 3.4.  Correlation coefficients matrix µρ v   for significant paths 
                   µL  
         vL  1L  8L  10L  12L  

1L  1 0.36 0.24 0 
8L  0.36 1 0.78 0 

10L  0.24 0.78 1 0.05 
12L  0 0 0.05 1 
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§3.5  Upon monitoring stochastic network projects with time parameters 
In the section under consideration we will not describe the control techniques 

as a feedback model which allows project managers identifying deviations from 
the target and initiating corrective actions to reorient the progress of the project 
in the desired direction. We are committed to outline such control techniques in 
the following chapters of this monograph. Instead, we are going to describe the 
use of various stochastic network’s parameters entering an information-advisory 
system, without optimization techniques whatsoever. For projects under random 
disturbances such an information-advisory system may determine the probability 
of meeting the target’s due date on time and is more effective on the planning 
stage, where the project’s workable plan has to be checked. Note that planning 
does not end when the project starts to be realized since replanning and updating 
goes hand by hand with on-line control. 

 

Table 3.5.  Accumulated final results of applying the search and laying out 
algorithms 
Activity --

- 

(1
,2

) 

(1
,3

) 

(1
,4

) 

(2
,4

) 

(3
,4

) 

(2
,5

) 

(3
,6

)  

(4
,6

) 

(4
,7

)  

(5
,7

) 

(6
,8

) 

(7
,9

)  

(8
,9

) 

Event 1 2 3  4  5  6   7  8  9  
L(1)=L8 +   +       +    +   

xij --- 0 0 1 0 0 0 0  0 1  0 0 1  0 
ωj 0    1.0       2.0    3.0  
αij 0 0 0 1.0 0 0 0 0  1.0 1.0  0 0 1.0  0 
vj 0 0 0  0  0  0   0  0  0  
hij ---  1     1  0    1 0  1 

L(2) +  +     +      +   + 
αij --- 0 0.11 1.0 0 0.11 0 0.55  1.0 1.0  0 1.55 1.0  2.55 
vj 0 0 0.11  0  0  0.55   0  1.55  1.0  
hij --- 1     1    0  1  1  0 

L(3) + +     +      +  +   
αij --- 0.11 0.11 1.0 0.11 0.11 1.11 0.55  1.0 1.11  1.55 1.55 2.11  2.55 
vj 0 0.11 0.11  0.11  1.11  0.55   1.11  1.55  2.11  
hij --- 1  0 1 0     1  0  1  0 

L(4) +  +   +     +    +   
 

Table 3.6.  Consecutive estimates of random distribution function parameters 

Auxiliary parameter iλ  Mean iλ  
Standard devia-

tion 
iλσ  

81 L=λ  33.00 1.73 
{ }1082 ,max LL=λ  33.61 1.65 
{ }123 ,max Lλλ =  33.97 1.57 
{ }1234 ,max Lλλ =  34.16 1.53 

 

Note that some problems of controlling stochastic network projects have al-
ready been outlined above, in Chapter 1. The main difference between those 
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parts of the book is that in Chapter 1 the material is outlined on behalf of the 
creators of projects’ control models, whereas in Chapter 3 we describe the prob-
lem of monitoring a project to be used by the project manager who is often un-
familiar with modern control approaches in project management. 

 

Table 3.7. Comparative estimates of the project’s random duration parame-
ters by means of different methods 

Methods 9λ  9σ  ( ){ }9earlyttP ≤  
PERT 33.00 1.73 0.500 
Monte-Carlo 34.20 1.55 0.219 
Analytical 34.16 1.53 0.222 
 

On the planning stage the project manager has first to preset the confidence 
level p , i.e., the probability of meeting the project’s target on time, while the 
due date has to be pregiven as well. It goes without saying that value p  depends 
fully on the complexity, novelty and indeterminacy of the project’s goal. Several 
important concepts in determining the project’s due date have to be imple-
mented: 

a) the project’s due date is calculated by adding to the project’s starting mo-
ment the p -quantile of the project’s duration. In some projects under ran-
dom disturbances the p -quantile is not pregiven, but calculated on the ba-
sis of the previously preset due date. As a rule, such direct and inverse 
calculations can be carried out by simulative modeling, as outlined in 
§§3.1-3.2. 

b) confidence values about the progress of the project have to be obtained 
regularly and later on analyzed and compared with the previously estab-
lished p -quantile value. In the simplest case the critical path durations to 
be determined over time have to be compared with their p -quantile esti-
mates. 

Practically, four different situations may emerge at the planning stage 
[49,53]: 

1. The critical path length does not differ essentially from other paths enter-
ing the critical zone (see §3.1) while the p -quantile estimates (e.g., for 

7.0=p  and 8.0=p ) differ substantially from each other. This may occur 
when the project comprises a group of activities which have a certain ten-
dency to be on the critical path and an essentially lower probability to be-
long to other paths of the critical zone. In certain cases they may possess a 
large variance of their durations. Such a situation may take place either by 
non-objective underestimating the activities’ parameters a  and b  by their 
executors, or by impossibility for one reason or another to estimate their 
optimistic and pessimistic durations. At any case those activities have to 
be checked in order to narrow the interval [ ]ba, . 
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2. The p -quantile estimates do not differ essentially one from another, as 
well as the network’s paths entering the critical zone. This results in a cer-
tain steadiness of the progress of the project. 

3. The p -quantile estimates, as well as the paths entering the critical zone 
differ from each other essentially. Similar to case (2), we have no reasons 
to suspect the executors in presenting deliberately incorrect activity pa-
rameters. 

4. The p -quantile estimates differ from each other non-essentially, while 
the paths entering the critical zone differ essentially one from another. 
This is a relatively rare situation and, if observed, might be explained by 
the following reasons: 
a) the path with the highest probability to become critical in the course of 

the project’s realization comprises activities with larger average dura-
tions than other paths entering the critical zone, but the latter possess 
higher duration variances than the first one. It should be noted that p -
quantile values depend both on average and variance values as distinct 
from the critical paths durations depending only on their averages. 
Such a case needs to be clarified in order to correct the information ob-
tained from activities executors; 

b) in certain cases the postulated p.d.f. for a group of activities may devi-
ate from the true distribution law. The reason may be established by 
simulation modeling. 

To sum up, only p -quantile estimates are the stochastic network parameters 
which have to be compared periodically with the project’s due date, within the 
course of the project’s implementation. In case of essential deviations the pro-
ject’s structure has to be corrected, until the deviation will become insignificant. 
The corrective actions may boil down either to changing the project’s due date 
or amending the project’s targets. Periodical information regarding p -quantile 
estimates’ changes within the course of the project’s realization is usually for-
warded to the manager in a form similar to that of Tab. 3.8. 

Columns 1-4 are self-explainable. Columns 5-9 represent the information re-
garding the progress of the project, usually in equidistant time moments 

ittt ,...,, 21 , etc. The information is intended for the project manager and refers to 
project’s milestones { }γ  - the most important events including the terminal 
event. At any routine moment it  the project is inspected and the following sto-
chastic network model’s parameters are determined. Column 7 presents the con-
fidence probability ( )γiconp .  to reach milestone γ  by means of inspection at mo-
ment it , while column 6 showcases the analogous value obtained at the previous 
inspection point 1−it . Column 9 contains the calculated time moment givp -quantile 
of reaching node γ  on the basis of the updated project at moment it , while col-
umn 8 displays similar information obtained at the previous moment 1−it . Note 
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that givp  is a pregiven confidence probability to be accepted by the project man-
ager before the project actually starts. By examining the changes in columns 6-7 
and 8-9, correspondingly (for all milestones γ ), the manager estimates the pro-
gress of the project and, if necessary, takes appropriate decisions. The latter may 
include quite sophisticated corrective control actions, e.g., plan’s updating, re-
source reallocation, amendment of project’s targets, etc. Possible control actions 
will be examined and outlined in greater detail in the next chapters of our mono-
graph. 

 

Table 3.8.  Information on the progress of the project 
No. of calcula-

tion 
Date Page 

System code 
Basic 

Ana-
lyzed 

Expected moments of mile-
stones’ realizations  Total 

pages 
Milestones Realization moments 

Inspected Pregiven 
Confidence conр  Due date 

Serial 

Develop-
ment 
stage 
code 

Code 
{ }γ  Name Date of 

{ }γ  
1−it  it  1−it  it  Co

m
m

en
ts

 

1 2 3 4 5 6 7 8 9 10 
          

Responsible Executor 
 

Thus, the outlined techniques refer to the planning stage which is usually 
deeply linked to on-line control. Note that the term “plan” usually means time 
scheduling for all activities entering the project. Without scheduling the project 
cannot actually be realized since resources cannot be delivered in time to ensure 
proper execution of activities. Thus, bridges have to be build between the plan-
ning, control, and scheduling stages. For a network project to be carried out un-
der random disturbances the problem of linking together those three main stages 
refers to one of the most complicated problems in project management which 
has not been solved as yet. Note that the complexity of this problem stems from 
the contradictions still being part of the PERT techniques and discussed in depth 
in Chapter 2. 

In conclusion, let us present the three main concepts of solving this main 
problem in stochastic project management. 

The first concept is based on analytical methods to determine calendar plans 
of scheduling activities with random durations. The general idea is to substitute 
each random activity duration by a deterministic one, with duration equal to the 
average value of the initial activity. Thus, we deal further on with a determinis-
tic network project which enables calculating scheduling parameters on the basis 
of determine values ( )itear  and ( )itlat . Due dates for reaching the project’s mile-
stones can be easily calculated. Thus, control actions at the on-line control stage 
(in case of essential deviations from the target) boil down to introducing addi-
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tional external resources in order to compensate the deviations. Such a monitor-
ing has to be aimed, first, at lowering the durations for activities entering the 
critical zone. Note that a deterministic model is easy to operate, although it usu-
ally requires additional resources and, thus, raises the cost of the project. Vari-
ous project management companies use, in addition to the regarded compensat-
ing resources, a flexible policy of changing the intensity of activities’ realiza-
tion, especially for activities entering the critical zone. However, the described 
concept would not be recommended for complicated innovative R&D projects, 
since the damage caused by such a “simplified” monitoring may be very high. 
From the theoretical point of view such a deterministic model cannot be ac-
cepted, since substituting random values by their average values results in unbi-
ased errors which in certain cases may become as high as 40-50% [49,152,157]. 

According to the second concept, activities’ calendar planning and schedul-
ing is determined by means of simulation. Given the project’s due date D  and all 
the activities’ parameters ( )jia ,  and ( )jib , , it is not difficult to calculate the p -
quantile estimates, i.e., confidence probabilities for all the project’s milestones 
to be reached in the course of the project’s realization. If for milestone γ  the p -
confidence value ( )γpW  to reach this event is calculated, then all activities ( )γ,k  
entering γ  have to take value ( )γpW  as a schedule for their latest time to be fin-
ished. Certain activities will now possess probabilistic time reserves outlined in 
§3.1. Thus, it becomes possible to calculate for such a p -quantile scale new cal-
endar plans ( )itear  and ( )jtear . Note that p -quantile estimates of reaching a certain 
event γ  as early as possible, may be transformed to the latest possible moment 
of reaching the same milestone. The methodology involved will not undergo 
drastic changes. 

For the simulation concept the new durations of executing a routine activity 
( )ji,  may be determined by 

( ) ( ){ } ( ){ }itWjtWjit earpearp −=,  (3.5.1) 
or 

( ) ( ){ } ( ){ }itWjtWjit earpearp −− −= 11, . (3.5.2) 
Relations (3.5.1-3.5.2) enable developing compensative control actions to 

diminish the deviation from the project’s target. Although such an approach re-
quires certain mathematical experience on behalf of the project’s managing 
team, it seems more realistic and provides less unavoidable errors. The main 
shortage of the approach is that in certain cases (not very often ones) implement-
ing relations (3.5.1-3.5.2) might introduce changes in the very topology of the 
network’s structure. 

The third approach is, as a matter of fact, a combined one and has been out-
lined in Chapter 1. It is based on the following concepts. Monitoring (i.e., 
scheduling) the project is carried out by analytical estimates, while on-line con-
trol is realized by means of simulation. To our opinion, such a combined method 
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is the best and the most justified one. Control actions are implemented on the 
basis of the project’s inspection in periodically determined control points, and 
the deviations from target trajectories are obtained without errors. Thus, local 
errors caused by deterministic scheduling, are periodically corrected at each rou-
tine control point, within the project’s functioning. 

 
§3.6  Conclusions 
The following conclusions can be drawn from the Chapter: 
1. In stochastic network project management the existing classical network 

parameters developed for deterministic networks, have to be substituted 
for probabilistic parameters. We recommend using the p -quantile values 
which are especially beneficial for PM systems of information-advisory 
type. 

2. Simulation modeling remains as yet the easiest in application, especially in 
comparison with analytical methods. Being interesting from the theoreti-
cal point of view, the latter can be applied in practice to calculate network 
parameters for small-size networks only. 

3. Monitoring stochastic network projects has to be carried out on two levels. 
On the lower level simplified deterministic scheduling has to be imple-
mented  whereas at the upper level controlling has to take place by using 
appropriate on-line models. 

4. With only time parameters involved monitoring stochastic network pro-
jects can be carried out by project managers who can be easily empow-
ered and qualified. For the case of time-cost parameters monitoring be-
comes more complicated and requires special experience and scientific 
skills. The latter case refers fully to modern innovative projects. 
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PART  II  
 ON-LINE CONTROL MODELS FOR STOCHASTIC 

NETWORK PROJECTS 
 

Chapter 4.  On-Line Control Models Based on Sequential Analysis 
 

§4.1  On-line control model for a PERT-COST project with a fixed speed 
4.1.1  Introduction 
This section presents results outlined in [64,66,68] with the aim of develop-

ing an on-line control model for various types of stochastic network projects. A 
hierarchical on-line control model for several PERT-COST type projects being 
carried out simultaneously is considered. 

On the project level, each project is controlled separately in order to mini-
mize the number of control points subject to a chance constraint, which seeks to 
prevent deviations from the planned trajectory within the planning horizon with 
pregiven probability. If at the control point it is anticipated that the project will 
not be on target subject to the chance constraint, then an emergency is declared 
and the company level is faced with the problem of reassigning the remaining 
budget among the projects so that the faster ones may help the slower ones. 
Thus, the model has in fact two objectives: minimizing the number of control 
points and maximizing the probability that the slowest project can meet its due 
date on time. 

We will not describe the mathematical formulations of all optimization prob-
lems that are imbedded in the hierarchical model. Those problems will be out-
lined in depth in Chapters 14-15 when considering the hierarchical cost-
simulation control model. Instead, in the present section we will focus on ana-
lyzing only one element of the multilevel control model, namely, the problem of 
determining the next control point 1+gt  for a single PERT-COST project. 

In order to proceed, we will require several notations. 
 

4.1.2  Notation 
Let us introduce the following terms: 
( )ANG ,  - network project (graph) of PERT-COST type; 

D - the due date of the project (pregiven); 
∗p  - least permissible probability for the project to be accomplished on 

time (pregiven); 
( )tC  - the remaining budget which is not utilized at moment t ; 
( )tG  - the remaining network of the project at point t ; 

∆  - the minimal time span between two consecutive control points in 
order to force convergence (pregiven); 

( ) ( )ANGji ,, ∈ - activity leaving node i  and entering node j ; 
( )jit ,  - random duration of activity ( )ji, ; 
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( )jic ,  - budget assigned to activity ( )ji, ; 
( )jiA ,  - pregiven value to satisfy ( ) ( ) ( )jiajicjiA ,,, = , which is the lower 

bound of random value ( )jit , ; 
( )jiB ,  - pregiven value to satisfy ( ) ( ) ( )jibjicjiB ,,, = , which is the upper 

bound of random value ( )jit , ; 
( )tN  - the remaining number of control points to inspect the progress of the 

project, beginning with moment t ; ( ) NN =0  (total number of control 
points); 

gt  - the g -th control point, Ng ,...,1,0= ; 
( )tV pl

 - the planned trajectory curve. 
( )tV f

 - the state variable observed at the project’s inspection in control 
point t . 

We will adopt the justification outlined in Chapter 2 and, thus, assume the 
p.d.f. of activity ( )ji,  duration as follows: 

( )
( ) ( )[ ]

( )[ ] ( )[ ]2
4 ,,

,,
12 xjibjiax

jiajib
xf ij −−

−
= . (4.1.1) 

 

4.1.3  On-line control problem at the project level 
Like any other on-line control it has to be carried out by comparing the state 

variable of the progress of the project at control points with the corresponding 
values of the planned project target (trajectory). Thus, to carry out on-line con-
trol, we have to determine for each project ( )tG  its planned trajectory curve 

( )tV pl  together with the state variable ( )tV f . 
At the project level the following control model has to be implemented [64]: 
At any control point gt , Ng ≤≤0 , to minimize the objective 

( )gtt
tN

gg >+1

min  (4.1.2) 
subject to 





=
=

,
00

Dt
t

N

 (4.1.3) 

∆≥−+ gg tt 1 ,
 

(4.1.4) 

( ) ( ) 1:Pr +
∗ ≤≤∀≥







 ≤ gg

plf ttttptVtV .
 

(4.1.5) 

The general idea of the on-line control is as follows: 
At each routine control point gt , Ng ,...,1,0= , inspection is undertaken to ob-

serve the remaining budget ( )gtC . Value ( )gtC  is the state variable ( )tV f  at point 

gtt = . At the beginning of the project realization, at 00 == tt , the budget is still 
unspent with ( ) CC =0 , and since according to its plan project ( )ANG ,  has to be 
accomplished not later that at Dt =  together with its full budget utilization, we 
determine the planned trajectory curve (first iteration) ( )( )1tV pl  by a straight line 
connecting the two points with coordinates [ ]C,0  and [ ]0,D . Thus, we obtain 
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( )( )

D
CtCtV pl ⋅−=1 ,

 
(4.1.6) 

which is used within interval [ ]1,0 tt ∈ , up to the first control point. 
Note that no restrictions are imposed on the project’s actual cost-duration ex-

cept for the fact such a function has to be continuous and decreasing. 
If, at a routine control point 0>gt , it is observed that ( ) ( )( )q

g
pl

g tVtC ≤  ( q -th it-
eration) there is no need for any interference in the project’s realization, since 
the project meets in fact a stricter chance constraint than required. Thus, the 
progress of the project proceeds, trajectory curve ( )( )qpl tV  remains unchanged, 
and the next control point has to be determined. If, on the contrary, inequality 

( ) ( )( )q
g

pl
g tVtC >  is observed, an error signal has to be generated, and we have to 

examine the project in greater detail. Optimization problem at the higher level 
has to be solved, in order to calculate the maximal probability of the project 
meeting its deadline on time without any additional help from other projects. If 
solution tp  satisfies ∗≥ pp t , then new budget values ( )jic ,  obtained by that solu-
tion are reallocated among activities ( )ji, . A corrected planned trajectory curve 

( )( )1+qpl tV  ( ( )1+q -th iteration) has to be determined by a straight line connecting 

two points with coordinates ( )





gg tCt ,  and [ ]0,D . The corresponding trajectory 

curve to be used within the interval 





+1, gg tt  is as follows: 

( )( ) ( ) ( )
g

g

g

gqpl

tD
tC

t
tD
tCD

tV
−

⋅−
−

⋅
=+1 .

 
(4.1.7) 

It can be clearly recognized that in the course of the project’s realization its 
actual cost-duration function (irrespective of any assumption on that function) is 
approximated closer and closer by repeatedly corrected trajectory curves (4.1.6-
4.1.7) between adjacent control points. 

Since minimizing the number of future control points results in maximizing 
the time span between two routine adjacent control points 1+gt  and gt , the prob-
lem at hand is to maximize the value 

ggg tt −= +1δ
 

(4.1.8) 
subject to (4.1.3-4.1.5). 

Denoting ( ) ( ) ( )tHtVtV fpl =− , we substitute optimization problem (4.1.3-
4.1.5,4.1.8) for: 

( ) gtC g

δmax
 

(4.1.9) 
subject to (4.1.3-4.1.4) and 

( ){ } ∗≥≥ ptH 0Pr .
 

(4.1.10) 
Let us examine random variable ( )tH , gtt > , in greater detail. Since each ac-

tivity time duration ( ) ( )tGjit ∈,  is a random variable with a density function de-
pendent on budget value ( )jic , , random variable ( )tH  is a result of multiple ran-
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dom disturbances. Thus, it is reasonable to assume that ( )tH  has a normal distri-
bution with parameters ( )[ ]tHE  and ( )[ ]tHV . Note that both these values can be 
easily simulated to calculate their corresponding unbiased and consistent esti-
mates 

( ) ( )( )∑
=

=
M

r

r tH
M

tH
1

1 ,
 

(4.1.11) 

( )[ ] ( )( ) ( )∑
=





 −

−
=

M

r

r tHtH
M

tHS
1

2
2

1
1 , (4.1.12) 

where M  is the number of simulation runs and ( )( )tH r  is the value ( )tH  obtained 
by the r -th simulation. 

Note that chance constraint (4.1.10) can be written in another form 
( ) ∗≥ pqφ , (4.1.13) 

where 
( )
( )[ ]

( )

















−=

−=

∫
∞

x

duux

tHS
tHq

.
2

exp
2
1

,

2

π
φ

 (4.1.14) 

According to (4.1.9) and (4.1.10) the maximal value ∗T  satisfying 

( )[ ]






∆≥−






 ≥=

+

∗

≤≤

∗

,

,:max

1 gg

Dtt

tt

pqtT
g

φ  (4.1.15) 

should be determined as the next control point 1+gt . 
In practice, 1+gt  can be calculated by means of simulation with a constant step 

of length ∆ . The procedure of consecutively increasing value gtt >  step-by-step 
is followed until restriction (4.1.15) ceases to hold. Thus problem (4.1.3-4.1.4, 
4.1.9-4.1.10) can be solved via simulation in order to capture the last moment 
before the project deviates from its target. 

The on-line algorithm to determine the next control point 1+gt  is outlined be-
low. 

 

4.1.4  The on-line algorithm to determine the next control point 
The algorithm determines at each control point gt  for project ( )gtG  the next 

control point 1+gt . The step-wise procedure of the algorithm is as follows: 
Step 0. Given at time gtt = : 

• the remaining budget ( )gtC  which is not utilized at moment gtt = ; 
• the project’s due date D ; 
• the remaining network of the project ( )gtG ; 
• values ( )jiA ,  and ( )jiB ,  for activities ( ) ( )gtGji ∈, ; 
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• budget values ( )jic ,  for activities ( ) ( )gtGji ∈, , ( )
( ) ( )

( )g
tGji

tCjic
g

=∑
∈,

, ; 

• minimal confidence probability ∗p . 
Step 1. Determine the project’s planned trajectory: 

( )
( ) ( )

g

g

g

gpl

tD
tC

t
tD
tCD

tV
−

⋅−
−

⋅
= ,  gtt ≥ . 

Step 2. Determine the minimal value of the next control point 1+gt  
∆+=∗

gtT . 
Step 3. If DT ≥∗  go to Step 15. Otherwise apply the next step. 
Step 4. Simulate random time duration for each remaining activity ( ) ( )gtGji ∈, . 

Simulating p.d.f. (4.1.1)  

( )
( )
( )

( )
( )

( )
( )

( )
( )

2

4 ,
,

,
,

,
,

,
,

12








−








−









−

= x
jic
jiB

jic
jiAx

jic
jiA

jic
jiB

xf ij  

can be easily implemented by transformation 
( )
( )

( )
( )

( )
( )

z

jic
jiA

jic
jiB
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and then using the classical Neumann method [43] for simulating a 
standard beta distribution with density function ( ) ( )2112 xxxf z −= . After 
simulating the standard beta value z , we may calculate the desired 
random value ( )jit ,  by 

( ) ( )
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jic
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jic
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−⋅= . 

Step 5. Single out all the activities entering the remaining network that have 
been accomplished (according to their simulated time durations) up to 
the moment ∆+∗T . If, at that moment, an activity is under way but has 
not yet been finished, calculate the ratio of the time the activity has ac-
tually been in progress and the simulated activity duration. 

Step 6. Calculate the summarized amount of budgets ( )jic ,  for activities sin-
gled out at Step 5. For the partially operated activities we include the 
corresponding ratio of their budgets. Denote the utilized budget within 
the time period 



 ∆+∗Tt g ,  by ( )∆+∆ ∗TtC g , . 

Step 7. Calculate value ( ) ( ) ( ) ( )gg
pl tCTtCTVTH −∆+∆+∆+=∆+ ∗∗∗ , . 

Step 8. Repeat the procedure of Steps 4-7, M  times independently ( M  - suffi-
ciently large number of simulation runs). Denote by ( ) ( )∆+∗TH r  value 

( )∆+∗TH  obtained by the r -th simulation run, Mr ≤≤1 . 
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Step 9. Calculate value ( )
( )[ ]∆+

∆+
−= ∗

∗

THS
THq , where 

 
( ) ( ) ( )∑

=

∗∗ ∆+=∆+
M

r

r TH
M

TH
1

1 , 

( )[ ] ( ) ( ) ( )∑
=

∗∗∗




 ∆+−∆+

−
=∆+

M

r

r THTH
M

THS
1

2
2

1
1 . 

Step 10. If relation ( ) ∗≥ pqφ  holds apply the next step. Otherwise go to Step 13. 
Step 11. If DT ≥∆+∗  go to Step 15. Otherwise apply the next step. 
Step 12. Increase value ∗T  by ∆ , i.e. ∗∗ =∆+ TT . Return to Step 4. 
Step 13. Value ∗T  is the next control point 1+gt . Inspect the project at moment 

∗T . 
Step 14. Check inequality ( ) ( )( )q

g
pl

g tVtC 11 ++ ≤ . If inequality holds, return to Step 
1 without changing the planned trajectory. Otherwise apply the higher 
level of the multilevel on-line control model. Solve the appropriate op-
timization problem and determine new planned trajectory ( )( )1

1
+

+
q

g
pl tV . 

Update the information available at Step 0. Proceed to Step 1. 
Step 15. Inspect the project at moment D . If the target has not been reached ap-

ply the higher hierarchical level. Otherwise the project’s goal is 
reached and the algorithm terminates. 

Note that when increasing value ∗T  by ∆  and applying Step 4 (from Step 12), 
we must not simulate time durations ( )jit ,  anew. All calculations and decision-
makings on Steps 5-10 for increasing values ∗T , ∆+∗T , ∆+∗ 2T ,…, are carried 
out on the basis of the M  simulation runs that have already been realized for the 
minimal time value ∗T  (see Step 8). It goes without saying that at the new rou-
tine control point 1+gt  we reapply all the simulations for a revised network. 

 

§4.2  On-line control model with variable speeds 
4.2.1  Introduction 
Consider an activity-on-arc network project of PERT type with random activ-

ity durations. The accomplishment of each activity is measured in percentages of 
the total project. Each activity can be processed at several possible speeds that 
are subject to random disturbances. The number of possible speeds is common 
to all activities. For each activity, speeds are sorted in ascending order of their 
average values - namely, speeds are indexed. It is assumed that at any moment 

0>t  activities, that are operated at that moment, have to implement speeds of 
one and the same index. That is to say, for all teams working simultaneously, the 
shift has to be of equal length. It can be clearly recognized that the index of the 
speed indicates the speed that actually determines the project’s realization. 

The progress of the project can be evaluated only by means of inspection at 
control points that have to be determined. Assume, further, that the project’s 
speed can be changed only at a control point, that is, all the project’s activities, 
being realized between two adjacent control points, have to be operated with 
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speeds of one and the same index. There exists only one exception: if an activity 
must continue in operation through a control point, the activity speed cannot be 
changed. 

The project’s due date and the minimum permissible probability of meeting 
the deadline on time are both pregiven. 

Two basic concepts have to be implemented in the on-line control model: 
1) the number of control points has to be minimized, since inspecting the 

progress of the project is a complicated and costly procedure; 

2) the project should avoid unnecessary surplus speeds, since repeated and 
lengthy work at higher speeds can prematurely wear out resources utilized 
in the project. 

In the further outlined control model, a stochastic control problem is formal-
ized and solved at each control point. Two conflicting objectives are imbedded 
in the model: 

1) to minimize the number of control points, and 
2) to minimize the average index of the project’s speeds within the planning 

horizon. 
At each routine control point, decision-making centers on determining the 

next control point and the new index of the speeds (for all activities to be oper-
ated) to be employed up to that point. 

This section is a further development of §4.1 where an on-line control model 
has been suggested for a PERT-COST project. That model, however, cannot be 
applied to projects with variable speeds. 

We will outline an on-line control model and will describe the mathematical 
formulation of the optimization problem that is imbedded in the model. The so-
lution of the problem enables control actions to be taken at inspection points to 
meet the project’s due date on time. A heuristic algorithm is outlined, its effi-
ciency is evaluated by means of simulation. In 4.2.5, the algorithm to determine 
the speed at the next routine control point is presented. 4.2.6 deals with the sub-
problem of determining the next control point for on-line control. 

 

4.2.2  Notation 
Let us introduce the following terms: 

tG  - a PERT type project at moment 0≥t , GG =0 ; 
( ) Gji ∈,  - the project’s activity; 

( )k
ijυ  - the k -th speed to process activity ( )ji, , mk ≤≤1 ; 

m - number of possible speeds; 
( )k
ijt  - random duration of activity ( )ji,  when processed at speed ( )k

ijυ ; 
( )k
ija  - lower bound of random activity duration ( )k

ijt  (pregiven); 
( )k
ijb  - upper bound of random activity duration ( )k

ijt  (pregiven); 
ijρ  - percentage of activity ( )ji,  in the entire project (pregiven); 
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D - the due date of the project (pregiven); 
p  - least permissible probability of meeting the project’s due date on 

time (pregiven); 
( )tN  - the remaining number of control points to inspect the progress of the 

project, beginning with moment t ; ( ) NN =0  (total number of control 
points); 

gt  - the g -th control point, Ng ,...,1,0= ; 00 =t , DtN = ; 
 

gs  
 
- 

the index of the project’s speed to be implemented within interval 







+1, gg tt , ms g ≤≤1 ; 

( ) ( )
( )
∑

−

=
+ −

−
=

1

1
1 g

g

tN

tg
g tts

tD
tk

τ
τττ  - the average index of the project’s speeds begin-

ning with control point gt , 0≥g ; 
{ }mk ,1⊂∗ - the lower bound of surplus speeds. The latter can be used only in 

an emergency to enable meeting the deadline subject to the chance 
constraint; 

∆  - the minimal time span between two consecutive control points gt  
and 1+gt  in order to force convergence (pregiven); 

{ }gt sG ,Pr  - probability that the project will reach its due date D on time, on 

condition that from moment t  until D, only speed with index gs  will 
be used throughout; 

( )tV f  - actual project output (in percentages of the entire project) observed 
at moment 0≥t , ( ) 00 =fV ; 

plV  - the planned entire project volume (pregiven). 
Similar to relation (4.1.1), assume random activity duration ( )k

ijt  distributed by 
the beta-law with p.d.f. 

( ) ( )
( ) ( )[ ]

( )[ ] ( )[ ]2

4

12 xbax
ab

xf k
ij

k
ijk

ij
k

ij

k
ij −−

−
= . (4.2.1) 

The initial data of the control model for each activity ( )ji,  includes: 
i ; j ; ijρ ; ( )1

ija ; ( )1
ijb ;…; ( )m

ija ; ( )m
ijb . 

Note that for each activity ( )ji, , the speed indices k  are sorted in descending 
order of the corresponding average values ( )k

ijt , namely, 21 kk >  results in 
( ) ( )21 k

ij
k

ij tt < . 
Besides beta-distribution with p.d.f. (4.2.1), the outlined control model may 

adopt additional alternative probability distributions. A variety of probability 
distributions from which to choose for activity durations is outlined in Chapter 
2, as well as in [54,105-106,163]. In order to evaluate the performance of the 
control model, we will outline below comparative results with other practically 
used distributions, namely, the uniform and the normal ones. 
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4.2.3  The control model 
In §4.1, we presented on-line procedures for a PERT-COST project. But we 

did not consider the possibility of several operating speeds, and all the model’s 
parameters were based on cost values. This is the focal point of the main differ-
ences from the on-line control model outlined below. 

Several basic concepts are imbedded in the model: 
a) the model comprises a chance constraint to meet the deadline; 
b) the total number of inspection point has to be kept to a minimum to make 

the control less costly and less difficult; 
c) since operating at higher speeds (i.e., with higher intensities) is always 

costlier than at slower ones, the average index of the project’s speeds has 
to be minimized also. 

The related optimization problem is therefore as follows: 
At any routine control point gt , determine values 1+gt  and gs  to minimize 

both: 
• the number of future control points 

{ }
( )gst
tN

gg ,1

min
+

 (4.2.2) 
• and the average index of future project’s speeds 

{ }
( )gst
tk

gg ,1

min
+

 (4.2.3) 
subject to 

∆≥−+ gg tt 1 , (4.2.4) 
∗

+ ≥∀∆=− ksgtt ggg :1 ,
 

(4.2.5) 
∆≥− +1gtD ,

 
(4.2.6) 

00 =t ,
 

(4.2.7) 
DtN = ,

 
(4.2.8) 

{ } { }gtgt sGpsG
gg
,Pr1,Pr ≤<− .

 
(4.2.9) 

Restriction (4.2.9) means that at each control point gt , the problem is to de-
termine the minimal index of the project’s speed that, with the given chance 
constraint, guarantees meeting the project’s due date on time. Thus, the restric-
tions prohibits unnecessarily high speeds. 

Restriction (4.2.5) means that if decision variable gs  refers to a surplus speed 
the latter has to be implemented within a restricted time interval of length ∆ . Af-
terwards the project has to be inspected anew. Thus, both restrictions (4.2.5) and 
(4.2.9) encourage using possible slower speeds but honoring the chance con-
straint of meeting the project’s due date on time. 

Problem (4.2.2-4.2.9) is a stochastic optimization problem with two conflict-
ing objectives, a non-linear chance constraint and a random number of opti-
mized variables. It can be well-recognized that such a problem is too difficult to 
be solved in the general case. A heuristic solution will be outlined below. 
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The general idea to solve the problem heuristically is as follows: at each rou-
tine control point gt , we observe the remaining network project 

gt
G  and the ac-

tual project output ( )g
f tV  (on the basis of values ijρ ). Decision variable gs  is de-

termined as the minimal speed satisfying (4.2.9). Its calculation is carried out by 
means of simulation: graph 

gt
G  has to be repeatedly simulated with different pro-

ject speeds in order to determine 
{ }[ ]







 ≥=

≤≤
pkGks

gtmkg ,Pr:min
1

.
 

(4.2.10) 

The algorithm to determine gs  is outlined in 4.2.5. 
The next control point 1+gt  is determined as follows. If ∗≥ ksg , then 

∆+=+ gg tt 1 . Otherwise, in case 11 −≤≤ ∗ksg , the next control point 1+gt  is deter-
mined by solving stochastic optimization problem 

{ }1max +gt
 

(4.2.11) 
subject to (4.2.4) and 

( ) ( ) 1:Pr +≤≤∀≥






 > gg

plf ttttptVtV ,
 

(4.2.12) 

where ( )tV pl  denotes the planned trajectory between two adjacent control points 
gt  and 1+gt . 

If point ( )





g
f

g tVt ,  is above the straight line connecting points [ ]0,0  and 





 plVD , , namely, ( ) g

pl

g
f t

D
VtV ⋅>  holds, then the planned trajectory is that 

straight line, satisfying equation 

( ) ( )dxt
D

VtV
pl

f ⋅= .
 

(4.2.13) 

Otherwise, in case ( ) g

pl

g
f t

D
VtV ⋅≤ , the planned trajectory is determined as the 

straight line connecting points ( )





g
f

g tVt ,  and 



 plVD , , namely 

( ) ( ) ( )
g

g
pl

g
f

g

g
fpl

pl

tD
tVDtV

t
tD

tVV
tV

−

⋅−⋅
+⋅

−

−
= ,   1+≤≤ gg ttt .

 
(4.2.14) 

Case ( ) g

pl

g
f t

D
VtV ⋅>  means that the project is carried out under favorable cir-

cumstances, and it is therefore reasonable to bring the state variable closer to the 
planned trajectory (4.2.13) by introducing slower speeds, and then to capture the 
last moment before the project output drops below the trajectory curve. Case 

( ) g

pl

g
f t

D
VtV ⋅≤  means that there is danger the project will not meet its deadline. 

Thus, higher speeds have to be implemented to keep the state variable ( )tV f  
above the new trajectory (4.2.14).  



 
 

87 

Objective (4.2.11) is obvious, since minimizing the number of control points 
results in maximizing the time span between two adjacent control points. Thus, 
both objectives (4.2.2) and (4.2.3) of the general problem (4.2.2-4.2.9) are im-
plemented in the heuristic solution via (4.2.9) and (4.2.11). The solution of prob-
lem (4.2.4, 4.2.11-4.2.12) is outlined in 4.2.6.  

 

4.2.4  Heuristic algorithm 
The algorithm outlined below determines at each control point gt  the minimal 

speed gs  that, with pregiven probability p , guarantees completion of the project 
on time. The next control point 1+gt  is determined by maximizing the time span 
between two adjacent control points 1+gt  and gt , honoring restriction (4.2.12), on 
condition that gs  does not correspond to a surplus speed. It can be well-
recognized that chance constraint (4.2.12) is, in essence, stricter than (4.2.10). 
The latter only ensures that the project will meet its deadline with probability 
not less than p , while chance constraint (4.2.12) enables the state variable ( )tV f  
to exceed the planned trajectory ( )tV pl  at any moment t  within the interval 







+1, gg tt . 

The step-wise procedure of the algorithm is as follows: 
Step 1. Start with 0=g , 00 =t , ( ) 00 =tV f . 
Step 2. Determine the project’s speed: 

find gs  satisfying constraint (4.2.10). The corresponding algorithm, 
which we will henceforth call Algorithm I, is outlined in 4.2.5. 
If chance constraint (4.2.10) does not hold for all gs , ms g ≤≤1 , set 

ms g =  and go to Step 6. 
Step 3. Determine the next control point 1+gt . The corresponding Algorithm II 

is outlined in 4.2.6. 
Step 4. Monitor closeness to the due date and to the next control point: 

If ∆≤− +1gtD , then set Dt g =+1  and go to Step 6. 
If ∆<−+ gg tt 1 , then set ∆+=+ gg tt 1  and apply the next step. 

Step 5. Observe ( )1+g
f tV , set 1+= gg  and return to Step 2. 

Step 6. Observe ( )DV f . The algorithm terminates. 
The algorithm is implemented in real time; namely, each iteration of the al-

gorithm can be performed only after the project’s output ( )g
f tV  is actually real-

ized. The control points and the corresponding speeds to be introduced cannot 
be predetermined. However, if we want to evaluate the efficiency of the control 
model, that is the probability of completing the total project on time, we can 
simulate the project’s realization by randomly sampling the actual duration of 
each activity. In such a case, Steps 5 and 6 of the algorithm have to be modified 
as follows: 
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Step 5*. Simulate durations of activities ( )ji,  that belong to the interval 







+1, gg tt . Single out all the activities entering the remaining project 

gt
G  which will be accomplished (according to their simulated dura-
tions) up to the moment 1+gt . If, at that moment, an activity is under-
way but has not yet been accomplished, calculate the ratio of the time 
the activity has already been in progress, and the entire simulated ac-
tivity duration. Note, that in the course of operation, no activity can 
change its speed (even at a control point). Thus, being simulated at 
the beginning of the activity’s realization, its duration remains un-
changed. Calculate the summarized amount of values ijρ  for the sin-
gled-out activities. For the partially operated activities include the 
corresponding ratio of their ijρ  values. Denote the partially accom-

plished amount of the project within the time period 





+1, gg tt  by 





∆ +1, gg ttV . Calculate the simulated project’s output ( )1+g

f tV  as fol-

lows: 
 ( ) ( ) 



∆+= ++ 11 , ggg

f
g

f ttVtVtV . (4.2.15) 

 Note that value ( )g
f tV  has been determined before, at the previous 

control point gt . Afterwards set 1+= gg  and return to Step 2. 
Step 6* is implemented in a way similar to Step 5, with the exception that af-

ter determining ( )DV f  step 2 is not applied, and the simulation run 
terminates. 

By simulating the development of the project many times, the probability of 
meeting its due date on time, the average number of control points and the aver-
age index of the project’s speeds within the planning horizon may be evaluated. 

 

4.2.5  Algorithm I to determine the minimal speed subject to the chance con-
straint 

The problem is to determine the minimal index of the speed gs  to be imple-
mented at each routine control point gt  (see objective (4.2.10)). The step-wise 
procedure of the algorithm is as follows: 
Step 0. Given at time gtt = : 

• the remaining network project 
gt

G ; 
• the project’s due date D ; 
• minimal confidence probability p ; 
• values ijρ  for activities ( )

gt
Gji ∈, ; 
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• upper and lower bounds ( )k
ija , ( )k

ijb , mk ≤≤1 , ( )
gt

Gji ∈, . 
Step 1. For all activities ( )

gt
GGji \, ∈ , which have been already completed, set 

their duration values ijt  obtained by means of simulation at previous 
control points. These values remain fixed and unchanged within the 
planning horizon. 

Step 2. Set 1=k . 
Step 3. Simulate random durations ( )k

ijt  for all activities ( )
gt

Gji ∈,  (besides ac-
tivities which are underway and have been already simulated) using 
beta-distribution (4.2.1) or alternative density distributions. 

 

Step 4. Calculate the critical path length ( )[ ]k
ijcr tL  of network G  with activity du-

rations determined at Steps 1 and 3. 
 

Step 5. If ( )[ ] DtL k
ijcr ≤  counter QQ =+ 1  works and afterwards proceed to Step 6. 

If ( )[ ] DtL k
ijcr >  apply the next step. 

Step 6. Repeat Steps 3-5 R  times to obtain representative statistics. 
Step 7. Calculate ratio RQp =∗ ; if pp ≥∗  go to Step 11. Otherwise apply the 

next step. 
Step 8. Counter kk =+ 1  works. 
Step 9. If mk ≤  clear counter Q  and return to Step 3. Otherwise apply the next 

step. 
Step 10. Applying this step means that even implementing the maximal speed 

cannot guarantee for the project to meet its deadline honoring chance 
constraint (4.2.9). An emergency is declared, and the highest speed mυ  
is enforced for all activities up to moment , i.e., without intermediate 
control points. 

Step 11. Set ks g = . The algorithm terminates. 
Note that the simulated values ( )k

ijt , ( )
gt

Gji ∈, , will be used later on to deter-
mine the next control point (see Algorithm II in 4.2.6). 

 
4.2.6  Algorithm II to determine the next control point 
According to the general idea of on-line control outlined in §4.1 [64,68], 

value 1+gt  is determined as the maximal value satisfying 

( )[ ]






∆≥−






 ≥=

+

≤≤+

,

,:max

1

1

gg

tDttg

tt

ptt
g

τφ  (4.2.16) 

where 

( ) ∫
∞








−=

t

duu
t

τπ
τφ

2
exp

2
1 2

, (4.2.17) 
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( )
( )[ ]tHS
tH

t −=τ . (4.2.18) 

Here 
( ) ( )( )∑

=

=
R

r

r tH
R

tH
1

1 ,
 

(4.2.19) 

( )[ ] ( ) ( ) ( )∑
=





 −

−
=

R

r

r tHtH
R

tHS
1

2
2

1
1 , (4.2.20) 

( ) ( ) ( )tVtVtH plf −= , (4.2.21) 
where  is the number of simulation runs (equal to that used in Algorithm I out-
lined in 4.2.5) and ( )( )tH r  denotes value ( )tH  obtained by the r -th simulation. 
Control point 1+gt  is calculated by means of simulation with a constant step of 
length ∆ . The procedure of consecutively increasing value gtt >  step-by-step is 
followed until restriction (4.2.16) ceases to hold. Value ( )tV f  is evaluated by us-
ing Step 5 of the heuristic algorithm outlined in 4.2.4; consecutive points 

,...2, ∆+∆+ gg tt  are considered, in order to capture the last moment before the 
project deviates from its trajectory. 

The step-wise procedure of Algorithm II is as follows: 
Step 0. Given at time gtt = : 

• the remaining network project 
gt

G ; 
• the project output ( )g

f tV  observed by inspection at control point gt ;  
• the project’s planned trajectory ( )tV pl  determined by (4.2.13) or 

(4.2.14); 
• the project’s due date D ; 
• minimal confidence probability p ; 
• the index of speed ks g =  to carry out the project up to the next con-

trol point; 
• values ijρ  for activities ( )

gt
Gji ∈, ; 

• simulated values ( )k
ijt , ( )

gt
Gji ∈, , obtained at Steps 3-5 of Algorithm I 

outlined in 4.2.5. 
Step 1. If ∗≥ ksg  apply the next step. Otherwise go to Step 3. 
Step 2. Set ∆+=+ gg tt 1 . Proceed to Step 4 of the heuristic algorithm outlined 

in 4.2.4. 

Step 3. If ( ) g

pl

g
f t

D
VtV ⋅<  go to Step 5. Otherwise apply the next step. 

Step 4. Determine the planned trajectory ( )tV pl  by (4.2.14). Proceed to Step 6. 
Step 5. Determine the planned trajectory ( )tV pl  by (4.2.13). Proceed to Step 6. 
Step 6. Determine the minimal value of the next control point 1+gt : 

∆+=∗
+ gg tt 1 . 
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Step 7. If ∆<− ∗
+1gtD  go to Step 16. Otherwise apply the next step. 

 

Step 8. Calculate for the r -th simulation run, Rr ≤≤1 , value ( )[ ]∆+∆ ∗
+1, gg

r ttV  
according to Step 6 of the heuristic algorithm outlined in 4.2.4. 

Step 9. Calculate value 
( ) ( ) ( ) ( )[ ] ( )∆+−∆+∆+=∆+ ∗

+
∗

+
∗

+ 111 , g
pl

gg
r

g
f

g
r tVttVtVtH . 

Step 10. Repeat Steps 8-9 R  times to obtain representative statistics. 
Step 11. Calculate value 

( )
( )[ ]∆+

∆+
−= ∗

+

∗
+

∆+∗
+

1

1

1
gk

gk

t tHS
tH

g
τ , 

where 

( ) ( ) ( )∑
=

∗
+

∗
+ ∆+=∆+

R

r
g

r
gk tH

R
tH

1
11

1 , 

( )[ ] ( ) ( ) ( )∑
=

∗
+

∗
+

∗
+ 



 ∆+−∆+

−
=∆+

R

r
gg

r
gk tHtH

R
tHS

1

2

111
2

1
1 . 

Step 12. If inequality ( ) p
gt

≥
∆+∗

+1
τφ  holds, apply the next step. Otherwise go to 

Step 15. 
Step 13. If ∆−>∆+∗

+ Dt g 1  go to Step 16. Otherwise apply the next step. 
Step 14. Increase value ∗

+1gt  by ∆ , namely ∗
+

∗
+ =∆+ 11 gg tt . Return to Step 8. 

Step 15. Set ∗
++ = 11 gg tt . The algorithm terminates. 

Step 16. Set 1+= gtD . The algorithm terminates. 
After determining the next control point we apply either Step 5 (in case 

Dtg ≠+1 ) or Step 6 ( Dtg =+1 ) of the heuristic algorithm outlined in 4.2.4. 
 
4.2.7  Experimentation and conclusions 
Extensive experimentation has been undertaken to check the fitness of the 

on-line control model outlined in this Chapter. Several distribution laws (beta, 
normal, uniform) together with different confidence probability p  values have 
been examined. The following conclusions have been drawn from the Chapter 
[66]: 

1) It can be clearly recognized that for all examples examined, the simulated 
probability p  of meeting the due date on time exceeds the pregiven confi-
dence probability p . This is because in order to carry out the on-line con-
trol, we implement chance constraint (4.2.12) which is stricter than the 
initial chance constraint (4.2.10). 

2) Introducing beta-distribution results in realizing the project in time with 
slowest speeds and the least number of control points, that is for the case 
of beta-distribution the control algorithm is more efficient than in other 
cases. This is because the mean value of beta-distribution (4.2.1) 

( )[ ] ( ) ( )k
ij

k
ij

k
ij batE 4.06.0 +=  is smaller than the mean value ( ) ( )[ ]k

ij
k

ij ba +5.0  for the 
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normal and the uniform distributions. For the case of a uniform distribu-
tion the average expenses of carrying out the project are higher than for 
other probability distributions, namely, the project becomes the most 
costly one. 

3) Removing constraint (4.2.5), namely, assuming 4=∗k , results for all 
distributions both in minimizing the number of control points and 
maximizing the average index of the speeds. Decreasing number ∗k  
results in decreasing the average speed together with increasing the num-
ber of inspection points. Thus, a trade-off between the number of control 
points and the average index of speeds can be achieved by varying ∗k . 

4) The developed on-line control algorithm can be implemented for activity-
on-arc network projects where each activity can be operated at several 
possible speeds subject to random disturbances and the activity’s 
accomplishment is measured as a part of the entire project. Such projects 
include construction projects, various R&D projects, etc. 

5) The control algorithm is implemented by means of simulation and can be 
easily programmed on PC, mainly for projects of medium size. 

6) On-line control models subject to a chance constraint can be used for other 
types of PERT network projects, for example, PERT-COST projects 
comprising budget reallocation problems. Thus, the idea of on-line control 
has the potential of becoming a general one. 

7) The developed on-line control model is a decision-making model that is 
employed in inspection points only. The model does not revise any 
existing techniques in project management, e.g., resource reallocation, 
project scheduling, etc. It is an additional support tool that helps the 
project manager to determine inspection points and to choose the proper 
project speed after evaluating the progress of the project at a routine 
inspection point. Such control actions enhance the prospects of the project 
to meet its deadline on time, subject to a chance constraint. 

8) As outlined above, the average expenses to carry out the project cannot be 
used directly in the model. However, the developed algorithm enables 
calculation of those expenses, by means of simulation, for each combina-
tion of p  and ∗k . One has only to attach the processing costs to all speeds 
per time unit for each activity, together with the cost of performing a sin-
gle control of the project, with the penalty cost for non-accomplishing the 
project at the due date. Thus, a wise choice of parameter values p  and ∗k  
can be determined to minimize the expenses of carrying out the project. 
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Chapter 5.  Control Models Based on Risk Averse Decision-Making 
 

§5.1  On-line control model 
5.1.1  Introduction 
We will consider an activity-on-arc network project of PERT type with ran-

dom activity durations. It is assumed that the progress of the project can only be 
inspected and measured at preset inspection points since it is impossible or too 
costly to measure it continuously. The developed and outlined in the previous 
Chapter on-line control models determine both control (inspection) points and 
control actions to be introduced at those points in order to alter the progress of 
the project in the desired direction. The timing of inspection points is carried out 
by determining planned trajectories that must be repeatedly corrected in the 
course of the project’s realization. On-line control is carried out by solving an 
optimization problem to minimize the number of control points needed to meet 
the planned trajectory, subject to the chance constraint. Stated another way, the 
problem’s objective is to maximize the time span between two routine adjacent 
control points, subject to the chance constraint. The solution of that problem, 
i.e., determining the next inspection point, is carried out by means of extensive 
simulation with a constant time step. To consecutively increase the time span 
value step-by-step, the procedure is as follows. At each intermediate control 
point, decision-making based on sequential statistical analysis has to be under-
taken, either 

a) to proceed further and to examine the next control point; or 
b) to determine the control point under consideration as the last moment be-

fore the project deviates from its target subject to the chance constraint. 
Thus, the next routine control point is determined. 

The main shortcoming of such step-by-step control algorithms is their long 
computational time due to the need to make numerous decisions. In order to 
speed up the model’s performance, we present an on-line heuristic control algo-
rithm in which the timing of inspection points does not comprise intermediate 
control points and is based on the behavior of a risk averse decision-maker. 
Given a routine inspection point it , the next point 1+it  is determined so that even 
in the case that the project develops most unfavorably in the interval [ ]1, +ii tt , in-
troducing proper control action at moment 1+it  enables the project to meet its tar-
get on time, subject to the chance constraint. 

The outlined below control algorithm has been tested on several PERT pro-
jects of different types, e.g., on PERT-COST projects, construction projects with 
random activity durations, etc. In all cases the algorithm’s computational time 
has been essentially shortened (by a factor of some 25-30) in comparison to 
step-by-step control procedures. The developed algorithm provides better solu-
tions than would be attained by using on-line sequential statistical analysis. 
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5.1.2  Notation 
Let us introduce the following terms: 
( )ANG ,  - activity-on-arc network project (graph) of PERT type; 

D - the due date of the project (pregiven); 
∗p  - least permissible probability of meeting the project’s due date on 

time (pregiven); 
∗V  - the project’s target, i.e., the planned total project volume (pre-

given); 
tG  - the remaining project ( )ANG ,  at moment 0≥t ; ( )ANGG ,0 = ; 

tV  - the project’s output (project volume) observed at control point 0>t ; 
gt  - the g -th inspection (control) point, Ng ,...,1,0= , 00 =t , DtN =  (opti-

mized variable); 
tυ  - the project’s speed at moment 0≥t  set by the control device (con-

trolled variable); 
N  - the number of control points within the planning horizon; 
( ) tGji ∈,  - the project’s activity, 0≥t ; 
ijt  - random duration of activity ( )ji, ; 

∆  - the minimal time span between two consecutive control points gt  
and 1+gt  in order to force convergence (pregiven); 

ijρ  - the weight (contribution) of activity ( )ji,  in the total project volume 
(pregiven); 

ijS  - the actual time activity ( )ji,  starts; 
ijijij tSF +=  - the actual moment activity ( )ji,  is finished; 

ijc  - budget assigned to activity ( )ji,  (for PERT-COST projects); 
minijc  - minimal possible budget to operate activity ( )ji,  (pregiven);  
maxijc  - maximal possible budget to operate activity ( )ji,  (for PERT-COST 

projects, pregiven); in case maxijij cc >  additional budget is redundant; 
tC  - available remaining budget to carry out a PERT-COST project tG  

(observed at control point t ); 
( ) ( )k

tktCA υ=, - the k -th control action on project tG  introduced by the control 
device at moment t  to alter the controlled variable tυ  in the desired 
direction; 

( )ktP ,  - confidence probability to accomplish project tG  on time after 
introducing control action ( )ktCA , , mk ≤≤1 ; 

1>m  - the number of possible control actions; 
( )ktW p ,  - the p -quantile of the moment project tG  will be finished, on condi-

tion that control action ( )ktCA ,  is introduced (time moment to be 
met with preset probability p ); 

∗∗∗ > pp  - probability value being very close to 1 (pregiven). 
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Note that for some types of network projects, e.g., construction projects, 
various R&D projects, etc., each activity can be operated at several possible 
speeds. Introducing a control action results in choosing one of those speeds 
which corresponds to one and the same resource capacity and depends only on 
the degree of intensity of the project’s realization [66]. The speeds are sorted in 
ascending order from 1 to m. At each routine control point gt , a control action 
boils down to determining the index of the speed k , { }mk ,1∈ , for all project ac-
tivities to be operated with that speed from point gt , up to the next control point 

1+gt . An additional constraint is introduced in the control model which enables 
choosing the minimal index k , on condition that the chance constraint to meet 
the project’s deadline on time must be honored [66]. Thus, for that type of pro-
ject 

( ) ( ) 



 ≥== ∗

≤≤
pqtPqkktCA gmq

,:min,
1

. (5.1.1) 

For other stochastic network projects, e.g., of PERT-COST type, a control 
action, if introduced, results in optimal budget reallocation as follows [62,64]: at 
a routine control point 0≥gt  determine optimal budget values ijc , ( )

gt
Gji ∈, , to 

maximize the probability of meeting the project’s due date on time, 
( ) [ ] ∗≥







 ≤+= pDcGTtktP ijtgg g

Pr, , (5.1.2) 

subject to 
maxmin ijijij ccc ≤≤ , (5.1.3) 

( )
g

gt

t
Gji

ij Cc =∑
∈,

, (5.1.4) 

where [ ]ijt cGT
g

 denotes the random duration of project 
gt

G  with reallocated 
budget values ijc . Note that random durations ijt  have a density function which 
depends parametrically on value ijc . For practical cases [92], the project man-
agement can adopt any suitable distribution as long as its density function pre-
sents a linkage between time and cost, e.g., ijt  has a beta-distribution with 
boundary values ∗

ijt  and ∗∗
ijt , where 

( )τ
ij

ij
ij c

A
t =∗

  and  ( )τij

ij
ij c

B
t =∗∗ , (5.1.5) 

15.0 ≤< τ , and values ijA  and ijB  are pregiven. 
It can be well recognized that a PERT-COST project described above has 

only two ( 2=m ) possible control actions, namely: 
1. The project continues to function without changing budget values ijc , 

( )
gt

Gji ∈,  if at a routine control point gt  it is anticipated that the project 
meets its deadline on time under the chance constraint ( 1=k ). A decision 
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not to change values ijc  has to be taken if value [ ]






 ≤+ DcGTt ijtg g

Pr  is not 

less than ∗p . 
2. Otherwise, i.e., if ( ) ∗< ptP g 1,  holds, the project has to undergo budget real-

location in order to increase the confidence probability of meeting the due 
date on time ( 2=k ). The reallocation optimization problem (5.1.2-5.1.4) 
has then to be solved. 

 
5.1.3  The control model 
On the basis of particular cases outlined above we will outline a generalized 

on-line control model [72] as follows: determine optimal control points gt  (to 
inspect the project) and optimal project’s speeds ( )k

tg
υ  to proceed with until the 

next control point 1+gt , in order to minimize the average number of inspection 
points 

( ){ }Nk
gtgt υ,

min  (5.1.6) 
subject to (5.1.1) and 
( ) ( )[ ] ∗≥







 ≤+= pDGTtktP k

ttgg gg
υPr, , (5.1.7) 

∆≥−+ gg tt 1 , (5.1.8) 
00 =t , (5.1.9) 
DtN = , (5.1.10) 

∆≥− +1gtD ,  mk ≤≤1 . (5.1.11) 
Here, ( )[ ]k

tt gg
GT υ  is the random duration of the remaining project 

gt
G  after in-

troducing control action ( )ktCA g ,  at moment gt . 
In order to avoid unnecessarily high speeds, an additional control action 

(5.1.1) is introduced at each routine inspection point (see §4.2). This means that 
at each control point gt  the problem is to determine the minimal index of the pro-
ject’s speed which will enable meeting the project’s due date on time, subject to 
the chance constraint. 

Control model (5.1.6-5.1.11) is suitable for construction and R&D network 
projects with different speeds. In the case of a PERT-COST project, the pro-
ject’s duration ( )[ ]k

tt gg
GT υ  is substituted for [ ]ijt cGT

g
. Budget values ijc  are ob-

tained by solving the stochastic optimization problem (5.1.2-5.1.4). 
Thus, two basic concepts are imbedded in the on-line control model (5.1.6-

5.1.11): 
(a) the model comprises a chance constraint to meet the deadline; 
(b) the number of control (inspection) points has to be minimized. 
Note that the model’s solutions are, in essence, on-line control algorithms. If 
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an algorithm enables the project to be completed by the due date with a prob-
ability less than ∗p , the algorithm is unfeasible and cannot be accepted. An opti-
mal solution is a control algorithm which 

• is a feasible algorithm, i.e., enables the project to be completed on time 
with a probability not less than ∗p , subject to the chance constraint, and 

• offers the minimal average number of control points in comparison with 
any other feasible control algorithm. 

Thus, when comparing two different on-line control algorithms with respect 
to the model’s objective, the first algorithm is considered to be better than the 
second one if they are both feasible, and if less inspection points are required in 
the first algorithm than the second. 

It has to be pointed out that since the general model incorporates an addi-
tional control action (5.1.1), a second objective is, in essence, imbedded in this 
model, namely, to minimize the average index of the project’s speed within the 
planning horizon. Thus, the developed generalized control model comprises 
both control models outlined in Chapter 4 [62,64] as specific cases. 

The control algorithm comprises two main parts: 
Subalgorithm I determines the project’s speed ( )k

tg
υ  at moment gt , i.e., formal-

izes the control action ( )ktCA g , . The subalgorithm is carried out by means of 
simulation, by determining the minimal speed index k  for which restriction 
(5.1.1) holds. Value ( )ktP g , , mk ≤≤1 , is calculated by simulating ( )[ ]k

ttg gg
GTt υ+ , 

on condition that speed ( )k
tg

υ  is used throughout [66]. 
Subalgorithm II determines the next inspection point 1+gt  on the basis of the 

routine control point gt , the project’s output 
gt

V  observed at that point, and the 
project’s speed ( )k

tg
υ  is implemented as a control action. The subalgorithm devel-

ops a heuristic solution of the stochastic optimization problem as follows: de-
termine the next inspection point 1+gt  to maximize the time span between two ad-
jacent control points: 

1max +gt  (5.1.12) 
subject to (5.1.8) and 

{ } 1:Pr +
∗∗ ≤≤∀≥≥ ggtt ttttpVV ,

 
(5.1.13) 

where ∗
tV  is the straight line (trajectory curve) connecting two points ( )

gtg Vt ,  and 
( )∗VD, . 

Subalgorithm I determines value 1+gt  by means of simulation with a constant 
time step ∆ . The procedure of consecutively increasing the time span value is 
carried out by means of sequential statistical analysis at each intermediate con-
trol point [66,68,150]. Due to the need to make numerous decisions, carrying out 
Subalgorithm II takes much computational time, more than is needed to imple-
ment Subalgorithm I. 
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Thus, the problem to speed up the on-line control algorithm centers on de-
veloping a faster subalgorithm for determining routine inspection points. The 
developed heuristic algorithm is outlined below. 

 
5.1.4  Determining next inspection points 
Let us consider the general case of an activity-on-arc network project ( )ANG ,  

observed at a routine control point gt . Given: 
• remaining network project 

gt
G ; 

• routine control point gt  to inspect the project; 
• the project’s output 

gt
V  observed at moment gt ; and 

• control action ( )ktCA g ,  to be introduced at moment gt  up to the next inspec-
tion point, 

the problem is to determine that next point 1+gt . The general approach to solving 
the problem is presented in Fig. 5.1 and is as follows [72]: 

Since control action ( )ktCA g ,  is determined by realizing Subalgorithm I sub-
ject to restriction (5.1.1), the project’s speed index k  satisfies ( ) ∗≥ pktP g , . There-
fore (see Fig. 5.1) relation ( ) DktW gp

≤∗ ,  holds. Assume that after introducing 
speed ( )k

tg
υ  the project will be carried out under the most unfavorable circum-

stances. That means that the actual moment the project is accomplished is close 
to the upper bound of the density distribution of the project’s duration (see Fig. 
5.1), i.e., the project’s target will be reached at ( )ktW gp

,∗∗  with probability ∗∗p  be-
ing close to one. To illustrate the heuristic Subalgorithm I we will assume a 
number of such probabilities, e.g., 97.0,95.0,93.0,90.0=∗∗p , etc. Thus, the straight 
line HF connecting two points ( )

gtg Vt ,  and ( )( )∗
∗∗ VktW gp ,,  can be regarded as the 

most unfavorable direction of the project’s progress (we will henceforth call it 
the pessimistic line), while the straight line HE connecting two points ( )

gtg Vt ,  
and ( )( )∗

∗ VktW gp ,,  enables the deadline to be met on time under the chance con-
straint (we will henceforth call it the optimistic line). Let us draw a line through 
the target point ( )∗VD,  parallel to the optimistic line HE, until the intersection 
with the pessimistic line at point H’ (see Fig. 5.1). It can be clearly recognized 
that, on condition that control action ( )ktCA g ,  on the project is introduced and, 
due to random disturbances, the project advances to its target, until the intersec-
tion point H’, with the minimal speed, then, from that point on, the project can 
meet its target on time under the chance constraint ( )[ ] ∗≥







 ≤+ pDGTt k

ttg gg
υPr . 

Thus, the abscissa of the intersection point is determined as the next inspection 
point 1+gt . 

Note that such a heuristic procedure enables the project to meet its the due 
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date on time with a probability which exceeds the pregiven lower boundary ∗p . 
If, indeed, the project will be realized between two adjacent control point gt  and 

1+gt  under most unfavorable circumstances, i.e., with the minimal rate, then, be-
ginning from the control point 1+gt , the project will meet its target on time under 
the chance constraint. But actual completion of the project with the minimal rate 
is extremely rare since the probability, ∗∗− p1 , of such an occurrence is close to 
zero. Thus, with probability ∗∗p  close to one, the project has a higher chance 
than it would have had with ∗p , of meeting its deadline on time. 

 
Figure 5.1.  The general idea of determining the next inspection point by risk 

averse decision-making 
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The heuristic algorithm outlined below fits the assumption of a risk averse 
decision maker. Although it is designed to honor the chance constraint which 
practically enables completion on time, it does not trust the random circum-
stances and assumes the worst until the next inspection point. 

The step-by-step heuristic algorithm is as follows: 
Step 1. Simulate random durations ijt , ( )

gt
Gji ∈, , according to the speed ( )k

tg
υ  to 

be engaged at moment gt . 
Step 2. Simulate (on the basis of calculating the critical path length) the pro-

ject’s duration value ( )[ ]k
ttg gg

GTt υ+ . 

Step 3. Repeat Steps 1-2 M  times to obtain representative statistics. 
Step 4. Calculate values ( )ktW gp

,∗  and ( )ktW gp
,∗∗  on the basis of statistics ob-

tained on Step 3. 
Step 5. Determine the optimistic line drawn between two points H and E (see 

Fig. 5.1) 
 

gp

gpt

gp

t

tW

VtWV
x

tW

VV
y gg

−
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−

−
=
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. (5.1.14) 

Step 6. Determine a straight line through the point B ( )∗VD,  parallel to the op-
timistic 
line (see Fig. 5.1)  
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. (5.1.15) 

Step 7. Determine the pessimistic line connecting points H and F (see Fig. 
5.1) 
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. (5.1.16) 

Step 8. Determine the point of intersection H’ of lines (5.1.15) and (5.1.16) 
and denote it ( )YX , . If ∆<− gtX , set ∆+=+ gg tt 1 . Otherwise X is ac-
cepted as the next inspection point 1+gt . 

In the case of a PERT-COST project (see §4.1) Step 1 has to be modified by 
simulating random values ijt  on the basis of budget values ijc  according to time-
cost functions (5.1.5). Values ijc  are determined in the course of budget realloca-
tion, by solving optimization problem (5.1.2-5.1.4). 

 
5.1.5  Heuristic algorithm of the on-line control model 
The algorithm outlined below is performed in real time, by introducing con-

trol actions and inspecting the project’s output periodically. We will present the 
algorithm in a general form that can be “tuned” for practically all cases of con-
trolling network projects. 

Assume that 1>m  different control actions may be introduced at any inspec-
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tion point to control the project. The step-by-step heuristic control algorithm is 
as follows: 
Step 1. Start with 0=g , 00 =t , 0

0
=tV . 

Step 2. Set 1=k . 
Step 3. Consider control action ( )ktCA g , . For different types of network pro-

jects facilitating Step 3 results in carrying out different procedures. For 
example, for network projects with different speeds, control action 

( )ktCA g ,  results in introducing the k -th speed for all activities begin-
ning from gtt =  [72]. For PERT-COST projects, ( )1,gtCA  means assign-
ing to all activities ( )

gt
Gji ∈,  values ijc  which have been previously de-

termined at 1−= gtt , while ( )2,gtCA  means optimal budget reallocation, 
which will be outlined later, in Chapters 14-15. 

Step 4. Simulate random durations ijt , ( )
gt

Gji ∈, , on the basis of control action 
( )ktCA g , . 

 

Step 5. Calculate the critical path length of network 
gt

G , [ ]ijcr tL , with activity 
durations 
determined at Step 4. 

 

Step 6. Calculate the project’s duration [ ]ijcrg tLt + . 
Step 7. Repeat Steps 4-6 M  times to obtain representative statistics. 
Step 8. Calculate ( )ktP g ,  by examining the statistical data obtained at Step 7. 
Step 9. If ( ) ∗≥ pktP g ,  go to Step 13. Otherwise apply the next step. 

Step 10. Counter kk ⇒= 1  works. 
Step 11. If mk ≤  return to Step 3. Otherwise apply the next step. 
Step 12. Applying this step means that even by introducing control action 

( )mtCA g ,  the project cannot meet its due date on time subject to the 
chance constraint (5.1.7). 
An emergency is declared and the project management is faced with 
introducing additional control actions, e.g., set mk =  and Dt g =+1 . Go 
to Step 19. 

Step 13. Calculate values ( )ktW gp
,∗  and ( )ktW gp

,∗∗  on the basis of statistical data 
obtained at Step 7. 

Step 14. Determine straight lines (5.1.15) and (5.1.16). 
Step 15. Determine the next inspection point 1+gt  as the abscissa of the intersec-

tion point of lines (5.1.15) and (5.1.16). 
Step 16. Monitor closeness to the due date and to the next control point: 

If ∆≤− +1gtD , then set Dt g =+1  and go to Step 19. 
If ∆<−+ gg tt 1 , then set ∆+=+ gg tt 1  and apply the next step. 
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Step 17. Observe project 
1+gt

G  at the next inspection point 1+gt  and determine the 
project’s output 

1+gt
V . Various techniques to calculate the project’s out-

put at an inspection point by simulating the on-line control algorithm 
are outlined in Chapter 4. These techniques, in essence, calculate the 
partially accomplished amount of the project 



∆ +1, gg ttV  within the 

time period 





+1, gg tt , as follows: 

43211, ∑+∑+∑+∑=
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where ijt  are simulated durations of activities ( )ji,  that start before in-
spection point 1+gt  and are not finished before gt . Thus, value 





∆+= ++ 1,

1 ggtt ttVVV
gg

. 

Step 18. Set 1+= gg  and return to Step 2. 
Step 19. Observe the project at the due date D . The algorithm terminates. 

 
§5.2  Experimentation 
5.2.1  The experimental design 
The comparative efficiency of the developed control algorithm can be illus-

trated by a numerical example. A construction project where partial accom-
plishments are usually measured in percentages of the total project, is presented. 
The project’s initial data is given in [72]. Each activity can be operated at three 
possible speeds that are subject to random disturbances and correspond to dif-
ferent hours a day per worker. Thus, a control action, introduced at the inspec-
tion point, results in determining the index of the speed. It is assumed that for all 
construction teams working simultaneously, the shift has to be of equal length; 
thus, activities being operated simultaneously have to apply speeds of one and 
the same index. The index k  of the speed to be introduced at moment t  actually 
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determines the speed ( )k
tυ  of the project’s realization. Two heuristic algorithms to 

solve on-line control problem (5.1.6-5.1.11) for the construction network project 
have been examined: 

• the control algorithm based on risk-averse decision making (we will hence-
forth call it RADM), and 

• the former algorithm outlined in Chapter 4, based on decision making via 
sequential analysis (we will henceforth call it SADM). 

To verify the comparative efficiency of the developed algorithm various ex-
amples were run. The experimental design is presented in Tab. 5.1. Three pa-
rameters were varied: distribution of ijt  for all project’s activities, the least per-
missible probability ∗p  of meeting the project’s due date on time, and the ver-
sions of the control algorithm: 

1. RADM with 90.0=∗∗p ; 
2. RADM with 93.0=∗∗p ; 
3. RADM with 95.0=∗∗p ; 
4. RADM with 97.0=∗∗p ; 
5. SADM. 

 

Table 5.1.  The experimental design   

Parameters Values given in the ex-
periment 

Number of combina-
tions 

Due date D 262 1 
Minimal time span 10 1 
Number of speeds m 3 1 
Distribution of ijt  Uniform, normal, beta 3 
Desired probability ∗p  0.60;  0.75 2 
Versions of the control algorithm RADM with 90.0=∗∗p ; 5 
 RADM with 93.0=∗∗p ;  
 RADM with 95.0=∗∗p ;  
 RADM with 97.0=∗∗p ;  
 SADM.  

 

Three alternative distributions are considered: 
1. Beta distribution with density function 

( ) ( ) ( )( )2
4

12 tbat
ab

tf ijij
ijij

ij −−
−

= ; 

2. Uniform distribution in the interval 





ijij ba , ; 

3. Normal distribution with average ( ) 2ijij ba +  and variance ( )[ ]26ijij ab − . 
Thus, a total of 30 combinations have been considered. For each combina-

tion, 100 simulation runs were carried out. The number M  of statistical trials in 
Step 7 of the algorithm is 100. Several measures were considered, as follows: 
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N  - the average number of control points; 
p  - the average actual probability of meeting the due date on time; 
k  - the average index of the project’s speeds within the planning horizon; 

cT  - average computational time of a simulation run (in seconds). 
Value k  has been calculated as follows: denote rijk  the index of the speed to 

operate activity ( )ji,  and rijt  its simulated duration, for the r -th simulation run, 
( ) ( )ANGji ,, ∈ , 1001 ≤≤ r . Value k  is evaluated by 

( ) ( )

( ) ( )

∑ ∑
∑

=
∈

∈

















⋅=
100

1
,,

,,01.0
r

ANGji
rij

ANGji
rijrij

t

tk
k . 

The summary of results is presented in Tab. 5.2. 
 
5.2.2  Conclusions 
The following conclusions can be drawn from the summary: 
1. Both control algorithms are feasible since their average actual probabilities 

p  exceed the least permissible level ∗p . This complies with the reasons 
outlined in 5.1.4 and in §4.2. 

2. Introducing beta distribution results in carrying out the project with slow-
est speeds for both algorithms RADM and SADM. Since using slower 
speeds results in decreasing processing costs per time unit, introducing 
beta distribution means realizing the project with the smallest expenses. 
Introducing uniform distribution leads, on the contrary, to the highest av-
erage speeds and, thus, increases the expenses in comparison with other 
distributions. 

3. It can be clearly recognized that for any combination of distribution of ijt  
and value ∗p  there exists at least one algorithm RADM with value N  less 
than the value of N  obtained by using SADM. Thus, a conclusion can be 
drawn that the newly developed algorithm RADM is better than SADM. 
In the case of the uniform distribution, we recommend to use RADM with 

90.0=∗∗p , while for the normal and for beta distributions, we suggest 
97.0=∗∗p . 

4. It can be clearly recognized that, for practically all examples, using algo-
rithm SADM results in a higher value of p  than when using control algo-
rithm RADM, but at the expense of introducing higher speeds. Thus, a 
conclusion can be drawn that although both control algorithms enable the 
project’s deadline to be met on time, subject to the chance constraint, us-
ing RADM results in a cheaper realization, than by using SADM. 

5. The computational time of realizing algorithm RADM is essentially 
smaller than for SADM. For a project of small size (36 activities), using 
RADM results in speeding up the on-line control by a factor of about 25 
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in comparison with SADM. This is because most computational time in 
SADM is utilized for carrying out decision making at numerous interme-
diate check points. In RADM these complicated and lengthy techniques 
have been removed. 

 

Table 5.2.  The summary of results   
Outcome values 

Distribution ∗p  Versions of the 
control algorithm N  p  k  cT  

UNIFORM 60.0=∗p  RADM, 90.0=∗∗p  2.88 0.68 2.64 10.2 
  RADM, 93.0=∗∗p  3.35 0.72 2.57 10.1 
  RADM, 95.0=∗∗p  3.51 0.73 2.53 10.1 
  RADM, 97.0=∗∗p  3.87 0.70 2.45 10.0 
  SADM 5.01 0.84 2.83  254 
 75.0=∗p  RADM, 90.0=∗∗p  2.87 0.76 2.71 10.2 
  RADM, 93.0=∗∗p  3.13 0.79 2.71 10.2 
  RADM, 95.0=∗∗p  3.09 0.80 2.73 10.2 
  RADM, 97.0=∗∗p  3.24 0.75 2.78 10.3 
  SADM 4.95 0.93 2.95  252 
NORMAL 60.0=∗p  RADM, 90.0=∗∗p  6.48 0.77 2.22 10.4 
  RADM, 93.0=∗∗p  5.91 0.78 2.27 10.3 
  RADM, 95.0=∗∗p  5.55 0.79 2.30 10.3 
  RADM, 97.0=∗∗p  3.93 0.85 2.55 10.1 
  SADM 5.08 0.91 2.75  255 
 75.0=∗p  RADM, 90.0=∗∗p  8.95 0.80 2.26 10.5 
  RADM, 93.0=∗∗p  7.89 0.86 2.32 10.4 
  RADM, 95.0=∗∗p  7.48 0.89 2.33 10.4 
  RADM, 97.0=∗∗p  4.67 0.91 2.57 10.3 
  SADM 5.12 0.96 2.97  253 
BETA 60.0=∗p  RADM, 90.0=∗∗p  3.39 0.67 2.01 10.2 
  RADM, 93.0=∗∗p  3.38 0.73 2.01 10.2 
  RADM, 95.0=∗∗p  3.51 0.68 2.02 10.2 
  RADM, 97.0=∗∗p  3.57 0.73 2.07 10.2 
  SADM 5.10 0.89 2.22  256 
 75.0=∗p  RADM, 90.0=∗∗p  5.47 0.83 2.07 10.3 
  RADM, 93.0=∗∗p  5.33 0.85 2.16 10.3 
  RADM, 95.0=∗∗p  4.82 0.87 2.16 10.3 
  RADM, 97.0=∗∗p  4.03 0.86 2.26 20.2 
  SADM 4.98 0.89 2.21  256 

 

5.2.3  Applications 
1. The developed on-line control algorithm is high-speed and can be used for 

controlling stochastic network projects of practically any size. 
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2. The algorithm is based on the risk averse decision-making approach. Such 
an approach has been used successfully in other areas of operations man-
agement, e.g., in on-line production control [63]. Simulation results ob-
tained for a practical control problem in project management show that 
such an approach is also a very effective procedure in controlling stochas-
tic network projects [68,72]. 

3. Within the last two decades extensive research has been undertaken to de-
velop on-line control models for various organization systems under ran-
dom disturbances, e.g., [54,68,72,92]. It is obvious that controlling a pro-
duction unit (activity) with several possible speeds under random distur-
bances requires, on average, 2.5-3 inspections [72], while controlling a 
flexible manufacturing cell comprising two production units will require 
4.3-4.8 inspections [63]. Since a section comprising two activities is es-
sentially less complicated than a network project with 36 activities, the 
latter needs, at a minimum, the same number of inspection points as the 
system outlined in [63]. Taking into account that the best RADM algo-
rithms require only 3-4.6 inspection points, on average, the conclusion 
which can be drawn is that the RADM algorithm developed here is close 
to the best solutions of the general on-line control model. (Since our con-
trol algorithm is a heuristic one, we prefer to avoid the term “optimal so-
lution”). 
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Chapter 6.  Control Models Based on Chance Constraint Principle  
 

§6.1  The chance constraint principle 
6.1.1  Introduction 
In our publications in the recent decade [54,73,77,83-84] we have developed 

a new class of on-line control models based on the chance constraint principle 
and applied to solving cost-optimization problems. The previously developed 
and outlined in Chapters 4-5 on-line control models are not suitable for solving 
those problems. 

Let us take an overview of the general idea of the chance constraint principle, 
since otherwise it might be not easy to implement on-line chance constraint con-
cepts for control models in stochastic network projecting. 

 
6.1.2  The system’s description 
The system under consideration produces a single product or a production 

program that can be measured by a single value, e.g., in percentages of the 
planned total volume. Such an approach is often used for R&D projects, in min-
ing, etc. The system is subject to a chance constraint, i.e., the least permissible 
probability of meeting the due date on time is pre-set. The system utilizes non-
consumable resources that remain unchanged throughout the planning horizon. 
There are several alternative processing speeds to realize the program, corre-
sponding to the same given levels of resources and depending only on the de-
gree of intensity of the production process. However, for different speeds, the 
average processing costs per time unit vary. The evaluation of advancing to the 
goal, i.e., observing the product’s actual output, can be carried out only via 
timely inspections at pre-set control points. At every inspection (control) point, 
the decision-maker observes the amount produced and has to determine both, the 
proper advancement speed and the next control point. Assume that it is prohib-
ited to use unnecessarily high speeds (especially at the beginning of manufactur-
ing the products), unless there is an emergency situation, i.e., a tendency to de-
viate from the target which may cause delay of the completion time. This is be-
cause lengthy work at higher speeds when utilizing restricted resources (e.g., 
manpower employed in two or three shifts, etc.) can prematurely wear out the 
regarded system. Assume, further, that the inspection and the speed-reset times 
equal zero. The costs of all processing speeds per time unit, as well as cost of 
performing a single inspection at the control point, are pregiven. 

 
6.1.3  Notation 
Let us introduce the following terms: 

V  - the system’s plan (target amount); 
D - the due date (planning horizon); 

( )tV f  - the actual output observed at moment t , Dt ≤<0 ; ( ) 00 =fV ; 
( )tC f  - the actual accumulated processing and control costs calculated at 
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moment t , Dt ≤<0 ; ( ) 00 =fV ; 
it  - the i -th inspection moment (control point), Ni ,...,1,0= ; 
N  - the number of control points (a random value); 

jv  - the j -th speed, mj ≤≤1  (a random value with pregiven probability 
density function ( )vf j ); 

jv  - the average speed jv ; it is assumed that speeds jv  are sorted in as-
cending order of the average values and are independent of t ; 

m - the number of possible speeds; 
is  - index of the speed chosen by the decision-maker at control point it ; 
jc  - the average processing cost per time unit of speed jv , mj ≤≤1  (pre-

given); note that 21 jj <  results in 21 jj cc < ; 
insc  - the average cost of carrying out a single inspection (pregiven); 

∆  - the minimal value of the closeness of the inspection moment to the 
due date (pregiven); 

d  - the minimal given time span between two consecutive control points 
(in order to force convergence); 

p  - the least permissible probability of meeting the due date on time 
(pregiven); 

ja  - lower bound of random speed jv ; 
jb  - upper bound of random speed jv ; 

( )jtWp ,  - the p -quantile of the moment when production program V  will be 
accomplished on condition that speed jv  is introduced at moment t  
and will be used throughout, and the actual observed output at that 
moment is ( )tV f  (time moment to be met with pre-set probability p ); 
in other words, ( )jtWp ,  is the p -quantile of random value 

( )( ) 



 −+ j

f vtVVt . 

Values ( )tV f , as well as the parameters of the probability density functions 
( )vf j , mj ≤≤1 , are given in percentages of the planned target V . We will, hence-

forth, implement the beta-distribution with density function 
( ) ( ) ( )( )2

4

12 vbav
ab

vp jj
jj

j −−
−

= . (6.1.1) 

 
6.1.4  The problem 
Let us consider the cost-optimization control problem. The problem is to de-

termine both, control points { }it  and production speeds { }is  to minimize the sys-
tem’s expenses 

{ }
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such that: 
( ) pVDV f ≥







 ≥Pr , (6.1.3) 

00 =t , (6.1.4) 
DtN = , (6.1.5) 

dtt ii ≥−+1 ,  10 −≤≤ Ni , (6.1.6) 
∆≥− itD ,  10 −≤≤ Ni , (6.1.7) 

( ) 



 ≤=≤

≤≤
DqtWqks ipmqi ,:min

1
. (6.1.8) 

Objective (6.1.2) enables minimization of all system’s expenses, while objec-
tive (6.1.3) reflects the chance constraint. Relation (6.1.4) implies that the first 
control point to undertake decision-making is zero, namely, the starting moment 
to process the production program. Relation (6.1.5) implies that the last inspec-
tion point is the due date D. Restriction (6.1.6) ensures the time span between 
each two consecutive control points, while (6.1.7) provides the means of ensur-
ing the closeness of the inspection moment to the due date. Relation (6.1.8) 
means that the production speed to be chosen at any routine control point must 
not exceed the minimal speed which guarantees meeting the deadline on time, 
subject to the chance constraint. Thus, as outlined above, unnecessary surplus 
speeds are not implemented. 

The problem defined in (6.1.2-6.1.8) is a very complicated stochastic optimi-
zation problem which cannot be solved in the general case; it allows only a heu-
ristic solution. The algorithm outlined below, in 6.1.6, determines at each con-
trol point it  both, the next control point 1+it  and the speed 

is
v  at which to proceed 

until that control point. 
 
6.1.5  The chance constraint principle 
The chance constraint principle is the basic approach for determining the 

next control point 1+it  on the basis of the routine control point it  and the actual 
output ( )i

f tV  observed at that moment. Note that such an approach has been suc-
cessfully implemented in [83-84] for controlling stochastic network projects. 

Consider a routine control point it , together with the actual output observed 
at that point, ( )i

f tV . For each production speed jv , mj ≤≤1 , calculate by means 
of simulation a representative statistical sample ( ){ }s

jT , where ( )s
jT  is the simulated 

value of the completion time of the production program obtained by using speed 
jv  throughout. It can be well-recognized that the value of ( )s

jT  can be determined 
from 

( ) ( )
( ) is
j

i
f

s
j t

v
tVV

T +
−

= , (6.1.9) 

where ( )s
jv  stands for the simulated production speed jv  at control point it . 
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After obtaining samples ( ){ }s
jT , mj ≤≤1 , calculate the corresponding p -

quantiles  and single out the subset of speeds for which: 
( ) DjtWp <,  (6.1.10) 

holds. Note that if, for a certain speed j , (6.1.10) holds, then all speeds with 
higher indices also satisfy (6.1.10). Consider one of the speeds entering the sub-
set, e.g., speed qv . It can be well-recognized (see Fig. 6.1) that, being introduced 
from point ( )( )i

f
i tVtA ,  throughout, speed qv  enables the deadline to be met on 

time, subject to the chance constraint. Moreover, even if no processing at all 
takes place within the period of length ( )qtWDt ip ,−=∆  (see the straight line AF ) 
and afterwards speed qv  is introduced at point F , this speed qv  still enables the 
deadline to be met on time, under the chance constraint (7.1.3). This can be 
well-recognized by examining two parallel straight lines: line AE , which en-
ables accomplishing the production program with a probability exceeding p  
(henceforth, call this line ( )qAE ) and line BF  which enables the deadline to be 
met on time with confidence probability equal to p  (call this line ( )qBF ). Note 
that, if the production process proceeds with speed qv  from any point on line 

( )qBF , the target will be met on time subject to the chance constraint. This basic 
principle has been implemented in the heuristic algorithm. 
 

6.1.6  The heuristic algorithm 
Referring to [54,73], the heuristic control algorithm at each routine control 

point it , enables minimization of the system’s expenses (6.1.2) during the re-
maining time ( )itD − . Thus, the objective function for optimizing decision-
making at point it  includes only future expenses, while past expenses, as well as 
past decision-makings, are considered to be irrelevant for the on-line control 
procedure. At each control point it , decision-making centers around the assump-
tion (see [54,73]) that there is no more than one additional control point before 
the due date. 

It can be well-recognized that the backbone of the heuristic control algorithm 
is Subalgorithm I which, at each routine control point it  determines both index 

is  of the speed to be introduced and the next control point 1+it . Following the as-
sumption outlined above, two speeds have to be chosen at point it : 
1. Speed 

1j
v , isj =1 , which has to be actually introduced at point it  up to the 

next control point 1+it ; 
 

2. Speed 
2j

v , 12 += isj , which is forecast to be introduced at control point 1+it  
within the remaining period [ ]Dt i ,1+ . 
Note that, if speed 

2j
v  is forecast to be the last processing speed before the 

due date D, control point 1+it  has to be necessarily on straight line ( )2jBF (see Fig, 
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6.1), otherwise chance constraint (6.1.3) might not be met. We suggest singling 
out, at each routine control point it , all possible couples ( )21, jj  satisfying restric-
tion (6.1.8), with subsequent choosing the one delivering the minimum of fore-
casted production and control expenses, namely 

 
Figure 6.1.  The general idea of the chance constraint principle 

 

{ }
( ) ( )







 +−+− ++ insijiijjj

ctDcttc 11, 21
21

min  (6.1.11) 

such that: 
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( ) 



 ≤=≤

≤≤
DqtWqkj ipmq

,:min
11 , (6.1.12) 

kjifkj <≥ 12 , (6.1.13) 
kjifkj =≤ 12 . (6.1.14) 

Restriction (6.1.12) is embedded in the algorithm to satisfy restriction (6.1.8). 
Restriction (6.1.13) holds, since case kj <1 , kj <2  contradicts chance constraint 
(6.1.3). Case kj =1 , kj >2  is a pointless one since, for both couples ( )kk,  and 
( )kjk >2, , chance constraint (6.1.3) will be met, but the second possibility 
proves to be more costly. 

As to value 1+it , we suggest calculating the latter on the assumption that, be-
ing introduced at it , the actual processing speed is 1jv . Thus, 1+it  may be deter-
mined as the abscissa of the intersection point C  (see Fig. 6.1) of two straight 
lines: 

( ) ( )iji
f ttvtVvAC −+= 1: ; (6.1.15) 

( ) ( )
( )

( )
( ) iip

i
f

iip

i
f

j

tjtW
tVVDVt

tjtW
tVVvBV

−
−

−+
−

−
=

22 ,,
:2 . (6.1.16) 

Note that case kjj == 21  is possible if using speed 
1j

v  throughout, until the 
due date D, results in the cheapest realization. In such a case, value insc  has to be 
excluded from (6.1.11). 

Further on, we will show the possibility of implementing the chance con-
straint principle in on-line control models for stochastic network projects. Such 
an implementation has to be made with certain modifications as compared to the 
control model outlined above, in §6.1. 

 
§6.2  Case of a single project 
6.2.1  The system’s description 
An activity-on-arc network project ( )ANG ,  of PERT type, with random activ-

ity durations, is considered. The accomplishment of each activity is measured in 
percentages of the total project. Since evaluating the project’s accomplishment 
continuously is difficult and costly, periodic inspections are preferred. Non-
consumable, i.e., renewable, resources, such as machines and manpower, are 
utilized to carry out the project. 

It is assumed [53,83-84,151] that any activity comprised in the project has to 
be operated by a standardized set of various resource capacities which we will 
henceforth refer to as “a Generalized Resource Unit” (GRU). All the non-
consumable resources assigned to the project, are subdivided into several identi-
cal GRU, with the following properties: 

• each activity ( )ji,  entering the project ( )ANG ,  has to be operated, from be-
ginning to the end, by only one GRU; 

• different activities cannot be operated simultaneously by one and the same 
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GRU; 
• in the course of processing an activity a GRU may use several possible 

speeds that are subject to random disturbances. The number of possible 
speeds is common to all activities. 

For each activity, speeds are sorted in ascending order of their average ca-
pacities - namely, speeds are indexed. All GRU are indexed in arbitrary order 
too. Since all GRU are identical the operational speed for each activity does not 
depend on the index of the GRU which is involved in processing that activity. It 
is assumed that at any moment 0>t  activities that are operated at that moment, 
have to apply speeds of one and the same index. Assume, further, that any speed 
can be changed only at a control (inspection) point, that is, all the project’s ac-
tivities being carried out between two adjacent control points, have to be oper-
ated with speeds of one and the same index. There exists only one exception: if 
an activity must continue in operation through a control point, the activity speed 
cannot be changed. 

The project’s due date and the minimal permissible probability (chance con-
straint) of accomplishing the project at the due date are pregiven. 

It can be well-recognized that the outlined above stochastic network project 
covers a broad spectrum of possibilities, including innovative R&D projects and 
especially construction projects and similar projects with variable speeds. For 
those projects a GRU is nothing else but a standard building team comprising 
both machines and personnel while possible speeds correspond to different 
hours a day per worker. Thus, those speeds depend only on the degree of inten-
sity of the project’s realization. 

An on-line cost-optimization model is outlined, that at each control point 
faces a stochastic optimization problem. Given the average processing costs per 
time unit for each activity to be operated under each speed, together with the av-
erage cost of performing a single inspection at the routine control point gt , the 
problem is to determine the next control point 1+gt  and the new index of the 
speeds (for all activities to be operated) to be employed up to that point. 

The problem’s solution is based on the combination of the chance constraint 
principle which has been outlined in [73] for production systems and in [54] for 
other organization systems, and a resource constrained simulation model for 
non-consumable limited resources [70]. A heuristic algorithm is outlined; its ef-
ficiency is evaluated by means of simulation. 

Note that certain refinements which made the chance constraint model more 
applicable for stochastic network projects (in comparison with the model out-
lined in §6.1 and aimed at production systems) have been implemented [83-84] 
in the algorithm (see §6.2). 

 
6.2.2  Notation 
Let us introduce the following terms: 
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( )ANG ,  - activity-on-arc network project of PERT type; 
( ) ( )ANGji ,, ∈ - activity leaving node i  and entering node j ; 

tG  - the project observed at moment 0≥t , ( )ANGG ,0 = ; 
( )k
ijυ  - the k -th speed to process activity ( )ji, , mk ≤≤1 ; 

m - number of possible speeds common to all activities (pregiven); 
n  - number of identical GRUs (pregiven); 

tn  - number of free available GRUs at moment 0≥t , nn =0 ; 
( )k
ijt  - random duration of activity ( )ji,  using speed ( )k

ijυ  throughout; 
( )k
ija  - lower bound of random activity duration ( )k

ijt  (pregiven); 
( )k
ijb  - upper bound of random activity duration ( )k

ijt  (pregiven); 
ijρ  - percentage of activity ( )ji,  in the entire project (pregiven); 

D - the due date of the project (pregiven); 
p  - least permissible probability (chance constraint) of meeting the pro-

ject’s due date on time (pregiven); 
N  - number of control points (a random value); 
gt  - the g -th control point, Ng ,...,1,0= ; 00 =t , DtN = ; 
gs  - the index of the project’s speed (identical for all activities) to be im-

plemented within interval 





+1, gg tt , ms g ≤≤1 ; 

1∆  - the minimal value of the closeness of the inspection moment to the 
due date (pregiven); 

2∆  - the minimal time span between two consecutive control points gt  
and 1+gt  in order to force convergence (pregiven); 

( )tV f  - actual project output (in percentages of the entire project) observed 
at moment 0≥t , ( ) 00 =fV ; 

( )tC f  - the actual accumulated processing and control costs calculated at 
moment 0≥t , ( ) 00 =fC ; 

( )k
ijc  - the average processing cost per time unit for activity ( )ji,  to be op-

erated with speed ( )k
ijυ  (pregiven); 

insc  - the average cost of undertaking the project’s inspection (pregiven); 
V  - the planned entire project volume (pregiven). 

( )[ ]tVktW f
p ,,  - the p -quantile of the moment the project will be accomplished 

on condition that the k -th speed for all activities will be imple-
mented at control point t  and will be used throughout, and the ac-
tual observed output at that moment is ( )tV f ; 

ijS  - the actual moment activity ( )ji,  starts (a random value); 
( )k
ijijij tSF +=  - the actual moment activity ( )ji,  is completed (a random value); 

( )21,ttC  - processing and control costs calculated within the time interval 
( )21,tt , Dtt ≤<≤ 210  (a random value). 
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6.2.3  The problem 
Let us consider the cost-optimization on-line control problem. The problem 

is to determine both control points { }gt  and activity speeds ( ){ }k
ijυ  to minimize the 

average project’s expenses 

( ){ }
( ) ( )( )

( ) 
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ins
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ij
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subject to 
( ) 1:, +<≤∀= gijgg tStjisk ,  Ng ≤≤0 ,
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(6.2.3) 

00 =t ,
 

(6.2.4) 
DtN = ,

 
(6.2.5) 

1∆≥− gtD ,  Ng ≤≤0 ,
 

(6.2.6) 
21 ∆≥−+ gg tt ,  Ng ≤≤0 ,

 
(6.2.7) 
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 ≤=≤

≤≤

∗ DtVqtWqss f
p

mqgg ,,:min
1

.
 

(6.2.8) 

Objective (6.2.1) enables minimization of all operating costs and control ex-
penses. However, referring to [73], the heuristic control algorithm facilitates de-
cision-making at each control point gt  on the basis of future expenses only, i.e., 
during the remaining time gtD − . Past expenses, as well as past decision-
makings, are not relevant for the on-line control model. Relation (6.2.2) honors 
the chance constraint while relations (6.2.3-6.2.7) are obvious. 

Let us analyze (6.2.8) in greater detail. Relation (6.2.8) means that the speed 
to be chosen at any routine control point gt  should not exceed the minimal speed 

∗
gs  that enables meeting the deadline on time, subject to the chance constraint. It 

can be well-recognized that operating an activity at a higher speed always results 
in higher costs to accomplish the activity than by using a lower speed. Thus, 
(6.2.8) prohibits using unnecessary high speeds. Note that after introducing 
speed gs  at control point gt  all the activities ( )ji,  starting from gt , have to be op-
erated at that speed throughout, i.e., until the due date D, in order to determine 
values ( )[ ]tVktW f

p ,,  and, later on, to choose the minimal index ∗
gs . However, 

since the number of GRUs is limited, at certain moments 0≥t  the number of ac-
tivities ready to be processed may exceed the amount tn  of free available GRUs. 
Thus, if in the course of the project’s realization there is a lack of resources, a 
competition among those activities has to be arranged to single out a subset of 
activities that will start to be operated at moment t  and can be provided with re-
sources. The corresponding decision-making auxiliary algorithm [70-71] which 
determines values ijS  in the course of carrying out the project, is outlined in 
Chapter 11. The competition among the activities seeking for resources is facili-
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tated by solving a zero-one integer programming problem to maximize the total 
contribution of the accepted activities to the expected project duration. For each 
activity ( )ji,  its contribution equals the product of the average duration of the 
activity ( )k

ijt  and its probability ijp  of being on the critical path in the course of 
the project’s realization. Those probability values may be determined by means 
of simulation. The algorithm outlined in Chapter 11 has to be implemented in 
order to undertake numerous simulation runs to calculate values ( )[ ]tVktW f

p ,, . 
 
6.2.4  The general idea of the problem’s solution 
Several main concepts are imbedded in the model: 
1. At each control point gt , decision-making centers around the assumption 

[73] that there is no more than one additional control point before the due 
date. Thus, two speeds have to be chosen at each routine control point gt : 
a) speed ( )1kυ  which has to be actually introduced at point gt  up to the 

next control point 1+gt ; 
b) speed ( )2kυ  which is forecast to be introduced at control point 1+gt  

within the period 





+ Dtg ,1 . 

Couple ( ) ( )( )21 , kk υυ  provides the minimal processing and control costs 
among all possible couples subject to (6.2.8). After meeting control point 

1+gt  the on-line problem has to be resolved anew. 
2. At any control point gt  the past operational and control expenses are ir-

relevant to the on-line control problem and are not taken into account 
whatsoever. 

3. If speed ( )1kυ  is actually introduced at control point gt  subject to (6.3.8), the 

project possesses time reserves ( )[ ]g
f

gp tVktWD ,, 1−  (see interval AF on 
Fig. 6.2 where AE and BF are parallel straight lines). Since speed ( )2kυ  is 
forecast to be the last processing speed before the project’s due date D , 
control point 1+gt  has to be on the straight line BG which is parallel to the 

straight line connecting points ( )





g
f

g tVt ,  and ( )[ ] 



 VtVktW g

f
gp ,,, 2 . Such a 

concept which has been outlined in §6.1 is, in fact, implementation of the 
chance constraint principle [73]. 

4. As to value 1+gt , we suggest calculating the latter on the assumption that 

the length of interval 





+1, gg tt  is essentially smaller than the remaining 

part of the planning horizon 





+ Dtg ,1 . In order to determine 1+gt  via a 



 
 

117 

short-term forecasting we suggest replacing for all activities ( )ji,  satisfy-
ing 1+<≤ gijg tSt , their random durations ( )k

ijt  by the corresponding average 

values ( )k
ijt . Such an assumption enables determining moment 1+gt  as a de-

terministic value since the straight line ( )2kBG  has a precise model while 
simulating the project’s realization between points A and G (see Fig. 6.2) 
can be carried out in deterministic terms. Thus, determining speeds ( )1kυ  
and ( )2kυ  is carried out via a long-term forecasting on the basis of p -
quantile estimations, while calculating the next control point 1+gt  is facili-
tated by using a short-term forecast based on substituting random values 
for their average ones. This is actually the main principal contribution of 
the results outlined in §6.2 when compared to the general chance con-
straint approach presented in §6.1. 

5. Simulating the project’s realization in order: 
• to obtain p -quantile parameters ( )[ ]g

f
gp tVktW ,, 1  to forecast the optimal 

speed couple ( ) ( )( )21 , kk υυ , as well as 

• to undertake project’s simulation within the interval 





+1, gg tt , 

is carried out by a combination of a simulation model and a heuristic re-
source constrained decision-making algorithm [68,70]. Decision-making, 
i.e., determining values ijS  by feeding-in free available GRU, is carried 
out at decision points t , when at least one activity is ready to be operated. 
If the number of such activities at a certain moment t  exceeds the amount 

tn  of free available GRU at 0≥t , a zero-one integer programming prob-
lem to single out the optimal subset of activities to be supplied with re-
sources is solved. For those chosen activities ( )ji,  their starting moments 

ijS  are equal t . Note that the integer programming problem outlined in 
[68,70] provides the exact solution. 
 

6.2.5  The heuristic on-line control algorithm to determine the next control 
point and the project’s speed 

The algorithm outlined below determines at each control point gt  for project 

gtG  the next control point 1+gt  and the index of the speed for all activities ( )ji,  
starting from moment gt . Given at gtt = : 

• project 
gt

G ; 
• the project’s due date D; 
• the project’s chance constraint p ; 
• the project’s planned volume %100=V ; 
• lower and upper bounds ( )k

ija  and ( )k
ijb , ( )

gt
Gji ∈, , mk ≤≤1 , for all random ac-
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tivity durations ( )k
ijt ; 

• number m  of possible speeds; 

 
Figure 6.2.  Determining the next control point 

 
• number n  of identical GRUs; 
• number 

gt
n  of free available GRUs at moment gtt = ; 

• percentages ijρ  of activities ( )
gt

Gji ∈,  in the entire project; 
• the project’s accumulated output ( )g

f tV  observed at point gtt = ; 
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• the project’s accumulated processing and control costs ( )g
f tC  calculated at 

point gtt = ; 
• average processing costs ( )k

ijc , ( )
gt

Gji ∈, , mk ≤≤1 , per time unit; 
• average cost of carrying out a single inspection insc . 
The step-by-step procedure of the algorithm is as follows: 

Step 1. For each speed ( )kυ , mk ≤≤1 , determine by means of simulation values 
( )[ ]g

f
gp tVktW ,,  (a forecasting procedure). Step 1 comprises, in essence, 

four subalgorithms as follows: 
Subalgorithm I actually governs most of the procedures to be under-
taken in the course of the project’s realization, namely: 

  
 1.1 Determines all activities ( )

gt
Gji ∈,  being operated at moment gtt = . 

 1.2 Simulates their finishing times ijF . 
 1.3 Determines sequentially decision points t  when at least one activ-

ity is ready to be operated; let ta  be the amount of those activities. 
 1.4 In case tt an ≥  supplies activities with resources and updates the 

number of free remaining GRUs. Otherwise go to Substep 1.6. 
 

1.5 
Introduces speed ( )kυ  and simulates the corresponding activities’ 
durations. 

 Subalgorithm II takes over when tt an <  and comprises the following 
substeps: 

 1.6 Determines all the activities that have not yet started to be oper-
ated. Simulate their random durations with speed ( )k

ijυ . 
 1.7 Calculates the critical path of the remaining graph tG . 
 1.8 Repeats Substeps 1.6-1.7 M  times to obtain representative statis-

tics. 
 1.9 Calculates the frequency ( )λjip ,  for each activity ( )λji, , ta≤≤ λ1 , 

seeking for resources and ready to be operated, to be on the critical 
path. 

 Subalgorithm III undertakes the competition in case tt an <  to single 
out the optimal subset from ta  activities seeking for resources by solv-
ing the appropriate optimization problem. The zero-one integer pro-
gramming problem is as follows: determine integer values λξ , ta≤≤ λ1 , 
to maximize the objective 

 
{ }

( ) ( )[ ]








⋅⋅∑
=

ta

jipji
1

,,max
λ

λλλξ
ξµ

λ

 (6.2.9) 

 subject to 
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t

a

n
t

≤∑
=1λ

λξ , (6.2.10) 

 where ( )




=
.0

;,1
otherwise

resourceswithprovidedisjiactivityif λ
λξ  

 After solving problem (6.2.9-6.2.10), i.e., carrying out the competition, 
Substep 1.5 of Subalgorithm I is applied. Thus, the simulation proceeds 
until the project’s completion at moment 

{ } ijji
FF

,
max= . After determining 

value F  in the course of a simulation run, Subalgorithm IV calculates 
values ( )[ ]g

f
gp tVktW ,,  for each k , mk ≤≤1 , separately. Determining pW  

is carried out by implementing numerous simulation runs to obtain rep-
resentative statistics. 
Note that in the course of one simulation run Subalgorithms I-III are 
applied with the project converging to the target at constant speed ( )kυ  
which has been introduced at control point gtt =  and is used throughout, 
i.e., until D , without any additional control points. Thus, Step 1 results 
in determining predictive values. Simulation of activity durations at that 
step is carried out not to simulate actual activity realizations, but to fa-
cilitate forecasting in order to calculate the p -quantiles for each speed 

( )kυ . 
 

Step 2. Determine ( )[ ]






 ≤=

≤≤

∗ DtVktWks g
f

gp
mkg ,,:min

1
. If ∗

gs  cannot be determined 

problem (6.2.1-6.2.8) has no solution. Otherwise apply the next step. 
Step 3. Consider the list of possible couples ( ) ( )( )21 , kk υυ  in accordance with 

restrictions  
 ∗≤ gsk1 , (6.2.11) 
 ∗≥ gsk2  if ∗< gsk1 , (6.2.12) 
 ∗≤ gsk2  if ∗= gsk1 . (6.2.13) 
 Restriction (6.2.11) is imbedded in the algorithm to satisfy (6.2.8). Re-

striction (6.2.12) is true since ∗< gsk1  and ∗< gsk2  contradict chance con-
straint (6.2.3). Case ∗= gsk1 , ∗> gsk2  is a pointless one since for both 
cases ( )11 ,kk  and ( )121 , kkk >  chance constraint (6.2.3) will be met, but 
the second case proves to be a costlier one. 
Check each possible couple by applying the below Steps 4-13. 

Step 4. Determine equation of straight line BG (see Fig. 6.2) as follows 
 ( ) ( )

( )[ ]
( )
( )[ ] gg

f
gp

g
f

gg
f

gp

g
f

ttVktW

tVV
DVt

ttVktW

tVV
tV

−

−
⋅−+⋅

−

−
=

,,,, 22

. (6.2.14) 

Step 5. This step determines the next control point 1+gt  by implementing a 
predictive model. All activities ( )ji,  starting after gt , obtain a 
deterministic duration ( ) ( )11

k
ij

k
ij tt = , gij tS ≥ . Subalgorithm V which 
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duration ( ) ( )11
k

ij
k

ij tt = , gij tS ≥ . Subalgorithm V which determines routine 
decision nodes t  when at last one activity ( )λji, , ta≤≤ λ1 , has to be pro-
vided with resources, is imbedded in the model. All those activities 
( )λji,  have to be determined. Note that calculating moments t  is in this 
case a deterministic technique. 

Step 6. Quasi-optimal resource reallocation among activities ( )λji, , ta≤≤ λ1 , 
which at a routine decision node t  are ready to be operated and seeking 
for resources, is carried out. A simplified reallocation model is sug-
gested: 

 6.1 After determining activities ( )λji, , ta≤≤ λ1 , all the competitive 
activities are sorted in descending order of their average durations 
( ) ( )1,

k
ijtjit =λ . 

 6.2 All the sorted activities are examined one after another, in the de-
scending order of their average values, to check the possibility that 
the activity can be provided with remaining available resources. If 
for a certain activity ( )λji,  relation 1≥tn  holds, the GRU is passed 
to the activity. 

 6.3 The free, available GRU are updated, tt nn ⇒−1 . 
 6.4 The next activity ( ) 1, +λji  is examined. Subalgorithm V terminates 

either when all the free available GRU are reallocated, i.e., tn  be-
comes zero, or all the ta  activities have been examined. 

Step 7. Set to each one of the chosen at Step 6 activities ( )λji,  the starting time 

( ) tS ji =
λ,  and introduce its corresponding time duration ( )

( )
( )
( )11 ,,
k

ji
k

ji tt λλ
= . All 

other activities ( )λji,  which have not been supplied with resources pro-
ceed waiting in the line until the next routine decision node tt >∗ . 

 
Step 8. 

At node ∗t  the activities which proceed seeking for resources in the line 
obtain additional average time duration amounted as tt −∗ . Afterwards 
Step 6 is re-applied. Note that additional average time duration is used 
at Substep 6.2 for competition purposes only. At Step 7 regular average 
duration values ( )

( )
( )
( )11 ,,
k

ji
k

ji tt λλ
=  are introduced. 

Step 9. Steps 5-8 are undertaken until a decision node t  coincides with line 
(6.2.14) with a pregiven accuracy 0>ε . Value t  is taken as the next 
control point 1+gt . As outlined above, determining value 1+gt  is carried 
out by using deterministic techniques and, thus, no simulation runs are 
necessary to calculate 1+gt . Note that Steps 5-9 are predictive ones and 
are implemented to determine the next control point 1+gt . These steps 
are not intended to simulate actual activity realizations. 

Step 10. For each combination of couples ( )21,kk  check if 21 ∆≥−+ gg tt  holds. If 
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not, calculate 21 ∆+=+ gg tt . 
Step 11. For each combination of couples ( )21,kk  check if Dt g >+1  or 11 ∆<− +gtD . 

If one of those relations hold, set Dt g =+1 . 
Step 12. This step is somewhat similar to Step 1. The purpose of the step is to 

carry out for each couple ( ) ( )( )21 , kk υυ  under consideration numerous simu-

lation runs within the remaining planning horizon 



 Dtg ,  with an addi-

tional control point 1+gt  in order to: 
 • simulate the outcome product ( )DV f  and calculate statistical frequen-

cies 
M

M D , where M  is the entire number of simulation runs in order to 

obtain representative statistics, while DM  stands for the number of 
simulation runs satisfying ( ) VDV f ≥ ; 

• simulate the average total operating and control costs within the in-
terval 



 Dtg , . 

 Thus, Step 12 carries out predictive evaluations in order to choose the 
optimal couple ( )21,kk . The main difference between Steps 1 and 12 cen-
ters on the following: 

 a. Subalgorithms I, II and III of Step 1 are implemented for a constant 
speed ( )1kυ  within the entire period 



 Dtg ,  while at Step 12 for all ac-

tivities ( )ji,  starting after 1+gt , i.e., satisfying 1+≥ gij tS , speed ( )2kυ  is 
introduced. 

b. Subalgorithm IV of Step 1 calculates values ( )[ ]g
f

gp tVktW ,, 1  for a 

constant speed used throughout the period 



 Dtg ,  while Subalgo-

rithm IV of Step 12 calculates, in essence, p -quantiles 

( )[ ]g
f

ggp tVktktW ,,,, 211 + . 
c. In the course of carrying out M  simulation runs Step 12 calculates 

the average forecasted processing and control costs within the period 





 Dtg , , i.e., determines the average value [ ]DtC g ,  where 

       [ ] ( ) ( )[ ]
( )

( ) ( )[ ]
( )

ins
ji

k
ij

k
ij

ji

k
ij

k
ijg ctctcDtC ⋅+⋅+⋅= ∑∑

∗∗∗

2,
,,

2211 , if 21 kk ≠ , and (6.2.15) 
       [ ] ( ) ( )[ ]

( )
ins

ji

k
ij

k
ijg ctcDtC +⋅= ∑

∗∗,

11, , if 21 kk = . (6.2.16) 
 Here ( )∗ji,  denotes activities satisfying 1+<≤ gijg tSt , while ( ) ∗∗ji,  

stands for activities with 1+≥ gij tS . Note that in case 21 kk ≠  there are 
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two remaining inspections (at points 1+gt  and D ), while for 21 kk =  
there is only one inspection left (at point D ). 

Step 13 singles out from all couples with indices ( )21,kk  under consideration fea-

sible couples ( )21,kk  satisfying p
M

M D ≥  (see Step 12), to honor restric-

tion (6.2.3). 
Step 14 determines from all feasible couples which have been singled out at 

Step 13, the optimal couple ( )∗∗
21 ,kk  which results in the minimal value 

[ ]DtC g , . 
 

Step 15. Introduce speed ( )∗
1kυ  at point gt  and start carrying out the project with 

that speed. Thus, Step 15 is the first step comprised into the algorithm 
which actually operates activities ( )ji,  starting from gt , with new speeds 

( )∗
1k

ijυ . Activity durations ( )∗
1k

ijt  are performed either in real time, or they 
may be based on simulation modeling. Similar to Steps 1 and 12, Step 
15 implements Subalgorithms I, II and III in order to reallocate free 
available resources among activities which at decision nodes are ready 
to start being processed. 

Step 16. When the progress of the project meets control point 1+gt , the project 
has to be inspected at that point, including the output product ( )1+g

f tV  
and the costs ( )1, +gg ttC . Thus, the accumulated value ( )1+g

f tC  is deter-
mined by 

 ( ) ( ) ( )11 , ++ += ggg
f

g
f ttCtCtC . (6.2.17) 

Step 17. If Dt g =+1 , the project is inspected at the due date and the control algo-
rithm terminates. In case Dt g <+1 , the input information is updated and 
Step 1 is re-applied. Thus, at the next control point 1+gt  the heuristic on-
line control algorithm has to be implemented anew. 

 
§6.3  Case of several projects 
6.3.1  Introduction 
The system under consideration [84] comprises several simultaneously real-

ized activity-on-arc network projects of PERT type with random activity dura-
tions. The accomplishment of each project’s activity is measured in percentage 
of the whole project. All the activities are to be operated by one of the identical 
GRU which may use several possible speeds subject to random disturbances. 

Similar to §6.2, it is assumed that the progress of any project can be evalu-
ated only via periodical inspection in control points. At any moment 0>t  activi-
ties that start to operate at that moment for one and the same project, have to use 
speeds with similar indices (ordinal numbers). Speeds can be changed only at a 
control point. Within the projects’ realization a GRU can be transferred from 
one project to another only at an emergency moment common to all projects. 
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The projects’ due dates and their chance constraints, i.e., their minimal per-
missible probabilities of accomplishing the project on time, are pregiven. All 
GRU have to be delivered to the company store at the projects’ starting time and 
are released when the last project is accomplished. The cost of hiring and main-
taining a GRU, together with the average processing costs per time unit for op-
erating each activity under each speed, the average cost of performing a single 
inspection at a control point (common to all projects) and the average cost of re-
allocating GRU among non-finished projects at each emergency moment, are 
pregiven. 

In §6.2 we have outlined a cost-simulation problem for a single project as 
follows: given the fixed number of GRU, at each routine control point it  deter-
mine the next control point 1+it  and the new index of the speeds for all the activi-
ties to be operated at that point. The objective is to minimize the project’s total 
expenses. This basic problem (we will henceforth call it Problem A1) will be 
used in order to develop a much more complicated realistic cost-optimization 
model as follows: determine the optimal number of GRU to minimize the total 
value of all projects’ expenses subject to their chance constraints. 

The problem’s solution is as follows: 
• at the company level a combination of a search procedure to determine the 

number of GRU together with a resource reallocation model among the 
projects is considered, 

• at the project level a basic cost-optimization on-line control Model A1 is 
applied for each project independently. 

Both resource reallocation model and Model A1 are implemented into a 
simulation model in order to obtain representative statistics to check the fitness 
of the problem’s solution. 

It is assumed that all non-accomplished projects have to be carried out at any 
moment 0>t  with a speed exceeding zero. Thus, at least one GRU unit has to be 
assigned to each project. At any moment each GRU can operate only one activ-
ity. 

 
6.3.2  Notation 
Let us introduce the following terms: 
( )A,NGe  - the e -th network project of PERT type, fe ≤≤1 ; 

f  - number of network projects; 
tf  - number of network projects which at moment t  are not completed, 

0t ≥ ; 
( ) ( )ANji e ,G, e∈ - activity ( )j,i  entering the e -th project; 

etG  - project ( )A,NGe  observed at moment 0t ≥ ; ( )AN,GG ee0 = ; 
( )k
ijev  - the k -th speed to process activity ( )ji, , mk ≤≤1 ; 

m - number of possible speeds common to all activities (pregiven); 
etn  - number of identical generalized resource units GRU assigned to 
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project ( )A,NGe  at emergency moment 0t ≥ ;  e0e nn = ; 
n  - total number of GRU to be hired and maintained throughout the 

planning horizon by the company (optimized variable, to be deter-
mined beforehand); 

ijeρ  - percentage of activity ( )eji,  in project ( )A,NGe  (pregiven), fe1 ≤≤ ; 
eD  - due date of project ( )A,NGe  (pregiven); 

ep  - chance constraint to meet the deadline eD  on time (pregiven); 
( )tV f

e  - actual project’s etG  output in percentages of the total project (ob-
served at moment t , 0t ≥ ); 

( )tC f
e  - the actual accumulated processing and control costs of project etG   

calculated at moment t , 0t ≥ ; 
( )[ ]tVk,t,W f

ep  - the p -quantile of the moment project ( )A,NGe  will be accom-
plished on condition that the k -th speed for all activities will be in-
troduced at control point t  and will be used throughout, and the ac-
tual observed output at that moment is ( )tV f

e ; 
get  - the g -th control point of the e -th project, eN,...,1,0g = , 0t0e = , 

eeN Dt
e

= ; 
∗
rt  - the system’s emergency moment, 0t0 =∗ , ∗= N,...,1,0r ; 

eN  - number of control points of the e -th project (a random value); 
∗N  - number of emergency moments (a random value); 
e1∆  - the minimal value of the closeness of the inspection moment to the 

due date eD  (pregiven); 
e2∆  - the minimal time span between two adjacent control points of the e -

th project (pregiven); 
( )k
ijet  - random duration of activity ( )eji,  using speed ( )k

ijev  throughout; 
( )k
ijec  - the average processing cost per time unit for activity ( )eji,  to be op-

erated with speed ( )k
ijev  (pregiven); 

insc  - the average cost of undertaking a routine project’s inspection (com-
mon to all projects, pregiven); 

∗c  - the average cost of the GRU reallocation among the projects at a 
routine moment ∗

rt ; 
eV  - the planned volume of project ( )ANGe ,  (pregiven); 
etV  - the actual non-accomplished volume of project ( )A,NGe  at moment 

t  (a random value); 
ijeS  - the actual moment activity ( )eji,  starts (a random value); 
ijeF  - the actual moment activity ( )eji,  is completed (a random value); 

( )k
ijeijeije tSF += ; 

GRUc  - the average cost of hiring and maintaining a GRU unit per time unit 
(pregiven); 
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eF  - the actual moment project ( )A,NGe  is completed (a random value); 

{ } ijeG)j,i(e FMaxF
ete∈

= ; 

ges  - the index of the speed to be introduced for all activities ( )eji,  starting 

in the interval 





+ egge tt ,1, , ms1 ge ≤≤ . 

It can be well-recognized that two kinds of control points are imbedded in the 
model: 

1. Regular  control (inspection) points get  to introduce proper speeds in order 
to alter the project’s speed in the desired direction. 

2. Emergency control points ∗
rt  to reallocate all GRU at the company level 

among the non-accomplished network projects, beginning from 0=t . 
Emergency moments ∗

rt   are as follows: 
• 0t = ; 
• t  is the moment of one of the project’s completion; 
• t  is the control moment for one of the projects when it is anticipated 

that with the previously assigned for that project GRU units the project 
cannot meet its deadline on time. 

 
6.3.3  The problem’s formulation 
The cost-optimization on-line control problem for several stochastic network 

projects is as follows: determine the optimal value )(optn  of GRU units (a deter-
ministic value to be determined beforehand, i.e., before the projects start to be 
realized) together with values etn  assigned to all projects, all control points get , 
the speeds to be introduced at that points for all projects’ activities ( )ek

ijev , gee sk = , 
and the actual moments ijeS  activities ( )eji,  start (random values conditioned on 
decision-making of the control model), in order to minimize all operational, con-
trol, resource reallocation, hiring and maintenance expenses subject to the pro-
jects’ chance constraints 

( ){ }
( ) ( )( ) ( )

( ) 











⋅+⋅⋅+⋅+⋅= ∗∗

= ∈ =
∑ ∑ ∑ cNFMaxcncNtcEMinJ eecru

f

1e Gji,

f

1e
inse

k
ije

k
ije

v,s,S,t,n,n
ete

ee

k
ijegeijegeet

(6.3.1)

subject to 
( ) fe1 N,g0,tS:ji,sk egijeegee ≤≤<≤=∀= , (6.3.2)

{ } fe1,pDFPr eee ≤≤≥≤ , (6.3.3)
0t0e = , fe1 ≤≤ , (6.3.4)

eN Dt
e

= , fe1 ≤≤ , (6.3.5)
1egee ΔtD ≥− ,  eNg0 ≤≤ , fe1 ≤≤ , (6.3.6)

2egee 1,g Δtt ≥−+ ,  eNg0 ≤≤ , fe1 ≤≤ , (6.3.7)
( )[ ]{ }ge

f
egepmq1gege tVq,,tW:qMinss

≤≤

∗ =≤ , (6.3.8)

∑
=

=
tf

1e
et nn  for any emergency moment 0t ≥ , 1net ≥ . (6.3.9)
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Note that the on-line control model undertakes decision-making either at 
regular routine control point get  (determining ijeS , ( )k

ijev , gesk = ),  or at emergency 
points ∗

rt   (determining etn , ∗= rtt ), on the basis of future expenses only, i.e., dur-
ing the remaining time gee tD −  (for a single project), or by taking into account 
values eD  and ep , fe1 ≤≤ .  Past expenses and past decision-makings, are not 
relevant for the on-line control model. Relation (6.3.3) honors the chance con-
straints. As to (6.3.8), it refers to the on-line cost-optimization algorithm for a 
single project (see §6.2).  Restriction (6.3.8) means that the speed to be chosen 
at any routine control point get  must not exceed the minimal speed ∗

ges  that en-
ables meeting deadline eD  on time, subject to be chance constraint ep . It can be 
well- recognized that operating an activity at a higher speed always results in 
higher costs to accomplish the activity than by using a lower speed. Thus, 
(6.3.8) prohibits using unnecessary high speeds. Relation (6.3.9) ensures reallo-
cation of n  GRU units at the company’s disposal among the non-accomplished 
projects at any emergency moment 0t ≥ . Relations (6.3.4-6.3.7) are obvious 
while (6.3.2) ensures assignment of one and the same speed index ek  to all ac-
tivities which start processing at a routine control point get . Note that an activity 
cannot start at the moment between two adjacent control points get  and e1,gt + . 

 
6.3.4  Subsidiary models 
Consider several important subsidiary models which will be used henceforth. 
I.  Subsidiary Model A1 
The basic subsidiary Model A1 centers on controlling a single project, with-

out taking into account any resource hiring and maintaining costs. The number 
of GRU is taken as a fixed and pregiven value. Model A1 is an on-line cost-
optimization model and is based on the chance constraint principle. The model 
and its optimization are outlined in §6.2. 

II.  Subsidiary Model A2 
The model differs from Model A1 by implementing the cost of hiring and 

maintaining GRU resources within the planning horizon. Thus, objective (6.2.1) 
is substituted by 
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subject to (6.2.2-6.2.8), 
while the on-line heuristic algorithm remains unchanged. 
III.  Subsidiary Model A3 
Determine the minimal number of GRU )(optn  for a single project in order to 

meet the given chance constraint, i.e., 
nMin  (6.3.11)

subject to (6.2.2-6.2.8). 
The Solution 
Start ascending value n , beginning from 1. For each n  solve Problem A1 tak-

ing into account for each activity ( )ji,  its highest speed )(m
ijv , i.e., ijt  refers to one 
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speed only. Value n , for which relation 

( )
pDFMaxPr ijj,i

<








≤ , (6.3.12)

ceases to hold, is taken as the solution. Cost parameters are, thus, not taken into 
account. Denote the optimal number )(optn  by ( )3An . 

IV.  Subsidiary Model A4 
Determine the minimal number of GRU units in order to minimize the objec-

tive (6.3.10) for the Model A2 subject to the chance constraint. Thus, two objec-
tives are imbedded in the model 

nMin , (6.3.13)
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subject to (6.2.2-6.2.8). 
The Solution 
Solve Problem A3 in order to determine value ( )3An . Afterwards proceed as-

cending value n , beginning from ( )3An , and for each value ( )3Ann ≥  solve Prob-
lem A2. Value ( )4An  which delivers the minimum to (6.3.14) is taken as the so-
lution of Problem A4. 

 
6.3.5  The general idea of the problem’s solution 
Problem (6.3.1-6.3.9) to be considered is a very complicated problem and al-

lows a heuristic solution only. Denote the optimal solution of problem (6.3.1-
6.3.9) by ( )An . A basic assertion can be formulated as follows: 
Assertion. Let ( )4Ane  be the solution of problem A4 for each project ( )A,NGe , 

fe1 ≤≤ , independently. Relation 

( ) ( ) max

f

1e
e n4AnAn =≤ ∑

=

 (6.3.15)

holds. 

Proof. Any additional GRU unit which results in exceeding value ( )∑
=

f

1e
e 4An , has 

to be assigned to one of the projects ( )A,NGe . For that project, as it turns from 
Model A4, the unit becomes redundant.                                                                ■ 

Thus, the general idea of determining ( )An  is based on the following con-
cepts: 
Concept 1 

At the company level the search for an optimal solution is based on examin-
ing all feasible solutions { }n , by decreasing n  by one, at each search step, begin-
ning from maxn . 
Concept 2 

Examining a feasible solution centers on simulating the system. Multiple 
simulation runs have to be undertaken in order to obtain a representative statis-
tics to check the fitness of the model. 
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Concept 3 
A simulation model comprises two-levels. At the higher level – the company 

level – Subalgorithm I reallocates n  GRU units among tf  non-completed pro-
jects at all emergency moments t , beginning from 0=t . At the lower level (the 
project level) Subalgorithm II undertakes on-line control for each project inde-
pendently between two adjacent emergency points ∗

rt  and ∗
+1rt , by the use of a 

single-project algorithm of problem A2. 
Concept 4 

Each value n  is examined via M  simulation runs to provide a representative 
statistics to calculate values { }ee DF ≤Pr , fe ≤≤1 , and objective (6.3.14). 
Concept 5 

The search process proceeds by decreasing n  by one, i.e., substituting n  by 
1−n ,  if 
• all relations { } eee pDF ≥≤Pr , fe ≤≤1 , hold; 
• value (6.3.14) decreases monotonously. 

Concept 6 
If even for one project ( )A,NGe  relation { } eee pDF ≥≤Pr  ceases to hold, or 

value (6.3.14) ceases to decrease, the last successful feasible solution n  has to be 
taken as an optimal solution ( )An . 

 
6.3.6  The enlarged procedure of resource reallocation (Subalgorithm I) 
At each emergency point 0≥t  (each emergency point is a control point for 

all projects as well) reassign n  GRU unit among tf  non-accomplished projects 
as follows: 
Step 1. At moment t  inspect values etV , fe1 ≤≤ . Note that for already accom-

plished projects their corresponding values 0Vet = . 
Step 2. By any means reassign n  GRU units among tf  projects subject to: 

• nn
e

et =∑  ; 

• etn   must be whole numbers; 
• etn   must be not less than 1; 

• relations 















⋅≥
∑

e
et

et
et V

Vnn , 0Vet > , fe1 ≤≤ , hold, where [ ]x  denotes 

the maximum whole number being less than x . 
Thus, Step 2 delivers a non-optimal, feasible solution. 

Step 3. Take value 1710Z = , i.e., an extremely large positive value. 
Step 4. For all non-accomplished projects etG  solve Problem A2, independ-

ently for each project, with due dates tDe − , chance constraints ep , re-
source units en  and non-accomplished volumes etV . Denote the actual 
probability of meeting the due date on time by ep . Values ep , fe1 ≤≤ , 
are obtained via M simulation runs. 
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Step 5. Calculate values 
e

ee
e p

pp −
=γ  , fe1 ≤≤ . 

Step 6. Calculate values ee
Max

1
γγ ξ = ,  ee

Min
2

γγ ξ = . 
Step 7. Calculate 

21 ξξ γγ∆ −= . 
Step 8. If Z<∆ , go to the next step. Otherwise apply Step 12. 
Step 9. Set ∆=Z . 

Step 10. Transfer one GRU unit from project tG
1ξ  to tG

2ξ , i.e., tn
1ξ  is diminished 

by one, and tn
2ξ  is increased by one. 

Step 11 is similar to Step 4, with the exception of solving Problem A2 for pro-
jects tG

1ξ  and tG
2ξ  only. Return to Step 5. 

Step 12. Values etn , fe ≤≤1 , which refer to the last successful iteration, are 
taken as the optimal solution of Subalgorithm I. 

 
6.3.7  The enlarged two-level heuristic algorithm of simulating the system 
The enlarged step-by-step procedure of the problem’s algorithm is based on 

simulating the system. The input of the simulation model is as follows: 
• value fn ≥  of GRU units (to be examined by simulation); 
• pregiven values eD , ep , fe ≤≤1 ; 
• speeds’ parameters  )(k

ijev , ( ) ( )ANGji ee ,, ∈ , mk ≤≤1 ; 
• cost parameters )(k

ijec , insc , GRUc , ∗c ; 
• target parameters eV , fe ≤≤1 . 
A simulation run comprises the following steps: 

Step 1. Set 1r = , 0tr =∗ . 
Step 2. Reallocate at ∗= rtt  n  GRU units among projects ( )A,NGe , fe1 ≤≤ , 

according to Subalgorithm I. 
Step 3. Reassign values etn  obtained at Step 2, to projects ( )A,NGe . 
Step 4. Each project ( )A,NGe  is carried out independently according to the 

Problem A2 (see 6.3.4). In the course of realizing each project any 
routine control point get  is examined as follows: 
• is moment get  the moment project ( )A,NGe  is completed? If yes, 

go to Step 9. Otherwise proceed examining inspection point get . 
• is moment get  the moment when it is anticipated that project 

( )A,NGe  cannot meet its deadline on time even by introducing the 
highest speed with index m? If yes, go to the next step. Other-
wise proceed realizing the project until the next routine control 
point 1e,gt + . 

Step 5. Counter r1r ⇒+  works. 
Step 6. Set ger tt =∗ . 
Step 7. Inspect all non-finished projects ( )A,NGe  at the routine emergency 
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point ∗
rt . Calculate values ( )tV f

e , fe1 ≤≤ , ∗= rtt . 
Step 8. Update all remaining targets ( ) e

f
ee VtVV ⇒− , fe1 ≤≤ . Return to Step 2 

to undertake resource reallocation among non-accomplished projects. 
Step 9. Are there at moment gett =  other, non-accomplished projects? If yes, 

go to Step 5. Otherwise apply the next step. 
Step 10. The simulation run terminates. 

In the course of carrying out Steps 2 and 4 the cost-accumulated value J  of 
objective (6.3.1) has to be calculated. 

The problem’s solution is, thus, based on implementing procedures described 
in  6.3.5-6.3.7. 

 
§6.4  Conclusions 
The following conclusions can be drawn from the Chapter: 

1. The developed cost-optimization simulation algorithms for solving prob-
lems (6.1.1-6.1.8), (6.2.1-6.2.8) and (6.3.1-6.3.9) can be applied to a wide 
range of both production and project management systems. The outlined 
models enable managing complicated building and construction systems, 
various R&D systems with different speeds and inspection points, etc. 

2. The developed on-line control model is a generalized model: it satisfies a 
variety of chance constraints and develops cost-minimization for a broad 
spectrum of expenses in the course of the system’s functioning. 

3. The structure of the multilevel algorithm for solving project management 
problems is as follows: at the system’s level (the higher level) a search of 
the optimal number of GRU units is undertaken. At the project’s level a ba-
sic cost-optimization model for a single project is implemented in the 
simulation model. 

4. The main connection between those two levels is carried out via a devel-
oped resource reallocation subalgorithm. The latter is carried out by under-
taking probability control to be as close as possible to the projects’ chance 
constraints. 

5. Extensive simulation described in [54,73-74,151] for real industrial plants 
has proved the fitness of the on-line cost-optimization models outlined in 
the Chapter. 

6. The on-line control algorithms perform well and are mostly effective for 
projects of medium size. In cases of large projects, we suggest aggregating 
the initial model in order to transfer the latter to an equivalent one, but of 
medium- or small-size. After observing the project’s output at a routine 
control point and introducing proper control actions, i.e., determining a 
new processing speed and the next control point, the aggregated network is 
transformed back to the initial one, and the project’s realization proceeds. 
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PART  III  
 ALTERNATIVE STOCHASTIC NETWORK MODELS 

 

Chapter 7.  The Models’ Description and Structure 
 

§7.1  Introduction 
As outlined above, alternative stochastic network models are characterized 

by two main features: 
a) very high level of indeterminacy; 
b) various types of branching nodes in key events. 
Examine both properties in greater detail. In case of an innovative “brain-

storming” the researchers examine the results which, at the outset, are basically 
indeterminate, and very often it is impossible to determine the ultimate project’s 
goal. For such kind of an R&D project the control system should be inherently 
adaptable and flexible, seeking step-by-step the best route to meet the target. In 
cases of such an R&D it is impossible either to determine the initial network 
leading to the goal, or even to initiate the structure of such a network. At the ini-
tial stage of the project’s realization, the network may be restricted to a source 
node and several alternative terminal (sink) nodes. In certain cases the network 
may contain several milestones (a decision-tree model) which are usually linked 
to extensive experimentation with alternative and unpredictable results. Such a 
stochastic alternative network is renewed permanently over time, including 
changes of the ultimate goals [54]. At each decision node, in the course of carry-
ing out the project, the project’s manager has to choose the optimal outcome. 
Decision-making is repeatedly introduced at every sequentially reached decision 
node. 

Note that an R&D innovative project as mentioned above usually possesses 
both features a)-b) altogether. However, in certain cases the project’s goals are 
ultimated beforehand, but carrying out the project meets in the course of its pro-
gress a variety of milestones boiling down to undertaking complicated geologi-
cal surveys, pioneering high-tech experiments with alternative unpredictable 
outcomes, etc. Those projects, being innovative as well, refer usually to long-
term construction projects, e.g., constructing a major Arctic pipeline [26,54], 
etc. Such projects are characterized with various types of branching nodes in key 
events. 

Thus, it can be well-recognized that nowadays alternative stochastic network 
models occupy the main seat in R&D innovative projecting where indetermi-
nacy and alternativity often meet. In our opinion, such models should become 
must items in the methodological portfolio of any modern high-tech company. 

Note that while the literature on PERT and CPM network techniques is quite 
vast, the number of publications on alternative networks remains very scanty. 
The first significant development in that area was the pioneering work of Eisner 
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[37] in which a “decision box” with both random and alternative outcomes and 
PERT nodes was introduced. An example of such a network is represented on 
Fig. 7.1. Numbers above and below the arcs denote the corresponding time and 
probability, respectively. Eisner used the term decision box ( DB ) to refer to 
nodes that lead to alternatives (corresponding to the term probabilistic branch-
ing used in scientific literature). The realization of terminal events A  and B  de-
pends not only on the outcome of 3DB  but also on the outcome of 2DB . This il-
lustrates Eisner’s concept of conjunctive path dependency, which arises when 
the planned work on one path depends on the answer to a particular DB  on a dif-
ferent path. It led him to the duplication of Node 2  and the introduction of 
dummy Node 12 , with the understanding that the two nodes represent, in fact, a 
single one. Thus, event A  will be realized if the outcome at 3DB  is NO and the 
outcome at 2DB  is also NO, while event B  will be realized if the outcome at 

3DB  is NO and the outcome at 2DB  is YES. 
The logical relationships governing the outcomes were given by Eisner [37] 

as follows: 
( )[ ] ( ){ } ( ){ }FHGEYXBAoutcomes ∪∪∪∪∩∪∪= , 

where ( ) ( )DCYX ∪∩ = . 
Here, “ ∪ “ represents the disjunction operation and “ ∩ “ stands for the con-

junction operation. Note a special logical relationship between branches X  and 
Y  and 4DB ; Node 4  will be realized if both activities are realized. This is 
equivalent to AND relationship in Eisner’s terminology. 

Given the above structure, it is easy to calculate the possible final outcomes: 
A  and E  ( )0840.0  
B  and BY →  ( )1260.0 ; since 4  cannot be realized 
C  ( )0882.0  
D  ( )2058.0  
E  and EX →  ( )1960.0 ; since 4  cannot be realized 
F  ( )1500.0  
G  ( )0600.0  
H  ( )0900.0  

The compound outcomes may be explained as follows. The outcome “ A  and 
E “ occurs if 3DB  yields NO and 2DB  yields NO also; the outcome “ B  and 

BY → “ occurs if 3DB  yields NO and 2DB  yields YES, in which case activity X  
will not be realized and, consequently, node 4  cannot be reached; finally, the 
outcome “ E  and EX → “ occurs if 3DB  yields YES and 2DB  yields NO, in 
which case activity Y  will not be realized and, consequently, node 4  cannot be 
reached. 

However, Eisner did not develop algorithms to implement decision-making 
in R&D projects comprising decision nodes. Elmaghraby [38] introduced addi-
tional logic and algebra in network techniques. His representation of the same 
logic is different, as demonstrated in Fig. 7.2. It differs from Eisner’s representa-
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tion in two major aspects.  First, Elmaghraby managed to avoid duplication of 
DB s by adding dummy nodes and arcs, which can always be done to represent 
any desired relationship among the outcomes of DB s. Second, the implied logi-
cal relationships are brought into sharper focus. 

Figure 7.1.  An example of Eisner’s network with a priori probabilities 
 

Pritsker, Happ and Whitehouse [131-133] developed the GERT techniques 
for alternative network models with stochastic outcomes in key nodes. When all 
the nodes of an alternative network are of the “exclusive-or” type on their re-
ceiving side, we obtain a GERT (Graphical Evaluation and Review Technique) 
model. Other nodes can be reduced to “exclusive-or” nodes; thus, the GERT 
model is quite general. 

The GERT network is in fact the representation of a semi-Markov process 
(SMP). The network itself, after a simple transformation of variables, is a signal 
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flow graph (SFG). Both objects (SMPs and SFGs) have rich mathematical struc-
tures. 

Xespos and Strassman [166] introduced the concept of a stochastic decision 
tree, while Crowston and Thompson [28-30] and more recently Hastings and 
Mello [99] introduced the concept of multiple choices at alternative nodes, when 
decision-making is of deterministic nature (Decision-CPM models). These net-
works are characterized by discrete multiple choices at some of their nodes. 
They may represent either a choice among activities to be undertaken next or a 
choice among sets of resources to be utilized by the activity itself. In the former 
case, one or more of the prospective activities must be undertaken. Those activi-
ties which were not selected should “disappear” from the network in the sense 
that all their precedence relations must be eliminated. In the latter case it is evi-
dent that allocation planning of resources is intimately related to the scheduling 
of activities, since the very duration of these activities is dependent on the re-
sources allocated to them. 

 
Figure 7.2.  Elmaghraby’s network for Eisner’s project 

 

Lee, Moeller and Digman [111,123] developed the VERT model that enables 
the analyst to simulate various decisions with alternative technology choices 
within the stochastic decision tree network. In the VERT model, two basic sym-
bols are used to represent the structure of the network model: 
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a) nodes represent milestones or direction points, and 
b) arcs represent activities which are basically characterized by three parame-

ters, namely: 
1) time, 
2) cost, and 
3) performance factor of executing this activity. 

In the VERT model, the network is nothing but a schematic flow device in 
which the nodes (decision points) channel or gate the flow into arcs (activities) 
which carry the flow from an input node to an output node. The flow throughout 
the network represents an actual execution of these activities and milestones 
which the flow has traversed. 

VERT has two types of nodes, which either start, stop or channel the network 
flow. The most commonly used type is called the split logic node. It has separate 
input and output logics describing specific types of input and output operations. 
The second, more specialized and less frequently used type of nodes, has a sin-
gle-unit logic which covers both input and output operations, simultaneously. 
There are four basic input logics available for the split-logic nodes: 

1) INITIAL; 
2) AND; 
3) PARTIAL AND; and 
4) OR. 
They are described as follows [111]: 
1. INITIAL input logic serves as a starting point for the network flow. Multi-

ple initial nodes may be used. All initial nodes are assigned with the same 
time, cost and performance values by the user. 

2. AND input logic requires all the input arcs to be successfully completed. 
3. PARTIAL AND input logic is nearly the same as AND input logic except 

that it requires a minimum of one input arc to be successfully completed. 
4. OR input logic is similar to the PARTIAL AND logic. It also requires just 

a minimum of one input arc to be successfully completed. The logic, 
however, will not wait for all the input arcs to come in. 

There are six basic split-node output logics available to distribute the net-
work flow to the appropriate output arc. The cumulative time, cost and perform-
ance values computed for the active output arcs consist of the sum of the time, 
cost and performance factors carried by the input node of the arc.  

Moeller and Digman applied the VERT model to an operational planning 
problem - the evaluation of electric power generation methods [123]. Three al-
ternative methods have been considered: nuclear fusion, nuclear fission and coal 
gasification. The overall time required and the cost incurred for completing the 
entire project are the objective function and the constraint, respectively. Also, 
various confidence probability levels were incorporated into the regarded re-
search. Based on examining optimal values of the objective function with re-
spect to the confidence probabilities for the compared technologies to success-
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fully put through certain tests, the USA Federal Power Commission selected the 
winning technology (the fusion process) over the alternatives. The VERT model 
has also been successfully applied to weapon system developments, including 
tanks, helicopters, fighter planes, artillery, self-propelled howitzers, electronic 
sensors, air defense systems, and others [123]. 

Thus, it can be well-recognized that the VERT model has excellent software 
and a good application area. However, similar to the GERT model, on-line deci-
sion-making, as well as introducing control actions in decision-nodes, does not 
take place. 

The next step has been made by Golenko-Ginzburg [49-57] who developed 
the novel controlled alternative activity network (CAAN model) for projects 
with both random and deterministic alternative outcomes at key nodes. At each 
routine decision-making node, the developed algorithm, based on lexicographic 
scanning, singles out all the sub-networks (the so-called joint variants) that cor-
respond to all possible outcomes from that node. The joint variants of the CAAN 
model are enumerated by introducing a lexicographic order to the set of maxi-
mal paths in the CAAN graph. The corresponding lookover algorithm is very 
simple in usage. Decision-making results in determining the optimal joint vari-
ant and following the optimal direction up to the next decision-making node. 

 
§7.2  Alternative stochastic model’s description 
The alternative CAAN network model [49,51,54] is a finite connected, ori-

ented acyclic graph ( )YUG ,  with the following properties: 
(1) Graph G  has one initial event, 0y  (the network entry), for which Ο/=−

0
1 уГ  

and  Ο/≠0Гу . 
(2) Graph G  contains a set Y ‘ of events y ‘ (called terminal events, or network 

exits), where Ο/=′уГ ,  Ο/≠′− уГ 1   and 2' ≥Y . 
(3) The set of events Y  of graph G  is not uniform and consists of events of 

type X~~ ∈χ  (classical PERT model) and of more complex logical types, 
A~~ ∈α , B~

~
∈β , and  Γ∈ ~~γ , being represented in the below Tab. 7.1: 

  

 Table 7.1.  Logical possibilities of alternative network model events 
 Designation of an event 

in the model 
Logical relations at the 

event’s receiver 
Logical relations at the 

event’s emitter 
 χ~  and and 
 α~  and exclusive  “or” 
 β~  exclusive  “or” and 
 γ~  exclusive  “or” exclusive  “or” 
  

(4) The set of arcs U  of graph G  is split into a subset 'U  of arcs corresponding 
to the actual functioning of the alternative network, and subset ''U  of arcs 
representing the logical interconnections between actual and imaginary 
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functions. 
(5) Vector klW  of values characterizing actual work is constructed preliminary 

for every arc, 'UU kl ∈ , representing an actual activity. Among such values 
are the time of the activity duration klt ; the required cost klC ; and other 
components of this vector. The vector’s components ( )ρω kl  ( k−=1ρ , k  being 
the vector’ dimension) can be represented, depending on the degree of in-
determinacy, either by determined estimations or by random values with a 
given distribution function, ( )( )ρω klf ,  on the interval ( )( ) ( )( )



 ρρ ωβωα klkl , , where 

( )( )ρωα kl  and ( )( )ρωβ kl  are boundary estimations of the ρ -th component of vec-
tor klW . 

(6) For the stochastic alternative model of a combined type, the set of alterna-
tive events, Γ~~ ∪A , is split into subsets A  - alternative events that show the 
branching of determined variants, and A  - alternative events that represent 
the situations of branching stochastic variants, where AAA ∪∪ =Γ~~ . 

(7) When the network event is of alternative nature, it is assigned a set of esti-
mations of corresponding local variant probabilities. In other words, a non-
negative number, 1≤ijp , such that 1

1

=∑
=

in

j
ijp  (where  ijp   is the a priori 

probability of transferring from i  to j  and in  stands for the number of local 
variants appearing in event i ), is related to each alternative path starting 
from event i  of type A∈α~  or A∈γ~  and leading to outcome j . 

(8) If event i  is related to an alternative event of class A~ , the corresponding 
conditional transfer probability, ijp , is usually assumed to be equal one. 
This means that the process of choosing the direction in which the system 
has to move towards its target is of a determined character; it is the pre-
rogative of the system’s controlling device. 

Problems of alternative network model analysis and synthesis are solved by 
applying the principle of network enlarging and obtaining a special graph - the 
outcome tree [49-57], which is usually designated as ( )VAD ,  and represents a 
graph that can be constructed by modifying the original model, ( )UYG , , as fol-
lows: 
(a) The set, which consists of the initial event, finite events, and events that are 

branching points of alternative paths of graph G , is taken as the set of 
events of graph D . The initial event, 00 y=α , is called a hanging event. 

 

(b) The set of arcs { }ijvV =  of graph D  is obtained through an equivalent trans-

formation of a set of sub-graphs,{ }ijG , extracted from network G  according 
to the following procedure: 
• any event iα , except for the finite ones, 'α , can be the initial event of 
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sub-graph ( )ijijij ULG ,= , where ijy∈'α  and Ο/=Γ−
iji Y∩α1 ; 

• iijY αΓ⊂ ~ , where iαΓ~  stands for the transitive closure of mapping iα ; 
• only an α -event of graph G , except for the initial event, 00 y=α , can be a 

finite event of sub-graph ijG ,  and 
• no ( )ji αα ,..., -type paths that connect the initial event, iα , with sub-graph 

finite event jα  in ijG , contain other α -events of graph G . 
(c) every arc, ijv , of outcome tree D  is obtained by reducing fragment ijG  of 

network ( )UYG ,  to one arc beginning at iα  and ending at jα . In addition, 
realization probability ijp , fulfilment time ijt , and other parameters equiva-
lent to the corresponding characteristic values for initial fragment ijG  are 
brought into correspondence with the enlarged arc ijv . 

If different fragments, ijG , of the model do not intersect, the alternative net-
work is called entirely divisible; all events of the corresponding outcome tree 
prove to be γ -type events. 

We will require a supplementary definition. A partial variant is a variant of 
the network model’s realization; it corresponds to a definite direction of its de-
velopment at an individual stage, characterizes one of the possible ways of 
reaching the intermediate target, and does not contain alternative situations. The 
variant of realization of the whole project, which does not contain alternative 
branchings and is formed by a sequence of partial variants, is called a full vari-
ant. On the outcome tree, ( )VAD , , a certain arc, ijv , corresponds to the partial 
variant, while some path connecting root event 0α  with one of the hanging 
events, corresponds to the full variant. 

The combined outcome tree, ( )VAD , , can be regarded as a union of purely 
stochastic outcome trees that reflects some homogenous alternative stochastic 
network models. The latter are obtained by choosing different directions in the 
controlled devices. Such stochastic outcome trees, which are all part of the com-
bined outcome tree, ( )VAD , , are called joint variants of realizing the stochastic 
network model. 

The joint variant can be extracted from the original graph, ( )VAD , , by “fix-
ing” certain directions in interconnected events of type α  and excluding unfixed 
directions. In other words, every joint variant can be regarded as a realization 
variant of the network model. Such a variant has a determined topology, but it 
contains probability situations and has certain possible stochastic finite states. 

 
§7.3  Logical operations in alternative networks 
Let us single out three main logical operations which can be realized at both 

receiver and emitter in different nodes of an alternative network. The logical op-
erations are as follows [157]: 
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1. Operation “And” has a “must follow” emitter for all activities leaving a 
certain node and the “And” receiver for all operations entering a node; 
thus, all activities entering the node or leaving the node are realized. 

2. Operation “Exclusive Or” enables only one activity to be realized from a 
set of activities entering a node or leaving a node. Operation “Exclusive 
Or” is, in turn, subdivided into two classes: 
a) Operation “Stochastic Exclusive Or” which we will henceforth denote 

by “Or”. Each alternative activity entering a set corresponds to a cer-
tain probability value while a set of activities is a full group of events. 
The choice of an alternative activity at the node’s receiver or emitter is 
carried out by a random trial in accordance with the activities’ prob-
ability values. Each set comprises not less than two alternative activi-
ties. 

b) Operation “Deterministic Exclusive Or” which we will henceforth de-
note by “Or**”. The choice of an alternative activity from a set of ac-
tivities at the receiver or at the emitter is carried out by the project 
manager. Each set, like in case a), comprises not less than two activi-
ties. 

Besides the outlined above three logical operations, alternative networks may 
comprise nodes with additional logical operations, namely, various combina-
tions of those operations: 

• Operation “And + Or*”. Two different sets of activities are either entering 
a certain node or leaving a node. All activities entering the first set have to 
be realized while only one activity has to be chosen from the second set 
on the basis of a random trial. 

• Operation “And + Or**”. The difference between this operation and the 
previous one is that the choice of an activity from the second set is carried 
out by the project manager. 

• Operation “Or*+ Or**”. Two alternative sets of activities are either enter-
ing a node or leaving a node. The choice of an alternative activity from 
the first set is of random nature and is uncontrolled, while for the second 
set, choosing an alternative activity is a control action. 

• Operation “And + Or*+ Or**”. Three sets of activities are entering or leav-
ing a certain node. All activities entering the first set have to be realized 
while the choice of an alternative activity from the second and the third 
sets are carried out by means of random trials and control actions, corre-
spondingly. 

Thus, our classification of different alternative networks is based on the 
combinations of different logical operations at the nodes’ receivers and emitters, 
as it is shown on Tab. 7.2. Note that in operations 4-7 “together with” may be 
substituted for “Or” either at the receiver, or at the emitter (but not for both out-
comes simultaneously). 

In conclusion, we will outline the logical operations of several alternative 
networks. 
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1. From the practical point of view, PERT and CPM networks comprise ac-
tivities ( )ji,  with the logical “must follow” emitter at node i  and the 
“And” receiver at node j . This means that: 
a) an event may occur only at the moment the last activity entering the 

event is finished; 
b) all activities leaving any event of the network have to be operated. 

2. In Decision-CPM network models [28-30] all events have an “And” re-
ceiver, while certain events have controlled deterministic alternative out-
comes. Thus, the choice of an alternative network is supervised by the 
project management. 

3. Network models GERT (Graphical Evaluation and Review Techniques) 
[131-133] besides the logical “And” receiver and “must follow” emitter, 
comprise certain events with “Stochastic Exclusive Or” either at the emit-
ter or at the receiver, or both at the emitter and the receiver together. The 
choice of an alternative activity is realized by a random trial of a full 
group of events with fixed probabilities. 

4. Model CAAN (Controlled Alternative Activity Network) [49-57] com-
prises, besides events with the logical “must follow” emitter and the logi-
cal “And” receiver, certain events with “Exclusive Or*” of stochastic na-
ture at the receiver or at the emitter. Certain other events entering the 
model have an “Exclusive Or**” receiver or emitter. But there are no 
events which comprise simultaneously two types of alternative sets of ac-
tivities of “Exclusive Or*” and “Exclusive Or**” entering or leaving one 
and the same node. 

5. The GAAN (General Alternative Activity Network) model [9,53-54,67] 
has been already mentioned above, in §1.1, and will be outlined in depth 
below, in Chapter 9. 
The class of GAAN models is the most general one from the point of its 
alternative structure. 
The GAAN and CAAN models have been successfully used for planning 
and controlling highly complicated R&D projects [67] where decision-
making has to be introduced with incomplete or inadequate information 
about the alternatives. Such models are especially effective for R&D pro-
jects with multiple alternative technology choices, e.g., in opto-
electronics, aerospace, defense related industries, in developing an artifi-
cial heart [67], in projecting new software (Information Technology Pro-
jects), etc. 

6. Model SATM (Stochastic Alternative Time-Oriented Network) [53,157] is 
a further extension of the generalized network models GNM and GAAN. 
SATM differs from GNM by: 
• implementing various types of alternative relations (stochastic or de-

terministic alternatives); 
• implementing a broad spectrum of stochastic values. 

Note, in conclusion, that stochastic alternative network models CAAN, 
GAAN and SATM comprise alternative deterministic branching nodes and, 
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thus, refer to the class of controllable network models. However, there is an es-
sential difference between CAAN and GAAN, on one side, and SATM, on the 
other one. Both CAAN and GAAN models, independently from their structure, 
enable obtaining feasible solutions and, thus, can be optimized, as outlined be-
low, in Chapters 8 and 9. In the case of SATM models certain combinations of 
parameters do not provide feasible solutions, i.e., the project cannot be carried 
out. We have to implement a new concept - the project’s availability, i.e., the 
probability to ever meet the target. Thus, we determine a new definition of the 
project’s p -availability which reflects the probability for the project to be real-
ized. In our opinion, value p  can be determined by means of extensive simula-
tion. If p  is close to unity, e.g., 99.0≅p , the regarded SATM model may be ac-
cepted for future analysis. In case 1≅p , we suggest optimizing SATM on condi-
tion that the project will be accomplished. Such a logical analysis is necessary 
since SATM incorporates the GNM model with its complicated logical relations 
and links. If p  deviates from unity essentially, we have to overlook the structure 
of SATM, i.e., to amend the network’s structure. This by itself is an extremely 
complicated problem which remains unsolved as yet. 
 

Table 7.2.  Logical operations in alternative networks   
Event’s receiver Logical 

operation Event’s emitter 

“And” 1: “And” “Must follow” 
“And” or “Stochastic Exclusive Or” 2: “Or*” “Must follow” or “Stochastic Exclu-

sive Or” 
“And” or “Deterministic Exclusive 
Or” 3: “Or**” “Must follow” or “Deterministic 

Exclusive Or” 
“And” together with “Stochastic Ex-
clusive Or” 

4: “And + 
Or*” 

“Must follow” together with “Sto-
chastic Exclusive Or” 

“And” together with “Deterministic 
Exclusive Or” 

5: “And + 
Or**” 

“Must follow” together with “De-
terministic Exclusive Or” 

“Stochastic Exclusive Or” together 
with “Deterministic Exclusive Or” 6: “Or* + 

Or**” 

“Stochastic Exclusive Or” to-
gether with “Deterministic Ex-
clusive Or” 

“And” together with “Stochastic 
Exclusive Or”, together with “De-
terministic Exclusive Or” 

7: “And + 
Or*+ Or**” 

“Must follow” together with 
“Stochastic Exclusive Or”, to-
gether with “Deterministic Ex-
clusive Or” 

Types 1-7 together with “General-
ized Time-Oriented Network 
Model” (GNM) 

8: “And + 
Or*+Or** 
+ GNM” 

Types 1-7 together with GNM 

 

In the next chapter we will outline the most frequently used nowadays con-
trolled alternative activity network - the CAAN model [49-57]. 
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Chapter 8.  Controlled Alternative Activity Network (CAAN) 
 

§8.1  The model’s description 
8.1.1  Structure of a CAAN model 
A CAAN model is a finite, connected, oriented, activity-on-arc network 

( )ANG ,  with the following properties: 
I. Network ( )ANG ,  has one source node 0n  and not less than two sink nodes ∗n . 
II. The set of nodes of network ( )ANG ,  includes four types of nodes: 

Type 1: with the logical “And” receiver and the “‘must follow” emitter; 
Type 2: with the logical “And” receiver and the “exclusive or” emitter; 
Type 3: with the “exclusive or” receiver and the “must follow” emitter; 
Type 4: with the “exclusive or” receiver and the “exclusive or” emitter. 

III. The set of alternative nodes (types 2 and 4) for a CAAN model is subdi-
vided into subsets: 
(a) NN ⊂  - alternative nodes which show the branching of stochastic 
variants; 
(b) NN ⊂  - alternative nodes which show the branching of deterministic 
variants. 

When a network node i  refers to class N , it is assigned a set of correspond-
ing outcome probabilities 1<ijp , 1=∑

j
ijp , ( )jBi ∈ , where ( )jB  denotes the set of 

nodes that connects i  to j . When a network node i  refers to class N , the corre-
sponding transfer probabilities ijp  are assumed to equal unity. This means that 
the process of choosing the alternative direction is of deterministic nature; it is 
the sole prerogative of the project’s decision-maker. 

According to [49-57], we will henceforth designate the branching nodes, be-
ing included in classes N  and N , as α  and α , respectively. Note that α  and α  
differ from i  only by a special mark which points out their belonging to differ-
ent sets N  and N . 

 

8.1.2  Outcome graph 
To analyze the CAAN type model we use a special network which we will 

call the outcome graph. The latter is designated as ( )∗∗∗ ANG ,  and can be ob-
tained by reducing the initial network ( )ANG , . Relation { } NNnnN ∪∪∪ ∗∗ = 0  
holds, i.e., the set of nodes of the outcome graph includes the source node, the 
sink nodes and all the branching nodes. Every arc ( ) ∗∈ Aji,  of the outcome graph 
is equivalent to a certain fragment ijG  of the initial network ( )ANG , . If different 
fragments ( )ANGGij ,⊂  do not intersect, both ( )ANG ,  and ( )∗∗∗ ANG ,  are called 
entirely divisible. An example of a CAAN type entirely divisible outcome graph 
with both connecting and diverging paths is shown in Fig. 8.1. 
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Figure 8.1.  The outcome graph 

 

Definition. We will introduce the concept of the direction of the arc leaving 
an α -type branching node. All arcs ( )ji,  leaving node iα  or iα  are indexed 
clockwise as iij nh ,...,2,1= , where in  is the number of outcomes in node iα . Thus, 
the direction of arc ( )ji,  is equal to the corresponding index ijh . 

For example, in Fig. 8.1, arcs leaving node 1 have directions as follows: 
112 =h , 219 =h , 313 =h ; arcs leaving node 3: 135 =h , 238 =h , 339 =h , 416,3 =h , etc. 

An algorithm described in [49] transforms an initial activity network to its 
outcome  graph. The algorithm’s output information about every arc ( ) ∗∈ Aji,  
(Array I) consists of records: iα , jα , ijh , ijp , ijt , ijc . 

Here: 
• iα  and jα  are the source and terminal nodes of arc ( )ji, ; 
• ijh  is the direction of arc ( )ji, ; 
• ijp  is the arc’s probability; 1=ijp  if Ni ∈α . 
• ijt  and ijc  are the time duration and cost values of the activity represented 

by arc ( )ji, . 
If necessary, other parameters can be added to the record data (resource or re-

liability values, etc.). 
Definitions. A partial (local) variant is a variant of the node’s realization. It 

corresponds to a definite direction of the project’s development at a particular 
stage. The variant of realization of the whole project, which does not contain al-
ternative branchings and is formed by a sequence of local variants, is called a 
full (overall) variant. On the outcome graph ( )∗∗∗ ANG , , a certain arc ( )ji,  corre-
sponds to the local variant, and a path connecting source node 0n  with one of the 
sink nodes corresponds to the full variant. An outcome graph can be regarded as 
an ensemble of purely stochastic networks with branching nodes of α -type only. 
These networks are obtained by choosing different directions in the α -type con-
trolled nodes. Such stochastic networks which are part of the outcome graph, are 



 
 

145 

called joint variants of the CAAN model. 
Thus, the joint variant can be extracted from the graph ( )∗∗∗ ANG ,  by fixing 

certain non-contradictory directions in interconnected nodes of type α  and ex-
cluding unfixed directions. For example, in Fig. 8.1, one of the joint variants is 
determined by fixing non-contradictory directions 21 → , 42 → , 106 → , and 

127 →  in α -nodes 1, 2, 6 and 7. This is presented in Fig. 8.2. 

 
Figure 8.2.  The joint variant 

 

§8.2  Decision-making in CAAN type models 
8.2.1  Optimization problem 
To control a project, such as any production process, it is necessary to intro-

duce decision-making in order to reach the goal while optimizing a given objec-
tive function subject to certain restrictions, e.g., minimizing the cost of the pro-
ject or the time duration. For a project represented by a CAAN type model, deci-
sion-making means choosing the directions of the project’s development in con-
trolled nodes of α -type, since α -type nodes are uncontrollable. This means that 
the optimization problem resolves on choosing a joint variant optimizing the 
value of the objective function, subject to introduced restrictions. 

Let [ ]mN ααα ,...,, 21
*

=  be the set of α -nodes of outcome graph ( )∗∗∗ ANG , . 
Every joint variant is defined by a choice of certain directions in some of these 
nodes 

rii αα ,...,
1

(non-contradictive ones), i.e., by set  

[ ] .,,...,,
111 rrr qiiqii hhV αα=  (8.2.1) 

Definition. A set which indicates the set of m-nodes and the directions in 
them, and uniquely defines the joint variant, is called an admissible plan. The set 
of joint variants is in one-to-one correspondence with the set of admissible 
plans. Thus, the optimization problem consists of three steps: 
Step 1. To determine and to single out from the outcome graph all the joint 

variants, together with the corresponding admissible plans. 
Step 2. To calculate the values of the objective function and the restrictions 

(usually in the form of average values) for each variant. 
Step 3. To determine the optimal joint variant and to follow the optimal direc-

tion up to the nearest deterministic branching node. The problem must 
be repeatedly solved for the reduced network in every sequentially en-
countered controlled event of type α . 

Let us consider, for example, that the joint variant in Fig. 8.2 is determined as 
an optimal one for the initial outcome graph in Fig. 8.1. Beginning the project 
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from node 1, we have to follow direction 21 →  and reject all other alternative di-
rections, namely 31 →  and 91 → , with all the following arcs (3, 5), (3, 9), (3, 8), 
(3, 16), (9, 16), (9, 17). 

However, when the project reaches node 2, we have to resolve the optimiza-
tion for the remaining part of the network (see Fig. 8.3). In the course of devel-
oping the project there may be changes in the parameters of some activities 
(time duration, cost, outcome probability, etc.) since an activity network is usu-
ally revised over time. Perhaps, later on, we may choose 52 →  as an optimal di-
rection at node 2 instead of direction 42 → , which was determined at node 1. 

 
Figure 8.3.  The reduced network 

 

8.2.2  Mathematical formulation 
The mathematical formulation of the problem is as follows: Determine the 

joint variant *s  optimizing the mean value of the objective function 
( )[ ]

( )
( )∑

Ω∈⊂∇∈
=

sis

isis
ANGs

FpMaxMinsFE
π

π
*** ,

* )(  (8.2.2) 

subject to 
( )[ ] ( ) HHpsHE

sis

isis <= ∑
Ω∈ **

**
*

π

π . (8.2.3) 

Here: 
sΩ  - set of full variants entering the s -th joint variant; 

∇  - set of joint variants entering the CAAN  type model; 



 
 

147 

isp  - probability of realizing the i -th full variant isπ  in the s -th joint vari-
ant; 

( )isF π  - value of the objective function for the i -th full variant in the s -th 
joint one; 

( )*isH π - value of the restriction for the i -th full variant ** sis Ω∈π ; 
H  - pre-set restriction level. When F  is the time duration, restriction H  is 

usually the project’s cost, and vice-versa. If necessary, several restric-
tions can be used. 

When all the joint variants are determined (Step 1), one has to examine each 
of them to look through all the full variants entering the joint variant under ex-
amination (Step 2). But since any joint variant contains only alternative nodes of 
type α , the problem reduces to an analysis of a pure stochastic network, which 
can be performed with the help of various approaches. Burt, Garman, Gaver and 
Perlas [18-19] as well as Golenko (Ginzburg) [49-50, etc.] presented various al-
gorithms to solve this problem. Thus, carrying out Step 2 causes no principal 
difficulties. The main problem is to single out all the joint variants, especially in 
the case of large initial networks with many branching nodes of both types α  
and α . 

 

8.2.3  Determining joint variants 
The procedure of performing Step 1 (see 8.2.1) boils down to sequential use 

of the following three algorithms: 
Algorithm I. Constructing an α -frame for the outcome graph ( )∗∗∗ ANG , . 
Algorithm II. Determining maximal paths in the α -frame. 
Algorithm III. Determining admissible plans and joint variants. 

The algorithms are organized so that the outcome information of each algo-
rithm serves as the initial data for the next one. The initial data for Algorithm I 
is the information about the outcome graph ( )∗∗∗ ANG ,  (Array 1). Note that the 
procedure can be applied only to a fully divisible network. 

 

§8.3  Algorithm I for constructing an α -frame 
8.3.1  Definitions 
Definition 1. We will call a certain path ( )srki αααα ,,...,,  in the outcome graph 

an α -simple path if source and terminal nodes iα , { } Nnns ∪∪ ∗∈ 0α  and all other 
nodes Nrk ∈αα ,..., . For example, in Fig. 8.1, path (1, 3, 5, 7) is an α -simple path 
since N∈71 ,αα  and N∈53 ,αα . Direction ikh  of the first arc of the α -simple path 
is called the direction of the path. 

Definition 2. Node jα  will be called α -achievable from node iα  if there is an 
α -simple path leading from iα  to jα . 

Definition 3. Call an α -frame of outcome graph ( )∗∗∗ ANG ,  a directed graph 
( )∗∗∗∗∗∗ ANG ,  for which the following conditions hold: 
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1) { }∗∗∗ = nnNN ∪∪ 0 , i.e., the set of nodes of the α -frame does not include 
random branching nodes. 

2) Each arc of the α -frame is determined by a quadruple ( )ijkjiki ph ,,, αα  and is 
included in ∗∗G  if and only if there exists an α -simple path leading from 

iα  to jα  in direction ikh . 
Value ijkp  is the probability for an α -simple path ( )ji αα ,...,  with direction ikh  

to be realized. Note that since there can be more than one α -simple path be-
tween two terminal nodes, ∗∗G  can be a multigraph. For example, the α -frame of 
the outcome graph in Fig. 8.1 is a multigraph since there are two α -simple paths 
between nodes 2 and 7, namely ( )2.0,7,1,2 24 =h  and ( )5.0,7,2,2 25 =h , two α -simple 
paths between nodes 1 and 16, etc. 

From the definition of an α -frame, it can be well-recognized that there exists 
one for any outcome graph and is unique. 

 

8.3.2  The algorithm 
The algorithm described in [51,57] determines the α -frame on the basis of 

the outcome graph. Let outcome graph ∗G  have a set of arcs ( )ji,  with data in-
formation from Array I. In the algorithm process, all the α -nodes together with 
sink nodes are sorted and each node jα  of type α  is followed in the opposite di-
rection of all the paths entering it, until the appearance of α -node iα , or the 
source node 0n . Obviously, any path will sooner or later lead to one of the nodes 
of such a type. This path is made to correspond with set ( )jiki h αα ,, , where iα  and 

jα  are, respectively, the source and the terminal nodes of the α -simple path ob-
tained, and ikh  is the direction of the path in node iα . Thus, some set ( )jiki h αα ,,  
will correspond to any node jα  which is α -achievable from an α -node iα  or 
from the source node 0n . 

By this process, select all sets ( )jiki h αα ,,  corresponding to α -simple paths 
leading from iα  to jα . In the process of finding each path of this kind, calculate 
its probability. 

We then obtain the set of quadruples ( )ijkjiki ph ,,, αα , some of them possibly 
being quadruples with similar jiki h αα ,, , corresponding to different independent 
α -simple paths from iα  to jα  in direction ikh . For example, in Fig. 8.1, there are 
two α -simple paths leading from 1 to 8 in one and the same direction 313 =h , 
namely, ( )05.0,8,3,1 13 =h  via nodes 3 and 5, and ( )40.0,8,3,1 13 =h  via node 3. Each 
set of quadruples with similar jiki h αα ,,  is replaced by a single quadruple 
( )ijkjiki ph ~,,, αα , where jiki h αα ,,  are the values common to all quadruples in the 
set, and ijkp~  is the probability of achieving node jα  from iα  in direction ikh . 
When calculating ijkp~ , it should be taken into account that the outcome graph ex-
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amined is fully divisible. Various paths in the outcome graph are therefore inde-
pendent, and the probability ijkp~  of reaching jα  from iα  in direction ikh  equals 
the sum of probabilities ijkp  of all paths ( )ijkjiki ph ,,, αα . 

As a result of such a transformation, we obtain the α -frame desired, in the 
form of a set of different quadruples ( )ijkjiki ph ~,,, αα . 

The α -frame for the CAAN type outcome graph in Fig. 8.1 (Array II) is 
given in Tab. 8.1. 

 

Table 8.1.  The α -frame (Array II) 
i  ikh  j  ijkp~  

1 
1 
1 
1 
1 
1 
1 
2 
2 
2 
2 
6 
6 
7 
7 
8 
8 

1 
2 
2 
3 
3 
3 
3 
1 
1 
2 
2 
1 
1 
1 
2 
1 
2 

2 
16 
17 

7 
8 

16 
17 

6 
7 
7 
8 

10 
11 
12 
13 
14 
15 

1 
0.4 
0.6 
0.05 
0.45 
0.32 
0.18 
0.8 
0.2 
0.5 
0.5 
1 
1 
1 
1 
1 
1 

 

§8.4  Algorithm II for determining maximal paths 
8.4.1  Maximal path 
Each arc of the α -frame is identified by a triad ( )jiki h αα ,, . Triads correspond-

ing to different arcs must differ in at least one element. Triads with only the sec-
ond element differing correspond to arcs connecting one and the same pair of 
nodes in different directions; triads with only the third element differing corre-
spond to arcs connecting one and the same node in the same direction with dif-
fering nodes. 

Definition 1. A sequence of arcs  
( )211 ,,

1
αα kh , ( )322 ,,

2
αα kh , … , ( )1,, +rrkr r

h αα , (8.4.1) 
in which the terminal node of one arc, excluding the last, is the start node of the 
next one, is called a path in the α -frame and is written: 

( )132211 ,,,...,,,,,
21 +rrkrkk r

hhh ααααα . (8.4.2) 
Definition 2. A path in the α -frame will be called maximal if it does not be-

long to any other path. Obviously, any maximal path leads from the source node 



 
 

150 

0n  to some sink node ∗n . 
8.4.2  Lexicographical order 
Let all nodes in the α -frame be enumerated with different numbers, for ex-

ample, ...,, 21 αα  are the node numbers required. Also determine all the different 
directions leading from every node iα . Consider two different maximal paths 

( )ecaba hX ααα ,...,,,1 =  and ( )zpmnm hX ααα ,...,,,1 = . 
Compare by pair the elements of these paths: aα  and mα , abh  and mnh , cα  and 

pα , etc. Since the paths are different and maximal, a pair of differing elements 

fα  and rα  (or fgh  and rsh ) must be found while all the other previous pairs coin-
cide. If in this case rf αα <  (or rsfg hh < ), the first lexicographically ordered path 
precedes the second. Thus, the first path precedes the second if its sequence 
lexicographically precedes the sequence of the second path. Similarly, a lexico-
graphical order is introduced in the set of all ( )jiki h αα ,, -type arcs. 

 

8.4.3  The algorithm 
The algorithm described in [57] determines all the maximal paths in lexico-

graphical order. It consists of two main parts: the procedure for choosing the 
first maximal path and the procedure for transferring from one arbitrary maxi-
mal path to the next one in lexicographical order. By using the first procedure 
and then, repeatedly, the second one, we obtain all the maximal paths in the α -
frame. 

The set of maximal paths (Array III) for the outcome graph in Fig. 8.1 is pre-
sented in Tab. 8.2 (the number in braces denotes the arc’s direction). 

 

Table 8.2.  Maximal paths (Array III) 
{ } { } { }( )10,1,6,1,2,1,11 =X  
{ } { } { }( )11,2,6,1,2,1,12 =X  
{ } { } { }( )12,1,7,1,2,1,13 =X  
{ } { } { }( )13,2,7,1,2,1,14 =X  
{ } { } { }( )12,1,7,2,2,1,15 =X  
{ } { } { }( )13,2,7,2,2,1,16 =X  
{ } { } { }( )14,1,8,2,2,1,17 =X  
{ } { } { }( )15,2,8,2,2,1,18 =X  

{ }( )16,2,19 =X  
{ }( )17,2,110 =X  
{ } { }( )12,1,7,3,111 =X  
{ } { }( )13,2,7,3,112 =X  
{ } { }( )14,1,8,3,113 =X  
{ } { }( )15,2,8,3,114 =X  
{ }( )16,3,115 =X  
{ }( )17,3,116 =X  

 

§8.5  Algorithm III for determining admissible plans and joint variants 
The algorithm includes, in turn, three sequentially used subalgorithms. 

Subalgorithm IIIA transforms the information obtained from Algorithm II since 
the latter may provide redundant data. Subalgorithm IIIB determines consecu-
tively all the admissible plans while Subalgorithm IIIC singles out the corre-
sponding joint variants. 
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8.5.1  Subalgorithm IIIA to obtain auxiliary Array IV 
Subalgorithm IIIA transforms Array III to an auxiliary Array IV by the fol-

lowing procedure: 
Step 1. Remove the corresponding sink nodes from all the maximal paths and 

thus form the set of “truncated” paths. 
Step 2. Remove all the truncated paths which are parts of other truncated paths 

(for example, paths 15X  or 16X  in Tab. 8.2 after removing the sink 
nodes are parts of path 14X ). 

Step 3. If some of the truncated paths coincide after Step 1 leave only one of 
them (paths 9X - 10X  in Tab. 8.2). 

Array IV obtained after transforming Array III in Tab. 8.2 is presented in 
Tab. 8.3. 

 

Table 8.3.  Array IV for determining admissible plans 
1, { }1 , 2, { }1 , 6, { }1  
1, { }1 , 2, { }1 , 6, { }2  
1, { }1 , 2, { }1 , 7, { }1  
1, { }1 , 2, { }1 , 7, { }2  
1, { }1 , 2, { }2 , 7, { }1  
1, { }1 , 2, { }2 , 7, { }2  
1, { }1 , 2, { }2 , 8, { }1  
1, { }1 , 2, { }2 , 8, { }2  
1, { }2  
1, { }3 , 7, { }1  
1, { }3 , 7, { }2  
1, { }3 , 8, { }1  
1, { }3 , 8, { }2  

 

8.5.2  Subalgorithm IIIB to determine admissible plans 
Definition. Two different truncated maximal paths 

rrr piipiipii hhh ,,...,,,,
222111 ααα , 

sss qjjqijqjj hhh ,,...,,,,
222111 ααα  

are called contradictory ones if they each possess at least one common alternative 
node fα  of α -type with mutually exclusive alternative directions fkh  and fqh . 

The work of Subalgorithm IIIB is based on lexicographical scanning and re-
sembles Algorithm II (see §8.4). It consists, like the latter one, of two parts: the 
procedure for determining the first admissible plan, and the procedure for trans-
ferring from a routine admissible plan to the next one. 

Determine the first admissible plan as follows: choose the first truncated 
maximal path from Array IV (maximal paths being initially ordered lexico-
graphically). This is the basis for determining the first admissible plan. Then ex-
amine the next maximal path and determine, if it is contradictory to the basic 
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admissible plan or not. If so, examine the next routine maximal path. If not, add 
to the admissible plan all the links (either of type [ ]1,, +rrkr h αα  or of type [ ]rkr h,α ) 
from the maximal path under examination which are absent in the basic admis-
sible plan. For example, in Tab. 8.3, the first truncated maximal plan is: 

1, 112 =h , 2, 124 =h , 6, 110,6 =h . 
The second one is contradictory to the first, but from the third non-

contradictory maximal path we add the link [ ]1,7 12,7 =h , thus enlarging the admis-
sible plan to 

1, 112 =h , 2, 124 =h , 6, 110,6 =h , 7, 112,7 =h . 
The procedure thus boils down to scanning the maximal paths in Array IV, 

each time comparing the next maximal path with the “growing” admissible plan 
already obtained. 

Now let [ ]
rrr qiiqiiqii hhhW ,,...,,,,

222111 ααα=  be an arbitrary admissible plan. The 
procedure for determining the next one is as follows: exclude the last 
link [ ]

rrr qii h,α  and find out whether it is possible to determine a new admissible 
plan (which does not coincide with those obtained before) while applying the 
first of the algorithms. If there is no such admissible plan, exclude the 
link [ ]

111 ,
−−− rrr qii hα , and again apply the procedure of determining an admissible 

plan, and so on. Stop working the algorithm, when the consequently truncated 
admissible plan becomes empty. 

Admissible plans for the outcome graph in Fig. 8.1 (Array V) are presented 
in Tab. 8.4. 

 

Table 8.4.  The set of admissible plans (Array V) 
{ } { } { } { }1,7,1,6,1,2,1,11 =W  
{ } { } { } { }2,7,1,6,1,2,1,12 =W  
{ } { } { } { }1,7,2,6,1,2,1,13 =W  
{ } { } { } { }2,7,2,6,1,2,1,14 =W  
{ } { } { } { }1,8,1,7,2,2,1,15 =W  
{ } { } { } { }2,8,1,7,2,2,1,16 =W  
{ } { } { } { }1,8,2,7,2,2,1,17 =W  

 
{ } { } { } { }2,8,2,7,2,2,1,18 =W  
{ }2,19 =W  
{ } { } { }1,8,1,7,3,110 =W  
{ } { } { }2,8,1,7,3,111 =W  
{ } { } { }1,8,2,7,3,112 =W  
{ } { } { }2,8,2,7,3,113 =W  

 

8.5.3  Subalgorithm IIIC to determine joint variants 
The initial information for the subalgorithm is the set of admissible plans 

(Array V, see Tab. 8.4) and the outcome graph (see Fig. 8.1). Note that a joint 
variant is a subgraph of the outcome graph containing all the full variants ob-
tained through a definite selection of directions in the α -nodes. Therefore, the 
joint variant, corresponding to a routine admissible plan W , should be a stochas-
tic network s , satisfying the following conditions: 

1) s  is a subgraph of the outcome graph; 
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2) s  contains all the nodes of set W , but no α -nodes besides them; 
3) Only sink nodes of the outcome graph can serve as sink nodes of s ; 
4) Any subgraph of the outcome graph satisfying properties 1)-3) is a sub-

graph of joint variant s  (i.e., s  is the maximal subgraph satisfying those 
properties). 

 Using these properties, Subalgorithm IIIC to determine the joint variant for 
the routine admissible plan, W , was presented in [53,57]. The idea of the subal-
gorithm is as follows: for every Wi ∈α , a subgraph of the outcome graph is de-
termined containing all the maximal α -simple paths leaving iα  in direction 

Whik ∈ . Obviously, a combination of all such subgraphs contains s  within itself. 
To determine s , it is now sufficient to cast off part of the arcs in such a way that 
any maximal path in the remaining subgraph will finish with a node from W  or 
with a sink node ∗n . 

 

§8.6  Numerical example 
The management is faced with development an R&D project represented by 

a CAAN type network, its outcome graph given in Fig. 8.1. The time duration 
and cost values (measured in months and dollars, respectively) of each activity 
are presented in Tab. 8.5. The expected duration of the project has to be mini-
mized subject to the cost restriction: the mean cost of the project must not ex-
ceed $23,000. The management has to determine an optimal decision policy, 
i.e., to choose optimal outcome directions from every decision-making node 
which is reached in the course of the project’s development. This is based on 
singling out all the joint variants of the CAAN network under examination, cal-
culating the mean time and cost values of each joint variant and finally deter-
mining the optimal one. Decision-making at node 1 has to be carried out before 
starting the project’s implementation. 

 

Table 8.5.  The initial data 

Activity 
( )ji,  

Activity dura-
tion (in 

months) ijt  

Activity cost 
(in 1,000 $) 

ijc  
Activity 

( )ji,  

Activity dura-
tion (in 

months) ijt  

Activity cost 
(in 1,000 $) 

ijc  
(1,2) 
(1,3) 
(1,9) 
(2,4) 
(2,5) 
(3,5) 
(3,8) 
(3,9) 
(3,16) 
(4,6) 
(4,7) 

1 
1 
4 
2 
1 
1 
2 
2 
4 
1 
1 

5 
6 

16 
7 
6 
7 
8 

10 
15 
6 
8 

(5,7) 
(5,8) 
(6,10) 
(6,11) 
(7,12) 
(7,13) 
(8,14) 
(8,15) 
(9,16) 
(9,17) 

1 
2 
2 
2 
1 
2 
2 
3 
3 
2 

4 
10 

9 
7 
5 
8 
7 

12 
11 

5 
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The results of sequential use of Algorithms I, II and Subalgorithms IIIA and 
IIIB are presented in Tab. 8.1-8.4, respectively. Applying Subalgorithm IIIC to 
the data in Tab. 8.4, the management determines all the joint variants s  (the 
joint variant for the first admissible plan is demonstrated in Fig. 8.2). Afterwards 
their average time durations sT  and cost values sC  are calculated, the results 
given in Tab. 8.6. According to the cost restriction the optimal joint variant (see 
Fig. 8.4) has the expected time duration of 5.12 months and the average cost of 
$22,220. 

 

Table 8.6.  The parameters of the joint variants 

The joint variant 
s  

The expected time 
duration (in months) 

sT  

The expected cost 
(in 1,000 $) 

sC  
Feasibility 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

5.8 
6 
5.8 
6 
5 
5.5 
5.5 
6 
6.4 
5.12 
5.57 
5.17 
5.62 

26.6 
27.2 
25 
25.6 
24 
26.5 
25.5 
28 
23.4 
22.22 
24.47 
22.37 
24.62 

No 
No 
No 
No 
No 
No 
No 
No 
No 

Yes*) 
No 
Yes 
No 

*) - optimal joint variant 
 

 
Figure 8.4.  The optimal joint variant 
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Thus the management has to introduce optimal decision-making as follows: 
a) At the beginning of the project (at node 1) activity (1,3) has to be chosen. 
b) If in the course of the project’s development node 7 will be reached and 

the network will not be revised, activity (7,12) has to be chosen. 
c) If node 8 will be reached, activity (8,14) has to be chosen. Nodes 3, 5 and 

9 of the joint variant are uncontrollable. 
Note that calculating average values ( sT  and sC ) in the optimization problem 

can be easily replaced by calculating the p -quantiles at a given confidence level 
p−1  in order to raise the project’s reliability. These estimates can be obtained 

both for deterministic and probabilistic time durations ijt  and cost values ijc . In 
the latter case Monte Carlo simulation technique has to be implemented [43]. 

 

§8.7  Conclusions 
In our opinion, CAAN type models are typical innovative models which can 

be used in several areas, namely: 
1. In large and highly complex R&D projects with long-term goals, espe-

cially when an entirely new device is designed with no similar prototypes 
in the past. Such projects occur often in aerospace and other defense re-
lated industries. They are usually faced with a great deal of uncertainty in 
their progress as well as with alternative outcome directions in key events. 

2. Long-term projects in construction industry, when creating and building 
unique installations (various defense systems, undersea tunnels, major 
pipelines, etc.). 

3. Long-term projects when designing or developing new industrial or popu-
lated areas. In the activity network the branching nodes of α -type may re-
flect the alternative results of future geological survey or the influence of 
climatic factors, while the α -type nodes may reflect alternative decision-
making as follows: to build or not to build a new plant in a certain place, 
to build a railroad or a motor road between two settlements, etc. The ob-
jective function for this type of projects reflects usually capital invest-
ments to be minimized. 

4. For the case of deterministic alternative networks we recommend using 
the results obtained by E. Dinic [34] in combination with simulation ap-
proaches. 

5. As outlined in the previous Chapter, CAAN models cannot be used for op-
timizing non-divisible alternative networks which cover a variety of ex-
ceptionally complicated R&D projects. The latter have to be controlled by 
a more general model - namely, the GAAN model, which will be outlined 
in Chapter 9. 



 
 

156 

Chapter 9. Generalized Alternative Activity Network (GAAN 
Model) 

 

§9.1  Formal description of GAAN model 
As mentioned above, in §1.1, the GAAN model is a finite, oriented, acyclic 

activity-on-arc network ( )ANG ,  with the following properties [67]: 
I. ( )ANG ,  has one source node 0n  and no less than two sink nodes 'n . 
II. Each activity ( ) Aji ∈,  refers to one of the following three different types: 

Type 1: activity ( )ji,  is a PERT activity (PA) with the logical “must fol-
low” emitter in node i  and the “and” receiver in node j ; 

Type 2: activity ( )ji,  is an alternative stochastic activity (ASA) with the 
logical “exclusive or” emitter in node i . Each ( ) Aji ∈,  of ASA 
type corresponds to a probability 10 << ijp , while node i  com-
prises a set of at least two probabilities ijp , 1=∑

j
ijp ; 

Type 3: activity ( )ji,  is an alternative deterministic activity (ADA) with 
the logical “exclusive or” emitter in node i . Node i  is a decision-
making node, and the sum of the corresponding transfer prob-
abilities (at least two of them) is assumed to be unity. 

III. Activities of all types may come out of the same node Ni ∈ . Thus, unlike 
the CAAN model, the GAAN model is not a fully-divisible network. 

IV. Activities of all types may enter the same node. 
An example of GAAN type graph is shown in Fig. 9.1. Here, activities ( )2,1  

and ( )4,3 , ( )7,2  and ( )8,2 , ( )9,4  and ( )10,4  are of ADA type. Activities ( )4,1  and ( )5,1 , 
( )7,3  and ( )8,3  are of ASA type, while activities ( )9,1 , ( )6,2 , ( )9,3 , ( )10,5 , ( )11,5  are of 
PA type. Note that such a network is a more universal model than the Eisner 
model, which comprises only activities of Types 1 and 2. 

Definitions 
Following [67], introduce the concept of a joint variant for a GAAN model. 

Call a joint variant of the GAAN model ( )ANG ,  a subgraph (subnetwork) 
( )∗∗∗ ANG ,  satisfying the following conditions: 
1. ( )∗∗∗ ANG ,  has one source node coincident with that of graph ( )ANG , . 
2. If ( )∗∗∗ ANG ,  comprises a certain node i , i.e., ∗∈ Ni , then ( )∗∗∗ ANG ,  com-

prises all activities ( )ji,  of types PA and ASA leaving node i . 
3. If ( )∗∗∗ ANG ,  comprises a certain node i  having alternative outcomes of 

ADA type in the GAAN model ( )ANG , , then ( )∗∗∗ ANG ,  comprises only 
one activity of this type leaving that node. 

Call a full variant of joint variant ( )∗∗∗ ANG ,  a subnetwork of PERT type 
( ) ( )∗∗∗∗∗∗∗∗∗ ⊂ ANGANG ,,  which can be extracted from the latter by simulating 

non-contradictory outcomes of ASA type in interconnected nodes and excluding 
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alternative non-simulated outcomes. 
Call a full variant ∗∗G  realization probability the product of all values ijp  for 

all activities of ASA type entering the full variant. 
We shall show that for any joint variant GG ⊂∗  the sum of full variant reali-

zation probabilities over all full variants entering ∗G  is equal to unity. 

 
Figure 9.1.  The GAAN type graph 

 

Lemma 9.1. The sum of probabilities of realization of all full variants enter-
ing a joint variant equals unity. 

Proof. First, demonstrate that in the GAAN network, there does exist a node 
which is connected by arcs leaving it only with sinks. 

Consider a set of network paths from the source to all sink nodes. The num-
ber of arcs entering a path will be called the path length. Since the number of 
paths is finite, a path of maximum length does exist. Consider the last but one 
node of this path, i.e., the node connected to the sink by the arc leaving this 
node. All the arcs incident to this node enter sink nodes. Actually, if an arc en-
tering an internal node exists, then the path under discussion is not a path of 
maximal length as agreed. 

We shall prove the lemma by induction over the number of network nodes, 
assuming, without loss of generality, that only one arc enters any sink node. 

Also without loss of proof generality, assume that arcs of only one type leave 
each node. 

The lemma obviously holds for 3=k . Suppose that it is true for all nk ≤ , and 
consider a network with ( )1+n  nodes. The network contains an internal node x  
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such that for any arc ( )yx, , y  is a sink. 
Consider the following three cases. 
1. Node x  is of PA type (PA-node). 
From the initial network, remove the arcs leaving node x , and the sinks con-

nected with these arcs. We obtain a network with the number of nodes less or 
equal to n . For this network, according to the assumption, the lemma holds. 

All the joint variants of the initial network are obtained from the variants of 
the “smaller” network by completing those containing the node x  with the arcs 
leaving this node, and the corresponding sinks. However, arcs leaving the PA-
nodes and entering the sinks cannot change the corresponding full variant reali-
zation probabilities. Therefore, in this case, the lemma asserts. 

2. Node x  is of ADA type (ADA-node). 
This case is similar to the previous one. 
3. Node x  is of ASA type (ASA-node). 
Arcs ( ) ( ) ( )ryxyxyx ,,...,,,, 21  leaving node x  have probabilities rααα ,...,, 21 , 

1
1

=∑
=

r

i
iα . 

Consider any joint variant comprising node x . From this joint variant, re-
move the arcs leaving node x , and the sinks connected with these arcs. We ob-
tain a joint variant with the number of nodes less or equal to n . Let the full vari-
ants of this “smaller” joint variant have probabilities sβββ ,...,, 21 , and the first l  

full variants comprise node x . By assumption, 1
1

=∑
=

r

s
sβ . The full variants of the 

“larger” joint variant have probabilities 
srrr βββαβαβαβαβαβαβαβαβαβ ,...,,,,...,,,...,,...,,,,...,, 21212221212111 ++ lllll . Further, 

we obtain 1
1111111 1
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j
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j
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ij
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βββαββαβ , and, hence, 

the lemma is true. 
For joint variants not containing x  the lemma is also true. Actually, these 

joint variants may be considered as those of the network with the number of 
nodes less or equal to n . 

The lemma is proven.              
 

§9.2  Optimization problem on GAAN 
9.2.1  Mathematical formulation  
The mathematical formulation of the problem is as follows: determine the 

optimal joint variant ( )ANGG opt ,⊂∗  that optimizes the objective function 

( )[ ] ( )
{ }

( ) { }
{ }
∑

∗∗∗∗
⊂

∗∗∗∗∗




 ⋅=

GGG

opt GGFMaxMinGFE Pr   (9.2.1) 

subject to 
( )[ ] ( ) { }

{ }
v

GG
v

opt
v HGGQGQE ≤



 ⋅= ∑

∗∗∗ ⊂

∗∗∗∗∗ Pr ,  wv ≤≤1 . (9.2.2) 
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Here, ( )∗∗GF  is the objective function of full variant ∗∗G , { }∗∗GPr  is the ∗∗G  re-
alization probability, ( )∗∗GQ v  is the v -th constraint criterion, and vH  is the pre-
set constraint level for that criterion. Note that for certain particular cases, the 
value of w may be zero, i.e., the optimization problem is unconstrained, or the 
problem comprises only one constraint (9.2.2) without objective function 
(9.2.1). When F  refers to the project’s duration, the first constraint 1H  is usually 
the project’s cost, and vice versa. 

 

9.2.2  NP-completeness  
Show that problem (9.2.1-9.2.2) is NP-complete. Consider a particular case 

of the GAAN model, in which each activity ( ) ( )ANGji ,, ⊂  is either a PERT ac-
tivity (PA) or an alternative deterministic activity (ADA). Only one parameter, 
namely, the cost ijc , is assigned to each activity ( )ji, . The values of ijc  are fixed 
and pregiven. Each joint variant ∗G  is characterized by its cost value { }∗GC  
which is equal to the sum of the cost values of all activities entering this joint 
variant. 

The problem called “minimum weight AND/OR graph solution” [47] boils 
down to determining the joint variant with the minimal cost value. Sahni [140] 
proved that this problem is NP-complete. Since the problem is unconstrained 
and is applied to a particular case of the GAAN model, it can be regarded as a 
particular case of the general problem (9.2.1-9.2.2). If a particular problem is 
NP-complete, then the general problem is also NP-complete. Thus, to obtain a 
precise solution, one has to develop a lookover algorithm to single out all the 
joint variants. Note the techniques for the fully divisible CAAN model [57] 
cannot be applied straightforwardly to the GAAN network. 

 

§9.3  The general approach to the optimization problem’s solution 
The idea to enumerate the joint variants of the CAAN model [57] is based on 

introducing lexicographical order to the set of maximal paths in the CAAN 
graph. In the case of GAAN network the order on the set of paths has to be sub-
stituted for the order on the set of subgraphs. To develop the enumeration algo-
rithm, one may use the ideas of enumerating the so-called trajectories for as-
signment problems, or special matrices for traveling salesman problems [10-11]. 
Note that singling out the maximal trajectory for an assignment problem is simi-
lar to determining the joint variant with the maximal objective value. Since a tra-
jectory can be regarded as a vector and the latter, in turn, can be mapped onto a 
set of integer numbers, the trajectories can be enumerated. Similar ideas may be 
implemented in analyzing a GAAN network in order to enumerate and single 
out all the joint variants. 

To implement algorithms for the GAAN model analysis, one has to carry out 
consecutively the following three procedures: 

Procedure 1 
Modify the GAAN model so that each node (except the sink nodes) would be 
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the source of only one type of activity; i.e., only activities of either PA type, or 
ASA type, or ADA type have to leave the node. 

Procedure 2 
Modify the GAAN model to satisfy the following conditions: 
1. For each activity ( )ji, , the indices satisfy ji < . 
2. Any sink node number is greater than that of any internal node, i.e., the 

one that is not a sink node. 
After implementing Procedures 1 and 2 for the graph represented in Fig. 9.1, 

we obtain the graph shown in Fig. 9.2. The modified graph comprises 12=n  in-
ternal nodes. 

 
Figure 9.2.  The GAAN graph after implementing Procedures 1 and 2 

 

Procedure 3 
Examine all the nodes with alternative outcomes of ADA and ASA types and 

enumerate separately, for each of these nodes, all the activities leaving the node. 
If im  alternative outcomes ( ) ( ) ( )

imjijiji ,,...,,,, 21  leave alternative node i , each ac-
tivity receives a different ordinal number from 1 to im . The assignment idea is as 
follows: in case 21 jj >  activity ( )1, ji  receives a number greater than ( )2, ji . Thus, 
we have to set values 

imjjj ,...,, 21  in ascending order and assign values im,...,2,1  to 
the corresponding activities. Let ijk  be the number of alternative activities ( )ji, , 

iij mk ≤≤1 . 
The input information on each activity ( ) Aji ⊂,  entering the GAAN model 

( )ANG ,  (after implementing Procedures 1 to 3) comprises the following records: 
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i  j  ijp  ADA PA ijF  ( )jiQv , , 
wv ≤≤1  ijk  

Starting 
node 

Terminal 
node 

Outcome 
probabil-
ity (ASA 

type) 

Set 1 if 
( )ji,  is of 
ADA type 

Set 1 if 
( )ji,  is of 

PERT 
type 

( )ji, objec-
tive func-
tion value 

( )ji, con-
straints 

No. of  
( )ji, activi-

ties for 
ADA or 

ASA types 
 

Consider a GAAN type graph ( )ANG ,  after the implementation of Procedures 
1 and 2. Let M  be the number exceeding by 1 the maximal number of alterna-
tive outcomes (ASA or ADA types) leaving a node entering the graph. Let n  be 
the number of internal nodes (see Procedure 2). Consider the mapping of the set 
of joint variants ( ) ( )ANGANG ,, ⊂∗∗∗ , onto the set of n-dimensional vectors with 
coordinates ( )nfff ,...,, 21 , where if , ni ≤≤1 , Mf i ≤≤0 , are integers. Each coordi-
nate if  corresponds to node i . The correspondence rules are as follows: 

1. 0=if , if and only if node i  does not enter the joint variant. 
2. Mf i = , if node i  enters the joint variant and is the source of either ASA or 

PA outcome activities. 
3. iji kf = , if node i  enters the joint variant that comprises an alternative ac-

tivity ( )ji,  of ADA type leaving that node. Note that only one activity of 
ADA type may leave a node in a joint variant (stems from the definition 
of a joint variant). 

In order for all the joint variants to be singled out, they must be enumerated. 
It can be well-recognized that two different joint variants correspond to different 
vectors. The number of the joint variant is, essentially, the number of the corre-
sponding vector. Thus, to enumerate the joint variants, their corresponding vec-
tors have to be arranged in a certain order. We shall use the lexicographical or-
der as follows: 

If two joint variants ( )∗∗∗ ANG ,1 , ( )∗∗∗ ANG ,2  are mapped onto vectors 
( ) ( ) ( )( )11

2
1

11 ,...,, nffff ≡ , ( ) ( ) ( )( )22
2

2
12 ,...,, nffff ≡ , correspondingly, then ∗

1G  precedes 
∗
2G  if the first s  coordinates, 10 −≤≤ ns , in both vectors coincide, but the ( )1+s -

th coordinate satisfies ( ) ( )2
1

1
1 ++ < ss ff . Such an order enables the enumeration of all 

the joint variants to be done. 
 
§9.4  Algorithms for enumerating and determining the joint variants 
The procedure for enumerating and determining the joint variants consists of 

the following algorithms [9,67]: 
Algorithm I. Determination of the Minimal Number Vector from the GAAN 

Model ( )ANG , . 
Specify the algorithm for constructing the vector as follows: 

Step 1. Consider the node with the minimal number 1 entering the graph 
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( )ANG , . If this node has outcomes of PA or ASA types, set Mf =1 . In 
the case of ADA outcomes, set 11 =f . Set 1=j . 

Step 2. Set 1+= jj . 
Step 3. Examine all the activities entering node j . Let them be 

( ) ( ) ( )jijiji k ,,...,,,, 21 . Two cases are considered: 
     3.1 Among nodes kiii ,..,, 21  there is at least one node si , ks ≤≤1 , with 0≠

si
f . 

If node j  has outcomes of PA or ASA types, set Mf j = . If outcomes of 
ADA type leave node j , set 1=jf ; go to Step 4. 

     3.2 All the coordinates 
si

f , ks ≤≤1 , are equal 0. Set 0=jf . 
Step 4. If nj <  return to Step 2. 
Step 5. The algorithm terminates. 

It can be proven that there is no vector that would correspond to a joint vari-
ant and lexicographically precede the vector constructed according to Algorithm 
I. 

Lemma 9.2. The number obtained by implementing Algorithm I corresponds 
to the minimal joint variant, i.e., there is no joint variant with a number less than 
that obtained using Algorithm I. 

Proof. Obviously, Algorithm I develops a joint variant. Let ( )nffff ,...,, 21=  
be the joint variant number obtained according to Algorithm I, and 

( )nhhhh ,...,, 21=  is an arbitrary joint variant of the network. Show that hf ≤ . To 
do this, demonstrate that if the first k  coordinates of the vectors f  and h  are 
equal, then, for the ( )1+k -th coordinate, 11 ++ ≤ kk hf . 

Consider the first coordinate. If node 1 is of ASA- or PA-type, then Mf =1 , 
Mh =1 , and 11 hf ≤ . If node 1 is of ADA-type, then 11 =f , 11 ≥h . If 11 >h , Lemma 

9.2 holds. Otherwise, i.e., if 11 =h , assume that the first k  coordinates of vectors 
f  and h  are equal, and consider the ( )1+k -th coordinate. 

The following situations are possible. 
1. Node 1+k  does not belong to the joint variant f , i.e., 01 =+kf . But in this 

case node 1+k  does not belong to the joint variant h  as well, since in 
these joint variants, the first k  coordinates are equal; therefore, 01 =+kh  
and 11 ++ ≤ kk hf . 

2. Node 1+k  belongs to the joint variant f  and is of PA- or ASA-type. Then, 
Mf k =+1 . But node 1+k  belongs to the joint variant h  as well, and 
Mhk =+1 , i.e., 11 ++ ≤ kk hf . 

3. Node 1+k  belongs to the joint variant f  and is alternative. Then, accord-
ing to Algorithm I, 11 =+kf . But node 1+k  belongs to the joint variant h  as 
well, and 11 ≥+kh . Hence, 11 ++ ≤ kk hf . 

Thus, in all possible situations hf ≤ , i.e., the Lemma holds.        
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Algorithm II. Determination of the Minimal Number Vector with nq <  Co-
ordinates Given. 

Assume that there is a subset of vectors with known nq <  coordinates 
qfff ,...,, 21 . Let jq =+ 1 . Go to Step 3 of Algorithm I and proceed with that algo-

rithm from node j  until the end. Join the known coordinates qfff ,...,, 21  together 
with njqj fff ,...,, 11 ++=  obtained using Algorithm I. Thus, implementation of Algo-
rithm II results in creating vector ( )nqq ffffff ,...,,,...,, 121 +≡ . Note that the algo-
rithm cannot be applied to the case of any arbitrary given coordinates qfff ,...,, 21  
but only when the latter entity actually belongs to a subset of corresponding vec-
tors. 

Lemma 9.3. Given q coordinates, the joint variant obtained using Algorithm 
II is the minimal one. 

Proof. Since the first 1−j  coordinates correspond to a joint variant, and Al-
gorithm I provides coordinates that correspond to the joint variant, then the 
number obtained using Algorithm I is a joint variant. 

Let ( )njjj fffffff ,...,,,,...,, 1121 +−=  be the joint variant number obtained accord-
ing to Algorithm II and ( )njjj hhhhhhh ,...,,,,...,, 1121 +−=  be the number (joint variant) 
with 11 fh = , 22 fh = ,…, 11 −− = jj fh . Show that hf ≤ . 

The first 1−j  coordinates of vectors f  and h  are equal. Consider the j -th 
coordinate. 

The following situations are possible. 
1. Node j  does not belong to the joint variant f , i.e., 0=jf . But in this case 

node j  does not belong to the joint variant h  as well, since in these joint 
variants, the first 1−j  coordinates are equal; therefore, 0=jh  and jj hf ≤ . 

2. Node j  belongs to the joint variant f  and is of PA- or ASA-type. Then, 
Mf j = . But node j  belongs to the joint variant h  as well, and Mh j = , i.e., 

jj hf ≤ . 
3. Node j  belongs to the joint variant f  and is alternative. Then, 1=jf . But 

node j  belongs to the joint variant h  as well, and 1≥jh . Hence, jj hf ≤ . 
Thus, jj hf ≤ . If jj hf < , then hf <  and the Lemma is proved. If jj hf = , then 

11 hf = , 22 hf = ,…, 11 −− = jj hf , jj hf = , and, according to the algorithm, 11 ++ ≤ jj hf . 
But this means that hf ≤ , and the Lemma is proved.         

Algorithm III. Determination of the Next Lexicographically Ordered Vector. 
Given the f -th lexicographically ordered vector ( )nffff ,...,, 21= , define the 

steps of the algorithm as follows: 
Step 1.Set nj = . 
Step 2.In cases 0=jf , Mf j =  or jj mf =  (see Procedure 3) apply Step 4. Oth-
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erwise, proceed to the next step. 
Step 3.Set ii fg = , 11 −≤≤ ji , 1+= jj mg  and apply Algorithm II to obtain the 

minimal lexicographically ordered vector with given coordinates 
jggg ,..,, 21 . Go to Step 7. 

Step 4.Set 1+= jj . 
Step 5.If 1≥j , return to Step 2. Otherwise, proceed to the next step. 
Step 6.Applying the step means that vector f  is the maximal one. The algo-

rithm terminates. 
Step 7.Vector njj ggggg ,...,,,...,, 121 +  determined by implementing Algorithm II 

is the next lexicographically ordered vector. The algorithm terminates. 
Given the f -th lexicographically ordered vector ( )nffff ,...,, 21= , the algo-

rithm determines a new vector fg ≠  adjacent to f . It can be proven that there is 
no other vector fh ≠  that lexicographically exceeds vector f  but precedes g . 

Lemma 9.4. Let f  be the number of a joint variant and g  be the number de-
termined according to Algorithm III. Then, a joint variant corresponds to num-
ber g , and no joint variant does exist with a number h  such that ghf << . 

Proof. Let ( )nffff ,...,, 21=  be a joint variant of the network and 
( )ngggg ,...,, 21=  be a joint variant determined according to Algorithm III. 

If mf n = , where Mm <<0  and m is not equal the maximal number of arc 
leaving n , then ( )1,...,, 21 += nfffg , and, hence, the Lemma is true. 

Let the last k  coordinates of vector f  be equal either 0 , or M , or the maxi-
mal number of arc, while the ( )kn − -th coordinate equals m, where Mm <<0  
and m is not equal the maximal number of arc leaving node kn − . 

In compliance with Algorithm III, the first 1−− kn  coordinates of vectors f  
and g  coincide, while 1+=− mg kn . 

Consider an arbitrary variant ( )nhhhh ,...,, 21=  and show that either fh < , or 
hg < . 
If any of the first 1−− kn  coordinates of h  does not coincide with the corre-

sponding coordinates of vectors g  and f , then either fh < , or gh > . 
Suppose that the first 1−− kn  coordinates of vectors h , f , and g  coincide. 

Then, mh kn =−  or 1+=− mh kn . Otherwise, we would have either fh < , or gh > . 
If mh kn =− , i.e., knkn fh −− = , then fh < , since vector f  is the maximum over 

vectors whose first kn −  coordinates are equal knfff −,...,, 21 , respectively. In fact, 
the last k  non-vanishing coordinates take the maximal values. 

If 1+=− mh kn , then 11 gh = , 22 gh = ,…, knkn gh −− = . But g is the minimal number 
within the first kn −  coordinates knggg −,..,, 21  and, hence, hg < .       

Therefore, either fh < , or gh > . 
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Algorithm IV. Determination of a Joint Variant Corresponding to Vector f . 
The initial information of this algorithm is the input information on graph 

( )ANG ,  and vector f . The step-by-step procedure of the algorithm is as follows: 
Step 1. Set 1=i . 
Step 2. Examine if . If 0=if , node i  does not enter the joint variant; proceed to 

Step 5. Otherwise, apply the next step. 
Step 3. If if  satisfies Mmf i <=≤1 , node i  enters the joint variant; select for 

the joint variant activity ( )ji,  satisfying mk ij = ; proceed to Step 5. Oth-
erwise, apply the next step. 

Step 4. If 0=if , node i  enters the joint variant; select for the joint variant all 
the activities ( )ji,  leaving node i . 

Step 5. Set 1+= ii . 
Step 6. If ni < , return to Step 2. Otherwise, proceed to the next step. 
Step 7. Activities being selected at Steps 3 and 4 form the corresponding joint 

variant ∗G . The algorithm terminates. 
Thus, all the joint variants entering the GAAN model ( )ANG ,  can be deter-

mined by repeatedly implementing Algorithms I, III (until the maximal vector f  
is obtained) and IV. Algorithm II is auxiliary. 

Algorithm V. Determination of Full Variants ( )∗∗∗∗∗∗ ANG ,  Entering a Routine 
Joint Variant ( ) ( )ANGANG ,, ⊂∗∗∗ . 

After obtaining a routine joint variant ( )∗∗∗ ANG ,  (see Algorithm IV) define 
the step-by-step procedure to determine its full variants: 
Step 1. For certain activities ( ) ( )∗∗∗∈ ANGji ,,  change their type as follows: 
     1.1 Stochastic outcomes of ASA type - change their type to ADA: their 

probability outcomes ijp  are temporarily suspended and substituted by 
1; 

     1.2 Alternative outcomes of ADA type (note that in a joint variant, no more 
than one activity of ADA type leaves a node) are amended to a new 
type that from this time on we will refer to as a “deterministic activity” 
with the ADA type mark and outcome probabilities 1; 

     1.3 Activities of PA type remain unchanged. 
Step 2. Introduce the following changes in Algorithm I: 
     2.1 When considering the node with number 1 (Step 1 of Algorithm I) set 

Mf =1  in the case of PA-type outcomes. If the outcome is of ASA type 
set ijkf =1 , where ijk  is the number of activity ( )ji,  in the joint variant 

( )∗∗∗ ANG , . In case of ADA outcome activities, set 11 =f . Set 1=j . 
     2.2 Introduce the same amendments in Step 3.1 of Algorithm I. 
Step 3. Apply repeatedly Algorithms I (in its amended version - see Step 2), II, 

III and IV (to single out all full variants ∗∗G  entering the joint variant 
∗G ). Note that each full variant is a subnetwork of PERT type without 
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any alternative nodes. 
Step 4. For each full variant ( )∗∗∗∗∗ ∈ ANGG , : 
     4.1 Calculate objective ( )∗∗GF ; 
     4.2 Calculate the product of all probabilities ijp  for all activities ( ) ∗∗∈ Gji,  

(previously removed at Step 1) to determine { }∗∗GPr . 
     4.3 Calculate constraint value ( )∗∗GQ v , wv ≤≤1 . 
Step 5. Calculate objective (9.2.1) together with constraint values (9.2.2) for 

the routine joint variant ( )∗∗∗ ANG , . 
Step 6. Implement repeatedly Steps 1 to 5 for each joint variant ( )ANGG ,∈∗  to 

choose the optimal joint variant. 
Algorithm VI. Determination of Initial Joint and Full Variants. 
Note that the implementation of inverse transformation from modified graphs 
( )∗∗∗ ANG ,  to initial ones does not result in changing values { }∗∗GF , { }∗∗GPr  and 
{ }∗∗GH v , wv ≤≤1 , for full variants as well as values (9.2.1-9.2.2) for joint vari-

ants. But in order to introduce proper control actions, it is preferable to deal with 
initial graphs. 

Algorithm VI can be easily developed on the basis of examining Procedures 
1 and 2 and introducing opposite actions. 

Since implementation of Algorithms I and III results in determining the 
minimal number joint variant, and the joint variant with the next number, then 
the use of Algorithms I, III, IV and V enables the enumeration lookover of all 
joint variants, as well as full variants for each joint variant. 

One of the basic advantages of enumeration algorithms boils down to the 
possibility of presenting the algorithm in the form of parallel computations 
[9,15,127]. It is readily seen that the exact algorithm of solving the problem of 
optimizing GAAN model can be presented in this form. For example, let i  be 
the ADA-type node with the minimal number. Then the set of joint variants with 

1=if  and that with 2=if  can be treated independently. 
 
§9.5  Numerical example 
The management is faced with the development of an R&D project repre-

sented by the GAAN type network in Fig. 9.1. The objective to be optimized is 
the project’s duration with two upper boundary constraints, the project’s cost 
and the project’s entropy. The initial data of each activity is presented in Tab. 
9.1 (values ijt  and ijc  are constant). The mean cost of the project should not ex-
ceed $55,000, while the entropy of the project should not exceed 1. The man-
agement has to determine the optimal decision policy, i.e., to find the optimal 
joint variant together with determination of optimal alternative outcomes of 
ADA type from every decision-making node reached during the realization of 
the project. Note that the entropy value of a joint variant ( )ANGG ,∈∗  may be 
calculated as  
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Table 9.1.  Initial data for the GAAN type network 
No. ( )ji,  ASA ( ijp ) ADA PA ijt  (months) ijc  ($1,000) 

1 ( )2,1  – 1 – 4 6 
2 ( )3,1  – 1 – 2 5 
3 ( )4,1  0.3 – – 8 12 
4 ( )5,1  0.7 – – 6 10 
5 ( )9,1  – – 1 4 15 
6 ( )6,2  – – 1 11 9 
7 ( )7,2  – 1 – 15 6 
8 ( )8,2  – 1 – 4 7 
9 ( )7,3  0.6 – – 3 14 

10 ( )8,3  0.4 – – 6 10 
11 ( )9,3  – – 1 8 12 
12 ( )10,3  – 1 – 16 9 
13 ( )9,4  – 1 – 18 7 
14 ( )10,4  – – 1 1 4 
15 ( )11,5  – – 1 7 3 

 

The results of implementing Procedures 1 and 2 are given in Tab. 9.2. It can 
be well-recognized that this is in fact the input information for Algorithm I. Note 
that 12=n  and 3=M . 

The results of sequential application of Algorithms I to V are presented in 
Tab. 9.3. Applying Algorithm I provides the minimal vector (3, 1, 3, 3, 3, 0, 1, 
3, 3, 1, 0, 0) that corresponds to the first joint variant comprising two full vari-
ants. Their corresponding vectors are shown in Tab. 9.3. Implementing algo-
rithms III to V results in calculating the parameters 5.20=T  and 2.54=C  of the 
joint variant ∗

1G . The parameters of other joint variants are shown in Table 9.3. 
Three of the joint variants, namely, ∗

1G , ∗
3G  and ∗

4G  satisfy both the cost con-
straint { } 000,55$≤∗GC  and the entropy constraint { } 1<∗GEnt , while the other 
three variants ∗

2G , ∗
5G  and ∗

6G  exceed these constraint levels. Choosing the joint 
variant with the minimal expected time and giving due consideration to both 
constraints results in choosing joint variant ∗

4G  with parameters monthsT 3.18= , 
600,54$=C  and 61.0=Ent . The optimal joint variant (for the initial graph) is 

demonstrated in Fig. 9.3. 
Thus, the decision-making process of controlling the regarded project boils 

down to the following: 
a) at the beginning of the project (node 1), we choose activity ( )2,1  from two 

alternative outcomes, ( )2,1  and ( )3,1 , of ADA type; 
b) if, in the course of the project realization, node 4  is reached, direction 

( )10,4  has to be chosen; 
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c) when node 2  is reached, we choose direction ( )8,2 . 
 

Table 9.2.  Input information for Algorithm I 
No. ( )ji,  ASA ADA PA ijt  ijc  ijk  
1 (1,2) – – 1 0 0 – 
2 (1,3) – – 1 0 0 – 
3 (1,4) – – 1 0 0 – 
4 (2,5) – 1 – 4 6 1 
5 (2,6) – 1 – 2 5 2 
6 (3,16) – – 1 4 15 – 
7 (4,7) 0.3 – – 8 12 1 
8 (4,8) 0.7 – – 6 10 2 
9 (5,9) – – 1 0 0 – 

10 (5,10) – – 1 0 0 – 
11 (6,11) – – 1 0 0 – 
12 (6,12) – – 1 0 0 – 
13 (7,16) – 1 – 16 9 1 
14 (7,17) – 1 – 18 7 2 
15 (8,17) – – 1 1 4 – 
16 (8,18) – – 1 7 3 – 
17 (9,13) – – 1 11 9 – 
18 (10,14) – 1 – 5 6 1 
19 (10,15) – 1 – 4 7 2 
20 (11,14) 0.6 – – 3 14 1 
21 (11,15) 0.4 – – 6 10 2 
22 (12,16) – – 1 8 12 – 
 

It can be well-recognized that if time durations ijt  have random values, the 
determination of the optimal joint variant can be carried out by simulation [49-
57]. 

 

§9.6  Conclusions 
The following conclusions can be drawn from the Chapter: 
1. It can be well-recognized that the GAAN model covers a very broad spec-

trum of R&D projects. Note that the Eisner’s R&D projects [37] are 
merely a particular case of the GAAN model: to obtain the Eisner’s net-
work, one has to remove from the GAAN model alternative outcomes of 
ADA type. Decision-CPM models can be obtained by removing stochas-
tic alternative outcomes of ASA type from the GAAN model. Note that 
the GERT model is in fact also a particular case of the GAAN network. 

2. The GAAN model fully comprises the CAAN network. In order to obtain 
the latter one has only to withdraw Property III from specifications out-
lined in §9.1. 

3. The GAAN model is essentially more complicated than the CAAN model. 
But GAAN models cover unique innovative projects which cannot be 
monitored by CAAN techniques (see, e.g., [67]). 
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Table 9.3.  Determining parameters of joint and full variants 
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

Joint var. # 1 2 3 4 5 6 
Full var. # - 1 2 - 1 2 - 1 2 - 1 2 - 1 2 3 4 - 1 2 3 4 
f1 PA 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
f2 ADA 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 
f3 PA 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
f4 ASA 3 1 2 3 1 2 3 1 2 3 1 2 3 1 1 2 2 3 1 1 2 2 
f5 PA 3 3 3 3 3 3 3 3 3 3 3 3 0 0 0 0 0 0 0 0 0 0 
f6 PA 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 3 3 3 3 3 3 
f7 ADA 1 1 0 1 1 0 2 2 0 2 2 0 1 1 1 0 0 2 2 2 0 0 
f8 PA 3 0 3 3 0 3 3 0 3 3 0 3 3 0 0 3 3 3 0 0 3 3 
f9 PA 3 3 3 3 3 3 3 3 3 3 3 3 0 0 0 0 0 0 0 0 0 0 
f10 ADA 1 1 1 2 2 2 1 1 1 2 2 2 0 0 0 0 0 0 0 0 0 0 
f11 ASA 0 0 0 0 0 0 0 0 0 0 0 0 3 1 2 1 2 3 1 2 1 2 
f12 PA 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 3 3 3 3 3 3 

C{G*} 54.2 55.2 53.6 54.6 62.7 62.0 
T{G*} 20.5 17.7 21.1 18.3 16.3 16.9 

Ent{G*} 0.61 0.61 0.61 0.61 1.28 1.28 

P{G**} 0 0.
3 

0.
7 0 0.
3 

0.
7 0 0.
3 

0.
7 0 0.
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0.
7 0 0.

18
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C{G**}  57 53  58 54  55 53  56 54  67 64 63 59  65 61 63 59 
T{G**}  24 19  24 15  26 19  26 15  24 24 13 13  26 26 13 13 

 

 
Figure 9.3.  The optimal joint variant ∗

4G  for the initial graph 
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Chapter 10.  Optimization of a Large-Size Alternative CAAN Model 
by Approximate Methods 

 

§10.1  The CAAN model optimization problem and its complexity 
Recall some notions associated with the CAAN model. 
A CAAN model is finite, single-source oriented activity-on-arc network 

( )ANG ,  with the following properties: 
1. Network ( )ANG ,  has one source node and at least two sink nodes. 
2. The set of nodes N  (excluding the sink nodes) is split into two non-

intersecting subsets N  and N : 
a) Type N  comprises nodes with the “exclusive or” emitter with stochas-

tic alternatives. Thus, each node Ni ∈  corresponds to several (more 
than one) probability values ijp  such that 10 << ijp  and 1=∑

j
ijp . These 

values are assigned to alternative stochastic activities ( )ji,  leaving 
node i  and entering node j . Thus, choosing activity ( )ji,  results in the 
realization of a random choice from a full group of events. 

b) Type N  comprises nodes also with the “exclusive or” emitter, but with 
deterministic alternative outcomes. Choosing an alternative activity is 
the sole prerogative of the project management. 

In what follows, we shall call nodes Nn ∈  stochastic nodes and Nn ∈  deci-
sion nodes. 

A joint variant of graph G  is subgraph 1G  satisfying the following conditions: 
1) 1G  has a single source coincident with that of graph G ; 
2) if 1Gi ∈  and Ni ∈ , then 1G  contains all the arcs leaving node i ; 
3) if 1Gi ∈  and Ni ∈ , then, in 1G  only one arc leaves node i . 
The realization (full variant) of a joint variant is a subgraph with a single 

source coincident with that of the joint variant and with a single arc leaving each 
node. In other words, the realization of the joint variant is a path connecting the 
source with one of the sink nodes. 

The probability of realization is the product of probabilities ijp  of stochastic 
alternative arcs ( )ji,  belonging to this realization. 

To each arc ( ) Gji ∈, , two non-negative deterministic values are assigned: ijc  
(cost) and ijt  (time). 

Let ( )sc  be the sum of costs ijc  of all arcs of realization s , ( )st  the sum of 
time values of all arcs of realization s ,  and ( )sp  the probability of realization s . 

The average sum ( ) ( ) ( )spscGc
Gs

∑
∈

=
1

1  over all realizations of a joint variant 1G  is 

called the cost of the joint variant. 
The average sum ( ) ( ) ( )spstGt

Gs
∑
∈

=
1

1  over all realizations of a joint variant 1G  is 
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called the time of the joint variant. 
The problem of choosing an optimal joint variant results in choosing the pro-

ject’s optimal direction to the target. The problem is as follows: 
Determine the optimal joint variant { }1GF ∈∗  such that 

( )
{ }

( )[ ]FcFc
GF 1

min
⊂

∗ =   (10.1.1) 
subject to 

( ) hFt ≤∗ . (10.1.2) 
Theorem 10.1. Problem (10.1.1-10.1.2) is NP-complete [75]. 
Proof. Transform the Knapsack problem [47] which is NP-complete, into 

problem (10.1.1-10.1.2). Consider a finite enumerated set of pairs ( )ii tc , , ri ≤≤1 , 
with given non-negative real values ic  and it , together with two pregiven posi-
tive values C  and T . The Knapsack problem [47] boils down to determining a 
subset { }rW ,...,2,1⊂  such that 







≥

≤

∑
∑

∈

∈

Wi
i

Wi
i

Tt

Cc

.
 (10.1.3) 

Let { } WrW \,...,2,1=  and ∑
=

=
r

i
itD

1

. It can be well-recognized that the Knap-

sack problem is equivalent to that of determining a set { }rW ,...,2,1⊂  such that 







−≤

≤

∑
∑

∈

∈

Wi
i

Wi
i

TDt

Cc

.
 (10.1.4) 

On the other hand, problem (10.1.4) is equivalent to the following particular 
case of problem (10.1.1-10.1.2). Let ( )ANG ,  be CAAN model with 

{ }121 ,...,, += rnnnN , ∪
r

i
iAA

1=

= , where { }∗
++= 1,1, , iiiiiA αα , 1, +iiα  and ∗

+1,iiα  being parallel 

arcs with source node in  and terminal node 1+in . Let NN = , i.e., the subset of sto-
chastic nodes is empty. For all ri ,...,2,1= , set the cost of arc 1, +iiα  (respectively, 

∗
+1,iiα ) equal to ic  (respectively, 0 ), while the time values of both parallel arcs are 

0  and it . Set also TDh −= . Thus, the NP-complete Knapsack problem is clearly 
equivalent to a particular case of problem (10.1.1-10.1.2), namely: in each node 

in , ri ≤≤1 , choose an outcome direction, i.e., determine subset W , to satisfy 

∑
∈

≤
Wi

i Cc , ∑
∈

≤
Wi

i ht . Thus, the above particular case of problem (10.1.1-10.1.2) is 

an NP-complete problem. That means, in turn, that the general problem (10.1.1-
10.1.2) is also NP-complete.             

Since problem (10.1.1-10.1.2) is NP-complete, the optimal solution can be 
obtained only by means of a lookover algorithm. Such an algorithm was devel-
oped in [57]. But for large-size alternative networks a scanning lookover, to-
gether with calculating for each joint variant its cost and time values, might re-
quire enormous computational time. To overcome this obstacle, we will outline 
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an approximate method based on general ideas of two-parameter combinatorial 
optimization [9-12,75,110]. 

It can be well-recognized that problem (10.1.1-10.1.2) relates to a broad vari-
ety of two-parameter combinatorial optimization problems. The latter include 
various assignment problems, minimum spanning tree problems [12], etc. 

To be consistent with the general theory outlined in [9-12], we will call a 
two-parameter combinatorial optimization (TPCO) problem any problem that 
has a finite set P , a finite family S  of subsets of P , a non-negative threshold h , 
and two non-negative real-valued functions +→ RPy :  (e.g., cost) and +→ RPx :  
(e.g., time). One seeks a solution SF ∈∗  with ( ) ( ) ( ){ }hFxSFFyFy ≤∈=∗ ,:min , 
where, for any SF ∈ , relations ( ) ( )∑

∈

=
Ff

fxFx , ( ) ( )∑
∈

=
Ff

fyFy  hold, f  being an 

element entering F . 
An important assumption is implied in the problem, namely: there exists a 

precise algorithm (it is called Algorithm A) which delivers the optimal solution 
to the following one-parameter optimization problem: 

Determine separately SF ∈'  with ( ) ( ){ }SFFyFy ∈= :min' , and SF ∈"  with 
( ) ( ){ }SFFxFx ∈= :min" . 

It goes without saying that solving a one-parameter optimization problem re-
quires less computational time and is essentially easier than solving the TPCO 
problem. 

It can be well-recognized that problem (10.1.1-10.1.2) is nothing but a par-
ticular case of the general problem outlined in [9-12]: the set of activities A  of 
the CAAN model ( )ANG ,  is set P , and real-valued functions ( )Fx  and ( )Fy  are 
the time and cost values assigned to activity f  entering a routine joint variant 

SF ∈ , where S  is the set of joint variants. One has to determine the possibility 
of solving the one-parameter optimization problem, i.e., to develop Algorithm A 
applicable to CAAN models. The corresponding algorithm will be outlined be-
low. 

 
§10.2  Approximate algorithm for the CAAN model optimization problem 

If only one parameter ijw  is assigned to each activity ( ) ( )ANGji ,, ∈ , the opti-
mal joint variant ( )ANGF ,∈∗ , ( ) ( ) { }{ }1:min GFFwFw ∈=∗  can be obtained using  

Theorem 10.2. The optimal joint variant ∗F  can be determined by recurrent 
relations 

( )jijji vwv += min   (10.2.1) 
for decision nodes and  

( )jij
j

iji vwpv += ∑   (10.2.2) 
for stochastic alternative nodes, with initial conditions 0=v  for sink nodes. 

Proof. In what follows, call values ( )sw  and ( )1Gw  the weights of realization 
s  and joint variant 1G , respectively. First, show that the theorem holds for a joint 
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variant, i.e., that the sum ( ) ( )swsp
s

∑  is equal to 1v  for a source node obtained 

through the use of recurrent relations. Note that for any variant, the above for-
mulae take the form jij vwv +=1  for decision nodes and ( )∑ +=

j
jijij vwpv1  for sto-

chastic nodes. This is because in a joint variant, only one deterministic alterna-
tive leaves a decision node. 

Carry out the proof by induction on the number n  of internal nodes of a joint 
variant. 

For 1=n , the assertion is obviously true. Assume that it holds for any kn ≤ . 
Let a variant 1G  have 1+k  internal nodes. Consider two cases. 

1. The source is a decision node. Examine the subnetwork 2G  of variant 1G  
including all the arcs and nodes of that joint variant, except the source 
node and the arc leaving that node. For 2G  the theorem is true, since the 
number of internal nodes entering 2G  equals k . This implies that 

( ) ( )''
'

2 swspv
s
∑= , where 's  is a realization of subnetwork 2G , ( )'sp  and ( )'sw  

are the probability and the weight of that realization, respectively, and 2v  
is determined by means of the recurrent relation and equals the weighted 
sum. Note that since ( )2,1  is a deterministic activity and ( ) '2,1 ss ∪= , rela-
tions ( ) ( )'spsp =  and ( ) 1'

'

=∑
s

sp  hold. Then 

( ) ( ) ( ) ( ) ( )

( ) ( )[ ] ( ) ( ).''

'''''

12
'

'
12

''
122121

swspswwsp

swspwspswspwvwv

ss

sss

∑∑

∑∑∑
=+=

=+=+=+=
 

2. The source is a stochastic node. Assume that two arcs ( )2,1  and ( )3,1  are 
leaving that node. Consider subnetworks 2G  and 3G , where 2G  is the 
maximal subnetwork with node 2 , and 3G  is the maximal subnetwork 
with a source in node 3 . Then, ( ) ( )''

'
2 swspv

s
∑=  and ( ) ( )""

"
3 swspv

s
∑= . Note 

that since 2G  and 3G  are maximal subnetworks, they include all possible 
realizations which form a full group of events for both subnetworks. 
Thus, relations ( ) 1'

'

=∑
s

sp  and ( ) 1"
"

=∑
s

sp  hold. Further, we obtain 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )[ ] ( ) ( )[ ] .""''

""''

13
"

1312
'

12

"
1313

'
121231313212121

swwsppswwspp

swspwpswspwpvwpvwpv

ss

ss

+++=

=







++








+=+++=

∑∑

∑∑
 

It can be well-recognized that since { } ( ) { }[ ] ( ) { }[ ]"3,1'2,1 sss ∪∪∪≡  and two arbi-
trary realizations ( ) { }[ ]'2,1 ss ∪∈∗  and ( ) { }[ ]"3,1 ss ∪∈∗∗  are always different, relation 

( ) ( )[ ] ( ) ( )[ ] ( ) ( )swspswwsppswwspp
sss

∑∑∑ =+++ ""'' 13
"

1312
'

12   holds. 

The case of more than two arcs can be easily examined by induction. 
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Let us now prove that the weight of the joint variant obtained by means of 
recurrent relations (10.2.1-10.2.2) is the minimal one. For the proof, we shall use 
induction on the number n  of internal nodes of the initial network ( )ANG , . For 

1=n  the assertion holds. Assume that it holds for any kn ≤ . Suppose that two 
arcs ( )2,1  and ( )3,1  are leaving the source node, and consider two cases. 

1. The source is a decision node. Examine two maximal subnetworks with 
sources in nodes 2  and 3 . Let 2v  and 3v  be the weights of optimal joint 
variants of those subnetworks. Show that { }3132121 ;min vwvwv ++=  is the 
weight of the optimal joint variant. It has been demonstrated earlier that 1v  
is a weighted path function. Suppose that the weight v  of the optimal joint 
variant is less than 1v . Note that relation ( ) ( )swspv

s
∑=  holds over all reali-

zations of the joint variant. Let arc ( )2,1  belong to the optimal joint vari-
ant. Then 

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )''' 121212 swspwswspwspswwspswspv
sssss

∑∑∑∑∑ +=+=+== . 

Note that since ( )2,1  is a deterministic activity and { } ( ) { }[ ]'2,1 ss ∪≡ , relation 
( ) ( ) ( ) ( )'''

'

swspswsp
ss
∑∑ =  holds. Since, by induction assumption, 

( ) ( ) 2
'

'' vswsp
s

=∑ , 212 vwv += . If 1vv < , then { }3132121212 ;min vwvwvvw ++=<+ , 

and we obtain an obvious contradiction. Therefore, 1vv = . 
2. The source node is an alternative stochastic node. Examine two maximal 

subnetworks with sources in nodes 2  and 3 . Let 2v  and 3v  be the weights 
of optimal joint variants of these subnetworks. Show that 

( ) ( )31313212121 vwpvwpv +++=  is the weight of the optimal joint variant. It 
has been demonstrated earlier that 1v  is the path-weighted average. Sup-
pose that the weight v  of the optimal joint variant is less than 1v . As was 
shown above,  

( ) ( ) ( ) ( ) ( ) ( )







++








+== ∑∑∑ ""''

"
1313

'
1212 swspwpswspwpswspv

sss

.  Since 

( ) ( ) 2
'

'' vswsp
s

≥∑ , and ( ) ( ) 3
"

"" vswsp
s

≥∑ , relation 

( ) ( ) 13131321212 vvwpvwpv =+++≥  holds. The evident contradiction proves 
that 1vv =  holds. The case of more than two subnetworks can be easily ex-
amined by induction.            

Thus, to obtain the joint variant with the minimal ( )Fw , the corresponding 
Algorithm A singles out all the optimal outcome sat each decision node. 

Several basic assumptions are implied by the algorithm, which carries out the 
transformation of the initial graph ( )ANG ,  into the optimal joint variant: 

1. The optimal joint variant comprises the source node. 
2. If a decision node belongs to the optimal joint variant, then the node for 
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which recurrent relation (10.2.2) delivers the minimum, also belongs to 
the optimal joint variant. 

3. If a stochastic alternative node belongs to the optimal joint variant, then 
all the nodes participating in recurrent relation (10.2.2) also belong to the 
optimal joint variant. 

Obviously, the subnetwork obtained by using recurrent relations (10.2.1-
10.2.2) is a joint variant, and the applications of these relations to the initial 
network ( )ANG ,  results in determining just this joint variant. We have proven 
that the weight of this joint variant is the minimal. 

Theorem 10.2 enables developing a one-parameter algorithm which will be 
further considered on the basis of a numerical example. Developing the algo-
rithm enables, in turn, establishing a two-parameter algorithm for solving the 
optimization problem of the CAAN model. The algorithm outlined below is, es-
sentially, a transformation of TPCO algorithm for the case of the CAAN model. 
The step-wise procedure of the algorithm is as follows: 
Step 1. Assign two parameters, cost ijc  and time ijt , to each activity 

( ) ( )ANGji ,, ∈ . 
Step 2. Determine the minimal cost joint variant F , i.e., 

( ) ( ){ }GGGcFc ∈= 11 :min . 
Step 3. If the number of such joint variants is more than one, select the vari-

ant with the minimal time. 
Step 4. If the time of the chosen joint variant does not exceed h , i.e., ( ) hFt ≤ , 

then this joint variant is the optimal one. Go to Step 15. 
Step 5. Determine the minimal time joint variant H , i.e., 

( ) ( ){ }GGGtHt ∈= 11 :min . 
Step 6. If ( ) hFt > , then the problem has no solution. The algorithm imple-

ments an emergency stop. 
Step 7. Set ( ) ( )FcHca −= , ( ) ( )HtFtb −= , ( ) ( ) ( ) ( )FcHtHcFtd −= . 
Step 8. For each arc ( ) Gji ∈,  calculate ijijij cbtaw ⋅+⋅=  
Step 9. For the network G  with parameters ijw  assigned to each activity 

( ) ( )ANGji ,, ∈  determine the minimal weight joint variant S , i.e., 
( ) ( ){ }GGGwSw ∈= 11 :min . 

Step 10. If ( ) ( )ScbStad ⋅+⋅=  and ( ) hSt ≤ , then S  is an appropriate solution. Set 
SH = . Go to Step 14. 

Step 11. If ( ) ( )ScbStad ⋅+⋅=  and ( ) hSt > , then H  is an appropriate solution. 
Set SF = . Go to Step 14. 

Step 12. If ( ) ( )ScbStad ⋅+⋅>  and ( ) hSt ≤ , then set SH = . Return to Step 7. 
Step 13. If ( ) ( )ScbStad ⋅+⋅>  and ( ) hSt > , then set SF = . Return to Step 7. 
 

Step 14. Calculate the relative error ( ) ( )( ) ( )( )
( ) ( )( ) ( ) ( )( )HthFchFtHc

HthFcHc
−+−

−−
=∆ . 

Step 15. The algorithm terminates. 
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It can be well-recognized that relative error ∆  represents, in fact, the per-
formance ratio of the algorithm when applied to a particular CAAN optimization 
problem. Note that it can be proved [12] that d  can never become less than 

( ) ( )ScbSta ⋅+⋅ . 
 
§10.3  Numerical example 
Tab. 10.1 [82] presents the initial data for a CAAN model ( )ANG , . In the Ta-

ble, column ijp  designates probabilities of arcs leaving alternative stochastic 
nodes; column ijq  indicates arcs leaving decision nodes, by marking them with 
“1“. The optimization problem boils down to determining the minimal cost joint 
variant with the time constrained by the upper boundary 26 . In other words, one 
has to determine the optimal joint variant ∗F  satisfying 

( ) ( ) ( ){ }ANGGGcFc ,:min 11 ⊂=∗  
and ( ) 26≤∗Ft . 

 

Table 10.1.  Initial data for the CAAN type network 
No. ( )ji,  ijp  ijq  ijt  (months) ijc  ($1,000) 

1 ( )2,1  – 1 2 8 
2 ( )3,1  – 1 4 6 
3 ( )4,1  – 1 3 9 
4 ( )5,2  – 1 5 7 
5 ( )6,2  – 1 8 2 
6 ( )6,3  0.4 – 7 3 
7 ( )7,3  0.6 – 6 5 
8 ( )7,4  – 1 9 1 
9 ( )8,4  – 1 4 3 

10 ( )9,5  0.5 – 10 4 
11 ( )10,5  0.5 – 12 2 
12 ( )10,6  – 1 14 8 
13 ( )11,6  – 1 15 5 
14 ( )11,7  – 1 13 6 
15 ( )12,7  – 1 16 1 
16 ( )12,8  0.8 – 14 2 
17 ( )13,8  0.2 – 11 7 

 

To solve the optimization problem, we shall use the two-parameter approxi-
mate algorithm outlined in the previous section. For the sake of simplicity, in the 
following calculations certain obvious steps from the algorithm procedure are 
being omitted. 
Step 2. Determine the minimum cost joint variant. The initial conditions for the 

recurrence formulae are 0131211109 ===== vvvvv . For the rest, we obtain 



 
 

177 

( ) ( ) ( ) ( ) 3028.0072.01212,812,81313,813,88 =+⋅++⋅=+++= vcpvcpv ; 

{ } 106;01min;min 1111,71112,77 =++=






 ++= vcvcv ; 

{ } 508;05min;min 1010,61112,66 =++=






 ++= vcvcv ; 

( ) ( ) ( ) ( ) 3045.0025.099,59,51010,510,55 =+⋅++⋅=+++= vcpvcpv ; 

{ } 211;33min;min 77,488,44 =++=






 ++= vcvcv ; 

( ) ( ) ( ) ( ) 8.7534.0156.066,36,377,37,33 =+⋅++⋅=+++= vcpvcpv ; 

{ } 737;52min;min 55,266,22 =++=






 ++= vcvcv ; 

{ } 1178;76;29min;;min 22,133,144,11 =+++=






 +++= vcvcvcv . 

The minimal cost joint variant is therefore ( ) ( ) ( ){ }12,7;7,4;4,1=F  with pa-
rameters ( ) 11=Fc , ( ) 28=Ft . 

Step 5. Determine the minimal time joint variant. The initial conditions are the 
same: 0131211109 ===== vvvvv . For the rest, we obtain 

( ) ( ) ( ) ( ) 2.130148.00112.01212,812,81313,813,88 =+⋅++⋅=+++= vtpvtpv ; 

{ } 13013;016min;min 1111,71112,77 =++=






 ++= vtvtv ; 

{ } 14014;015min;min 1010,61111,66 =++=






 ++= vtvtv ; 

( ) ( ) ( ) ( ) 110105.00125.099,59,51010,510,55 =+⋅++⋅=+++= vtpvtpv ; 

{ } 2.17139;2.134min;min 77,488,44 =++=






 ++= vtvtv ; 

( ) ( ) ( ) ( ) 8.191474.01366.066,36,377,37,33 =+⋅++⋅=+++= vtpvtpv ; 

{ } 16115;148min;min 55,266,22 =++=






 ++= vtvtv ; 

{ } 18162;8.194;173min;;min 22,133,144,11 =+++=






 +++= vtvtvtv . 

The minimal time joint variant is therefore ( ) ( ) ( ) ( ){ }10,5;9,5;5,2;2,1=H  with 
parameters ( ) 18=Hc , ( ) 10=Ht . 

Step 7. Calculate values 
( ) ( ) 71118 =−=−= FcHca , 
( ) ( ) 101828 =−=−= HtFtb , 
( ) ( ) ( ) ( ) 30611181828 =⋅−⋅=−= FcHtHcFtd . 

Step 8. For each arc ( )ji,  calculate ijijijijij ctcbtaw ⋅+⋅=⋅+⋅= 107 : 
 948102712 =⋅+⋅=w ; 

886104713 =⋅+⋅=w ; 
1119103714 =⋅+⋅=w ; 

11041010759 =⋅+⋅=w ; 
10421012710,5 =⋅+⋅=w ; 
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1057105725 =⋅+⋅=w ; 
762108726 =⋅+⋅=w ; 
793107736 =⋅+⋅=w ; 
925106737 =⋅+⋅=w ; 
731109747 =⋅+⋅=w ; 
583104748 =⋅+⋅=w ; 

17881014710,6 =⋅+⋅=w ; 
15551015711,6 =⋅+⋅=w ; 
15161013711,7 =⋅+⋅=w ; 
12211016712,7 =⋅+⋅=w ; 
11821014712,8 =⋅+⋅=w ; 
14771011713,8 =⋅+⋅=w . 

Step 9. Determine the minimal weight joint variant with the initial conditions 
for the recurrence formulae 0131211109 ===== vvvvv : 

( ) ( ) ( ) ( ) 8.12301188.001472.01212,812,81313,813,88 =+⋅++⋅=+++= vwpvwpv ; 

{ } 1220151;0122min;min 1111,71112,77 =++=






 ++= vwvwv ; 

{ } 1550178;0155min;min 1010,61112,66 =++=






 ++= vwvwv ; 

( ) ( ) ( ) ( ) 10701105.001045.099,59,51010,510,55 =+⋅++⋅=+++= vwpvwpv ; 

{ } 8.18112273;8.12358min;min 77,488,44 =++=






 ++= vwvwv ; 

( ) ( ) ( ) ( ) 222155794.0122926.066,36,377,37,33 =+⋅++⋅=+++= vwpvwpv ; 

{ } 212107105;15576min;min 55,266,22 =++=






 ++= vwvwv ; 

{ } 8.29221294;22288;8.181111min;;min 22,133,144,11 =+++=






 +++= vwvwvwv . 

The minimum weight joint variant is therefore ( ) ( ) ( ) ( ){ }13,8;12,8;8,4;4,1=S  
with parameters ( ) 15=Sc , ( ) 4.20=St . 

Step 12. We have 306=d , ( ) ( ) 8.29215104.207 =⋅+⋅=⋅+⋅ ScbSta , ( ) 4.20=St , 
26=h . Since in our case ( ) ( )ScbStad ⋅+⋅>  and ( ) hSt ≤ , set SH =  and as 

a result of this ( ) 15=Hc , ( ) 4.20=Ht . Return to Step 7. 
Step 7. We have ( ) 11=Fc , ( ) 28=Ft , ( ) 15=Hc , ( ) 4.20=Ht . Calculate new values 

( ) ( ) 41115 =−=−= FcHca , 
( ) ( ) 6.74.2028 =−=−= HtFtb , 
( ) ( ) ( ) ( ) 6.195114.201528 =⋅−⋅=−= FcHtHcFtd . 

Step 8. For each arc ( )ji,  calculate ijijijijij ctcbtaw ⋅+⋅=⋅+⋅= 6.74 : 
 8.6886.72412 =⋅+⋅=w ; 

6.6166.74413 =⋅+⋅=w ; 
4.8096.73414 =⋅+⋅=w ; 
2.7376.75425 =⋅+⋅=w ; 
2.4726.78426 =⋅+⋅=w ; 
8.5036.77436 =⋅+⋅=w ; 
0.6256.76437 =⋅+⋅=w ; 

4.7046.710459 =⋅+⋅=w ; 
2.6326.712410,5 =⋅+⋅=w ; 
8.11686.714410,6 =⋅+⋅=w ; 

0.9856.715411,6 =⋅+⋅=w ; 
6.9766.713411,7 =⋅+⋅=w ; 
6.7116.716412,7 =⋅+⋅=w ; 
2.7126.714412,8 =⋅+⋅=w ; 
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6.4316.79447 =⋅+⋅=w ; 
8.3836.74448 =⋅+⋅=w ; 

2.9776.711413,8 =⋅+⋅=w . 
 

Step 9. Determine the minimal weight joint variant with the initial conditions 
for the recurrence formulae 0131211109 ===== vvvvv : 

( ) ( ) ( ) ( ) 4.7602.718.002.972.01212,812,81313,813,88 =+⋅++⋅=+++= vwpvwpv ; 

{ } 6.7106.97;06.71min;min 1111,71112,77 =++=






 ++= vwvwv ; 

{ } 9808.116;098min;min 1010,61112,66 =++=






 ++= vwvwv ; 

( ) ( ) ( ) ( ) 8.6604.705.002.635.099,59,51010,510,55 =+⋅++⋅=+++= vwpvwpv ; 

{ } 2.1156.716.43;4.768.38min;min 77,488,44 =++=






 ++= vwvwv ; 

( ) ( ) ( ) ( ) 68.139988.504.06.71626.066,36,377,37,33 =+⋅++⋅=+++= vwpvwpv ; 

{ } 1408.662.73;982.47min;min 55,266,22 =++=






 ++= vwvwv ; 

{ }

.6.195

1408.68;68.1396.61;2.1154.80min;;min 22,133,144,11

=

=+++=






 +++= vwvwvwv  

The minimum weight joint variant is therefore ( ) ( ) ( ){ }12,7;7,4;4,1=S  with 
parameters ( ) 11=Sc , ( ) 28=St . 

Step 11. We have 6.195=d , ( ) ( ) 6.195116.7284 =⋅+⋅=⋅+⋅ ScbSta , ( ) 28=St , 26=h . 
Since this time ( ) ( )ScbStad ⋅+⋅=  and ( ) hSt > , then H  is the required ap-
proximate solution, with ( ) 15=Hc , ( ) 4.20=Ht . Further, set SF = , and 

( ) 11=Fc , ( ) 28=Ft . 
Step 14. We have ( ) 11=Fc , ( ) 28=Ft , ( ) 15=Hc , ( ) 4.20=Ht . Calculate the relative 

error ( ) ( )( ) ( )( )
( ) ( )( ) ( ) ( )( )

( )( )
( ) ( ) 2445.0

4.202611262815
4.20261115

=
−⋅+−⋅

−−
=

−+−
−−

=∆
HthFchFtHc

HthFcHc . 

Step 15. The algorithm terminates. 
We have thus determined joint variant ( ) ( ) ( ) ( ){ }13,8;12,8;8,4;4,1=H  representing 

the required approximate solution for the given CAAN model optimization 
problem with a relative error of 2445.0 . 

 
§10.4  Experimentation 
In order to verify the performance of the algorithm for large-size alternative 

networks, an extensive experimentation was carried out [9]. Alternative net-
works with 100 , 200 , …, 000,1  nodes have been considered. For each dimension, 
50 initial graphs ( )ANG ,  of  CAAN type were simulated using a special program. 
Cost and time parameters were set by random numbers uniformly distributed be-
tween 0  and 99. Value h  was simulated by { }µnnh 3.0;20max= , where µ  stands 
for a random integer uniformly distributed in interval [ ]99,1 . For each simulated 
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CAAN model, the two-parameter algorithm (outlined in §10.2) determined the 
optimal joint variant together with its relative error ∆ . The computational results 
are represented in Tab. 10.2. In this Table, column ℜ displays the maximal 
number of iterations in each simulated sample. 
 
Table 10.2.  Computational results illustrating the efficiency of the algorithm 
           ∆  
  N  01.0≤∆  

05.0
01.0

≤
∆<  

1.0
05.0

≤
∆<  

2.0
1.0

≤
∆<  

3.0
2.0

≤
∆<  

1
3.0

<
∆<  Average 

value ∆  ℜ 

100 7 15 8 9 4 7 0.162 5 
200 8 12 9 10 5 6 0.125 6 
300 6 16 7 11 3 7 0.145 6 
400 16 11 9 8 2 4 0.121 6 
500 15 13 4 10 5 3 0.105 6 
600 9 15 6 11 4 5 0.122 6 
700 13 14 10 7 3 3 0.104 7 
800 11 21 7 9 1 1 0.110 7 
900 10 16 9 8 3 4 0.113 7 

1,000 19 12 4 6 7 2 0.096 8 
 
The following conclusions can be drawn from Tab. 10.2: 
1. The developed two-parameter approximate algorithm can be applied to 

large-size CAAN models without any restrictions on the model size. 
2. Increasing the model size results in decreasing the relative error ∆ , i.e., in 

increasing the accuracy of the algorithm. 
3. Increasing the model size results in a very slow increase of the number of 

iterations, i.e., the number of iterations realizing the one-parameter algo-
rithm giving the approximate solution. 

 
§10.5  Conclusions 
The following conclusions can be drawn from the Chapter: 
1. We have developed an iterative approximate algorithm which determines 

a quasi-optimal solution of the CAAN model optimization problem with 
two parameters: OV  (cost) and RV  (time). Also, a relative error determin-
ing the accuracy of the solution obtained, is calculated. 

2. Extensive experimentation has shown that the algorithm performs well, 
requires little computational time and provides a very high accuracy. 
Moreover, increasing the network size results in decreasing the relative 
error of OV  determined by using the approximate algorithms, from the 
optimal OV . Establishing a quasi-optimal joint variant requires only a 
small number of iterations. 
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PART  IV  
 RESOURCE CONSTRAINED PROJECT SCHEDULING 

FOR STOCHASTIC NETWORK PROJECTS 
 

Chapter 11.  Random Resource Delivery Schedules 
 

§11.1  Case of fixed resource capacities 
11.1.1  Introduction 
It can be clearly recognized that there is no shortage of literature on resource 

constrained project scheduling (see, e.g., [5-6,33,97,109,113,124,155-
156,165,167,etc.]). So far all published resource constrained project scheduling 
algorithms assume fixed activity durations and do not consider stochastic pro-
jects of random duration. This is because those algorithms are usually very sen-
sitive and cannot be applied to scheduling procedures based on substituting ran-
dom activity durations for their average values. Such project schedules with bi-
ased estimates usually underestimate the project’s duration and, when used in 
resource constrained project scheduling, provide resource profiles with essential 
errors. However, a very broad spectrum of innovative R&D projects, including 
PERT, GERT or VERT type network projects with random activity durations 
[105], are carried out with limited resources. The need for high quality resource 
constrained scheduling models for such complicated projects becomes more and 
more important. Thus, undertaking research in this area is useful for innovative 
projecting. 

We will henceforth consider an activity-on-arc   network project of PERT 
type where each activity requires non-consumable resources of various types 
with fixed capacities. Each type of resource is in limited supply with a resource 
limit that is fixed at the same level throughout the project duration. For each ac-
tivity, its duration is a random variable with given density function. Several al-
ternative density distributions - normal, uniform and beta distribution - will be 
considered. The problem is to determine starting time values ijS  for each activity 
( )ji,  entering the project, i.e., the timing of feeding-in of resources for that activ-
ity. Values ijS  are not calculated beforehand and are random variables condi-
tional on our future decisions. The model’s objective is to minimize the ex-
pected project duration. Determination of values ijS  is carried out at decision 
points when at least one activity is ready to be operated and there are free avail-
able resources. If, at a certain point of time, a set of more than one activity is 
ready to be operated but the available amount of resources is insufficient, a 
competition among the activities is carried out in order  to choose a subset of 
those activities which has to be operated first and can be supplied by the avail-
able resources. We decide the competition by solving a zero-one integer pro-
gramming problem to maximize the total contribution of the accepted activities 
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to the expected project duration. For each activity its contribution is the product 
of the average duration of the activity and its probability of being on the critical 
path in the course of the project’s realization. Those probability values are cal-
culated via simulation. Solving a zero-one integer programming problem at each 
decision point results in the following policy: the project management takes all 
measures to first operate those activities that, being realized, have the greatest 
effect of decreasing the expected project duration. Only afterwards, does the 
management take care of other activities. The model is a stochastic optimization 
problem which cannot be solved in the general case and allows only a heuristic 
solution. 

 

11.1.2  Notation 
Let us introduce the following terms: 
( )ANG ,  - stochastic network project (graph) of PERT type; 

( ) Aji ∈, - the project’s activity; 
ijt  - random duration of activity ( )ji, ; 
ija  - lower bound of value ijt  (pregiven); 
ijb  - upper bound of value ijt  (pregiven); 
ijµ  - average value of ijt ; 

ijkr  - capacity of the k -th type resource(s) allocated to activity ( )ji, , 
nk ≤≤1  (fixed and pregiven); 

n  - number of different resources; 
kR  - total available resources of type k  at the project’s management dis-

posal (pregiven and fixed throughout the planning horizon); 
( ) kk RtR ≤ - free available resources of type k  at moment 0≥t ; 

ijS  - the time that resources ijkr  are fed in and activity ( )ji,  starts (a ran-
dom value conditional on our decisions); 

( )ijSGT  - random project’s duration, on condition that feeding-in of resources 
ijkr  is carried out at moments ijS ; 

( )ijk StR∗ - maximal value of the k -th resource profile at moment t  on condition 
that activities ( ) ( )ANGji ,, ∈  start at moments ijS ; 

ijF  - the actual moment activity ( )ji,  is finished ( ijijij tSF += ); 
( )iT  - earliest possible time of realization of node i ; 
( )jip ,  - conditional probability of activity ( )ji,  to be on the critical path in 

the course of the project’s realization (dependent on the decisions 
already taken). 

Similar to (4.1.1) and (4.2.1), assume random activity duration ijt  distributed 
by the beta-law with p.d.f. 

( ) [ ] [ ][ ]2

4

12 xbax
ab

xf ijij

ijij

t −−
−

= . (11.1.1) 
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Besides beta distribution (11.1.l), the regarded model may adopt other distri-
butions. Three alternative distributions will be considered: 

1. ijt  has a beta distribution with density function (11.1.1) in the inter-

val [ ]ijij ba , ; 
2. ijt  has a uniform distribution in the same interval; 
3. ijt  has a normal distribution with average ( )ijijij ba +⋅= 5.0µ  and variance 

( )[ ]26ijijij abV −= . 
The initial data of the model for each activity ( )ji,  includes: 

i ; j ; ija ; ijb ; 1ijr ,…, ijnr . 
It goes without saying that relations 

kijkji
Rr ≤

,
max ,  nk ≤≤1 , (11.1.2) 

hold, otherwise the project cannot be operated. 
 

11.1.3  The model 
The problem is to determine values ijS  to minimize the expected project dura-

tion 
( )









ijS
SGTE

ij

min , (11.1.3) 

subject to 
( ) 0≥∀≤∗ tRStR kijk ,  nk ≤≤1 . (11.1.4) 
We have chosen this objective because various authors, (e.g. [143,156,165]) 

consider the problem of decreasing the project duration as one of the most ur-
gent ones, especially for stochastic projects of PERT type. The latter usually do 
not meet their due dates on time [101,143] (see also Chapters 2-3). 

Model (11.1.3-11.1.4) is a stochastic optimization problem which cannot be 
solved in the general case; the problem allows a heuristic solution only. 

The basic idea of the heuristic solution is as follows. Decision-making, i.e., 
determining values ijS , is carried out at essential moments ijF  and ( )iT  (decision 
points), either when one of the activities ( )ji,  is finished and additional resources 

ijkr , nk ≤≤1 , become available, or when all activities ( )ji,  leaving node i  are 
ready to be processed. If one or more activities ( )11, ji ,…, ( )mm ji , , 1≥m , are ready 
to be processed at moment t  and all of them can be provided with available re-
sources, the required resources are fed in and activities ( )qq ji , , mq ≤≤1 , begin to 
be operated at moment t , i.e., tS

qq ji = , mq ≤≤1 . If at least for one type k  of re-

sources, relation ( )tRr k

m

q
kji qq

>∑
=1

 holds, i.e., there is a lack of available resources at 

moment t , a competition among the activities has to be arranged to choose a 
subset of activities that will start to be operated at moment t  and can be supplied 
by resources. 
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Let us analyze in greater detail the problem of determining values ijS , i.e., the 
problem of choosing activities to be operated. Problem (11.1.3-11.1.4) refers to 
a decision-making optimization model to minimize the expected project dura-
tion. Thus, supplying the chosen activities with available resources at each deci-
sion point centers on reducing the remaining project’s duration as much as pos-
sible. This means, in turn, that to carry out the competition the project manage-
ment has to choose and to operate first the subset of activities that provides the 
maximal total contribution to the expected project duration. 

We will assume that in a stochastic network project with random activity du-
rations each activity ( )ji,  contributes to the expected project duration value 

( )jipijij ,⋅=∂ µ . Here ijµ  is the given average value of the activity duration while 
( )jip ,  is the conditional probability for the activity to be on the critical path. 

Note that at each decision point t  values ( )jip ,  for all remaining activities ( )ji,  
cannot be calculated beforehand: they are not only dependent on the decisions 
already taken but are random variables conditional on our future decisions. We 
suggest a heuristic procedure (see 11.1.4 further on) to determine those values 
by means of simulation. At each decision point t , all the activities that have not 
yet started to be operated are simulated using one of the alternative density func-
tions, e.g., (11.1.1). Later on, the critical path of the remaining graph (with 
simulated activity durations) is determined. By repeating this procedure many 
times, we obtain frequencies for each activity ( )ji,  to be on the critical path. 
Such frequencies are taken as ( )jip , . Note that such a simulation approach has 
been used successfully in other areas of project management, e.g., in budget re-
allocation models for stochastic network projects [64,66,68]. 

After obtaining values ( )qq jip , , mq ≤≤1 , for all competitive activities at mo-
ment t , decision-making boils down to choosing the optimal subset of activities 
that can be supplied by available resources. The objective is to maximize the 
sum of values ij∂  for all chosen activities. We suggest solving this problem by 
using the zero-one programming approach which has been successfully used in 
similar resource scheduling problems, e.g., in [154-156]. 

The zero-one programming problem can be formulated as follows: determine 
integer values 

qq jiξ , mq ≤≤1 , to maximize the objective 

{ } ( )[ ]








⋅⋅∑
=

m

q
jiqqji qqqq

qjqi

jipMax
1

, µξ
ξ  (11.1.5) 

subject to 

( ) ( )tRr k

m

q
kjiji qqqq

≤⋅∑
=1

ξ ,  nk ≤≤1 , (11.1.6) 

where 
( )





=
.1

;,0
otherwise

resourcesobtainnotwilljiactivityif qq
ji qq

ξ  
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Problem (11.1.5-11.1.6) is a classical zero-one integer programming prob-
lem. Its solution is outlined in many books on operations research, e.g., in [153]. 
Note that maximizing objective (11.1.5) results in the policy as follows: the pro-
ject management takes all measures to operate first activities which being real-
ized, decrease more essentially the expected project duration. Only afterwards, 
does the management take care of other activities. 

After feeding-in of resources for the chosen activities, the next earliest “es-
sential” moment is determined and the project’s realization proceeds until the 
sink node cannot be reached. The corresponding heuristic algorithm to schedule 
the project is outlined below. 

 

11.1.4  The heuristic algorithm 
The algorithm [70] to solve problem (11.1.3-11.1.4) is performed in real 

time; namely, all activities can be operated only after obtaining necessary re-
sources. Essential moments ijF  and ( )iT  cannot be predetermined. However, if 
we want to evaluate the efficiency of the resource allocation model, we can 
simulate the algorithm’s work by random sampling of the actual duration of ac-
tivities. By simulating the algorithm’s work many times, the average project’s 
duration as well as the probability of accomplishing the project by a given due 
date (if necessary) can be evaluated. 

The heuristic algorithm comprises three subalgorithms as follows: 
Subalgorithm I actually governs most of the procedures to be undertaken in 

the course of the project’s realization, namely: 
• determines decision points ijF  and ( )iT ; 
• singles out (at a routine decision point) all the activities that are ready to be 

operated; 
• checks the possibility of supplying these activities with available resources 

(without undertaking a competition); 
• supplies the chosen activities with resources and later on simulates the cor-

responding activities’ durations; 
• returns the utilized non-consumable resources to the project management 

store (at the moment an activity is finished); 
• updates the remaining project at each routine decision point. 
Subalgorithm II calculates values ( )jip ,  for all activities entering the re-

maining project, at a routine decision point. Note that the subalgorithm works 
only in the case when, due to restricted available resources, a competition among 
the activities waiting to be operated, has to be undertaken. The subalgorithm is 
implemented by means of simulation as follows: 

1. At any routine decision point t , determine all the activities that have not 
yet started to be operated. Simulate their random durations using one of 
the alternative density functions. 

2. For activities ( )ji,  entering the remaining project and being under opera-
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tion at moment t , calculate their remaining durations tFij − . 
3. Calculate the critical path length of the remaining graph where activity du-

rations are determined at Steps 1 and 2. Determine all activities that be-
long to the critical path. 

4. Repeat Steps l-3 M  times in order to obtain representative statistics. 
5. Calculate the frequency for each activity ( )ji,  to be on the critical path. For 

a large M , such frequencies are taken as ( )jip , . 
Note that simulation of activity durations at Step 1 of Subalgorithm II is car-

ried out to determine values ( )jip , , i.e., to solve an auxiliary problem, but not to 
simulate actual activity realizations. The latter are carried out by Subalgorithm I. 
As outlined above, values ( )jip ,  are random variables conditional on our future 
decisions. When we use Subalgorithm II, we do not take future decisions into 
account. Moreover, the convergence of the frequency values obtained at Step 5, 
to optimal values ( )jip ,  is not evident. We see very little chance that these 
drawbacks can be avoided. However, for practical applications such an approach 
is effective [62,64,66,68]. 

Subalgorithm III solves, at a routine decision point t , the multi-dimensional 
knapsack problem (11.1.5-11.1.6), to choose the subset of activities to be oper-
ated and supplied with available resources. Since the initial data for that problem 
(values 

qq jiµ  and ( )qq jip , , mq ≤≤1 ) have already been obtained by using Subal-
gorithms I and II, solving the problem is not difficult. Similar integer program-
ming models have been successfully used for solving various resource-
constrained project scheduling problems (see, e.g.,  [154]). However, several 
other heuristics might also turn out to be applicable. We have undertaken a 
comparison between two procedures: 

Procedure A is based on solving a zero-one programming problem (11.1.5-
11.1.6). 

Procedure B is simpler in usage and boils down to the following: 
1. After determining values ( )qq jip , , mq ≤≤1 , all the competitive activities 

are sorted in descending order of values ( )qqjiji jip
qqqq

,⋅=∂ µ . In case 
( ) 0, =qq jip , the corresponding activities are sorted in descending order of 

values 
qq jiµ . Activities with higher values 

qq ji∂  are assumed to be of higher 
priority. 

2. All the sorted activities are examined one after another, in the descending 
order of their priorities, to check, for each activity, the possibility that it 
can be provided with remaining available resources. If, for a certain activ-
ity ( )qq ji , , mq ≤≤1 , relations ( )tRr kkji qq

≤ , nk ≤≤1 , hold, the required re-
sources kji qq

r  are passed to the activity while the remaining resources ( )tRk  
are updated, ( ) ( )tRrtR kkjik qq

⇒− , nk ≤≤1 . Then, the next activity ( )11 , ++ qq ji  is 
examined. The procedure terminates either when all the available re-
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sources are reallocated among activities or all the m  activities have been 
examined. 

We have compared both procedures for the numerical example outlined in 
11.1.5. It turns out that the first procedure provides better results. This can be 
easily explained: both procedures use one and the same objective and are based 
on the same initial data. However, Procedure A provides an exact solution while 
Procedure B is a heuristic. 

 

11.1.5  Numerical example 
The company is faced with realizing a stochastic network project with non-

consumable limited resources. The initial data of the project are given in [70]. 
The project requires resources of one type, i.e., 1=n , with resource limit value 

50=R . In order to check the algorithm, 100 simulation runs were undertaken. 
Three alternative distributions were considered - normal, uniform and beta dis-
tributions. For each distribution, on the basis of 100 simulation runs, the p -
deciles ( )pW  for =p  0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, together with the 
project’s average duration ( ){ }ANGT ,  were calculated. We have implemented the 
zero-one programming model in the heuristic algorithm. The summary of results 
is presented in Tab. 11.1. 
 

Table 11.1.  The summary of results 
Distributions Probability terms Normal Uniform Beta 

( )9.0W  461 465 448 
( )8.0W  457 458 443 
( )7.0W  454 453 440 
( )6.0W  451 451 437 
( )5.0W  449 448 434 
( )4.0W  447 445 431 
( )3.0W  445 442 428 
( )2.0W  440 439 424 
( )1.0W  436 434 419 

( ){ }ANGT ,  448.85 448.49 433.88 
 

Using Procedure B (see 11.1.4) results in the following values ( ){ }ANGT , : 
a) Normal distribution: 58.461=T . 
b) Uniform distribution: 35.461=T . 
c) Beta-distribution: 98.447=T . 
Thus, using a simplified heuristic solution versus a more complicated exact 

solution of problem (11.1.5-11.1.6) results in increasing the expected project du-
ration by 3% only. This seems to be worth paying the price and unavoidable. 

Other conclusions can be drawn from the summary: 
1. Introducing beta distribution results in carrying out projects with smaller 
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durations in comparison to normal and uniform distributions. 
2. For both normal and uniform distributions, the average project duration is 

practically the same. But using normal distribution enables random pro-
ject duration to be obtained with smaller variance than with uniform dis-
tribution. 

3. It can be clearly recognized that the heuristic algorithm outlined above en-
ables the solution of several important problems in resource constrained 
project scheduling, namely: 

Problem 1. Given resource limit value R  and confidence probability p , de-
termine the due date D  which can be met with probability not less than p . 

The solution of the problem is obtained by means of linear interpolation: 
v Determine integer numbers q and 1+q , 90 ≤≤ q , satisfying 

( ) 10110 +≤≤ qpq . 
v Calculate the due date ( ) ( )( ) ( ){ }( )qpqWqWqWD −−++= 101010110 . 
Problem 2. Given value R  and due date D , determine confidence probability p . 
The solution is similar to that of Problem 1 and is based on applying interpo-

lation methods to statistical data presented in Tab. 11.1. 
Problem 3. Given due date D  and confidence probability p , determine the 

minimal value R  which enables meeting the deadline on time. 
Problem 3 can be solved by varying value R , undertaking numerous simula-

tion runs for each value and applying interpolation methods to the corresponding 
statistical data. Note that if the number n  of different resources is more than one, 
Problems 1 and 2 remain as easy as before and can be solved by using Tab. 11.1. 
Problem 3, however, becomes a multi-objective problem with a more difficult 
solution (see, e.g., [153]). 

 

11.1.6  Conclusions 
1. The heuristic algorithm presented here has some advantages. First, it is 

very simple to use and intuitive. The general idea of the algorithm is to 
reallocate resources among the project’s activities on the basis of priority 
levels assigned to these activities. Those priority levels are, in essence, the 
activities’ contributions to the project’s average duration; they depend 
both on the activity’s average duration and the probability of the activity 
to be on the critical path in the course of the project’s realization. Those 
probability values can be easily obtained by means of simulation. They 
have been successfully used for other optimization problems in network 
planning and control, e.g., in optimal budget redistribution problems for 
PERT type projects [62,64]. 

2. The algorithm can be used for practically all activity-on-arc network pro-
jects with independent activities of random duration. To be realized each 
activity requires non-consumable resources of several different types. The 
resource capacities are fixed and pregiven. The algorithm can be easily 
implemented on a PC, especially for projects with a medium number of 
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activities. 
3. The algorithm can be used for any probability distribution of activity dura-

tions. Moreover, each activity may have its individual density function. 
With minor modifications, the algorithm can be applied to projects com-
prising activities that may change its probability distribution within the 
project’s realization. For certain activities, as a result of appropriate ac-
tions, such changes may be adopted several times. Since the project is 
usually revised over time, the management’s sole requirement is to intro-
duce any alterations in the initial data of the remaining project. This in-
cludes implementing additional activities, changing the number of non-
consumable resources together with their total available capacities kR , and 
capacities ijkr , etc. If, for example, a project becomes late and the activi-
ties’ durations depend on the assignment of manpower of varying qualifi-
cations the management may hire additional workers or may reallocate 
the most qualified personnel to the most critical activities, etc. The corre-
sponding alterations result in changing the project’s initial data; they can 
be undertaken at any decision point t  within the project’s realization. The 
heuristic algorithm can adopt these alterations when being performed in 
real time as well as when being simulated. 

4. For certain sets of activities the corresponding durations may be depend-
ent. That means, e.g., that increasing the duration of a certain activity may 
result in decreasing the durations of other activities. In such cases, multi-
dimensional probability distributions have to be introduced. The heuristic 
algorithm outlined in 11.1.4 can be easily modified to simulate these cor-
related activities. 

5. The main shortcoming of the outlined above model is its applicability for 
the case of resources with fixed capacities only, which obviously restricts 
the model’s flexibility. 

 

§11.2  Case of variable resource capacities 
11.2.1  Introduction 
We will consider a network project of PERT type with random activity dura-

tions and several non-consumable limited resources. For each type of resource 
k , its limit is fixed throughout the project duration. Each project’s activity ( )ji,  
requires resources of various types with variable capacities and is operated at a 
random speed which depends linearly on the resource amounts ijkr  assigned to 
that activity. The problem is to determine for each activity ( )ji,  the starting time 

ijS , i.e., the timing of feeding-in resources, and the assigned resource capacities 

ijkr . The objective is to minimize the expected project duration [71]. 
The outlined below research is a further development of the previous §11.1, 

in which a particular resource constrained scheduling model with fixed resource 
capacities ijkr  was considered. Thus, only starting times ijS  are determined. It can 
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be well recognized that such a model is not generalized and fits only certain pro-
ject management scenarios. It does not cover most cases, when various resource 
capacities assigned to project activities may vary, e.g., may be utilized within 
pregiven upper and lower bounds. An activity cannot be operated with even one 
resource capacity beneath its lower bound, while resources above their upper 
bounds are redundant. Moreover, since all the resource capacities in the model 
developed in §11.1 are fixed and remain constant throughout the planning hori-
zon, they have no influence on the activities’ random durations, and the corre-
sponding probability density functions do not incorporate them as parameters. 
In practice, this scenario is often unrealistic, since changing the resource capac-
ity assigned to any activity results in changing the density function of the activ-
ity’s duration. Where several resources are involved, such an influence becomes 
more complicated and has to be taken into account. Thus, the model presented in 
§11.1 requires further development and generalization. 

In order to solve the resource constrained project scheduling problem with 
variable capacities we have formulated the general stochastic optimization prob-
lem with decision variables ijS  and ijkr  (call it henceforth Problem A). Values ijS  
and ijkr  are not calculated beforehand and are random variables conditioned on 
our future decisions. The problem is too complicated to be solved in the general 
case. To simplify the problem, we replace it by another one, namely, by the 
knapsack nonlinear resource reallocation problem (call it Problem B). Such a re-
placement is based on various heuristic assumptions, e.g., that minimizing the 
average project duration results in reallocating available resources at a routine 
decision point among those activities (ready to be operated) which deliver the 
maximal total contribution to the expected project duration. Thus, a stochastic 
optimization problem is substituted for a deterministic one. Decision variables 
of problem B are the chosen activities to be supplied by resources and the re-
source capacities assigned to those activities. 

However, even such a simplified model is essentially more complicated than 
the zero-one integer programming model which was presented in §11.1 for net-
work project scheduling with fixed resource capacities (call it Problem C). The 
classical zero-one integer programming algorithm, which delivers an optimal so-
lution to that problem, cannot be applied to Problem B. Since Problem B is NP-
complete, its optimal solution can be obtained only by realizing a lookover algo-
rithm to single out all the feasible solutions. We have developed such an algo-
rithm and we suggest using the latter for cases of small and medium size pro-
jects. 

For the case where the number of possible feasible solutions becomes very 
high and much computational time is needed to carry out a lookover, we have 
developed a heuristic algorithm to solve Problem B. 

Thus, the knapsack resource reallocation Problem B, together with both op-
timization and heuristic algorithms, are the main contributions of §11.2. 
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Problem B has to be solved at each decision point, when at least more than 
one activity is ready to be operated but the available amount of resources is lim-
ited. 

 
11.2.2  Notation 
Let us introduce the following terms: 
( )ANG ,  - stochastic network project (graph) of PERT type; 

( ) Aji ∈, - the project’s activity; 
ijQ  - the amount of activity ( )ji,  to be operated (pregiven); note that value 

ijQ  can be set in percentages of the total project as well as in other 
measures; 

ijkr  - an integer amount of the k -th type resource(s) allocated to activity 
( )ji, , nk ≤≤1 , (a decision variable); 

ijr  - vector of resource capacities ( { }ijkij rr ≡ ); 
min

ijkr  - lower bound of value ijkr  (pregiven); 
max

ijkr  - upper bound of value ijkr  (pregiven); 
ijkr  - the average value of ijkr  ( ( )maxmin5.0 ijkijkijk rrr +⋅= ); 

n  - number of different resources; 
kR  - total available resources of type k  at the project’s management dis-

posal (pregiven and fixed throughout the planning horizon); 
( )tRk  - free available resources of type k  at moment 0≥t ; 
( )ijij rυ  - the speed of operating activity ( )ji,  in terms of ijQ . Speeds ( )ijij rυ  are 

subject 
to disturbances and are random values. It is assumed that they de-
pend on resource capacities ijkr  linearly, e.g., ( ) ( )∑

=

⋅=
n

k
ijkijkijij rar

1

υ  hold. 

Coefficients ijka , nk ≤≤1 , are pregiven random values; 
ijka  - average values of ijka ; 
( )ijij rt  - random duration of activity ( )ji, , on condition that resource capaci-

ties ijkr , nk ≤≤1 , are assigned to that activity ( ( ) ( )ijijijijij rQrt υ= ); 
( )ijij rµ  - the average value of ( )ijij rt ; 

ijkψ  - additional value by which ( )ijij rµ  can be diminished by adding 
1=∆ ijkr , on condition that all other resource capacities ijvr , nv ≤≤1 , 

kv ≠ , are fixed and equal to ijvr . Thus, values ijkψ  satisfy 
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(11.2.1) 

ijS  - the time that resources ijkr  are fed in and activity ( )ji,  starts (a deci-
sion variable); 

( )ijij rSGT ,  - random project’s duration, on condition that feeding-in of re-
sources ijkr , nk ≤≤1 , is carried out at moments ijS ; 

( )ijijk rStR ,∗

 - maximal value of the k -th resource profile at moment t  on condi-
tion that activities ( ) ( )ANGji ,, ∈  start at moments ijS  and feeding-in 
of resources ijkr , nk ≤≤1 , is carried out also at moments ijS ; 

ijF  - the actual moment activity ( )ji,  is finished ( ( )ijijijij rtSF += ); 
( )iT  - earliest possible time of realization of node i ; 
( )jip ,  - conditional probability of activity ( )ji,  to be on the critical path in 

the course of the project’s realization. 
Let us examine the nature of production speed ( )ijij rυ  in greater detail. In prac-

tice, it is usually not clear exactly how this tempo behaves over time and what is 
the nature of its random disturbances. What actually happens falls somewhere 
between two extreme cases: 

1. Disturbance occurs only once while adjusting the speed at time point ijS . 
Then, in the course of processing the activity, the speed remains constant 
[150]; 

2. There are continuous stochastic changes in the speed between time points 
ijS  and ijF  [150]. 

In practice, the second case is more realistic, since there are usually various 
disturbances while processing a project activity. However, from a mathematical 
viewpoint, it is easier to deal with and to simulate a processing speed that un-
dergoes a random “jump” only once, at moment ijS . Thus, in the course of simu-
lating the project, we simulate the random speed ( )ijij rυ  to process each activity 
( ) ( )ANGji ,, ∈  only once, at moment ijS . The activity’s random duration is ob-
tained by dividing ijQ  by ( )ijij rυ . 

As to coefficients ijka , required to determine ( )ijij rυ , they are random values 

with a density function in the interval [ ]∗∗
ijkijk ba , , with pregiven values ∗

ijka  and ∗
ijkb . 

As in §11.1, we shall examine three different cases: 
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1. Values ijka  have a beta-distribution in the interval [ ]∗∗
ijkijk ba ,  with a density 

function 

            
( ) [ ] [ ][ ]2

4

12 xbax
ab

xf ijkijk

ijkijk

t −−
−

= ∗∗

∗∗
. (11.2.2) 

2. Values ijka  have a uniform distribution in the same interval. 
3. Values ijka  have a normal distribution with average ( )∗∗ +⋅ ijkijk ba5.0  and vari-

ance ( )[ ]2
6∗∗ − ijkijk ab . 

To simulate the processing speed ( )ijij rυ  with assigned resource capacities ijkr , 
we need to simulate random values ijka  and to apply the linear relation 

( ) ( )∑
=

⋅=
n

k
ijkijkijij rar

1

υ . 

The initial data for each activity ( )ji,  includes: 
i ; j ; ijQ ; ∗

1ija ; ∗
1ijb ; …, ∗

ijna ; ∗
ijnb ; min

1ijr ; max
1ijr ; …, min

ijnr ; max
ijnr . 

Values ijkψ , nk ≤≤1 , are calculated on the basis of the initial data by using 
(11.2.l) with ( )∗∗ +⋅= ijkijkijk baa 5.0  for the uniform and the normal distributions and 

∗∗ ⋅+⋅= ijkijkijk baa 4.06.0  for the beta-distribution. 
Note, in conclusion, that obvious relations kijkji

Rr ≤min

,
max , nk ≤≤1 , hold, other-

wise the project cannot be carried out. 
 

11.2.3  The general model (Problem A) 
The problem is to determine values ijS  and ijkr , nk ≤≤1 , to minimize the aver-

age project’s duration 
( )









ijijrS
rSGTE

ijkij

,min
,

 (11.2.3) 

subject to 
( ) ( )ANGjirrr ijkijkijk ,,maxmin ∈∀≤≤ , (11.2.4) 

( ) ( ) 0≥∀≤∗ ttRStR kijk ,  nk ≤≤1 . (11.2.5) 
Model (11.2.3-11.2.5) refers to a stochastic optimization problem that cannot 

be solved in the general case; the problem allows a heuristic solution only. Deci-
sion-making, i.e., determining values ijS  and ijkr , is carried out at essential mo-
ments ijF  and ( )iT , either when one of the activities ( )ji,  is finished and addi-
tional resources become available, or when all activities ( )ji,  leaving node i  are 
ready to be processed. If one or more activities ( )11, ji , ..., ( )mm ji , , 1≥m , are ready 
to be processed at moment t  and all of them can be supplied by all types of 
available resources of maximal capacity, the required resources are fed in and 
activities ( )qq ji , , mq ≤≤1 , begin to be operated at moment t , i.e., tS

qq ji = , 
max

kjikji qqqq
rr = , nk ≤≤1 . Otherwise a competition has to be arranged to choose the 
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optimal subset of activities that can be supplied by available resources. 
As shown above, in §11.1, an important auxiliary procedure precedes holding 

the competition, namely, calculating, for all the competitive activities ( )qq ji , , 
their conditional probabilities ( )qq jip ,  to be on the critical path in the course of 
the project’s realization. For the case of fixed resource capacities ijkr , calculating 
values ( )qq jip ,  is carried out by means of simulation: at each decision point, all 
the activities that have not yet started to be operated are simulated using the cor-
responding probability density functions. These functions do not depend on val-
ues ijkr  and, thus, remain unchanged in the course of the project’s realization. 
Later on, the critical path of the remaining graph with simulated activity dura-
tions is determined. By repeating this procedure many times, frequencies for 
each activity ( )qq ji ,  to be on the critical path are calculated and taken as ( )qq jip , . 
Values ( )qq jip ,  enter the zero-one integer programming model to carry out the 
competition. 

We will use the same approach, i.e., calculate values ( )qq jip ,  by means of 
simulation, for the case of variable resource capacities ijkr . However, we do not 
know beforehand the resource capacity values kji qq

r  that will be assigned to the 
activities under competition, as well as to all other activities in the remaining 
project. Thus, we are unable to simulate the activities’ durations, that depend pa-
rametrically on values kji qq

r . In order to overcome these difficulties, several alter-
native heuristics may be suggested to simulate activities in the remaining pro-
ject: 

1. Take an integer value maxmin 5.05.0 ijkijkijk rrr ⋅+⋅=  for all activities that have not 
yet started and simulate values ( )ijij rt  to calculate the conditional probabili-
ties which we shall henceforth denote ( )jip ,1 . 

2. Take min
ijkijk rr =  to simulate the probability values which we shall denote 

( )min, jip ; take max
ijkijk rr =  to simulate the probability values which we shall 

denote ( )max, jip ; calculate final values ( ) ( ) ( )maxmin
2 ,5.0,5.0, jipjipjip ⋅+⋅= . 

3. Calculate final probability values 
( ) ( ) ( ) ( ) ( ) ( )[ ]jipjipjipjipjipjip ,,5.0,5.0,25.0,25.0, 211

maxmin
3 +⋅=⋅+⋅+⋅= . 

4. Each value ijkr  is a simulated integer value uniformly distributed in the in-

terval [ ]maxmin , ijkijk rr . These values are used later on to simulate random speeds 
( )ijij rυ  and random activity durations ( )ijij rt . Denote the conditional prob-

ability values ( )jip ,4 . 
The four alternative heuristics outlined above will be compared below to ob-

tain the most effective one. It goes without saying that others may be suggested 
as well. 

After calculating conditional probabilities ( )jip ,  the problem of optimal re-
source reallocation among the competitive activities has to be solved. 
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11.2.4  Knapsack resource reallocation problem (Problem B) 
We have assumed in §11.1 that in a stochastic network project with random 

activity durations and fixed resource capacities, each activity ( )ji,  contributes to 
the expected project duration value 

( ) ijij jip µσ ⋅= , . (11.2.6) 
Using the same assumption for the case of variable resource capacities, we 

have to calculate value ijσ  depending on vector ijr . Assume (see 11.2.2) that the 
average duration ( )ijij rµ  is calculated as follows: 

( ) ( ) ( )[ ] ( ) ( ) ( )∑∑∑
===

⋅+








⋅−=⋅−+=
n

k
ijkijk

n

k
ijkijkijij

n

k
ijkijkijkijijijij rrrrrrr

11

minmin

1

minmin ψψµψµµ . 

Assume, further, that the constant value in braces is essentially smaller than 
the value of the second term and can be neglected. Thus, value ( )ijij rµ  satisfies 
approximately 

( ) ( )∑
=

⋅=
n

k
ijkijkijij rr

1

ψµ . 

Using (11.2.6) we finally obtain 
( ) ( )∑

=

⋅=
n

k
ijkijkijij rr

1

ψσ . (11.2.7) 

Thus ( )∑
=

⋅
n

k
ijkijk r

1
ψ  is the value by which the average duration of activity ( )ji,  

can be diminished by supplying the activity with resources ijkr , nk ≤≤1 , and 

( ) ( )∑
=

⋅⋅
n

k
ijkijk rjip

1
, ψ  is the value by which the average project duration can be di-

minished. Taking into account the fact that to carry out the competition among 
activities ( )qq ji , , mq ≤≤1 , the project management has to choose the subset of 
activities and to reallocate among them the available resources in order to 
maximize the total contribution to the expected project duration, we suggest the 
following knapsack resource reallocation problem (Problem B) to be solved at 
each decision point t : 

Determine optimal values kji qq
S  and kji qq

r , nk ≤≤1 , mq ≤≤1 , to maximize ob-
jective 

( )[ ] ( )








⋅⋅= ∑ ∑
= =

m

q

n

k
kjikjiqqjirS qqqqqq

kqjqikqjqi

rjipMaxJ
1 1,

, ψξ  (11.2.8) 

subject to 
( ) ( )ANGjirrr qqkjikjikji qqqqqq

,,maxmin ∈∀≤≤ , (11.2.9) 

( ) ( ) 0
1

≥∀≤⋅∑
=

ttRr k

m

q
kjiji qqqq

ξ ,  nk ≤≤1 , (11.2.10) 

where 
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( )




=
.1

;,0
otherwise

resourcesobtainnotwilljiactivityif qq
ji qq

ξ  

Although Problem B is obtained by simplifying the general Problem A by 
means of various heuristic assumptions, it is nevertheless a very complicated 
nonlinear problem. 

Theorem. Problem (11.2.8-11.2.10) is NP-complete. 
Proof. Consider a particular case of the knapsack problem (11.2.8-11.2.10): 
1. Set 1=n , i.e., the project utilizes resources of one type only. 
2. Assume 

qqqqqq jijiji rrr == maxmin , mq ≤≤1 , i.e., the resource capacities are fixed and 
remain constant. 

3. Set 1=
qqqq jijiP ψ  for all q . 

Thus, problem (11.2.8-11.2.10) is transformed to a zero-one knapsack prob-
lem (Problem C) 

( )
( )[ ]









⋅∑
=

m

q
qqjiji

jirMax
qq

qq 1,
,ξ

ξ  (11.2.11) 

subject to 

( )[ ] ( )tRjir
m

q
qqji qq

≤⋅∑
=1

,ξ , (11.2.12) 

( ) { }1,0, =qq jiξ . (11.2.13) 
We will show that problem (11.2.11-11.2.13) delivers a solution to the clas-

sical Partition Problem [24] as follows: 
Given a set of positive integer numbers ( )mwww ,...,, 21 , determine the optimal 

subset ( )
rqqq www ,...,,

21
, mr ≤ , { }mqs ,1∈ , rs ≤≤1 , satisfying Mw

r

s
qs

=∑
=1

, where M  is 

a pregiven integer value. 
Set ( ) MtR =  and qji wr

qq
= , mq ≤≤1 . If the optimized value of objective 

(11.2.11) is equal to M , zero-one values { }
qqq jii ξξ ,  deliver the optimal solution to 

the partition problem. Otherwise, i.e., if the objective is less than M , the parti-
tion problem has no solution. 

Coffman [24] has proved that the partition problem is NP-complete. Thus, 
problem (11.2.11-11.2.13) is NP-complete too. But if a particular problem is 
NP-complete then the principal problem (11.2.8-11.2.10) is also NP-complete.  

Let us examine the results of the Theorem in greater detail. Both the knap-
sack reallocation Problem B and the zero-one integer programming Problem C 
are NP-complete. A classical zero-one integer programming algorithm [153] 
which delivers a precise solution to Problem C, cannot be applied to Problem B. 
It can be well recognized that the set of feasible solutions of Problem B com-
prises that of Problem C. Thus, especially for wide ranges [ ]maxmin , ijkijk rr , 
( ) ( )ANGji ,, ∈ , nk ≤≤1 , the number of feasible solutions of Problem B may be-
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come very large. 
To solve Problem B, two algorithms have been developed: 
• a lookover algorithm which singles out all feasible solutions and, due to 

the NP-completeness of problem (11.2.8-11.2.10), is the only algorithm 
that provides a precise solution of that problem, 

• a heuristic algorithm which delivers an approximate solution and offers 
less computational time than a lookover algorithm. 

Both algorithms are outlined in 11.2.5. 
 

11.2.5  Optimal and heuristic solutions of the knapsack reallocation problem 
The developed heuristic algorithm to solve problem (11.2.8-11.2.10) singles 

out the subset of activities to be operated (among the competitive ones) and de-
termines resource capacities ijkr  for each chosen activity and each type of re-
source. The algorithm comprises several subalgorithms as follows: 

Subalgorithm I sorts m  competitive activities ( )qq ji , , mq ≤≤1 , in descend-
ing order of the product 

( ) ( ) ( ) ( )[ ]∑
=

+⋅⋅=
n

k
jijiqqqqqq qqqq

rrkjijipjiI
1

maxmin5.0,,,, ψ , (11.2.14) 

on condition that ( ) 0, >qq jip . Thus, activities with greater contribution to the 
project’s average duration are considered to be more significant and possess 
smaller ordinal numbers. Note that values ( )qq jip ,  are calculated preliminarily 
by means of simulation, while other values in (11.2.14) are either pregiven or 
calculated beforehand by (11.2.1). Activities with ( ) 0, =qq jip  have to be re-
scheduled at the end of the schedule in decreasing order of values 

( ) ( )[ ]∑
=

+⋅
n

k
jijiqq qqqq

rrkji
1

maxmin5.0,,ψ . 

Assume for simplicity that after rescheduling m  competitive activities by us-
ing Subalgorithm I, the new schedule will start from ( )11, ji  and finish with 
( )mm ji , . Thus, each activity obtains its ordinal number from 1 to m . 

Subalgorithm II determines the basic set of the schedule. We will hence-
forth call the basic set the chain of consecutive activities of maximal length, be-
ginning from activity ( )11, ji  which can be actually supplied by available re-
sources of maximal capacities for all types of resources. Thus, if the basic set 
comprises f  activities ( )11, ji ,..., ( )ff ji , , relations 

( )tRr k

f

q
kji qq

≤∑
=1

max ,  nk ≤≤1 , (11.2.15) 

hold. 
It goes without saying that the basic set may be empty, i.e., 0=f , if relation 

( )tRr kkji ≥max
11

 holds for at least one type of resource. 
Subalgorithm III carries out the lexicographical scanning in the space of 

feasible solutions. We will henceforth call a feasible solution of the resource re-



 
 

198 

allocation problem (11.2.8-11.2.10) a set of mb ≤  activities satisfying the follow-
ing conditions: 

1. The set comprises the basic set of the schedule: other activities may not be 
consecutive. 

2. The set can actually be supplied by available resources, i.e., each activity 
( )qq ji ,  entering the set has to obtain not less than min

kji qq
r  resources of type k , 

nk ≤≤1 . Thus, the former demand for the basic set to obtain only max
kji qq

r  re-
sources is now withdrawn. 

It can be well recognized that each feasible solution is defined by the se-
quence of ordinal numbers of the activities that enter the set of the solution. 
Since all the activities are enumerated with different numbers, a lexicographical 
order in the space of feasible solutions can be introduced. To compare two dif-
ferent solutions, one has to take the corresponding sequences and compare by 
pair the elements of those sequences: a pair of differing elements must be found 
while all the other previous pairs coincide. If, for that differing pair, the element 
of the first sequence is less than that of the second, the first sequence (together 
with the feasible solution) lexicographically precedes the second. 

Subalgorithm Ill consists of two main parts: the procedure for choosing the 
first maximal feasible solution and the procedure for transferring from one arbi-
trary maximal feasible solution to the next one in lexicographical order. A feasi-
ble solution is called the maximal one if it cannot be enlarged by adding any 
other activity entering the schedule. It can be well recognized that any part of 
the maximal feasible solution which comprises the basic set, is also a feasible 
solution. 

Determine the first maximal feasible solution as follows: add the next activ-
ity ( )11, ++ ff ji  to the basic set and examine the possibility of supplying the set 
( )qq ji , , 11 +≤≤ fq , by resources of minimal capacities. If this is possible, then 
the enlarged set is a new feasible solution that has to be stored in a special array. 
Later on, we proceed to examine the next activity ( )22 , ++ ff ji , etc. If adding a cer-
tain activity ( )cc ji , , mcf ≤< , does not result in obtaining a feasible solution, 
omit that activity and turn to examining the next one, ( )11, ++ cc ji . The procedure 
terminates after examining all the activities entering the schedule. 

Now let ( )11, ji ,..., ( )ff ji , , ( )gg ji , ,..., ( )hh ji , , ( )dd ji ,  be an arbitrary maximal feasi-
ble solution. The procedure for determining the next one is as follows: exclude 
the last link ( )dd ji ,  and find out whether it is possible to determine a new feasible 
schedule (which does not coincide with those obtained before) while applying 
the first procedure. If there is no such a possibility, exclude the link ( )hh ji ,  and 
again apply the first procedure of determining a new feasible schedule, and so 
on. This procedure terminates when the consequently truncated feasible solution 
comprises only the basic set. 

Subalgorithm IV determines, for each routine feasible solution, its optimal 
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resource reallocation to maximize objective (11.2.8). Let ( )11, ji ,..., ( )gg ji ,  be the 
feasible solution comprising mg ≤  activities. The work of Subalgorithm IV is as 
follows: 

1. Supply all the activities ( )qq ji , , gq ≤≤1 , with all types of resources of 
minimal capacity, i.e., assign min

kjikji qqqq
rr = , nk ≤≤1 . 

2. Update the available resources ( ) ( )tRrtR k

g

q
kjik qq

⇒− ∑
=1

min , nk ≤≤1 . 

3. Set counter 1=w . 
4. Reschedule activities ( )qq ji , , gq ≤≤1 , in descending order of the product 

( ) ( ) ( )wjijipjiI qqqqqqw ,,,, ψ⋅= . Activities with ( ) 0, =qq jip  have to be sorted at 
the end of the schedule, in descending order of values ( )wji qq ,,ψ . Let the 
newly rescheduled sequence be ( ) ( )( )w

q
w

q ji , , gq ≤≤1 . 
5. The newly sorted activities are examined one after another, in descending 

order of their priorities, in order to check the possibility, for each activity, 
that it can be supplied with additional available resources 

( ) ( )( ) ( ) ( ) ( ) ( ) ( )






 −=∆ tRrrwjir wwjiwji

w
q

w
q w

q
w

q
w

q
w

q
,min,, minmax . (11.2.16) 

Later on the remaining resources are updated 
( ) ( ) ( )( ) ( )tRwjirtR w

w
q

w
qw ⇒∆− ,, , (11.2.17) 

and the next activity ( ) ( )( )w
q

w
q ji 11, ++  is examined. The procedure terminates ei-

ther when all available resources of type w are reallocated among activi-
ties, or all the g  activities have been examined. 

6. Counter w works, ww ⇒+1 . 
7. If nw ≥ , apply the next step. Otherwise return to 4. 
8. Subalgorithm IV terminates. 
Thus, the idea of Subalgorithm IV is to reallocate all types of available re-

sources among the activities separately, one type after another. If, for a particu-
lar activity, the shortage of a certain type of resource adds more to the average 
project duration than for another activity, the remaining available resources of 
that type must obviously be assigned to the first activity rather than to the sec-
ond. 

Note that Subalgorithm IV is an optimal procedure that is implemented in the 
Algorithm. 

Subalgorithm V calculates, for each feasible solution with optimal resource 
reallocation, the objective function (11.2.8) and determines the solution that de-
livers the maximal value to that objective. This solution is taken as optimal. 

Note, in conclusion, that the input information for the heuristic algorithm 
outlined above is not precise: it cannot be calculated beforehand and is deter-
mined by means of simulation and on the basis of various assumptions and heu-
ristics. As to the algorithm itself, a conclusion can be drawn as follows: reducing 
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the basic set results in increasing the number of feasible solutions. Thus, remov-
ing Subalgorithm II results in obtaining an optimal solution by means of a full 
lexicographical lookover. If necessary, the basic set may be reduced in order to 
organize a compromise between the amount of computations and the proximity 
of the heuristic solution to the optimal one. 

 

11.2.6  Decision-making algorithm 
The decision-making algorithm determines at each essential moment t , when 

at least one activity ( )ji,  is ready to be processed, both the starting moment ijS  
and the vector of resource capacities ijr  allocated to each of those activities. This 
is carried out by solving resource reallocation problem (11.2.8-11.2.10). The al-
gorithm is carried out in real time; namely, each iteration of the algorithm can be 
performed only after either one of the activities ( )ji,  is finished and additional 
resources become available (moment ijF ), or at the earliest possible time of reali-
zation of node i  (moment ( )iT ). At that moment all activities ( )ji,  leaving node i  
are ready to be processed. The actual duration of each activity is obtained in the 
course of the project’s realization, on the basis of allocated values ijr . Note that 
before solving problem (11.2.8-11.2.10) an auxiliary problem to calculate condi-
tional probabilities ( )jip ,  for all remaining activities ( )ji,  has to be solved. We 
suggest solving that problem by means of simulation (see §11.1) for all kinds of 
resource constrained projects, including real-time projects. 

However, if we want to evaluate the efficiency of the decision-making 
model, e.g., to calculate the probability of meeting the project’s due date on 
time, we can simulate the project’s realization by randomly sampling the actual 
duration of each activity. In this case, after determining values ijkr , nk ≤≤1 , the 
random value ( )ijij rt  can be simulated as follows: 

( )
( )∑

=

⋅
= n

k
ijk

s
ijk

ij
ijij

ra

Q
rt

1

, (11.2.18) 

where s
ijka  is the simulated value of random variable ijka  with a given density 

function in the interval [ ]∗∗
ijkijk ba ,  and pregiven lower and upper bounds ∗

ijka  and 
∗
ijkb . 

By simulating the development of the project many times, the probability of 
meeting the due date on time, as well as other parameters, can be evaluated. The 
following 11.2.7 presents some experimentation based on evaluating the deci-
sion-making model’s performance with some widely used probability distribu-
tions for simulating production speeds ijυ . 
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11.2.7  Experimentation 
The efficiency of the decision-making algorithm can be illustrated by a nu-

merical example. The company is faced with carrying out a stochastic network 
project where each activity utilizes five non-consumable resources with variable 
capacities. The initial data of the project, as well as the calculated values ijkψ , 
are outlined in [71]. The resource limit values kR , 51 ≤≤ k , are 501 =R , 452 =R , 

1003 =R , 1554 =R  and 2705 =R . 
In order to validate the decision-making algorithm various examples were 

run. The experimental design is presented in Tab. 11.2. 
 

Table 11.2.  The experimental design 
Models Levels of variation Number 

of levels 
Distribution of random values ijka  Normal, uniform, beta 3 
Heuristic to calculate ( )jip ,  ( )jip ,1 , ( )jip ,2 , ( )jip ,3 , ( )jip ,4  4 
Solution for the knapsack problem 
(11.2.8-11.2.10) 

Optimal, quasi-optimal, heuristic 3 

 

Three models were varied: distribution of ijka , heuristic to simulate confi-
dence probabilities ( )jip , , and the level of proximity to the optimal solution for 
the knapsack problem (11.2.8-11.2.10). 

Three alternative distributions of random values ijka  are considered: 
1. ijka  has a normal distribution with average ( )∗∗ +⋅ ijkijk ba5.0  and variance 

( )[ ]26∗∗ − ijkijk ab . 

2. ijka  has a uniform distribution in the interval [ ]∗∗
ijkijk ba , . 

3. ijka  has a beta distribution with density function (11.2.2) in the same inter-
val. 

As to simulating confidence probabilities ( )jip , , four different heuristics out-
lined in 11.2.3 have been considered: 

1. ( )jip ,1  with ( )maxmin5.0 ijkijkijk rrr +⋅= . 

2. ( ) ( ) ( )[ ]maxmin
2 ,,5.0, jipjipjip +⋅= . 

3. ( ) ( ) ( )[ ]jipjipjip ,,5.0, 213 +⋅= . 
4. ( )jip ,4  with ( ) maxmin 1 ijkijkijk rrr ⋅−+⋅= αα , where [ ]1,0U≡α , and ijkr  is a simulated 

integer value uniformly distributed in the interval [ ]maxmin , ijkijk rr . 
In order to obtain a representative statistics for calculating confidence prob-

abilities ( )jip , , 150 simulations for each heuristic have been performed. The 
number of simulations was determined by applying the classical estimation the-
ory outlined in Chapter 3. Given the error in estimating the probability ( )jip , , 
the confidence coefficient and the sample standard deviation, we can determine 
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the sample size of simulation runs. 
Three different approaches to solve the knapsack problem (11.2.8-11.2.10) 

are considered: 
1. The basic set (see 11.2.5) is removed and the optimal solution for the 

knapsack problem (11.2.8-11.2.10) is obtained. 
2. A heuristic solution to problem (11.2.8-11.2.10) is obtained by using the 

basic set (see 11.2.5). 
3. A quasi-optimal solution to problem (11.2.8-11.2.10) is obtained by reduc-

ing the basic set. The idea is as follows: the basic set is consecutively, 
step-by-step, reduced by one activity (see 11.2.5). This, in turn, results 
both in increasing the number of feasible solutions and in increasing the 
value of the objective J  of problem (11.2.8-11.2.10). At each step the 
chosen activity to be removed is that one which, in comparison with other 
activities from the remaining basic set, contributes the minimal weight to 
the objective J . After removing the chosen activity the problem is re-
solved for the reduced basic set. The step-by-step procedure is followed 
until objective J  ceases to increase. It can be well recognized that such an 
approach does not always lead to the optimal solution. 

Thus, a total of 36 combinations (3 x 4 x 3) were considered. For each com-
bination 100 runs were performed. That number of statistical trials enables esti-
mating via simulation all the project’s parameters, as outlined in Chapter 3. 

Two outcome values are considered, as follows: 
• prT  is the average duration of carrying out the project; 
• cT  is the average computational time of one simulation run. 
The summary of the results obtained is presented in Tab. 11.3. 
The following conclusions can be drawn from the summary: 
1. It can be well recognized that introducing beta distribution for random 

values ijka  results in realizing projects with larger durations in comparison 
with normal and uniform distributions. This is because average values 

∗∗ ⋅+⋅= ijkijkijk baa 4.06.0  for a beta distribution (11.2.2) are always smaller 
than values ( )∗∗ +⋅= ijkijkijk baa 5.0  for normal and uniform distributions. This 
results both in smaller production speeds ( )ijij rυ  and in higher activity du-
rations ( )ijij rt  for each activity entering the project. As to normal and uni-
form distributions, introducing normally distributed ijka , results in produc-
tion speeds ( )ijij rυ  with smaller variances than with uniform distribution. 
This, in turn, results in smaller project duration in comparison with the 
uniformly distributed values ijka . Thus, using normal distribution enables 
meeting the due date with the highest confidence probability. 

2. Substituting any distribution for another one does not result in any consid-
erable increase of the average computational time cT . 

3. For all methods of calculating conditional probabilities ( )jip ,  the average 
project’s duration is practically the same. Conclusions can be drawn that: 
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• method ( )jip ,2  doubles the average computational time cT  in comparison 
with ( )jip ,1  and is much more complicated than the latter approach; 

• method ( )jip ,3  practically trebles values cT  and is more complicated 
than method ( )jip ,2 . 

 

Table 11.3.  The summary of results 
Methods of solving the knapsack problem 

(11.2.8-11.2.10) 
Optimal Quasi-optimal Heuristic 

Outcome values 

Distribution of 
values 

ijka  

Methods of calcu-
lating conditional 

probabilities 
( )jip ,  

prT  cT  prT  cT  prT  cT  
NORMAL ( )jip ,1  558.9 24.9 564.9 24.9 565.2 24.8 
 ( )jip ,2  557.7 48.2 562.9 48.1 564.5 48.1 
 ( )jip ,3  560.1 71.8 562.0 71.8 564.4 71.7 
 ( )jip ,4  558.3 25.1 564.6 25.1 573.9 25.0 
UNIFORM ( )jip ,1  561.8 22.1 574.9 22.1 575.7 22.0 
 ( )jip ,2  563.3 42.6 572.4 42.6 573.7 42.6 
 ( )jip ,3  562.2 63.5 572.2 63.5 576.0 63.4 
 ( )jip ,4  562.4 22.4 574.7 22.4 577.1 22.3 
BETA ( )jip ,1  578.1 24.5 582.2 24.4 584.7 24.3 
 ( )jip ,2  578.6 47.3 582.6 47.2 587.6 47.2 
 ( )jip ,3  577.4 70.5 586.3 70.4 586.8 70.4 
 ( )jip ,4  582.1 24.7 584.0 24.7 586.0 24.6 

 

Example. For a normal distribution of values ijka , the optimal solution of the 
knapsack problem (11.2.8-11.2.10), and for uniformly simulated resource ca-
pacities ijkr  to calculate conditional probabilities ( )jip ,4 , we obtain the following 
simulated outcome values: 

• the average project’s duration 3.558=prT ; 
• the average computational time of one simulation run 1.25=cT  sec; 
• for both methods ( )jip ,1  and ( )jip ,4  the average project duration, as well as 

the average computational time, are practically the same. But ( )jip ,1  is 
simpler since, unlike ( )jip ,4 , values ijkr  are deterministic ones and do not 
require simulation. 
Thus, using ( )jip ,1  is simpler, offers less computational time and is not less 
efficient than using methods ( )jip ,2  ÷ ( )jip ,4 . We recommend implement-
ing ( )jip ,1  by calculating conditional probabilities ( )jip ,  for project sched-
uling problems. 

• It can be well recognized that for our example the optimal method of solv-
ing the multidimensional knapsack problem (11.2.8-11.2.10) compares fa-
vorably with other heuristic algorithms and results in smaller project dura-
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tions. As to the computational time values cT , they do not depend, in prac-
tice, on the method of solving the resource reallocation problem (11.2.8-
11.2.10). This can be easily explained: the computational time cT  depends 
mainly on calculating confidence probabilities ( )jip ,  while solving prob-
lem (11.2.8-11.2.10) results in a very small contribution to value cT . 

 

11.2.8  Conclusions 
The following conclusions can be drawn from §11.2: 
1. The resource constrained project scheduling model can be applied to all 

kinds of PERT network projects under random disturbances that utilize 
several non-consumable resources with variable capacities. Those projects 
include various R&D projects, construction projects, etc. 

2. The model determines, at each decision point, the subset of activities from 
those ready to be operated and reallocates available resources among the 
chosen activities. The optimal knapsack resource reallocation problem is a 
NP-complete one. Several solutions to the problem - an optimal solution 
based on a lexicographical lookover, and various approximate solutions 
obtained by using heuristic procedures - are considered. 

3. The presented resource reallocation model has been used for several PERT 
network projects where activities require non-consumable resources of 
variable capacities. A conclusion can be drawn that in cases of relatively 
small projects (number of activities and number of different resources not 
exceeding 30÷40 and 3÷5, correspondingly) the newly developed optimal 
lookover algorithm is the most reasonable option in comparison with 
other heuristic algorithms. For large size projects, heuristic solutions may 
be preferable. 

4. The presented resource constrained scheduling model is easy to handle; it 
can be implemented on a PC. Simulating a project of medium size with 
five different resources takes little computational time. 

5. The results obtained are a further development of results outlined in §11.1, 
in which a resource constrained project scheduling model with fixed ca-
pacities has been presented. 

 

§11.3  Stochastic network project scheduling under chance constraints  
11.3.1  Introduction 
It can be clearly recognized that both resource supportability models outlined 

in §§11.1-11.2 fit only certain project management scenarios. Those models do 
not include cost objectives, i.e., the costs of hiring and maintaining resources 
throughout the project’s realization. The models do not deal with projects’ due 
dates as well as with chance constraints of meeting the projects’ deadlines on 
time. Those models can be used for one project only. 

The research outlined below refers to a more generalized resource support-
ability model in project management. 

Several simultaneously realized stochastic network projects of PERT type are 
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considered. The durations of all projects’ activities are random and the corre-
sponding probability density functions are pregiven. Each activity requires vari-
ous types of renewable resources with fixed capacities. Resources are stored and 
maintained at one central warehouse; each type of resources is in limited supply 
and is fixed at the same level throughout the projects’ realization. Resources are 
to be hired and delivered to the central store before the moment the first project 
starts to be carried out. They are released at the moment when the last project is 
completed. Each activity starts at the moment when it is ready to be processed 
and when free available resources can support it. The cost of hiring and monitor-
ing a resource unit per time unit (for each type of resources) is pregiven. Each 
project has its due date and the least permissible probability of accomplishing 
the project on time, i.e., its chance constraint. The problem is to determine: 

• the earliest starting moment for each project’s realization; 
• the limited resource levels for each type of resources to be stored during the 

projects’ realization; 
• the moments that resources are fed in and projects’ activities start, - 

in order to minimize the average total expenses of hiring and maintaining re-
sources subject to the chance constraints. 

Thus, the developed resource supportability model covers a flexible project 
management system. The model minimizes the average operational expenses 
subject to the chance constraints, for each project separately [77-79]. 

The problem is solved by means of simulation. Two optimization cycles are 
imbedded in the model. The external cycle deals with optimizing both the pro-
jects’ earliest starting moments together with the resource levels. Those parame-
ters solve as the input values for the internal cycle. The latter uses heuristic deci-
sion-making rules to reallocate free available resources among the projects in 
order to meet the projects’ chance constraints. 

Note that models outlined in §§11.1-11.2 are based on solving knapsack re-
source reallocation problems which are applied at decision points when at least 
one activity is ready to be operated and there are free available resources. If, at a 
certain point of time, a set of more than one activity is ready to be operated but 
the available amount of resources is insufficient, a competition among the activi-
ties takes place in order to choose a subset of those activities which has to be 
operated first and can be supplied by the available resources. Determining such 
an optimal subset of activities is carried out by means of solving a knapsack 
problem. However, for several stochastic network projects the corresponding 
knapsack problem becomes too complicated. We have substituted it by a heuris-
tic decision-making procedure. Note that the developed resource supportability 
model is a very complicated stochastic optimization problem which cannot be 
solved in the general case and allows a heuristic solution only. 

 

11.3.2  Notation 
Let us introduce the following terms: 
( )ANGl ,   - the l -th stochastic network project (graph) of PERT type, ml ≤≤1 ; 

m  - the number of network projects; 
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( ) ( )ANGji ll ,, ∈ -the project’s ( )ANGl ,  activity; 
ijlt  - random duration of activity ( )lji, ; 
ijla  - lower bound of value ijlt  (pregiven); 
ijlb  - upper bound of value ijlt  (pregiven); 
ijlµ  - the average value of ijlt ; 
ijlV  - variance of ijlt ; 
ijlkr  - capacity of the k -th type resource(s) allocated to activity ( )lji, , 

nk ≤≤1  (pregiven); 
n  - number of different resources; 

kR  - total available resources of type k  to be hired and maintained 
throughout the planning horizon (to be determined); 

lD  - the due date for project ( )ANGl , , ml ≤≤1  (pregiven); 
lp  - the minimal admissible probability of meeting the due date of pro-

ject ( )ANGl ,  on time, ml ≤≤1  (pregiven); 
lS  - the earliest starting moment for the project’s ( )ANGl ,  realization, 

ml ≤≤1 , i.e., the earliest moment activities ( )lji,  can start to be op-
erated (to be determined); 

0S  - the moment for resources { }kR  to be hired and delivered; 
ijlS  - the moment that resources ijlkr  are fed in and activity ( )lji,  starts (a 

random value conditioned on our decisions); 
lF  - the actual moment project ( )ANGl ,  is accomplished (a random 

value); 
ijlF  - the actual moment activity ( )lji,  is finished (a random value); 
( )tRk  - available resources of the k -th type at moment t ; note that relation 

( ) kk RR =0  holds, where 0 is the earliest moment when the first pro-
ject starts to be carried out; 

( )ANGlt ,  - the remaining unfinished project ( )ANGl ,  at moment 0≥t , 
( ) ( )ANGANG ll ,,0 = , ml ≤≤1 ; 

( )ijll SGT  - random duration of project ( )ANGl ,  on condition that feeding-in of 
resources ijlkr  carried out at moments ijlS ; 

( )ljip ,  - conditional probability of activity ( )lji,  to be on the critical path in 
the course of the project’s ( )ANGl ,  realization (dependent on the 
decisions already taken); 

( )ijlk StR - maximal value of the k -th resource profile at moment t  on condi-
tion that activities ( )lji,  start at moments ijlS ; 

kC  - the cost of hiring and monitoring the k -th resource unit per time 
unit, nk ≤≤1  (pregiven); 

C  - the expected total resource expenses (to be minimized). 
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Each activity duration ijlt  follows either a normal probability density distribu-
tion with parameters ( )ijlijl V,µ  or a uniform distribution in the interval ( )ijlijl ba , , or 
a beta probability density function 

 
( ) ( ) ( )( )2

4

12 xbax
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xf ijlijl
ijlijl

ijl −−
−

= . (11.3.1) 

Note that obvious relations 
kijlkklji

Rr ≤
,,,

max , nk ≤≤1 , (11.3.2) 
hold, otherwise the projects cannot be operated. 

 

11.3.3  The problem 
The problem is to determine values lS , ml ≤≤1 , and ijlS  to minimize the ex-

pected total resource expenses 
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subject to 
{ } lll pDF ≥≤Pr ,  ml ≤≤1 , (11.3.4) 
( ) ( ) kkijlk RtRStR ≤≤ ,  0≥∀t ,  nk ≤≤1 . (11.3.5) 
Model (11.3.3-11.3.5) refers to a very complicated stochastic optimization 

problem which cannot be solved in the general case; the problem allows a heu-
ristic solution only. 

The basic idea of the heuristic solution is as follows. Two levels are incorpo-
rated in the model - the upper (external) level and the lower level. At the upper 
level an approximate search algorithm is implemented to determine the optimal 
values lS  and kR , nk ≤≤1 , ml ≤≤1 . We will apply the cyclic coordinate descent 
method which is simple in usage and has been implemented for solving various 
production control and project management problems (see, e.g., 
[7,54,92,151,153]. Parameters { }kl RS ,  serve as the input values for the lower 
level where values ijlS  are determined by means of simulation. Decision-making 
is carried out at essential moments ijlF  either: 

• when one of the activities ( )lji,  is finished and additional resources ijlkr , 
nk ≤≤1 , become available, or 

• when all activities ( )lji,  belonging to one and the same project ( )ANGl ,  and 
leaving node i  are ready to be processed, or 

• when several subsets of activities ready to be processed belong to different 
projects. 

If one or more activities are ready to be processed at moment t  and all of 
them can be supplied with available resources, the required resources are fed in 
and the activities begin to be operated at moment t , i.e., tSijl = . If at least for 
one type k  of resources there is a lack of available resources at moment t , a 
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competition among the activities has to be arranged to choose a subset of activi-
ties that will start to be operated at moment t  and can be supplied by resources. 
The general idea of decision-making, i.e., the sub-problem of choosing activities 
to be operated, will be outlined below. 

 

11.3.4  Heuristic decision-making 
Assume that at a certain moment t  a set of activities ( ){ }lji,  is ready to be op-

erated. Two cases will be considered: 
A. Activities ( ){ }lji,  enter one and the same network graph (project) ( )ANGl , , 

i.e., for the set ( ){ }lji,  value l  remains constant. 
B. Activities ( ){ }lji,  refer to more than one network graph ( )ANGl , . 
Let us examine both cases in greater detail. 
Case A. To simplify the problem, cancel parameter l  since the latter remains 

unchanged in the course of decision-making. Assume, with respect to §11.1, that 
at moment t  q activities ( )11, ji ,…, ( )qq ji , , 1≥q , are ready to be processed, and at 
least for one type k  of resources there is a lack of available resources, i.e., rela-
tion 

 ( )tRr k

q

kji >∑
=1ξ

ξξ  (11.3.6) 

holds. Here ijkr  a simplified modification of ijlkr  for a fixed l  (see 11.3.2). A 
competition among the activities is arranged following the heuristic outlined in 
§11.1. According to that heuristic, the subset, which provides the maximal total 
contribution to the expected project duration subject to (11.3.6), has to be cho-
sen. Each activity ( )ji,  contributes to the expected project duration value 

( )jipijij ,⋅= µϑ , where ( )jip , , being a simplified version of ( )ljip , , is the condi-
tional probability for activity ( )ji,  to be on the critical path. At any decision 
point t  values ( )jip ,  are calculated by means of simulation (see §11.1). After de-
termining values ( )ξξ jip , , q≤≤ ξ1 , for all competitive activities at moment t , the 
optimal subset is chosen by solving a zero-one integer programming problem as 
follows: determine integer values 

ξξ
η ji , q≤≤ ξ1 , to maximize the objective 

{ } ( )[ ]








⋅⋅∑
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q

jiji jip
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ξ

ξξη ξξξξ
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µη  (11.3.7) 

subject to 

( ) ( )tRr k

q

kjiji ≤⋅∑
=1ξ

ξξξξ
η ,  nk ≤≤1 , (11.3.8) 

where 
( )





=
.1

;,0
otherwise

resourcesobtainnotwilljiactivityif
ji

ξξ
ξξ

η  (11.3.9) 

Problem (11.3.7-11.3.9) is a classical zero-one integer programming prob-
lem, which provides a precise solution. However, the problem’s parameters, 
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e.g., 
ξξ

ϑ ji , are obtained through heuristic assumptions. 
Case B. This case makes unable decision-making (11.3.7-11.3.9) since the 

latter does not take into account at moment t  different projects ( )ANGlt ,  with dif-
ferent due dates lD  and different chance constraints lp . Assume that at moment 
t  a set of activities which are ready to be processed and which belong to υ  dif-
ferent projects ( )ANG tl ,

ρ
, υρ ≤≤1 , is given. This set of activities can be subdi-

vided into υ  subsets 




















ρ

ξρξρ
l

ji , , ρξ q≤≤1 , each subset of volume ρq  entering 

the project ( )ANG tl ,
ρ

. Assume, that there is a lack of available resources, i.e., at 
least for one type k  of resources relation 

( )tRr k

q

klji >∑∑
= =

υ

ρ ξ

ρ

ρξρξρ
1 1  (11.3.10) 

holds. 
In order to undertake a reasonable decision-making, i.e., to choose a quasi-

optimal subset of activities, we suggest a heuristic step-by-step procedure. The 
procedure is carried out as follows: 
Step 1. For each project ( )ANG tl ,

ρ
 separately, reorder the activities entering 

the subset 




















ρ

ξρξρ
l

ji ,  in the descending order of their corresponding 

values ( )
ρξρξρξρξρ ξρξρµϑ

ljiji jip ,⋅= . 
Step 2. An assumption is introduced that: 

• project tlG
1
 will not obtain at moment t  the required resources for 

any of the 1q  activities 




















1

11 ,
l

ji ξξ  ready to be processed; 

• the required resources will be fed in for all activities 




















1

11 ,
l

ji ξξ  at 

the next decision moment ∗t . Value ∗t  can be calculated as the 
minimal value of the average finishing times of all activities which 
at moment t  undergo processing; 

• in future, i.e., at all decision-points tt >' , all the remaining activi-
ties ( )

1
, lji  belonging to that projects will not wait for resources in 

lines until the end of the project’s realization. 
By means of simulation calculate the project’s random duration 

( )ijll SGT
1

 honoring the outlined above assumptions. 
Step 3. Repeat Step 2 M  times in order to obtain representative statistics. Call 

the simulated random finishing times for project ( )ANGl ,
1

: ( )1
1l

F , 
( )2
1l

F ,…, ( )M
lF
1

. 
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Step 4. Calculate the statistical frequency 
1l

Q  of completing project ( )ANGl ,
1

 
on time: 

 ( )
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, (11.3.11) 
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Step 5. Calculate the relative deviation 
 ( )

1

111

1

l
lll p

pQZ ⋅−= . (11.3.13) 

Step 6. Repeat Steps 2 → 5 for all projects ( )ANGl ,
ρ

, υρ ≤≤1 , participating in 
the competition. 

Step 7. Choose the project with the lowest value ρZ . Let it be ( )ANGl ,
ω

, 
υω ≤≤1 . 

Step 8. For project ( )ANGl ,
ω

, all the sorted activities ( )
ω

ξωξω l
ji ,  (see Step 1) are 

examined one after another, in the descending order of their priorities, 
from top to bottom, to determine the first activity, which can be sup-
plied with available resources. If, for such an activity ( )

ω
ξωξω l

ji , , 

ωξ q≤≤1 , relations ( )tRr kklji ≤
ωξωξω

, nk ≤≤1 , hold, the required resources 
are passed to the activity while the available resources ( )tRk  are up-
dated, 

( ) ( )tRrtR kkljik ⇒−
ωξωξω

,  nk ≤≤1 . 
If such an activity can be determined, go to Step 10. Otherwise apply 
the next step. 

Step 9. If no activity ( )
ω

ξωξω l
ji ,  can be chosen on Step 8, examine the next pro-

ject with the lowest value ρZ  (besides ωZ ) in order to examine that 
project as well, etc., until a certain activity ( )

ρ
ξρξρ l
ji ,  will be deter-

mined. If no activity can be found by examining all the projects, go to 
Step 11. Otherwise apply the next step. 

Step 10. Exclude the determined activity from the set of competitive activities; 
update the available resources. Return to Step 1, i.e., carry out deci-
sion-making anew. It can be well-recognized that the procedure ter-
minates either when all the available resources are reallocated among 
activities or all the competitive projects are examined in the order of 
their emergency parameters ρZ . 

Step 11. Calculate the next decision point tt >' . Determine the set of activities 
ready to be operated. Return to Step 1. 

A conclusion can be drawn that in Case B decision-making centers on choos-
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ing and operating first the activities which enter the “weakest” projects, i.e., the 
projects being late with meeting their corresponding due dates on time subject to 
their chance constraints. As to Case A, the project management operates first the 
optimal subset of activities that provides minimization to the expected project’s 
duration. 

 

11.3.5  The structure of the resource supportability model 
The initial data of the model is as follows: 
• at the company level: resource cost parameters kC , nk ≤≤1 ; 
• at the project level: due dates lD  and chance constraints lp , ml ≤≤1 ; 
• at the activity level: upper and lower bounds ijlb  and ijla , average values 

ijlµ , resource capacities ijlkr . 
Decision variables kR , nk ≤≤1 , and lS , ml ≤≤1 , have to be determined be-

forehand, i.e., before the projects will actually start to be carried out. Note that 
moment 0S  resources kR  have to be hired, delivered and stored at the company’s 
central warehouse satisfies ll

SS min0 =  and coincides with the beginning of the 
projects’ realization. However, certain projects may start to be carried out later 
that at moment 0S . 

Thus, the resource supportability model is implemented at two stages: 
• at the planning stage, i.e., before the projects’ realization, when determin-

ing optimal planning parameters lS  and kR , ml ≤≤1 , nk ≤≤1 . Those pa-
rameters are input values for the stage of monitoring which is performed in 
the course of the projects’ realization; 

• at the stage of monitoring the resource feeding-in moments ijlS  are deter-
mined. Those parameters cannot be predetermined since they are random 
values conditioned on our future decisions. At the stage of monitoring the 
resource supportability model can be implemented in real time; namely, all 
activities can be operated only after obtaining necessary resources. How-
ever, if we want to evaluate the efficiency of the resource supportability 
model, we can simulate the algorithm’s work by random sampling of the 
actual duration of activities. By simulating the algorithm’s work many 
times, all the projects’ cost and probability parameters can be evaluated. 

The structure of the resource supportability model and its algorithm is based 
on the assertion, that the cost objective C  is a complicated non-linear function of 
decision variables lS  and kR , ml ≤≤1 , nk ≤≤1 , and, by introducing the outlined 
above decision-making rules for Cases A and B, is fully determined by those de-
cision variables. Thus, it is reasonable to arrange two optimization cycles for the 
model: 

• the external cycle to carry out an optimal search for values { }lS  and { }kR  by 
applying the cyclic coordinate descent method, and 



 
 

212 

• the internal cycle to carry out mutual simulation runs of the projects’ reali-
zation with input values { }lS  and { }kR  determined from the external cycles. 
It goes without saying that decision-making rules for both Cases A and B 
are incorporated in the simulation model at the internal cycle. At each 
simulation run objective C  is calculated. 

The combination { }lk SR ,  which provides the minimal average objective C  
calculated by (11.3.3), subject to all chance constraints (11.3.4), is taken as the 
optimal combination which has to be predetermined before the projects’ realiza-
tion. Required resources { }kR  are hired at the moment ll

SS min0 = , after which the 

projects’ realization actually starts. Feeding-in resource moments ijlS  are deter-
mined either for real-time projects, or by simulating the projects’ realization. 

 

11.3.6  The heuristic algorithm 
The enlarged step-by-step procedure of the algorithm is as follows: 

Step 1. Set the initial (minimal) values of { }lS  and { }kR . Note that { }kR  are re-
stricted from below: 

 ijlkljik rR
,,

max≥ ,  nk ≤≤1 , (11.3.14) 
 otherwise the problem has no solution. For most practical cases values 

lS , ml ≤≤1 , can be set equal zero. Thus, the optimal search method has 
to be arranged in the ( )mn + -dimensional area. Denote the initial ( )mn + -
dimensional search point by ( )0X . 

Step 2. Implement a cyclic coordinate search method with a positive search 
step increment t∆  (or kR∆ ), beginning from the initial search point ( )0X . 
Undertaking a search means shifting one of the coordinates, beginning 
from lS  (the first group of m  coordinates { }lS  has to precede the second 
group { }kR ) to the right with step t∆  or R∆ . If, e.g., from the search 
point ( )qX  the search ( ) ( )1+→ qq XX  results in changing the η -th coordi-
nate, mn +≤≤ η1 , then all other coordinates remain unchanged. If in the 
course of a search step objective C  becomes less than it has been be-
fore, at point ( )qX , the search proceeds in the same direction, i.e., an 
additional increment t∆  (or kR∆ ) is implemented. If the objective does 
not decrease, then we examine the next, ( )1+q -th coordinate, while all 
q  preceding coordinates remain unchanged with the values they have 
already received. The routine iteration of the search terminates when 
all ( )mn +  coordinates { }lS  and { }kR  are examined. Thus, each decision 
variable is optimized separately, while all the previous coordinates 
have already been optimized. 

 

Step 3. At each routine search point ( )qX  with decision variables ( ) ( ){ }q
k

q
l RS , , 

numerous simulation runs using the simulation model at the internal 
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cycle have to be undertaken to obtain representative statistics for value 
C . The simulation model comprises three submodels as follows: 
Submodel I simulates most of the procedures to be undertaken in the 
course of the projects’ realization, namely: 
• determines decision points (essential moments) ijlF ; 
• singles out (at a routine decision point) all activities that are ready to 

be operated; 
• if possible, supplies all those activities with available resources and 

later on simulates the corresponding activities’ durations; 
• returns the utilized non-consumable resources to the company’s cen-

tral warehouse (at the moment an activity is finished); 
• updates the remaining projects (if necessary) at each routine decision 

point. 
 Submodel II calculates by means of simulation values ( )jip ,  to facili-

tate decision-making for the case of one project (Case A), as well as 
values ( )ljip ,  for the case of several projects (Case B). Submodel II 
also calculates the forecasted value ∗t  of the next adjacent decision 
point (see Step 2 of the decision-making model outlined in 11.3.4). For 
each activity ( )ljip ,  which at moment t  is being processed but has not 
been completed as yet, the average finishing time ijlF  is calculated. 
Given the starting time ijlS , the probability density function of random 
value ijlt  and decision point t  under consideration, a precise determina-
tion of value ijlF  can be obtained. 
Note that simulation of activity durations by using Submodel II is car-
ried out to solve auxiliary forecasting problems, but not to simulate ac-
tual activity realizations. The latter is carried out by Submodel I only. 

 Submodel III solves, at a routine decision point t , the zero-one integer 
programming problem (11.3.7-11.3.9) to undertake decision-making in 
the case of one project. Submodel III also simulates Steps 3-9 of the 
decision-making model in Case B of several projects (see 11.3.4). 
The outcome value of the simulation model at Step 3 is calculated as 
follows: 

 ( ) ( )[ ] ( )∑∑ ∑
== −

⋅+
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 Here A  is an essentially high value (for numerical examples we usually 
set A  equal 1710 ), while lX  satisfies 
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pQif
X ll
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 where lQ  is calculated by (11.3.11) and ( )δ
lF  is the simulated moment 

project ( )ANGl ,  is finished in the δ -th simulation run, M≤≤ δ1 . 
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Thus, relations (11.3.15-11.3.16) enable undertaking search for routine 
( )nm+ -dimensional points ( )qX  honoring chance constraints (11.3.4). If 
at least one value 1=lX , the corresponding combination ( ) { }kl

q RSX ,≡  
is withdrawn from the cyclic coordinate search process. 

Step 4. After optimizing all nm +  coordinates { }lS  and { }kR , i.e., carrying out a 
routine search iteration, the search process is initiated anew, beginning 
from the first coordinate lS . The search process terminates when, for 
two adjacent iterations f  and 1+f , the relative difference between ( )f

C  
and ( )1+f

C  is less than the pregiven accuracy 0>ε . 
Extensive experimentation for medium size network projects has illus-
trated the efficiency of the developed two-level algorithm. Two itera-
tions are usually enough to finalize the optimization process [151]. 

 

11.3.7  Conclusions 
The following conclusions can be drawn from §11.3: 
1. The developed resource supportability model can be used in project man-

agement as a decision support model for planning and monitoring several 
stochastic network projects. The model has been successfully used for 
small and medium size projects of PERT type. 

2. The developed optimal planning parameters { }kl RS ,  result in minimizing 
the resource average expenses for hiring and maintaining non-consumable 
resources. For a medium size network project with random activity dura-
tions, two cycle iterations resulted in a decrease of more than 50% in the 
initiated average expenses and were sufficient to finalize the optimization 
process. 

3. The developed resource supportability model is suitable for resource 
scheduling in stochastic network projects, when the processing of certain 
activities is based on delivering resources, e.g., in high technology pro-
jects, defense related industries, opto-electronics, aerospace, etc. 

 

§11.4  Resource constrained project scheduling model for alternative 
stochastic network projects  

11.4.1  Introduction 
In our previous §§11.1-11.3 we have outlined various algorithms in the area 

of resource constrained project scheduling. However, the regarded research 
deals with non-alternative network projects only, namely, of PERT type. 

At the same time, it can be well-recognized that for a certain project its to-
pology may implement various alternative outcomes (deterministic and stochas-
tic), when there are several possible alternative ways for reaching the project’s 
target. Such network projects usually occur when an entirely new device is de-
signed with no similar prototypes in the past (e.g., in chemical industries, aero-
space and in other defense related industries). They are faced with a great deal 
of uncertainty in their progress as well as with alternative outcomes in key 
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events. Since the importance of such projects is significant, practically all indus-
trial developed countries have to consider and to perform the so-called goal pro-
grams or goal projects as the basic trend of technological progress. The need for 
high quality resource constrained scheduling models for such complicated pro-
jects becomes more and more important. Thus, undertaking research in this area 
becomes imperative both from the theoretical and applied points of view. 

The following resource constrained scheduling model for projects under ran-
dom disturbances and with alternative structure is a methodological extension of 
our research results outlined in §§11.1-11.2, in which activity related resources 
with fixed and variable capacities have been imbedded in a PERT type network 
model without alternative branchings. 

We will henceforth consider an activity-on-arc network project ( )ANG ,  of 
CAAN type outlined in Chapter 8, where the set of alternative nodes is subdi-
vided into subsets: 

• NN ⊂ : alternative nodes with stochastic branchings; 
• NN ⊂ : alternative deterministic nodes (decision nodes). 
We have chosen the CAAN model since within the two recent decades it has 

been used in various main types of alternative network projects [51-57,92,151]. 
Each activity ( ) ( )ANGAji ,, ⊂∈  requires renewable resources of various types 

with fixed or variable capacities. In order to simplify the problem we will con-
sider the case of fixed capacities, although introducing variable capacities results 
only in additional technical difficulties. Each type of resources is in limited sup-
ply with a resource limit that is fixed at the same level throughout the project 
duration. The duration of each activity is a random variable with given density 
function. 

The problem is to determine starting time values ijS  for each activity ( )ji,  
which will be actually processed in the course of the project’s development. 
Note that due to the project’s alternative structure, not all the activities entering 
the project will be carried out. Values ijS  are not calculated in advance and are 
random variables conditioned on the model’s future decision. The model’s ob-
jective is to minimize the expected project’s duration. Such an objective is 
mostly used in project management (see, e.g., [143,156,165,etc.]), and the prob-
lem of decreasing the project duration is considered as one of the most important 
targets, especially for projects under random disturbances [109,143,156]. The 
suggested heuristic algorithm is implemented in real time by means of simula-
tion. Decision-making in the course of monitoring the project is carried out: 

• at alternative deterministic decision nodes to single out all alternative sub-
networks (the so-called joint variants) in order to choose the one with the 
minimal average duration; 

• at the project’s essential moments when at least one activity is ready to be 
operated but the available amount of resources is limited. A competition 
among those activities is carried out to determine the subset of activities, 
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which have to be operated first and can be supplied by available resources. 
Such a competition is realized by a combination of a knapsack resource re-
allocation model and a subsidiary simulation algorithm. 

Note that those essential moments are as follows: 
• when one of activities ( )ji,  is finished and additional resources become 

available, or 
• when a certain event (node) i  is realized and all activities leaving that node 

are ready to be processed. 
Since a joint variant of a CAAN model is a GERT type sub-network with 

probabilistic outcomes in key events, the problem’s solution is based on devel-
oping a resource constrained scheduling model for GERT projects. The corre-
sponding algorithm [85] is, in essence, the backbone of the general resource 
constrained model, and a further development of the models outlined in Chap-
ters 7-10. Thus, presenting the resource-constrained project scheduling model 
for networks with purely stochastic alternatives is the main contribution of 
§11.4. 

There is no need to recall a description of the CAAN model since the latter 
has been outlined in depth in Chapter 8, together with the definitions of the joint 
variant and admissible plan. We will call henceforth AJV the CAAN algorithm 
for determining joint variants. 

 

11.4.2  Notation 
Let us introduce the following terms: 
( )ANG ,  - stochastic network project of CAAN type; 
tG  - the remaining network project at moment 0≥t ; ( )ANGG ,0 = ; 

( )αi  - decision node with deterministic alternative outcomes; 
( )αi  - alternative node with stochastic outcomes; 

( )ji,  - activity leaving node i  and entering node j , ( ) ( )ANGAji ,, ⊂∈ ; 
ijt  - random duration of activity ( )ji, , with density function ( )jif t , ; 
ija  - lower bound of value ijt  (pregiven); 
ijb  - upper bound of value ijt  (pregiven); 
ijµ  - average value of ijt  (pregiven); 

( )∗ji,  - activity ( )ji,  which will be actually realized in the course of the pro-
ject’s development (conditioned on the model’s decision). Note that 
since ( )ANG ,  is an alternative network, the set of actually realized 
activities ( )∗ji,  is a subset of all activities ( ){ }ji,  entering ( )ANG , . 
Thus, ( ) ( ){ }jiji ,, ⊂∗ ; 

∗
ijS  - the moment resources are fed in and activity ( )∗ji,  starts (a random 

value); 
∗

ijF  - the actual moment activity ( )∗ji,  is finished, ijijij tSF += ∗∗ ; 
rtJ  - the r -th joint variant of project tG  (a subnetwork of PERT or GERT 
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type), tmr ≤≤1 ; 
tm  - number of joint variants in project tG ; 

n  - number of different resources; 
( )∗jip ,  - conditional probability of activity ( )∗ji,  to be on the critical path in 

the course 
of the project’s realization; 

ijkr  - capacity of the k -th type resources allocated to activity ( )ji, , nk ≤≤1  
(pregiven and fixed); 

kR  - total available resources of type k  at the project management dis-
posal (pregiven and fixed throughout the planning horizon); 

( )tRk  - free available resources at moment 0≥t ; 
( )opt

rtijk JStR ,max ∗  - maximal value of the k -th resource profile at moment t  on 
condition that activities ( )∗ji,  start at moments ∗

ijS  and at moment t  
the optimal joint variant opt

rtJ  is chosen; 
( )opt

rtij JSGT ,∗  - random project’s duration, on condition that according to the re-
source constrained scheduling model the optimal joint variant opt

rtJ  
will be chosen and all activities ( )∗ji,  start at moments ∗

ijS ; 
AJV - the algorithm for determining joint variants in the CAAN model. 

 

11.4.3  The problem 
The general resource constrained scheduling problem for a CAAN type 

model ( )ANG ,  is to minimize the expected project’s duration 
( ){ }opt

rtij JSGTE ,min ∗  (11.4.1) 
subject to 

( ) ( ) 0,max ≥∀≤∗ ttRJStR k
opt
rtijk ,  nk ≤≤1 . (11.4.2) 

Problem (11.4.1-11.4.2) is a complicated stochastic optimization model for 
projects with an alternative structure and topology. The problem cannot be 
solved in the general case and allows a heuristic solution only. 

The general idea of the heuristic algorithm is as follows. Decision-making is 
carried out in real time, at any routine essential moment t  (decision point), either 
when one of the activities ( )∗ji,  is finished and additional resources ijkr , nk ≤≤1 , 
become available, or when a certain non-alternative node i  is realized and all ac-
tivities leaving that node are ready to be processed, or when a decision node (a 
node with deterministic alternative outcomes of type α  and γ ) is reached. In the 
latter case, by using algorithm AJV (see Chapter 8), all joint variants rtJ , 

tmr ≤≤1 , are singled out and later on examined, to determine the optimal joint 
variant with the minimal expected duration. The procedure of determining the 
average duration of a joint variant (which is, in essence, a PERT or a GERT type 
network with purely stochastic alternative outcomes at certain nodes) is carried 
out by the  resource constrained GERT project scheduling algorithm (RCGPS), 
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which will be outlined below. 
After examining all the joint variants rtJ , tmr ≤≤1 , the optimal joint variant 

∗
tJ  is chosen and future monitoring centers on carrying out resource constrained 

scheduling for pregiven total available resources ( )tRk , nk ≤≤1 . 
If a routine essential moment is a node with stochastic alternative outcomes, 

the latter are simulated according to their outcome probabilities (in real time 
projects as well); the simulated activity thus obtains its corresponding duration 
by means of simulation. 

If an essential moment centers on determining a subset of activities (from a 
set of activities ready to be processed and waiting to be supplied by resources), a 
competition among the activities has to be arranged. For the case of a PERT 
network, the corresponding algorithm (call it henceforth RCPPS) is outlined 
above in §§11.1-11.3. The general idea of the RCPPS algorithm is to reallocate 
resources among the project’s competitive activities on the basis of priority lev-
els assigned to those activities. Those priority levels are the activities’ contribu-
tions to the project’s average duration. They depend both on the activity’s aver-
age duration and on the probability to be on the critical path in the course of the 
project’s realization. Those probability values are also determined by means of 
simulation.  

The outlined below RCGPS algorithm is a modification of the RCPPS algo-
rithm since stochastic alternative outcomes have to be taken into account. 

After singling out the subset and supplying the later by available resources, 
activities begin to be processed. A new routine essential moment is determined, 
etc. until the project is accomplished. 

Note, in conclusion, that in the course of developing a real project there may 
be changes in the parameters of some activities, e.g., probability density func-
tions of the activities’ durations, outcome probabilities, etc., since activity net-
works are revised over time. In such a case the problem of determining all the 
joint variants rtJ  has to be resolved at each sequentially encountered decision 
node at moment t , since revising a project may result in changing its optimal 
joint variant opt

tJ . If the network does not undergo revision the problem has to be 
solved only once, at 0=t . 

 
11.4.4  The general resource constrained scheduling heuristic algorithm for 

a CAAN type model 
The outlined below algorithm incorporates two currently developed algo-

rithms, namely: 
• the algorithm of determining all joint variants from the initial CAAN model 

(algorithm AJV); 
• the resource-constrained project scheduling algorithm RCPPS for non-

alternative PERT networks for cases of fixed and variable resource capaci-
ties (see §§11.1-11.2). 
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The enlarged step-by-step procedure of the heuristic algorithm is as follows: 
Step 1. The routine essential moment t  of the project’s progress is determined 

at the beginning of the project’s realization. An essential moment may 
occur: 
A. At a decision node (α ) with alternative deterministic outcomes 
(of α  and γ  types). 
B. At an alternative node (α ) with stochastic outcomes (of α  and γ  
types). 
C. At a non-alternative node ( j ) (of x  and β  types). 
D. At the moment a certain activity ( )ji,  is finished, but event j  is 
not realized as yet. 

 In Case A apply the next step; in Case B go to Step 8; in both Cases C 
and D apply Step 11. 

Step 2. Determine the remaining network project tG , 0≥t . Note that 
 ( ) ( ){ } ( ){ }∗∗∗≡ ttt jijiANGG ,\,\, , (11.4.3) 
 where ( ){ }∗

tji,  denotes the set of activities which have been already 
processed till moment t , and ( ){ }∗∗

tji,  denotes the set of activities which 
have not been operated and, due to the alternative structure of ( )ANG ,  
and prior decision-making, will not be carried out in the future. 

Step 3. Apply algorithm AJV to single out all the joint variants rtJ  from the 
subnetwork tG . To apply the algorithm one has to implement sequen-
tially four subalgorithms as follows: 
• determining the α -frame for the outcome graph; 
• determining the maximal path in the outcome graph; 
• determining the admissible plans; 
• determining the joint variants which correspond to admissible plans. 

 Let the determined joint variants be rtJ , tmr ≤≤1  (see 11.4.2). 
Step 4. For each joint variant rtJ  determine its average duration rtT  by using the 

resource constrained scheduling model either for GERT or PERT pro-
jects. The total pregiven available resource capacities are kR , nk ≤≤1 . 
For GERT projects, the regarded resource constrained project schedul-
ing algorithm RCGPS to determine the project’s average duration is 
outlined in 11.4.5. For PERT projects, the corresponding algorithm (see 
§§11.1-11.2) enters the RCGPS as a basic part. 

Step 5. Choose the joint variant tJ ξ  with the minimal average duration, i.e., 
 rtmrt TT

t≤≤
=

1
minξ . (11.4.4) 

 Thus, joint variant tJ ξ  is considered as an optimal one, opt
tJ . 

 

Step 6. Choose the outcome direction (activity) leaving node α  which corre-
sponds to the chosen optimal joint variant opt

tJ . Let it be ( )j,α . 
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Step 7. Cancel all other alternative outcome activities leaving node α . 
Step 8. Determine all the nodes tGi ∈  with no activities entering those nodes. If 

such nodes exist, cancel them together with all activities leaving those 
nodes. Proceed carrying out Step 8, until only nodes with a receiver 
(except the source node) will remain. Go to Step 11. 

 

Step 9. Applying this step means that we have reached an alternative node α  
with stochastic outcomes and corresponding probabilities. Simulate the 
set of full events in order to determine the outcome activity. Let it be 
( )j,α . 

 

Step 10. Cancel all other non-simulated outcome activities leaving node α . Re-
turn to Step 8. 

Step 11. Applying this step means that there may be activities ready to be proc-
essed at moment t , e.g., 
• activity ( )j,α  (Step 6); 
• activity ( )j,α  (Step 9); 
• activity leaving node j  (Case C, Step 1), etc. 

 At Step 11 in Case D (see Step 1), return the utilized resources ijkr , 
nk ≤≤1 , to the project management store. 

Step 12. Determine the set of activities ( )11, ji ,…, ( )qq ji , , 1≥q , which are ready to 
be processed at moment t , together with all available resources ( )tRk , 

nk ≤≤1 . 
Step 13. If all activities ( )υυ ji , , q≤≤ υ1 , can be supplied by available resources, 

the required resources are fed-in and activities ( ){ }υυ ji ,  begin to be op-
erated at moment t , i.e., tS ji =

υυ
, q≤≤ υ1 . If there is a lack of available 

resources, go to Step 15. 
Step 14. Simulate (according to the density function) the durations of all activi-

ties which have been supplied with resources and started to be realized 
at moment t . Return to Step 1 to determine the next routine essential 
moment. 

Step 15. Applying this step means that, due to limited amount of resources, a 
competition among activities ( )υυ ji , , q≤≤ υ1 , has to be arranged in or-
der to single out the subset of activities which can be supplied with re-
sources and can start to be operated at moment t . The competition is 
facilitated by solving a knapsack resource reallocation problem to 
maximize the total contribution of the chosen activities to the average 
project’s duration. For each activity under competition, its contribution 
is the product of the average duration of the activity and its probability 
of being on the critical path. Those probability values are calculated by 
means of simulation. 

Since monitoring a CAAN type project results in monitoring a joint variant, 
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i.e., a GERT type project, the algorithm outlined in §§11.1-11.2 requires modifi-
cation. The amended resource constrained project scheduling algorithm for a 
GERT network model will be outlined in 11.4.5 (algorithm RCGPS). 

After applying algorithm RCGPS and determining the subset of chosen ac-
tivities proceed to Step 14. 

The general algorithm terminates when the project will reach its target, i.e., 
when the remaining graph tG  becomes an empty set. 

 
11.4.5  Resource constrained project scheduling algorithm for GERT models 

(RCGPS) 
As outlined above, the RCGPS algorithm is a further development of the re-

source constrained project scheduling algorithm for PERT projects presented in 
§§11.1-11.3. 

It is assumed that the project’s network is properly enumerated, i.e., for all 
activities ( )ji,  entering the graph ( )ANG ,  relation ji <  holds. The enlarged step-
by-step procedure of the algorithm is as follows: 
Step 1. Similar to the general algorithm in 11.4.4, the routine essential mo-

ment t  is determined (for the monitored optimal joint variant opt
tJ ). An 

essential moment occurs: 
• at any alternative node (α ) with stochastic outcomes; 
• at any non-alternative node ( j ); 
• at the moment a certain activity ( )ji,  is finished, but event j  is not 

realized as yet.  
Step 2. The remaining monitored network project tG  for the previously cho-

sen joint variant opt
tJ  is determined. In Case A (see Step 1) apply the 

next step. In Cases B or C proceed to Step 6. 
Step 3. Similar to Step 9 of the general algorithm, simulate the corresponding 

probabilistic outcome activity ( )j,α . 
Step 4. Is similar to Step 10 of the general algorithm (see 11.4.4), and results 

in canceling all non-simulated alternative stochastic outcomes leaving 
node α . 

Step 5. Is similar to Step 8 of the general algorithm. 
Step 6. Is similar to Step 11 of the general algorithm and results in returning 

the utilized resources ijkr , nk ≤≤1 , in Case C (see Step 1) to the pro-
ject management store. 

Steps 7-8. Steps 7 and 8 are similar to Steps 13 and 14 of the general algorithm, 
with one exception: in the case of lack of resources Step 10 is applied. 

Step 9. In order to arrange the competition among the activities ( )υυ ji , , 
q≤≤ υ1 , subnetwork tG  has to be simulated in order to be transformed 

to a PERT network. The simulation algorithm at Step 9 comprises the 
following operations: 
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9.1 From the set of stochastic alternative α -nodes entering the re-
maining network project tG  before carrying out Step 9, deter-
mine the node with the minimal number (call it henceforth minα ). 
If the set of those nodes is empty, go to Step 10. Otherwise ap-
ply Substep 9.2. 

 
 

9.2 Simulate the probability outcomes leaving node minα  (similar to 
Step 3). 

 
 

9.3 Cancel all non-chosen outcome activities leaving node minα . 
 9.4 Determine all the nodes (alternative and non-alternative) with no 

activities entering those nodes. If such nodes exist, cancel them 
together with all activities leaving those nodes. Proceed with this 
procedure until only nodes with receivers will remain. Return to 
Substep 9.1. 

Step 10. Simulate the durations of all remaining activities according to their 
density functions. Implementing that step means that we have simu-
lated all non-contradictory alternative stochastic nodes (this is pro-
vided by introducing proper enumeration) and only nodes of x-type 
remain. Thus, simulating a GERT network at Step 9 results in obtain-
ing a PERT network. 

Step 11. Determine the critical path of the simulated network. 
Step 12. Repeat the procedure of Steps 9-11 M  times in order to obtain repre-

sentative statistics. 
Step 13. Calculate the frequency of each activity ( )υυ ji , , q≤≤ υ1 , to be on the 

critical path. Denote them henceforth ( )υυ jip , . 
Step 14. In accordance with [70], determine the subset of chosen activities by 

solving a zero-one programming problem: determine integer values 
υυ

ξ ji , q≤≤ υ1 , to maximize the objective 
 

{ } ( )[ ]








⋅⋅∑
=

q

jiji jip
ji 1

,max
υ

υυξ υυυυ
υυ

µξ  (11.4.5) 

 subject to 
 ( ) ( )tRr k

q

kjiji ≤⋅∑
=1υ

υυυυ
ξ ,  nk ≤≤1 , (11.4.6) 

 where 
 ( )





=
.1

;,0
otherwise

resourcesobtainnotwilljiactivityif
ji

υυ
υυ

ξ  

 Note that solving problem (11.4.5-11.4.6) results in implementing a 
heuristic approach to decrease the project’s duration as much as pos-
sible [70]. Model (11.4.5-11.4.6) is, in essence, the backbone of the 
RCPPS algorithm, which has been successfully applied to many me-
dium-size PERT projects [71]. 
From Step 14, return to Step 8 in order to simulate the durations of 
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the chosen activities and, later on, to determine the next routine es-
sential moment t . 

Note that simulating activity durations at Step 10 is an auxiliary procedure 
(in order to determine probabilities ( )υυ jip ,  for problem (11.4.5-11.4.6)) while 
simulating activity durations at Step 8 is an actual activity realization. 

The outlined above algorithm RCGPS is performed in real time: namely, all 
the activities can be operated only after obtaining necessary resources. However, 
if we want to evaluate the average project’s duration rtT  for the set of joint vari-
ants rtJ  (see Step 4 of the general algorithm), we can obtain a representative sta-
tistics by simulating each joint variant rtJ  many times to determine its average 
duration. The minimal number of simulation runs can be estimated from the 
classical sampling theory [27], outlined in Chapter 3. 

 
11.4.6  Experimentation 
In order to verify the efficiency of the developed algorithm, extensive ex-

perimentation has been undertaken. A GERT project with constrained renewable 
resources is presented in [85]. The project requires resources of one type. The 
initial given data for each activity ( )ji,  entering the GERT model is as follows: 
i ; j ; ija ; ijb ; ijlr ; ijp , where ijp  denotes the probability of realizing activity ( )ji, . 
Thus, 1=ijp  means that node i  is of x-type, while 10 << ijp  corresponds to a sto-
chastic alternative outcome, i.e., α≡i . 

Three alternative distributions are considered: 
1. ijt  has a normal distribution in the interval [ ]ijij ba ,  with average 

( )ijijij ba += 5.0µ  and variance ( )2

36
1

ijijij abV −= ; 

2. ijt  has a uniform distribution in the interval [ ]ijij ba , ; 
3. ijt  has a beta distribution with the density function 

( ) ( ) ( )( )2
4

12 xbax
ab

xp ijij
ijij

ij −−
−

= . (11.4.7) 

In order to check the developed RCJPS algorithm, 100 simulation runs were 
undertaken. The histograms for the three considered density functions are pre-
sented in [85]. 

The following conclusions can be drawn from §11.4: 
1. Introducing the beta distribution results in projects with shorter durations 

in comparison to the normal and uniform distributions. 
2. Introducing the normal distribution results in projects with shorter dura-

tions in comparison to the uniform distribution. Thus, the latter can be re-
garded as the least efficient distribution. 

3. The heuristic algorithm presented here is, probably, the first one devel-
oped in the area of resource constrained project scheduling for alternative 
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stochastic network projects. It can be successfully used for monitoring 
complicated medium-size projects with alternative structure and topology, 
and with limited activity related renewable resources. The algorithm can 
be used for CAAN models which cover a broad spectrum of alternative 
stochastic networks. 

4. Since a CAAN model is structured from subnetworks of GERT type, the 
developed resource constrained project scheduling algorithm is based on 
multiple implementation of a standardized resource constrained algorithm 
for GERT models. Such a basic algorithm is easy to apply and can be im-
plemented on a PC. The algorithm can be used for any probability distri-
bution of activity durations. 

 
§11.5  Conclusions 
The following conclusions can be drawn from the Chapter: 
1. The outlined above resource supportability models do not comprise prede-

termined resource delivery schedules. 
2. The models are implemented: 

• at the planning stage, when determining optimal planning parameters 
(the moments projects actually start and optimal resource capacities for 
each type of resources), and 

• at the stage of monitoring, i.e., at the stage of scheduling and feeding-
in resources. 

3. At the scheduling stage all calculated parameters are random values condi-
tioned on our future decisions. 

4. The backbone of all outlined in the Chapter resource supportability models 
is the classical zero-one integer programming model which for the case of 
restricted resources enables (at each decision-making moment) the opti-
mal choice of activities to be supplied by resources. 

5. Thus, the models presented in the Chapter can be regarded as mixed type 
models since they are utilized at several stages of the project’s life cycle. 
Further models referring to the planning stage will be outlined in Chapter 
13.  
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Chapter 12.  Resource Constrained Project Scheduling with 
Deterministic Resource Delivery Model 

 

§12.1  Case of aggregated projects with consecutive operations 
12.1.1  Introduction 
The method outlined below is a further development of our prior results re-

lated to job-shop manufacturing [69], and is probably the first successful attempt 
to implement a deterministic resource delivery schedule in stochastic network 
projecting. Various other attempts [2,21,31-32,97,142,147,etc.] do not deal with 
problems of scheduling operations of random durations. 

Unlike the previous Chapter, several additional developments are imbedded 
in the model: 

1. The outlined below reallocation model incorporates cost parameters rather 
than the time-related models presented in Chapter 11. 

2. The model enables a group of projects with random operations and re-
stricted resources to be controlled. 

3. Several heuristic preference rules which enable redistribution of free 
available resources among the operations which are ready to start, are 
suggested. 

The description of the system is as follows: several simultaneously realized 
projects under random disturbances are considered. Each project comprises nu-
merous operations to be processed in a definite technological sequence. Each 
operation utilizes several non-consumable related resources with fixed capaci-
ties, e.g., machines or manpower. Each type of resource at the management’s 
disposal is in limited supply, with a resource limit that is fixed at the same level 
throughout the projects’ duration, i.e., until the last project is actually completed. 
For each operation, its duration is a random variable with given density function. 
Processing costs per time unit to hire and to utilize all the total available re-
sources are pregiven. For any projects’ operation, its planned start moment has 
to be determined. That means that an operation cannot start before the planned 
moment. If an operation starts processing after its planned moment, a pregiven 
cost penalty per time unit of the delay has to be paid by the management. A spe-
cial service discipline which, if necessary, reallocates free available resources 
among operations ready to be carried out, is imbedded in the model. 

The problem is to determine optimal planned start moments, in order to 
minimize total management expenses. In order to simplify the problem, we will 
assume that each project consists of a chain of consecutive operations. Each op-
eration is characterized by a vector of resource capacities to carry out the opera-
tion and by the density function of the operation’s random duration. 

 
12.1.2  Notation 
Let us introduce the following terms: 
liO  - the l -th operation of the i -th project, ni ≤≤1 , im≤≤ l1 ; 
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n  - the number of projects; 
im  - the number of operations entering the i -th project; 
jR  - the total limit of the j -th type resources, kj ≤≤1  (at the disposal of 

the management, pregiven); 
k  - the number of resources; 

jirl  - the j -th type resource capacity, ni ≤≤1 , im≤≤ l1 , kj ≤≤1 , to carry 
out operation liO  (pregiven); 

lia  - lower bound of random duration of liO  (pregiven); 
lib  - upper bound of random duration of liO  (pregiven); 
liT  - planned moment to start operation liO  (a deterministic value to be 

predetermined); 
liS  - the moment liO  actually starts (a random value conditioned on our 

decisions); 
lit  - time duration of operation liO  (a random value); 
lit  - average value of lit  (pregiven); 
liC  - cost penalty per time unit for the delay in starting operation liO , in 

case ll ii TS >  (pregiven); 
C  - processing cost per time unit of hiring and utilizing total resources 

{ }jR , kj ≤≤1  (pregiven); 
T  - random time duration of accomplishing all the projects; 

lll iii tSF += - actual finishing time of operation liO  (random value); 
( )tR j  - free (non-utilized) resources at moment t ; 
it∆  - positive search step for the operations entering the i -th project, 

ni ≤≤1 , (pregiven); 
0>ε  - pregiven search accuracy for the cyclic coordinate method. 

It can be well recognized that relation 
{ } { }1minmax iiimi

SFT
i

−=  (12.1.1) 
holds. 

Note, in conclusion, that evident relations 
jimnij rR

i
ll≤≤≤≤

≥
1,1

max ,  kj ≤≤1 , (12.1.2) 
hold, otherwise not all the projects can be carried out. 

 
12.1.3  The problem’s formulation 
The general problem is to determine both optimal deterministic planned val-

ues liT  (beforehand) and random values liS  (in the course of the projects’ realiza-
tion and conditioned on our decisions), ni ≤≤1 , im≤≤ l1 , to minimize the aver-
age of the total expenses 

{ }
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subject to 
ll ii TS ≥ , (12.1.4) 

lll iii tSF += ,
 

(12.1.5) 
1,1, −− +≥ lll iii tSS ,

 
(12.1.6) 

( )[ ] ( )tRRtr jj

n

i

m

iji

i

−=⋅∑∑
= =1 1l

ll δ ,  kj ≤≤1 ,  Tt ≤≤0 ,
 

(12.1.7) 

where ( )




=
.0

;1
otherwise

tmomentatprocessedisOif
t i

i
l

lδ
 

(12.1.8) 

Restriction (12.1.4) ensures that liO  cannot start before its planned moment 
liT . Restriction (12.1.5) enables processing liO  without interruptions, while 

(12.1.6) formalizes the consecutive chain order of processing operations in a 
project. Restriction (12.1.7) means that at any moment t , Tt ≤≤0 , for each j -th 
type of resource, kj ≤≤1 , the summarized amount of utilized resources is less 
than jR  by the value of free resources ( )tR j . 

Problem (12.1.3-12.1.8) is a stochastic optimization problem with a large 
number of optimized variables. The problem is too difficult to solve in the gen-
eral case. A heuristic solution will be outlined below. 

The general approach to solving the problem is as follows: two levels - upper 
and lower - are considered. At the upper level, a cyclic search by means of a co-
ordinate descent method [74,114] is organized to determine planned start mo-
ments liT . At each search point, values { }liT  are passed to the lower level in order 
to manage the projects by determining actual start moments liS  in the course of 
the projects’ realization. This results in developing a simulation model which 
comprises proper decision-making to carry out a simulation run. Decision-
making is based on implementing heuristic decision rules that can be regarded as 
the service discipline [126]. By repeating, for a fixed vector { }liT , the simulation 
procedure many times, we obtain representative statistics to evaluate the average 
with pregiven accuracy. The set { }liT , which delivers the minimum to objective 
(12.1.3), is taken as a quasi-optimal solution. Note that since heuristic decision-
making is introduced we shall avoid the term “optimal” from now on. 

Note, in conclusion, that the suggested decision-making can be applied to 
real-time projects as well. 

 

12.1.4  Decision-making in the simulation model 
The basic idea of imbedding decision-making in the simulation model is as 

follows: decision-making is carried out at essential moments t  when either an 
operation liO  is accomplished and the utilized resources { }jirl  become free and 
available for other operations, or when a certain operation liO  at moment liTt =  
is ready to be processed. At each essential moment t , the simulation model: 

• returns the utilized non-consumable resources to the management store and 
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evaluates the free available resources ( )tR j , kj ≤≤1  (in the case when, at 
moment t , an operation is finished); 

• singles out all the operations that are ready to be processed; 
• checks the possibility of supplying all those chosen operations with avail-

able resources. If this is possible, the required resources are delivered to 
the operations which start processing at moment t . Later on, the corre-
sponding operations’ durations are simulated; 

• determines the next routine decision point (essential moment) t . 
If it is impossible to provide all the operations with free resources, a competi-

tion has to be arranged to single out a subset of operations to be processed and 
supplied with available resources. Note, that carrying out that competition is, in 
essence, the decision-making which is imbedded in the model. 

Assume that at moment t , q different operations 
11liO ,

22liO ,...,
qqi

O l  are ready to 
be processed and at least one relation 

( )tRr j

q

r
ji rr

>∑
=1

l ,  { }kj ,1∈ , (12.1.9) 

holds. 
Decision-making A is a random version of the priority rule SRT (“shortest 

remaining time”) outlined in [50,53,126]. The competitive operations are sorted 
in the ascending order of their average processing durations ssit l . All the sorted 
operations are examined one after another, in the ascending order of values ssit l , 
to check, for each operation, the possibility that it can be supplied with remain-
ing available resources. If, for a certain operation 

ssi
O l , qs ≤≤1 , relations 

( )tRr jji ss
≤l , kj ≤≤1 , hold, the required resources are assigned to the operation 

while the remaining resources are updated, 
( ) ( )tRrtR jjij rr

⇒− l ,  kj ≤≤1 , (12.1.10) 
and the next operation is examined. If a routine operation 

ssi
O l , cannot be pro-

vided with available resources, we switch over to the next operation. The proce-
dure terminates either when all the available resources are allocated to opera-
tions or all the q chosen operations have been examined. 

Decision-making B is a random version of the equally famous priority rule 
LRT (“longest remaining time” [50,53,126]). All competitive operations are 
sorted in the descending order of their average remaining processing times 

∑
=

=
si

s

sss

m

r
rii tT

l
l ,  qs ≤≤1 . (12.1.11) 

All the sorted operations are examined in the descending order of values ssiT l , 
one after another, similar to the procedure outlined above. 

Note that additional and not less effective priority rules can be recommended 
as well, e.g., the pairwise comparison rule [50,53,118,151], the FIFO rule [126], 
etc. 
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Introducing proper decision-making enables the projects’ realization to be 
simulated from beginning to the end, i.e., enables average E  in (12.1.3) to be 
calculated on the basis of numerous simulation runs. Note that a simulation run 
can be carried out only with preset planned values { }liT . 

 

12.1.5  The heuristic algorithm 
The heuristic search algorithm to determine quasi-optimal values { }liT  is per-

formed in real time, i.e., all operations can be processed only after obtaining 
necessary resources. Essential moments cannot be predetermined. However, if 
we want to evaluate the efficiency of the algorithm, we can simulate its work 
many times, including the cyclic coordinate descent subalgorithm at the upper 
level and the simulation model with set values { }liT  at the down level. Thus, the 
heuristic algorithm comprises two subalgorithms as follows: 

Subalgorithm I actually implements the cyclic search procedure, similar to 
that outlined in §11.3. At the beginning of the search, values liT  are as follows: 

01 =it ,  ∑
−

=

=
1

1

l

l
r

iri aT ,  imr ≤≤1 ,  ni ≤≤1 . (12.1.12) 

Later on, each coordinate liT  has to undertake search steps of length it∆ . 
Several concepts are embedded in the subalgorithm: 
1. If a routine coordinate liT  changes its value in the course of a search pro-

cedure, all the preceding values sqT , 11 −≤≤ is , smq ≤≤1 , together with 
values iqT , l<q , which have been determined before, are fixed and remain 
unchanged. 

2. If a routine coordinate liT , im<≤ l1 , increases its value by it∆ , all the next 
values isT , ims ≤<l , entering the same i -th project, are automatically in-
creased by it∆ . If coordinate liT  decreases its value by it∆ , all consecutive 
coordinates isT  are decreased as well. Values sqT , nsi ≤< , smq ≤≤1 , remain 
unchanged. 

3. A routine coordinate liT  increases in the course of the search procedure, if 
realizing the previous step brings about a decrease of the objective value 
(12.1.3), i.e., the average total expenses. Otherwise, an opposite search 
step with values ( )it∆−  has to be carried out honoring Concept 2. 

4. After a routine coordinate liT  ceases to change its value in the course of the 
search, the value is fixed and remains unchanged until all the coordinates 
undergo the search procedure. The next coordinate 1, +liT  (in case im<l ) or 

l,1+iT  (in case im=l  and ni < ) is processed by the search algorithm. Thus, 
changes in a single routine coordinate liT  by means of the search proce-
dure implementing the cyclic coordinate descent method which operates 
cyclically with respect to all coordinates, enable a quasi-optimal solution 
to be obtained. 
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5. After carrying out the search procedure through all the coordinates, the 
process is then repeated, again starting with coordinate 11T  (the next itera-
tion). However, the search increments it∆ , ni ≤≤1 , have to be diminished 
(usually by dividing by two). Another difference from the first iteration is 
that a search procedure for any coordinate liT  has to be carried out in two 
opposite directions iiT ∆±l . The search is undertaken along that direction 
which delivers a decrease in the problem’s objective in (12.1.3). Note, 
that in the course of implementing the q-th iteration, 1>q , Concept 2 be-
comes unnecessary. Only the evident relation 1,1, −− +≥ lll iii aTT  has to be 
honored in all cases. 

6. The search terminates if, in the course of carrying out two adjacent itera-
tions, the relative difference between the two corresponding objective 
values (12.1.3) becomes less than the pregiven accuracy ε . 

Subalgorithm II realizes the simulation model for each search point, i.e., for 
each fixed vector { }liT . At each search point, a representative sample of simula-
tion runs has to be carried out. On the basis of the sample, the average value in 
objective (12.1.3) is calculated. An illustration of a simulation run with fixed 
{ }liT  will be outlined below. 

 

12.1.6  Numerical example 
The system comprises two projects with given planned start moments liT . The 

projects include two and three consecutive operations, correspondingly, with 
pregiven random time durations. Both projects utilize one type of resource. 
Thus, 2=n , 21 =m , 32 =m  and 1=k . 

The projects’ parameters are as follows: 
;3111 =a  ;4011 =b  ;4812 =a  ;5512 =b  
;3021 =a  ;3821 =b  ;1822 =a  ;3022 =b  
;2823 =a  ;3923 =b    
;15111 =r  ;17121 =r  ;15211 =r  ;20221 =r  
.27231 =r     

All 40=liC  while value 100=C . The total limit of resources 301 =R . Pregiven 
values liT  are as follows: 

;011 =T  ;3312 =T  ;3321 =T  ;3422 =T  .5823 =T  
Assume that all random time durations lit  are normally distributed with aver-

age ( )lll iii ba += 5.0µ  and variance ( )2

36
1

lll iii abV −= . 

In the course of carrying out a simulation run, we will use decision-making 
B. Assume that in the course of project realization, the simulated random values 

∗
lit  are as follows: 

;7.3411 =∗t  ;8.5212 =∗t  ;2.3621 =∗t  ;3.2422 =∗t  .6.3523 =∗t  
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At the first essential moment 01 =t , resources have to be redistributed among 
two competitive operations 11O  and 21O . Since their corresponding planned mo-
ments 02111 == TT , both those operations are ready to be processed. Note that de-
cision-making based on the longest average remaining time (Rule B) gives pref-
erence to Project 2 at moment 0=t  since relation 

( ) ( ) ( ) ( ) ( ) 8755485.040315.05.9139285.030185.038305.0 =+⋅++⋅>=+⋅++⋅++⋅  
holds. But since the free available resources are enough to supply both opera-
tions ( ( ) 2111111 300 rrR +== ), the latter begin to be processed at moment 0=t ; thus, 

02111 == SS , and 7.3411 =F , 2.3621 =F . 
The second essential moment { } 7.34,min 21112 == FFt . At moment 7.342 =t , op-

eration 11O  terminates and released resources 15111 =r  are returned to the man-
agement. However, since 1517121 >=r , operation 21O , being ready to be processed 
( 337.34 212 =>= Tt ), has to wait for additional resources. The next essential mo-
ment would be 2.363 =t . 

At moment 2.363 =t , operation 21O  terminates and the total value of free 
available resources ( ) 302.361 =R . However, two competitive operations, namely 

12O  and 22O , are ready to be processed ( 2.363312 <=T , 2.363422 <=T ). Those two 
operations cannot be provided simultaneously with available resources since 

( ) 37302.36 2211211 =+<= rrR  holds. Thus, decision-making based on Rule B has to 
be introduced. Due to relation 

( ) ( ) ( ) 5.5739285.030185.05.5155485.0 =+⋅++⋅<=+⋅ , 
operation 22O  has to be preferred. Thus, 2.3622 =S  and 5.603.242.3622 =+=F , 
while operation 12O  has to wait for resources. The next essential moment would 
be 5.604 =t . 

At moment 5.604 =t  operation 22O  terminates, and 20221 =r  resources are re-
leased. It can be clearly recognized that operations 12O  and 23O  are both ready to 
be processed ( 5.6012 <T , 5.6023 <T ), but cannot be simultaneously supplied with 
free available resources: ( ) 44305.60 2311211 =+<= rrR . Thus, a competition based 
on decision-making by implementing Rule B has to be introduced. Due to 

( ) ( ) 5.3339285.05.5155485.0 =+⋅>=+⋅ , 
the preference is given to 12O . Thus, 5.6012 =S  and 3.1138.525.6012 =+=F . The 
next essential moment is 3.1135 =t . 

At 3.1135 =t , only one operation, namely, 23O , is ready to be processed 
( 583.113 23 =>= Tt ) and is waiting for resources. Since ( ) 27303.113 2311 =>= rR , op-
eration 23O  starts processing, and 3.11323 =S , while 1487.343.11323 =+=F . At 
moment 148=t , both projects are accomplished. 

Let us calculate the projects’ expenses within the simulation run. The cost 
penalties are 

( ) ( ) ( ) ( ) 400,33.555.262.340583.113345.60332.36 232212 =++⋅=−⋅+−⋅+−⋅ CCC . The pro-
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cessing costs are ( ) 800,140148 =−⋅C . Thus, the total expenses for one simulation 
run equal 200,18800,14400,3 =+ . 

 

12.1.7  Conclusions 
The comparative efficiency of decision-making Rules A and B, together with 

three alternative distributions (uniform, normal and beta) of values lit , can be il-
lustrated by extensive experimentation outlined in [53,74,151]. The following 
conclusions can be drawn from examining the results of solving the general 
problem (12.1.3-12.1.8): 

1. For the case of uniform and normal distributions, using decision Rule B 
results in obtaining lower average expenses of realizing the projects than 
by using Rule A. In the case of beta-distribution, using Rule A is prefer-
able, i.e., it results in cheaper project realization. 

2. Using Rule A usually results in an essential decrease of the average value 
T  in the course of implementing the search procedure, as distinct from 
decision Rule B. Introducing the latter does not lead to diminishing value 
T . Moreover, in several cases, final values T  became even higher than at 
the initial search point 0

liT . 
3. It can be well-recognized that for all examples, solving problem (12.1.3-

12.1.8) results in an essential decrease of the average penalty expenses (in 
most cases by the factor of 50÷100). This, in turn, has an influence on the 
average total expenses (12.1.3) to be minimized. In the course of the 
search procedure’s realization, the objective value has been diminished by 
a half. 

 

§12.2  Resource constrained model for a variety of non-consumable re-
sources 

12.2.1  Introduction 
This Section considers a certain elaboration of the research outlined in §12.1, 

namely: 
a) the simplified aggregated projects are substituted by PERT type projects; 
b) various classes of resources are incorporated in the model. 
The main goal of this Section is to outline a generalized resource constrained 

model for a network project under random disturbances. All particular cases of 
utilizing renewable resources will be imbedded in the model. The problem’s so-
lution results in: 

• determining in advance, i.e., before the project starts to be realized, a de-
terministic delivery schedule for extremely costly and rare external re-
sources which are not at the project’s disposal. Note that due to random 
disturbances, it is unknown beforehand when a certain activity will actu-
ally be ready to begin. However, the resources are to be delivered at a pre-
given date that must be determined in advance. It goes without saying that 
an activity cannot start before its corresponding planned moment, i.e., 
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when activity resources are ready and delivered. In practice such a re-
source delivery schedule is required for a relatively small group of activi-
ties; 

• determining both the starting times and the resource capacities to be util-
ized for activities which require limited renewable resources which are at 
the project’s disposal. The corresponding feeding-in resource schedule is 
random and is conditioned on control actions to reallocate available re-
sources among the activities which at a certain moment are ready to be 
processed. 

The problem’s objective is a cost value which comprises two components: 
• the average cost penalties paid for the idle costly and rare resource which 

was delivered at the planned moment, but not utilized since it had to wait 
for the moment the corresponding activity was ready to be operated; 

• the average cost expenses for hiring and maintaining non-consumable re-
sources which are at the project’s disposal. Those expenses depend on the 
project’s duration. 

Thus, we suggest using a cost objective to minimize the sum of the penalty 
expenses for all delays of resource utilization and the cost of using constrained 
resources within the period of the project’s realization. Note that decreasing the 
first component results in increasing the second one, and vice versa. Therefore, a 
trade-off between the two contradictive cost components is to be resolved. 

 

12.2.2  Classification of non-consumable resources in project management 
Non-consumable (renewable) resources used in projects can be classified in 

several ways (see, e.g., [149]). Referring to [69,149], we will describe the ap-
proach based on resource availability. 

1. The so-called non-constrained resources (C-category or C-resources) are 
available in unlimited quantities for a cost throughout the project realiza-
tion (e.g., unskilled labor or general purpose equipment). C-resources do 
not require monitoring although they might be expensive and might con-
tribute to the cost-effectiveness of the project. However, using those re-
sources does not result in changing the efficiency of any control policy in 
project management. That is why C-resources will not be taken hence-
forth into account to outline the generalized cost-optimization problem. 

2. Resources of the second class (B-category or B-resources) are usually in 
limited supply for each type of resource. A resource limit may be either 
independent on time, i.e., is fixed at the same level throughout the pro-
ject’s duration, or the limit is a function of time. Various B-resources, 
e.g., skilled workers, special equipment, etc., for projects under random 
disturbances require flexible, but not close, monitoring. Since each activ-
ity entering the project is of random duration, the corresponding feeding-
in resource moment to be determined is a random value too. The delivery 
schedule for constrained B-resources is not determined in advance, since 
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the delivery moments coincide with the feeding-in moments and are con-
ditioned on decision-making in the course of the project’s realization. 

3. Extremely expensive and rare resources (A-resources) are usually external 
and available for short periods within the time span of the project (e.g., 
technical experts, test-benches, special and unique facilities, heavy duty 
equipment and cranes, etc.) A-resources should be strictly monitored be-
cause shortages might significantly affect the project schedule. Although 
it is unknown in advance when a certain activity which utilizes A-
resources will actually be ready to begin, A-resources have to be delivered 
at a pregiven date that has to be determined in advance. Thus, for activi-
ties which utilize A-resources, a deterministic schedule of delivering re-
sources is to be predetermined before the project starts to be realized. 
Both A-and B-resources will be imbedded in the developed resource con-
strained project scheduling model under random disturbances. 

 

12.2.3  Notation 
Let us introduce the following terms: 
( )ANG ,  - PERT type project (a network graph with random activity dura-

tions); 
( )ji,  - activity entering ( )ANG , ; 
ijt  - duration of ( )ji,  (a random value); 

ijµ  - average value of ijt ; 
ija  - lower bound of ijt  (pregiven); 
ijb  - upper bound of ijt  (pregiven); 

( )tfij  - density function of ijt  (pregiven); 
( )iT  - time moment event (node) i  is realized, i.e., the earliest moment 

when all activities entering i  are completed (a random value); 
n  - the number of activities entering the project; 
( )

AA
ji ξξ ,  - activity which utilizes A-resources, nnA <≤≤ ξ1 ; 

An  - number of activities which have to be supplied with A-resources; 
( )

BB
ji ηη ,  - activity which utilizes B-resources, nnB <≤≤η1 ; 

Bn  - number of activities which have to be supplied with B-resources; 
m - number of different B-resources; 

kR  - total capacity of the k -th type B-resources at the disposal of the pro-
ject management, mk ≤≤1 ; 

kji BB
r

ηη  - capacity of the k -th type B-resources to be utilized by activity 
( )

BB
ji ηη ,  (pregiven for the case of fixed capacities and an optimized 

variable for the case of variable capacities); 
max

kji BB
r

ηη  - the maximal capacity of the k -th type B-resources to process activ-
ity ( )

BB
ji ηη ,  (pregiven for the case of variable capacities); 

min
kji BB

r
ηη  - the minimal capacity of the k -th type B-resources to process activ-
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ity ( )
BB

ji ηη ,  (pregiven for the case of variable capacities); 
ijS  - time moment activity ( )ji,  actually starts (a random value condi-

tioned on our 
decisions); 

ijijij tSF += - time moment activity ( )ji,  is completed (a random value); 
( )

AA
jiT ξξ , -  time moment A-resources have to be delivered to process activity 

( )
AA

ji ξξ ,  (a deterministic schedule to be determined in advance); 
( )

AA
jic ξξ ,  - cost penalty to be paid by the management per time unit of the A-

resources idling, i.e., ( ) ( )
AAAA

jiTjiS ξξξξ ,, − , which is the difference be-
tween delivering and feeding-in A-resources (pregiven); 

Bc  - cost of hiring and maintaining total { }kR  B-resources per time unit 
throughout the project’s realization (pregiven);  

C  - non-operational project’s expenses which comprise cost penalties 
for idle A-resources and the cost of hiring and maintaining B-
resources during the project’s realization (a random value); 

( ) kk RtR ≤  - free (available for utilization) k -th type B-resources, at moment 
0>t ; 

ξh  - the value of the search step of the ξ -th coordinate (pregiven); 
0>ε  - pregiven search accuracy for the cyclic coordinate method; 

( )iD  - the subset of nodes, which directly precede node i , i.e., ( )iDi ∈∗  re-
sults in ( ) ( )ANGAii ,, ⊂∈∗ ; 

p  - a probability value close to zero which practically enables determi-
nation of the distribution’s lower bound by calculating the sample’s 
p -quantile pW  ( p  pregiven); 

( ){ }iTWp  - the p -quantile of the random value ( )iT , ( )ANGNi ,⊂∈ , with p  
close to zero, i.e., a value of ( )iT  which practically cannot be dimin-
ished; 

( ) ( )








AA
jiTiTWp ξξ , , Anq ≤≤≤ ξ1  - the conditional p -quantile of the random 

value ( )iT , on condition that for certain q A-resource activities 
( )

AA
ji ξξ ,  their corresponding resource delivery moments ( )

AA
jiT ξξ ,  are 

fixed and are deterministic values. 
 

12.2.4  The problem 
The general resource constrained scheduling problem for a stochastic net-

work project is to determine: 
• a deterministic resource delivery schedule ( )

AA
jiT ξξ , , An≤≤ ξ1 , for supplying 

A-resources (to be determined in advance), and 
• actual starting times ijS  for all activities ( ) ( )ANGji ,, ∈  
- to minimize the average value of the non-operational expenses 
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, (12.2.1) 

subject to 
( )

AAAA
jiTS ji ξξξξ

,≥ ,  An≤≤ ξ1 , (12.2.2) 
( ) ( ) ( )ANGjiiTS ij ,, ∈∀≥ ,

 
(12.2.3) 

( )tRrSt k

q

kjiji ≤⇒= ∑
=1η

ηηηη BBBB
,
  Bnq ≤≤≤η1 ,  mk ≤≤1 .

 (12.2.4) 

Note that if some project activities require B-resources with variable capaci-
ties, value kjir BB ηη

 becomes an additional optimized variable. An additional restric-
tion 

maxmin
kjikjikji rrr

BBBBBB ηηηηηη
≤≤ ,

  Bnq ≤≤≤η1 ,  mk ≤≤1 ,
 (12.2.5) 

is to be imbedded in the resource constrained project scheduling model. 
Neither the costs of utilizing C-resources, nor the operational costs of proc-

essing project activities are implemented in cost objective (12.2.1). This is done 
deliberately since all those expenses remain unchanged and do not depend on 
the control model. 

Restriction (12.2.2) means that an activity which utilizes A-resources, cannot 
start before its corresponding delivery moment. Restriction (12.2.3) means that 
any activity ( )ji,  entering ( )ANG , , cannot start before the moment ( )iT , i.e., that 

( )
{ }

iiiiiDi
ij tSS ∗∗

∗
+≥

∈
max

 
(12.2.6) 

holds. Restriction (12.2.4) means that if at a certain decision point t  B-
resources are reallocated among Bnq <  activities, the summarized value of sup-
plied resources (for each k -th type of B-resources) should not exceed the corre-
sponding value ( )tRk , i.e., the total capacity of free available k -th type resources 
at moment t , mk ≤≤1 . 

Problem (12.2.1-12.2.5) is a complicated stochastic optimization problem, 
which cannot be solved by applying non-heuristic algorithms. 

The problem’s solution is, in essence, a unification of a deterministic re-
source delivery schedule and a random schedule of activities’ starting times ob-
tained by using decision-making during the project’s realization. We suggest 
solving the problem by means of simulation, in combination with a cyclic coor-
dinate search algorithm (see §§11.3, 12.1) and a heuristic resource reallocation 
algorithm based on numerous applications of the knapsack resource reallocation 
problem outlined in Chapter 11. 

It can be well recognized that decreasing values ( )
AA

jiT ξξ ,  results both: 
• in increasing the first additive in objective (12.2.1), i.e., the cost penalties 

( )( ) ( )[ ]∑
=

⋅−
A

AAAAAA

n

ji jicjiTS
1

,,
ξ

ξξξξξξ
 for idle A-resources within the delay interval 
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• in decreasing the second additive, namely, the cost of hiring and utilizing 
B-resources subject to decreasing the project’s duration, and vice versa. 
Thus, a trade-off between both components is to be resolved to minimize 
the cost objective (12.2.1). 

Note, in addition, that due to (12.2.2) and (12.2.3), an evident relation 
( ) ( )

AAA
iTjiT ξξξ ≥, ,

  An≤≤ ξ1 ,
 

(12.2.7) 
holds, otherwise the A-resource idleness becomes pointless. Thus, (12.2.7) can 
be regarded as the lower bound for the deterministic resource delivery schedule 
to be predetermined. 

 

12.2.5  The problem’s solution 
It can be clearly recognized that determining a feasible schedule of delivering 

A-resources, i.e., setting values ( )
AA

jiT ξξ , , An≤≤ ξ1 , enables reducing problem 
(12.2.1-12.2.4) to another problem, namely, to a modified version of a resource 
constrained scheduling problem for stochastic network projects which has been 
considered in [70-71]. The problem is to reallocate constrained B-resources 
among the project’s activities which utilize those resources, to minimize the av-
erage project’s duration. Resource reallocation, i.e., feeding-in B-resources, is 
carried out in every decision moment t  when not less than one activity ( )

BB
ji ηη , , 

Bnq ≤≤≤η1 , is ready to be processed but the available resources are limited. 
Thus, decision-making centers on singling out optimal subsets of qq <∗  activi-
ties which are supplied with resources. It is suggested to solve problems (12.2.1-
12.2.4) or (12.2.1-12.2.5) by implementing a heuristic algorithm which com-
prises, in turn, two subalgorithms. 

Subalgorithm I implements a cyclic coordinate descent search method in an 
An - dimensional space of optimized variables ( )

AA
jiT ξξ , . In order to carry out the 

search by avoiding pointless steps, a subsidiary simulation model is introduced 

to calculate non-conditional and conditional ( ){ }iTWp  and ( ) ( )








AA
jiTiTWp ξξ ,  in 

order to refine lower bounds (12.2.7) at each search point. 
Subalgorithm II calculates for each feasible resource delivery sched-

ule ( ){ }
AA

jiT ξξ ,  obtained from Subalgorithm I, the average objective value (12.2.l) 
by simulating the project’s realization with limited B-resources. The number of 
simulation runs should enable obtaining representative statistics. Decision-
making in order to reallocate limited B-resources among the corresponding pro-
ject’s activities is imbedded in this Subalgorithm as well. 

Schedule ( )
AA

jiT ξξ ,∗ , An≤≤ ξ1 , which delivers the minimum to the average ob-
jective value (12.2.1), is taken as the optimal solution. Note, that values 

( )
AA

jiT ξξ ,∗  are determined in advance, i.e., before the project starts. In the course 
of the project’s realization the optimized resource delivery schedule ( )

AA
jiT ξξ ,∗  
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remains fixed and unchanged, while all starting values ijS  are determined by 
means of Subalgorithm II. The structure of the heuristic algorithm is presented 
in Fig. 12.l. 

 

12.2.6  Subsidiary simulation models 
In order to carry out Subalgorithm I, two subsidiary simulation models SMl 

and SM2 are implemented in the model. Assume that the graph ( )ANG ,  is prop-
erly enumerated, i.e., for each activity ( )ji,  relation ji <  holds. Assume further, 
that a lexicographical order is introduced for all activities ( )ji,  entering the pro-
ject. Activity ( )11, ji  precedes lexicographically activity ( )22 , ji  if either 21 ii <  or 
both 21 ii = , 21 jj <  hold. 

Model SMI undertakes numerous simulation runs to calculate the pW -
quantile for values ( )iT , ( )ANGNi ,⊂∈ . At each simulation run the random value 

( )iT  is calculated by 
( )

( )
{ }

( )
( )
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(12.2.8) 

Note that since graph ( )ANG ,  is properly enumerated, using recurrent rela-
tions (12.2.8) in the course of a simulation run makes utilization of SMI very 
simple. 

For a representative sample obtained by means of SMl value ( ){ }iTWp  is cal-
culated by using the classical sample theory (see, e.g., [27]). Simulation model 

SM2 calculates conditional values ( ) ( )








AA
jiTiTWp ξξ , , Anq ≤≤≤ ξ1  and differs 

from SMI by using recurrent relations 
( )

( )
{ }

( ) ( ) { }
( ) ( ){ } ( ) { }
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 (12.2.9) 

Note, that models SMl and SM2 differ from each other only by implementing 
different recurrent relations (12.2.8) and (12.2.9), correspondingly, in the course 
of a simulation run. Both models will be used henceforth in Subalgorithms I and 
II. 
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Figure 12.1.  The structure of the general resource constrained project schedul-

ing algorithm 
 

12.2.7  A cyclic coordinate descent subalgorithm to determine A-resource de-
livery schedules 

Coordinate descent methods are preferred [53-54,114,118,151] because of 
their easy implementation for cases when the objective is a complicated non-
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linear function of optimized variables. Since setting An  deterministic values 
( )

AA
jiT ξξ ,∗ , An≤≤ ξ1 , results in obtaining a non-variable objective value { }CE , the 

latter can be regarded as a function ( )
Anxxxf ,...,, 21  of An  coordinates ( )

AA
jiTx ξξξ ,≡ , 

An≤≤ ξ1 . Given a point { } ( ) ( ){ }
AAAAA nnn jiTjiTxxxX ,,...,,,...,, 1121 ≡= , descent with re-

spect to the coordinate ξx  (ξ  fixed) means that one solves ( )
Anx

xxxxf ,...,,...,,min 21 ξ
ξ

. 

Thus changes in the single component ξx  result in seeking a new and better 
vector descent in the direction ξx  or ( ξx− ), where ξx  is the ξ -th component. By 
sequential minimizing with regard to different components, a minimum of f  
might ultimately be determined. 

We chose the cyclic coordinate descent algorithm which minimizes f  cycli-
cally with respect to coordinate variables. Thus, 1x  is changed first, then 2x  with 
fixed 1x , and so forth through 

Anx . The process is then repeated starting with 1x  
again (second iteration), until the relative difference between two adjacent itera-
tions { }( )νCE  and { }( )1+νCE  becomes less than the pregiven tolerance 0>ε . 

Note that in the course of changing the ξ -th coordinate, ( )
AA

jiT ξξ , , with the 
fixed first ( 1−ξ ) coordinates ( ) ( )

AAAA
jiTjiT 1111 ,,...,, −− ξξ , all the next coordinates 

( ) ( )
AAAA nn jiTjiT ,,...,, 11 ++ ξξ  have to be updated by using simulation models SM1 and 

SM2. As outlined above, the cyclic coordinate descent method is imbedded in 
Subalgorithm I. 

The extended step-by-step procedure of Subalgorithm I is as follows: 
Step 1. Determine the initial search point ( )00 ,

AA
jiTX ξξ= , An≤≤ ξ1 , by means 

of simulation model SMI by determining lower bounds of value ξx  
satisfying 

 ( ) ( ){ }iTWjiT pAA
=0, ξξ ,  An≤≤ ξ1 , (12.2.10) 

 where all ( )iT , ( )ANGNi ,⊂∈ , satisfy (12.2.8). 
Step 2. Apply Subalgorithm II to determine the objective { }CE  for 0X . De-

note the obtained value by 0
C . 

Step 3. Set counter 1=ν  for the number of cyclic iterations. Note that 
{ }( ) 00 CCE ==ν . 

Step 4. Set counter 1=ξ  for the number of the current coordinate. 
Step 5. For each current coordinate ( )

AA
jiTx ξξξ ,=  arrange a local search with a 

pregiven search increment ξh , ξξ hx ± , where values 121 ,...,, −ξxxx  remain 
fixed and unchanged, while lower bounds of values 

Anxxx ,...,, 21 ++ ξξ  are 
determined by using simulation model SM2, namely, by 

 ( ) ( ) ( ){ }
AAAAA ssqpqqq jiTiTWjiTx ,, == ,  ξ≤≤ s1 ,  Anq ≤≤+1ξ . (12.2.11) 

 Note that in the course of carrying out the first iteration the search 
algorithm uses only positive increments, i.e., only search of type 
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ξξξ xhx ⇒+  is implemented. However, for next iterations, when in-
crements ξh , An≤≤ ξ1 , are usually diminished, both directions 

ξξξ xhx ⇒±  may be examined. 
Step 6. Apply Subalgorithm II to determine the objective value for the new 

search point ( )
AnxxhxxxxX ,...,,,,...,, 1121 +− ±= ξξξξ . Denote the average 

value { }CE  obtained by means of Subalgorithm II, by ( )ξξ hxC ± . 
Step 7. If ( ) ( )ξξξ xChxC <± , undertake a new search step for the coordinate 

value ξx  along the direction of the objective’s decrease. Return to Step 
6. Otherwise, if ( ) ( )ξξξ xChxC ≥± , change the search to the opposite di-
rection and apply Step 6 again. lf ( )ξxC  cannot be decreased by 
undertaking a search for coordinate ξx , apply the next step. 

Step 8. Counter ξ  works, ξξ ⇒+1 . 
Step 9. Check inequality An>ξ . If yes, proceed to the next step. Otherwise re-

turn to Step 5. 
Step 10. Applying this step means that we have undertaken a local search for 

all coordinates ξh , An≤≤ ξ1 , separately. Denote the final value of ob-

jective (12.2.1) by ( )ν
C  where ν  is the current number of the cyclic it-

eration. 
Step 11. Calculate the relative closeness ( )νk  between two adjacent ν -th and 

( )1−ν -th iterations, ( )
( ) ( )

( )ν

νν
ν

C
CCk −

=
−1

. If ( ) εν ≥k , apply the next step. 

Otherwise go to Step 14. 
Step 12. Counter ν  works, νν ⇒+1 . 
Step 13. Diminish values ξh , An≤≤ ξ1 , (they are usually subdivided by 2), and 

return to Step 4. 
Step 14. Subalgorithm I terminates and the results obtained at the last, ν -th it-

eration, are taken as the optimal, i.e., 
 ( ){ } ( ){ }( )ν

ξξξξ AAAA
jiTjiT opt ,, = . (12.2.12) 

Note, in conclusion, that all steps of Subalgorithm I are carried out in ad-
vance, i.e., before the project starts. After determining the optimal resource de-
livery schedule (12.2.12) we apply Subalgorithm II only once, in the course of 
the actual project’s realization (see Fig. 12.l). 

 

12.2.8  Subalgorithm II to simulate the project’s realization by supplying 
constrained B-resources 

The general idea of reallocating renewable constrained resources among the 
project activities has been outlined in Chapter 11 for stochastic network projects. 

Subalgorithm II comprises two important models (see Fig. 12.l): 
• the knapsack resource constrained reallocation model to allocate B-
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resources among the project activities at decision points (see block 
KBRRN on Fig. 12.l), and 

• the general simulation model (GSM) to simulate the project’s realization. 
The knapsack resource reallocation problem is realized at the so-called deci-

sion points t  when at least one activity ( )
BB

ji ηη ,  utilizing B-resources is ready to 
be operated but the available amount of resources is limited. A competition 
among the activities has to be carried out in order to choose those activities 
which can be supplied with resources and which have to be operated first. As-
sume that at a certain moment t , Bnq < , activities ( )

BB
ji ηη , , q≤≤ η1 , 1>q , are 

ready to be processed, but at least for one type of resources there is a lack of 
available B-resources. 

In case of fixed B-resource capacities kji BB
r

ηη
, mk ≤≤1 , we suggest (see §11.1) 

to solve the zero-one integer programming problem by determining zero-one in-
teger values ηρ , q≤≤ η1 , to maximize the objective 

{ }
( )[ ]









⋅⋅∑
=

q

ji BBBB
jip

1

,max
η

ηηηρ ηη
η

µρ  (12.2.13) 

subject to 

[ ] ( )tRr k

q

kji BB
≤⋅∑

=1η
η ηη

ρ ,  mk ≤≤1 , (12.2.14) 

where ( )
BB

jip ηη ,  is the probability for activity ( )
BB

ji ηη ,  to be on the critical path in 
the course of a simulation run, and 

( )




=
.1

;,0
otherwise

resourceswithprovidedisjiactivityif
BB ηη

ηρ  (12.2.15) 

Thus, product ( )
BBBB jijipW

ηη
µηηη ⋅= ,  represents the value contributed by activity 

( )
BB

ji ηη ,  to the expected project’s duration. The subset of activities which when 
supplied with resources, results in minimizing the project’s duration, has to be 
chosen. All activities entering that subset start operating at moment t . 

Problem (12.2.13-12.2.15) is solved by a zero-one integer programming al-
gorithm with a precise solution (see, e.g., [153]). Values ( )

BB
jip ηη ,   are deter-

mined by means of simulation, by using (12.2.9) and taking into account val-
ues ( ){ }

AA
jiT ξξ ,  obtained from Subalgorithm I. 

In case of variable B-resources capacities kji BB
r

ηη
, mk ≤≤1 , activity duration 

depends on resource capacities to be allocated to that activity. A more compli-
cated problem has been solved in order to perform the optimal choice at decision 
points t  (see §§11.1-11.2). We solve a knapsack resource reallocation problem 
as follows: 

• to determine ηρ  and kji BB
r

ηη
, mk ≤≤1 , q≤≤ η1 , to maximize the objective 

{ }{ } ( ) ( )[ ]
















⋅⋅⋅= ∑ ∑

= =
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subject to 
maxmin

kjikjikji BBBBBB
rrr

ηηηηηη
≤≤ , (12.2.17) 

( ) ( ) 0
1

≥∀≤⋅∑
=

ttRr k

q

kji BB
η

η ηη
ρ ,  mk ≤≤1 , (12.2.18) 

where ηρ  satisfies (12.2.15). Here value ( )kji
BB
,, ηηψ  ensures the optimal choice 

which results in minimizing the project’s duration. Problem (12.2.15-12.2.18) is 
solved by means of heuristics similarly to outline in §11.2, as well as by a look-
over algorithm providing a precise solution. 

The GSM model: 
a) determines decision points t  to reallocate B-resources; 
b) singles out activities which are ready to be processed; 
c) reallocates B-resources among activities on the basis of solving problems 

(12.2.13-12.2.15) or (12.2.15-12.2.18); 
d) supplies activities with resources and determines values ( )tRk ; 
e) simulates the actual time durations for activities which have been supplied 

with A- or B-resources; 
f) returns utilized B-resources to the project’s store at the moment an activity 

was completed; 
g) calculates values ηW  for the knapsack reallocation problems (12.2.13-

12.2.15) or (12.2.15-12.2.18) at decision points t ; 
h) determines for activities utilizing A-resources their starting moments by 

using relation (12.2.9). 
Thus, Subalgorithm II is used both 
• for forecasting purposes to optimize the A-resources delivery schedule, i.e., 

before the project starts, and 
• in the course of the project’s realization (see Fig. 12.l), on the basis of the 

optimized schedule ( )
AA

jiT ξξ ,∗ . 
 

12.2.9  Experimentation 
In order to check the efficiency of the presented resource constrained algo-

rithm, extensive experimentation has been undertaken. Various stochastic net-
work projects comprising 30÷50 activities have been examined [53,93-94], each 
of them including 3÷5 activities utilizing A-resources, with all other activities 
requiring B-resources. Numerous combinations of cost parameter values, as well 
as three alternative probabilistic distribution laws (uniform, normal and beta) 
have been considered. 

The following conclusions can be drawn from the experimentation: 
1. The uniform distribution is the most expensive to realize the project, while 

the normal distribution proves to be the cheapest one. 
2. The cyclic coordinate algorithm for determining resource delivery mo-

ments ( )
AA

jiT ξξ ,  requires only two iterations to carry out the optimization 
process. The decrease of expenses between the second iteration and the 
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initial search point ( )0, jiT  showed approximately 45% cost improvement 
for the uniform distribution,  58% for the beta-distribution and 67% for 
the normal distribution. Thus, it can be well recognized that the coordi-
nate search algorithm performs well. 

3. The comparative efficiency of the normal distribution can be illustrated by 
analyzing the results of the first iteration. Implementing the latter results 
in decreasing the average cost expenses C  by 66% for the normal distribu-
tion versus only 23% for the uniform distribution and 29% for the beta-
distribution. 

4. The outlined resource constrained project scheduling model can be applied 
to a broad variety of stochastic network projects which utilize various 
types of renewable resources, e.g., R&D projects. 

5. The developed scheduling model covers both rare and expensive resources 
which require strict monitoring and can be delivered from outside for 
short periods only together with various types of renewable limited re-
sources at the project management’s disposal. Those resources do not re-
quire close monitoring. The model provides both a deterministic resource 
delivery schedule for the rare and expensive resources and undertakes re-
source reallocation to obtain a feeding-in schedule for the second type of 
resources. 

6. Unlike the model outlined in §12.1 which is not aimed at PERT projects, 
the model under consideration covers practically all types of stochastic 
network projects independently of their structure. 

7. The main drawback of the model considered in §12.2 is the absence of 
chance constraint restrictions. The required model’s refinement will be 
outlined below. 

 

§12.3  A generalized resource project scheduling model for several 
PERT projects under chance constraints  

12.3.1  Introduction 
In the preceding §12.2 we have outlined a resource supportability model 

which deals with two different types of renewable resources to be consumed by 
the project’s activities: 

• rare and costly resources (A-resources) which have to be delivered from 
outside for a relatively small group of project activities; 

• restricted renewable resources which are feed in at random moments when 
the resources are available and at least one project activity has to be sup-
ported with resources in order to start processing (B-resources). Those re-
sources are in limited supply at the project’s disposal throughout the plan-
ning horizon. 

We have assumed before that the total B-resource capacities for the project 
management store are fixed and pregiven externally. However, since the cost of 
hiring and maintaining B-resources is an essential part of the total expenses in 
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the course of the project’s realization, the problem of determining the optimal 
restricted B-resource capacity limits is reasonable for many projects’ scenarios. 

Minimizing the total project’s expenses to meet the target on time, i.e., at a 
given due date, has not to be the only project management’s goal in the course 
of a long-term cooperation with various customers. To honor the company’s 
good name, an additional requirement has to be implemented in the model: the 
project has to meet its due date on time with a pregiven confidence probability. 
Thus, a chance constraint has to be introduced in the resource constrained 
model. 

The cost objective for all models outlined in the previous chapters was to 
minimize the budget for the resource consumption within the planning horizon. 
However, it would be reasonable to also take into account additional factors 
connected with the project’s total expenses within the planning horizon, e.g.: 

• the starting time of the project’s realization, which refers to the optimized 
variables as well; 

• various penalty costs for not meeting the project’s target on time and stor-
age costs for the project’s completion before the due date. 

Thus, developing u generalized resource supportability model under a chance 
constraint and comprising all the additional parameters outlined above results in 
raising the model’s flexibility. Such a model covers a broader spectrum of pro-
ject management’s systems. 

Note that A-resources should be strictly monitored: for operations which util-
ize A-resources, the corresponding resource delivery moments have to be prede-
termined and calculated beforehand, i.e., the resources have to be delivered at a 
pregiven time. Although, due to random disturbances affecting the project, it is 
impossible to forecast with a good accuracy, when a certain activity entering the 
project will be ready to start, the resource delivery schedule has to be determi-
nistic. 

B-resources should also be monitored, but not closely: for each activity 
which consumes those resources its feeding-in resource moment has to be de-
termined. Those time values are not calculated beforehand and are random val-
ues conditioned on the model’s future decisions. 

Let us formulate the essence of the modified resource supportability model. 
Given: 

• the projects due dates lD ; 
• the least permissible probability p  of accomplishing each project on time; 
• the cost per time unit for hiring and maintaining a B-resource unit (for 

each type of resources); 
• the penalty cost per time unit for the idleness of A-resources (for each ac-

tivity which utilizes those resources); 
• the penalty cost for the projects’ delay (a single payment to the customer); 
• the penalty cost for each time unit of delay; 
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• storage changes per time unit for the projects’ completion before the due 
date. 

The problem is to determine: 
• the starting moment lS  of the project’s realization, together with: 
• the resource delivery schedule for A-resources, and 
• the restricted resource levels for each type of B-resources, 

in order to minimize the average total projects’ expenses subject to the chance 
constraint. 

 

12.3.2  The system’s description 
Several stochastic network projects of PERT type are considered. The dura-

tions of each activity entering each project are random and the corresponding 
probability density functions are pregiven. Certain activities entering the pro-
jects require extremely costly and rare resources (A-resources) which are usually 
delivered externally and are available for short periods within the time span of 
each project (e.g., technical experts, test-benches, special and unique facilities, 
heavy duty equipment and cranes, etc.). A-resources should be strictly moni-
tored because shortages might significantly affect each project’s schedule. Al-
though it is unknown in advance when a certain activity which utilizes A-
resources, will actually be ready to begin, A-resources have to be delivered at a 
pregiven date that has to be determined in advance. Thus, for activities, which 
utilize A-resources, a deterministic schedule of delivering resources to all pro-
jects is to be predetermined before the projects start to be carried out. 

Other activities require constrained renewable B-resources (see §12.2) which 
are at the disposal of the project management and are in limited supply for each 
type of resources. Assume that a resource limit is independent on time, i.e., is 
fixed at the same level throughout each project’s duration. Various B-resources, 
e.g., skilled workers, special equipment, etc., for projects under random distur-
bances require flexible, but not too close, monitoring. Since each activity enter-
ing any project is of random duration, the corresponding feeding-in resource 
moments to be determined are random values either. 

Note that B-resources have to be hired in advance, in order to be delivered to 
the project’s store at the moment the project actually starts. B-resources are re-
leased at the moment when the corresponding project is completed. The B-
resource limits for each type of resources and for each project are problem’s 
variables to be optimized as well as the moments the projects start to be carried 
out. 

Assume, for simplicity, that an activity may utilize several non-consumable 
(renewable) B-resources of various types with fixed (pregiven) capacities. 

The cost objective of the control model comprises the following expenses: 
1. The costs of hiring and maintaining B-resources within the projects’ dura-

tion, i.e., between the moment the projects start to be realized and the 
moment of the projects’ completion (for each project separately). 
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2. The cost penalties paid for the A-resource idleness when an A-resource 
was delivered at the planned moment but not utilized since it had to wait 
for the moment the corresponding activity was actually ready to be oper-
ated. 

3. Each project has its due date lD  and the penalty cost ∗
lC  (paid to the cus-

tomer) for not accomplishing the project on time. In addition a penalty 
cost ∗∗

lC  has to be charged for each time unit of delay after the due date. If 
the project is accomplished before lD , it has to be stored until the due date 
with a ∗∗∗

lC  penalty charge for each time unit of storage. 
Note that the operational costs of processing projects’ activities are not im-

plemented in the cost objective. This is done deliberately since all operational 
expenses remain unchanged and do not depend on the control model. 

 

12.3.3  Notation 
Let us introduce the following terms: 

),( ANGl - the l -th PERT type project, nl ≤≤1 ; 
n  - the number of projects; 

),(),( ANGji ll ⊂  - activity entering project ),( ANGl ; 
ijlt  - duration of ( )lji,  (a random value); 

ijlµ  - average value of ijlt ; 
ijla  - lower bound of ijlt  (pregiven); 
ijlb  - upper bound of ijlt  (pregiven); 

( )tf ijl  - density function of ijlt  (pregiven); 
ln  - the number of activities entering ),( ANGl ; 

lAA
ji ),( ξξ   - activity entering ),( ANGl  which utilizes A-resources, lAl nn ≤≤≤ ξ1 ; 

Aln  - number of activities entering ),( ANGl  which have to be supplied 
with A-resources; 

lBB
ji ),( ηη   - activity entering ),( ANGl  which utilizes B-resources, lBl nn ≤≤≤ η1 ; 

Bln  - number of activities entering ),( ANGl  which have to be supplied 
with B-resources; 

m - number of different B-resources; 
qlR  - resource level of the q-th type B-resources at the disposal of 

),( ANGl , mq ≤≤1  (an optimized variable to be determined); 
lS  - time moment project ),( ANGl  starts to be carried out (an optimized 

variable to be determined); 
lD  - the project’s ),( ANGl  due date (pregiven); 
∗
lp  - least permissible probability of meeting the project’s  due date on 

time, i.e., the model’s chance constraint; 
ijlS  - time moment activity ( )lji,  actually starts (a random value condi-
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tioned on the 
model’s decisions); 
ijlijlijl tSF += - the moment activity ( )lji,  is completed (a random value); 

( )
lAA

jiT εε , -  time moment A-resources have to be delivered to process activity 
( )

lAA
ji ξξ ,  (an optimal deterministic schedule to be determined in ad-

vance); 
qlji BB

r
ηη  - capacity of the q-th type B-resources to be utilized by activity 

( )
lBB

ji ηη ,  (pregiven);  

( ) ijljil FMaxF
l,

= - the actual moment of project’s ),( ANGl  completion (a random 

value); 
∗
lC  - a single penalty cost of project’s ),( ANGl  delay, i.e., in case ll FD <  

(pregiven); 
∗∗

lC  - a penalty cost for each time unit of project’s ),( ANGl  delay in case 
ll FD <  (pregiven); 

∗∗∗
lC  - storage charges per time unit for project’s ),( ANGl  completion be-

fore the due date, in case ll DF <  (pregiven); 
( )

lAA
jic ξξ , - cost penalty to be paid by the management per time unit of the A-

resource idling, i.e., in case ( ) ljil AAAA
SjiT

εεξξ <,  (pregiven); 

lqс  - cost per time unit for hiring and maintaining the q-th type B-
resource unit throughout the project’s  realization (pregiven); 

lC  - non-operational project’s expenses comprising all kinds of cost 
penalties, the cost of hiring and maintaining B-resources throughout 
the project’s ),( ANGl   realization and the cost of storage expenses (a 
random value to be minimized); 

( ) qlql RtR ≤ - free (available for utilization) q-th type B-resources at moment 
lSt ≥ , for project ),( ANGl  (a random value); 

ξh  - the value of the search step of the ξ -th coordinate in the cyclic 
coordinate search method (pregiven); 

0>ε  - search accuracy for the cyclic coordinate method (pregiven); 
{ } ( )

lqll
opt
l

AA
jiTRSC ξξ ,,,/ , Alnmq ≤≤≤≤ ξ1,1  - the optimal conditional value de-

livering the minimum to project’s ),( ANGl  non-operational average 

expenses, on condition that values { }lS , { }qlR  and ( ){ }
lAA

jiT ξξ ,  are 
fixed and externally pregiven; 

minlS  - lower bound of the moment project ),( ANGl  may actually start (de-
termined by the project management and externally pregiven); 

maxlS  - upper bound of the moment project ),( ANGl  may actually start (de-
termined by the project management and externally pregiven); 

minqlR  - lower bound of the resource level qlR , mq ≤≤1 , nl ≤≤1  (determined 
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by the project management and externally pregiven); 
maxqlR  - upper bound of the resource level qlR , mq ≤≤1 , nl ≤≤1  (determined 

by the project management and externally pregiven); 
C  - non-operational expenses comprising all kinds of cost penalties, the 

cost of hiring and maintaining B-resources and the cost of storage 
expenses for the entire system comprising n  projects (a random 
value to be minimized); 

 

12.3.4  The problem 
The general problem is as follows [81]: 
to determine in advance optimized deterministic  variables { }qll RS ,  and 

( )
lAA

jiT ξξ , , nl ≤≤1 , mq ≤≤1 , Aln≤≤ ξ1 , and within the projects’ realization, ac-
tual starting times ijlS  for all activities ( )lji, , nl ≤≤1 , in order to optimize the av-
erage system’s expenses 

{ } { } ( )
CniM

lAAqll jiTRS ξξ ,,,
 (12.3.1) 

subject to 
{ } ,1,Pr * nlpDF lll ≤≤≥≤  (12.3.2) 

( ) ,1,, Alllji njiTS
AAAA

≤≤≥ ξξξξξ  (12.3.3) 
( ) ( ) ( ),,, ANGjiiTS llijl ⊂∀≥  (12.3.4) 

( )∑
=

≤⇒≤≤≤=
d

qlqljiBllji tRrndSt
BBBB

1

.1,
η

ηηηη
η  (12.3.5) 

where random value C  satisfies 

( ) ( )[ ]{ }
( )

( )[ ]

( )[ ] ( ) ( )[ ]
∑

∑∑
= ∗∗∗∗∗∗

=

















−⋅−⋅+⋅−⋅++

+−⋅⋅+−⋅
=

n

l

lllllllll

m

q
llqlql

ji
lljil

FDCDFCC

SFRCjiTSjiC
C lAA

AAAAAA

1

1,
,

1

,,

δδ
ξξ

ξξ ξξξξ

 (12.3.6) 

and 



 >

=
.0

1
otherwise

DFif ll
lδ  (12.3.7) 

Here ( )iT  stands for the time moment when event ),( ANGi l∈  is carried out. 
Restriction (12.3.3) means that an activity which utilizes A-resources, cannot 
start before their corresponding delivery moment. Restriction (12.3.4) means 
that any activity ( )lji,  entering ),( ANGl  cannot start before moment ( )iT . Restric-
tion (12.3.5) means that if at a certain decision-point t  B-resources are reallo-
cated among Bnd <  activities, the summarized value of supplied resources (for 
each q-th type of B-resources) should not exceed the corresponding value ( )tRq , 
i.e., the total capacity of free available q-th type resources at moment t , 

mq ≤≤1 . 
Problem (12.3.1-12.3.7) is a complicated stochastic optimization problem 

which cannot be solved unless using heuristic methods. 



 
 

250 

We assume [81] that all projects ),( ANGl , nl ≤≤1 , are carried out independ-
ently each from the other, moreover, they are realized in different places. This 
means, that one central resource storehouse for all projects cannot be used. We 
decided to optimize each project independently and later on to summarize the 
obtained optimal (minimal) values lC  in order to determine the global solution C  
of the target function (12.3.1). Thus, the general optimization problem boils 
down to a simplified problem for a single project, which will be outlined below. 
In this course, as we transit to a case with 1=n , index l  will be omitted in fur-
ther relations. 

 

12.3.5  The simplified problem for a single project 
The problem is as follows [80-81,151]: 
to determine in advance optimized deterministic variables { }qRS,  and 

( )
AA

jiT ξξ , , mq ≤≤1 , Aln≤≤ ξ1 , and, within the project’s realization, actual starting 
times ijS  for all activities ( ) Gji ∈,  (random values) in order to minimize the aver-
age project’s expenses 

{ } { } ( )
CniM

AAq jiTRS ξξ ,,,
 (12.3.8) 

subject to 
{ } ,Pr *pDF ≥≤  (12.3.9) 

( ) ,1,, Aji njiTS
AAAA

≤≤≥ ξξξξξ  (12.3.10) 
( ) ( ) ,, GjiiTSij ⊂∀≥  (12.3.11) 

( )∑
=

≤⇒≤≤≤=
d

qqjiBji tRrndSt
BBBB

1

1,
η

ηηηη
η ,  mq ≤≤1 , (12.3.12) 

where random value C  satisfies 

( ) ( )[ ]{ }
( )

( )[ ]

( )[ ] ( ) ( )[ ]
∑

∑∑
= ∗∗∗∗∗∗

=
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SFRCjiTSjiC
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1

1,
,

1

,,

δδ

ξξ
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 (12.3.13) 

and 



 >

=
.0

1
otherwise

DFif
δ  (12.3.14) 

 

12.3.6  The problem’s solution 
We will solve the simplified problem (12.3.8-12.3.14) as follows [80-

81,151]. Two hierarchical optimization levels (cycles) are imbedded in the 
model. At the external upper cycle the problem (call it henceforth problem PI) 
is as follows: 

Determine optimal values S , { }qR , mq ≤≤1 , to minimize the average project’s 
non-operational conditional costs subject to the chance constraint 

{ }
{ } ( )







 −⋅⋅+ ∗ppKRSC q

opt

RS q

γ,min
,  (12.3.15) 
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and subject to restrictions 
maxmin qqq RRR ≤≤ , mq ≤≤1 , (12.3.16) 

maxmin SSS ≤≤ . (12.3.17) 
Here: 
• { }q

opt
RSC ,  is calculated by means of simulation in order to obtain a repre-

sentative statistics and by solving the internal optimization problem PII 
(see below); 

• p  is the simulated statistical frequency to meet the project’s due date on 
time, i.e., to satisfy DF ≤ ; 

• K  is a very large number (in the course of experimentation we took it to 
be equal 1710 ); 

• ( )xγ  is a zero-one function 

( )


 ≥

=
∗

.1
0

otherwise
ppifxγ  (12.3.18) 

Thus, objective (12.3.15) automatically prohibits cases with ∗< pp , i.e., hon-
ors the chance constraint (12.3.9). 

To solve problem PI, we use a cyclic coordinate descent algorithm which 
minimizes (12.3.15) cyclically with respect to coordinate variables S , { }qR . 
Value S  is optimized first, then 1R , with fixed new (optimized) S , and so forth 
through mR  (honoring (12.3.16-12.3.17)). The process is then repeated starting 
with S  again (second iteration) until the relative difference between two adja-
cent iterations becomes less than the pregiven tolerance 0>ε . Thus, implement-
ing the algorithm results in undertaking a search in a ( )1+m -dimensional space 
which is a combination of values S  and { }qR , mq ≤≤1 , subject to restrictions 
(12.3.16-12.3.17). After obtaining a routine search point ( ) XRRS m =,...,, 1 , the in-
ternal optimization problem PII at the lower level has to be  applied. Thus, val-
ues S , { }qR , mq ≤≤1 , are input values for problem PII [80-81]. 

Problem PII is, in essence, a non-essential modification of the problem out-
lined in §12.2. The problem boils down to determine the quasi-optimum re-
source delivery schedule ( )

AA
jiT ξξ , , Aln≤≤ ξ1 , in order to minimize the average 

project duration by means of solving the resource constrained project scheduling 
problem via the knapsack resource reallocation problem. The general idea of the 
problem is as follows: 

Given the due date D , the starting moment S  of the project’s realization and 
the resource levels { }qR , mq ≤≤1 , determine resource delivery schedule ( )

AA
jiT ξξ , , 

in order to minimize the project’s duration by reallocating B-resources among 
the project activities. Thus, the problem is as follows: 

{ } ( ){ } ( ) { } ( )






 −⋅⋅+ ∗ttKRSjiTC q

opt

jiTS AA
AAij

γξξ
εε

,,,min
,,  (12.3.19) 
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subject to (12.3.10-12.3.12). 
The outlined below algorithm is, in essence, a unification of a coordinate 

search subalgorithm to develop a deterministic A-resource delivery schedule 
(outlined in §12.2) and a heuristic B-resource reallocation subalgorithm based 
on numerous applications of the knapsack resource reallocation problem in order 
to diminish the average project’s duration (see §§11.1-11.2). 

The combination of ( )mnA ++1  optimized variables S , { }qR , ( )
AA

jiT ξξ , , which 
results in the minimal average value of non-operational project’s costs 

( ) { }








q
opt

RSjiTC
AA

,,, ξξ , has to be taken as the solution of the simplified problem 

(12.3.8-12.3.14). After determining beforehand (i.e., before the project starts at 
moment S ) all optimized variables, the project has to be monitored with fixed 
and hired B-resources { }qR , mq ≤≤1 , and with the A-resource delivery schedule 

( )
AA

jiT ξξ , . Such a methodological approach can be used both for monitoring real-
time projects and by undertaking experimentation by means of simulation in or-
der to assess the efficiency of the problem’s solution. 

Note that if solving problems PI and PII results in carrying out, in the aver-
age, 1M  and 2M  search steps, correspondingly, and obtaining representative sta-
tistics to calculate C  results in undertaking 3M  simulation runs to monitor the 

project, then determining optimized parameters S , { }qR , ( ){ }
AA

jiT ξξ ,  requires in 
the average ( )321 MMM ⋅⋅  simulation runs. Thus, we recommend applying the re-
garded control model for small- and medium-size network projects. In the case 
of large projects we suggest to reduce the amount of the project’s activities by 
means of aggregation. 

 

12.3.7  Monitoring stochastic network projects via resource reallocation 
simulation model 

Values S , { }qR  and ( ){ }
AA

jiT ξξ , , obtained by solving problems PI and PII, serve 
as the input parameters for the simulation model at the lower level. The general 
idea of such a simulation model has been outlined above, in §§11.1.-11.2. 

The simulation model comprises two submodels: 
• the knapsack resource constrained reallocation to allocate B-resources 

among the project activities at decision points and to simulate the project’s 
realization; 

• the submodel to simulate the project’s realization. 
The knapsack resource reallocation problem is solved at decision points t  

when at least one activity ( )
BB

ji ηη ,  utilizing B-resources is ready to be operated 
but the available amount of resources is limited. A competition among the ac-
tivities has to be carried out in order to choose those activities which can be 
supplied with resources and which have to be operated first. Assume that at a 
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certain moment t , Bnd <  activities ( )
BB

ji ηη , , d≤≤ η1 , 1>d , are ready to be proc-
essed, but at least for one type of resource there is a lack of available B-
resources. 

In case of fixed B-resources capacities qji BB
r

ηη
, we solve the outlined in §11.1 

zero-one integer programming problem by determining zero-one integer values 
ηρ , d≤≤ η1 , to maximize the objective 

{ }
( ) ( )[ ]









⋅⋅∑
=

d

BBBB
jijip

1

,,max
η

ηηηηηρ
µρ

η

, (12.3.20) 

subject to 

( )[ ] ( )tRjip q

d

BB
≤⋅∑

=1

,
η

ηηηρ , mq ≤≤1 , (12.3.21) 

where ( )
BB

jip ηη ,  is the probability for activity ( )
BB

ji ηη ,  to be on the critical path in 
the course of a simulation run, and 

( )




=
.0

;,1
otherwise

resourceswithprovidedisjiactivityif
BB ηη

ηρ  (12.3.22) 

Thus, product ( ) ( )
BBBB

jijipW ηηηηη µ ,, ⋅=  is the value activity ( )
BB

ji ηη ,  contributes 
to the expected project’s duration. The subset of activities which being supplied 
with resources, results in minimizing the project’s duration, has to be chosen. 
All activities entering that subset start operating at moment t . 

Problem (12.3.20-12.3.22) is solved by a zero-one integer programming al-
gorithm with a precise solution. Values ( )

BB
jip ηη ,  are determined by means of 

simulation, by using (12.3.4) and taking into account values ( )
AA

jiT ξξ , . 
The simulation submodel is similar to the GSM model outlined in 12.2.8 and 

carries out the same operations (see §12.2). 
 

12.3.8  Experimentation 
In order to evaluate the performance of the algorithm, a medium-size net-

work project of PERT type has been considered. The project’s initial data is pre-
sented in Tab. 12.l. Two activities, namely, (4,6) and (7,10), utilize A-resources 
from outside, while all other activities are operated by using two types of non-
consumable B-resources. Thus, 2=m , and the externally pregiven lower and up-
per bounds of values 1R  and 2R  are as follows: 

30min1 =R , 80max1 =R ; 
27min2 =R , 80max2 =R . 

The model’s chance constraint 9.0=∗p , while values ijqr , 21 ≤≤ q , 
( ) ( ) ( )10,7\6,4\, Gji ∈ , are presented in Tab. 12.1. Four parameters are varied, 
namely ( )

AA
jic ξξ , , 1c , 2c , and the distribution of ijt . Penalty rates ( )

AA
jic ξξ ,  are 

similar for both activities (4,6) and (7,10). Two distributions of ijt  are consid-
ered: 
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a) ijt  is a random value uniformly distributed in the interval [ ]ijij ba , ; 
b) ijt  is a random value normally distributed with average ( )ijijij ba +⋅= 5.0µ  

and variance ( )2

36
1

ijijij abV −⋅= . 

The experimental design is given in Tab. 12.2. 
 

Table 12.1.  The initial data 
Activities i  j  ija  ijb  1r  2r  

1 1 2 24 38 20 10 
2 1 3 15 31 17 14 
3 1 4 18 30 25 18 
4 2 3 38 49 18 20 
5 2 7 10 18 23 12 
6 3 5 32 49 15 9 
7 3 7 18 30 30 22 
8 4 6 24 38 0 0 
9 4 7 12 26 22 20 

10 5 9 10 25 26 17 
11 6 7 22 43 30 12 
12 6 8 11 34 10 15 
13 7 10 27 38 0 0 
14 8 10 30 48 29 27 
15 8 11 24 38 20 10 
16 9 12 15 31 17 14 
17 10 11 18 30 25 18 
18 10 12 38 49 18 20 
19 11 13 10 18 23 12 
20 12 13 32 49 15 9 

 

A total of 16 combinations (2×2×2×2) were considered. For each combina-
tion 500 simulation runs were carried out at each search step in the course of 
solving problems PI and PII. The values of the search step for all ( )mnA ++1  co-
ordinates have been set 2=ξh  for the first iteration and 1=ξh  for the next itera-
tions. The pregiven search accuracy 0>ε  for the cyclic coordinate method has 
been set 001.0=ε . 

Several output measures have been considered as follows: 
C  - the minimal average cost value of total expenses within one simula-

tion run; 
p  - the average actual probability of meeting the due date on time; 
S  - the predetermined moment the project actually starts; 

1R  - the total capacity of resources of type 1 to be hired at moment S ; 
2R  - the total capacity of resources of type 2 to be hired at moment S ; 
( )6,4T  - the planned moment for the A-resources to be delivered to process 
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activity (4,6); 
( )10,7T  - the planned resource delivery moment for activity (7,10). 
 

Table 12.2.  The experimental design 
Variables Values set in the ex-

periment 
Number 
of values 

Penalty cost per time unit for A-resource idle-
ness ( )

AA
jic ξξ ,  

1,000;  1,200 2 

Distribution of ijt  Uniform, Normal 2 
Cost per time unit for hiring a 1R -type unit 1c  3;  5 2 
Cost per time unit for hiring a 2R -type unit 2c  3;  5 2 

 

The summary of the experimentation is presented in Tab. 12.3. Note that for 
all combinations solving problems PI and PII requires 4 iterations, i.e., the 

quasi-optimal solution { } ( )








AA
jiTRq ξξ ,,,S  obtained at the fourth iteration results in 

the output value C  which practically coincides with that obtained at the third it-
eration. In the course of implementing the cyclic coordinate descent algorithm 
the initial value of objective C  has been reduced for all combinations by 85-90% 
in the average. 

 

Table 12.3.  The summary of the experimentation 
Input parameters Output parameters 

( )
AA

jiT ξξ ,  Distribution ( )
AA

jic ξξ ,  1c  2c  S  1R  2R  
( )6,4  ( )10,7  

C  p  

1,000 3 3 15 50 42 30 106 199,105 0.99 
1,000 3 5 15 44 38 32 104 188,240 0.98 
1,000 5 3 14 52 44 34 109 210,311 1 
1,000 5 5 11 54 45 30 105 215,500 1 
1,200 3 3 17 42 40 28 100 180,902 0.97 
1,200 3 5 13 48 42 27 98 201,325 0.99 
1,200 5 3 10 52 48 26 98 208,850 1 

Uniform 

1,200 5 5 13 46 40 30 100 192,220 0.98 
1,000 3 3 18 52 44 32 107 150,121 1 
1,000 3 5 16 40 43 31 105 140,953 1 
1,000 5 3 16 48 50 31 104 149,211 1 
1,000 5 5 15 49 46 34 109 166,002 0.98 
1,200 3 3 19 50 49 30 103 149,231 1 
1,200 3 5 17 47 43 29 102 145,652 1 
1,200 5 3 16 45 48 29 102 151,653 0.99 

Normal 

1,200 5 5 15 43 44 32 105 156,845 0.97 
 

The following conclusions can be drawn from the summary: 
1. The average probability p  of meeting the due date on time exceeds (for all 
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combinations considered in the experimental design) the pregiven chance 
constraint ∗p . Thus, the algorithm minimizes objective C  with respect to 
(12.3.9). 

2. It can be clearly recognized that the regarded model (12.3.8-12.3.14) is 
very flexible. Increasing values 1c  and 2c  results either in shifting value S  
to the left or (and) in decreasing values 1R  and 2R . In other words, com-
pensating control actions are introduced to prevent increasing objective 
C . As to cost penalties ( )

AA
jic ξξ , , increasing the latter results always in 

shifting values ( )
AA

jiT ξξ ,  to the left. Thus, objective values C  are protected 
from drastic fluctuations. 

3. Using the normal distribution yields lower total cost expenses C  than by 
using the uniform distribution. 

 
§12.4  Conclusions 
The following conclusions can be drawn from Chapter 12: 
1. It can be well-recognized that model (12.3.1-12.3.7) covers and comprises 

all local models outlined above, in §§12.1-12.2. Those local models ap-
pear to become nothing but particular cases of the generalized model. 

2. Being a truly resource supportability model and comprising several local 
predetermined resource delivery schedules (for individual projects), 
model (12.3.1-12.3.7) functions simultaneously at the projects’ planning 
stage when determining optimal projects’ starting moments lS  and opti-
mal resource capacities qlR  subject to the chance constraints. Moreover, 
this model unifies resource constrained project scheduling with both de-
terministic resource delivery schedules (for A-resources) and random de-
livery schedules (for B-resources). 

3. As outlined above, the model’s optimization algorithm is based on the as-
sumption that projects are independent and the model can be subdivided 
into non-intersecting and non-interacting fragments. In real life such an 
assumption cannot sometimes be justified and has to be withdrawn. In the 
latter case an additional hierarchical level has to be implemented in the 
model, namely, the level of optimal resource reallocation among the pro-
jects. Being essentially more complicated than the previous model, this 
refined model does not possess unavoidable drawbacks and can be opti-
mized as well. However, in most practical cases model (12.3.1-12.3.7) as 
it stands now, provides sufficient accuracy [151]. 

4. Thus, model (12.3.1-12.3.7) can be regarded as one of the basic, universal 
models, which can be successfully implemented in innovative projecting. 
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Chapter 13.  Stochastic Network Models for Determining Project’s 
Planning Parameters 

 

§13.1  Case of a group of aggregated projects in the form of consecutive 
operations 

13.1.1  Introduction 
As outlined above, in Chapters 11-12, besides control and scheduling models 

used at essential moments of the project’s life cycle, certain models are aimed at 
determining planning characteristics, e.g., the project’s due date, total capacities 
of various types of resources to be stored, etc. Those planning characteristics can 
be changed overtime, especially at emergency moments (see Chapters 4-6). The 
models under consideration can be regarded as models of mixed type, since they 
are implemented both at the planning stage (see Chapter 3), i.e., before the pro-
ject’s realization, and at the stage of monitoring the project. Note that the pro-
jects may be of different structure. At the initial stage of any complicated project 
with no similar prototype in the past, the model may be restricted to a source and 
a sink nodes connected by a chain of several intermediate consecutive opera-
tions of random duration. Thus, at the initial stage, a detailed network model 
does not exist. 

We are considered with several simultaneously realized preliminarily pro-
jects (PP) [88] consisting of a chain of operations to be processed in a definite 
technological sequence. Each project’s operation utilizes qualified manpower of 
various specialties, i.e., several non-consumable resources, with fixed capacities. 
Each type of resource at the management’s disposal is in limited supply, with a 
resource limit that remains unchanged at the same level throughout the projects’ 
duration, i.e., until the last project is actually completed. Thus, due to the limited 
resource levels, projects’ operations may have to wait in lines for resource sup-
ply, in order to start functioning. Since for each operation its duration is a ran-
dom variable with given density function, a deterministic schedule of the mo-
ments operations actually start cannot be determined. 

The general problem is to determine: 
• optimal deterministic total resource capacities for each type of resource at 

the management’s disposal (beforehand),  and 
• random values of the moments operations actually start (in the course of 

the projects’ realization and conditioned on our decisions), 
- to minimize the average of the total expenses of hiring and utilizing all re-
sources subject to the chance constraints of meeting the projects’ due dates on 
time. 

The problem is solved by means of a heuristic algorithm by a combination of 
the cyclic coordinate descent method (at the upper level) and a simulation model 
(at the lower level). Resource reallocation between the projects waiting in lines 
is carried out via decision rule based on a mini-max principle. The latter enables 
support to “weaker” projects from the “stronger” ones in the course of the pro-
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jects’ realization. 
 
13.1.2  Notation 
Let us introduce the following terms: 

n  - number of projects of preliminarily type iPP , ni ≤≤1 , to be realized 
simultaneously in a project system; 

icO  - the c -th operation of the i -th project in the form of a consecutive 
chain, imc ≤≤1 ; 

im  - number of operations in project iPP ; 
ict  - random duration of operation icO  (a random value); 
ict  - average value of ict  (pregiven); 
icV  - variance of ict  (pregiven); 
kR  - the total capacity of the k -th type of resources, dk ≤≤1 , at the dis-

posal of the project system (a deterministic value to be optimized); 
d  - number of resources; 

ickr  - the k -th resource capacity to be assigned to operation icO  (pregiven); 
iD  - the due date for project iPP  (pregiven); 
∗
ip  - chance constraint to meet the due date iD  on time (pregiven); 
icS  - the moment operation icO  actually starts (a random value, to be de-

termined by the simulation model by means of a decision rule in the 
course of carrying out the projects); 

icF  - the moment operation icO  terminates (a random value); 

iF  - the moment project iPP  terminates, 
ii imimi tSF +=  (a random value); 

F  - the moment the last project terminates, ii
FMaxF = ; 

},{ iki DRp
r

 - actual probability of meeting iD  on time on condition that kR  total 
resource capacities, dk ≤≤1 , are hired by the project system; 

}t,S{W ick  - the summarized capacity of the k -th resource assigned to operations 
at moment t , on condition that operations icO  start at moments icS , 

dk ≤≤1 ; 
),()( tSWRtR ickkk −= - free available resources of k -th type at moment t ; 

ks  - the cost of hiring, maintaining and utilizing the k -th resource unit 
at the time unit, dk ≤≤1  (pregiven, a constant value); 

kR∆  - the positive search step value to optimize variable kR , dk ≤≤1  (pre-
given); 

ε  - the relative accuracy value to obtain an optimal solution (pregiven); 
minkR  - the minimal possible level for the total capacity kR , dk ≤≤1  (pre-

given); 
maxkR  - the maximal possible level for value kR , dk ≤≤1  (pregiven); 

Q  - the system’s total resource expenses. 
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Note that relations 
ickcik rR maxmaxmin ≥ , (13.1.1) 

∑ 



≤

≤≤i
ickmck rR

i1max max , (13.1.2) 

maxmin kkk RRR ≤≤ , ni ≤≤1 , imc ≤≤1 , dk ≤≤1 , (13.1.3) 
hold. 

Restriction (13.1.1) is evident since otherwise some of the projects cannot be 
realized at all. If (13.1.2) does not hold a certain part of resources will not par-
ticipate in the projects’ realization. 

 
13.1.3  The problem’s formulation 
The general problem is to determine both optimal deterministic values kR , 

dk ≤≤1 , (before the projects’ realization) and random values icS  (in the course 
of the projects’ realization and conditioned on our decisions), ni ≤≤1 , imc ≤≤1 , 
to minimize the average of the total resource expenses 
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subject to (13.1.3) and 
1min:},{ iikick SttRtSW ≥∀≤ , (13.1.5) 

∗≥ iiki pDRp },{
r

, ni ≤≤1 , dk ≤≤1 , imc ≤≤1 . (13.1.6) 
Note that problem (13.1.3-13.1.6) is a very complicated stochastic optimiza-

tion problem which does not provide an analytical solution. We suggest solving 
the problem by using a two-level heuristic algorithm. The latter comprises a 
simulation model and a subalgorithm to carry out the coordinate descent optimi-
zation method. 

Note, in conclusion, that to simplify the problem, we will henceforth assume 
that 0min 1 =ii

S  holds. 
 
13.1.4  The simulation model 
The input data of the simulation model is the vector of total resource capaci-

ties kR
r

, dk ≤≤1 , which is determined in the course of the coordinate descent al-
gorithm’s work. Thus, in the course of a routine simulation run vector { }kR  is 
fixed and remains unchanged. It goes without saying that vector kR

r
 satisfies 

(13.1.1-13.1.3). 
The main task of the simulation model is to determine (in the course of a 

simulation run) random starting moments icS  of all operations icO , ni ≤≤1 , 
imc ≤≤1 , entering the projects, with respect to a mini-max objective 
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and subject to (13.1.5). Value },{ iki DRp
r

 can be evaluated by means of undertak-
ing numerous simulation runs in order to obtain representative statistics and, 
later on, calculating frequencies for the probability value { }ii DF ≤Pr . As to the 
mini-max objective, it is imbedded in the outlined below decision rule to reallo-
cate restricted resources among projects ready to be operated and waiting in 
lines. 

A routine simulation run starts functioning at 0=t  and terminates with the 
completion of the last project. The simulation model comprises three submodels 
as follows: 

Submodel I actually governs most of the procedures to be undertaken in the 
course of the projects’ realization, namely: 

• determines essential moments (decision points) when projects may be sup-
plied with free available resources. A routine essential moment usually co-
incides either with the moment an operation is finished and additional re-
sources become available, or when a subset of new operations icO  becomes 
ready to be processed; 

• singles out (at a routine decision point) all the operations that are ready to 
be processed; 

• checks the possibility of supplying these operations with available re-
sources without undertaking a competition; 

• supplies the chosen operations icO  with resources and later on simulates the 
corresponding durations ict ; 

• returns the utilized non-consumable resources to the project system store 
(at the moment an operation is finished); 

• updates the remaining projects at each routine decision point; 
• determines the completion moment for each projects, 
together with several other, less important, procedures. 
Submodel II calculates auxiliary decision rule values in case when there is a 

lack of available resources and not all the operations ready to be processed and 
waiting in line for resources at a routine decision point t , can start to be realized. 
Assume that at moment t  q operations 

qqcicici OOO ,...,,
2211

 are ready to be processed 

and at least for one type k  of resources, relation ( )tRr k

q

v
kci vv

>∑
=1

 holds. For each 

vi
PP  waiting in line, Submodel II calculates value 
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where 
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( ) ∫
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. (13.1.9) 

Thus, value (13.1.8) is an approximate probability estimate for project 
vi

PP  to 
meet its target on time on condition that the project will obtain needed resources 
at moment t  and will not wait in lines henceforth. Such an assumption has been 
successfully used for many control problems in project management and manu-
facturing systems [54,70,92-93,118]. 

After determining the values of deviation from the target by 
{ }

∗

∗−<
=

v

vvv

v
i

iii
i p

pDFPr
γ , qv ≤≤1 , (13.1.10) 

we sort the operations in ascending order. Denote the newly reordered opera-
tions 

qq fjfjfj OOO ,...,,
2211

,  
11 , ++

<
ξξξξ

γγ fjfj ,  11 −≤≤ qξ . (13.1.11) 
It can be well-recognized that the less value 

vi
γ  is, the more urgent becomes 

the problem of supplying 
vi

PP  with resources as soon as possible. Here we make 
no difference between project 

vi
PP  and operation 

vvciO  in (13.1.11) since only one 
operation of any project may wait in line for resources at a certain decision mo-
ment t . Thus, priority value 

vi
γ  refers both to project 

vi
PP  and to operation 

vvciO . 
Submodel III undertakes reallocation of free available resources )(tRk , 

dk ≤≤1 , among project 
vi

PP , qv ≤≤1 . All the sorted operations in (13.1.11) are 
examined, one after another, in the ascending order of values γ , to check, for 
each operation, the possibility that it can be supplied with remaining available 
resources. If, for a certain operation 

ξξ fjO , q≤≤ ξ1 , relations ( )tRr kkfj ≤
ξξ

, dk ≤≤1 , 
hold, the needed resources kfjr

ξξ
 are passed to the operation while the remaining 

resources )(tRk  are updated, )()( tRrtR kkfjk ⇒−
ξξ

, dk ≤≤1 . Then, the next opera-
tion 

11 , ++ ξξ fjO  is examined. If not all relations ( )tRr kkfj ≤
ξξ

 hold, we proceed straight-
forward examining the next operation. The procedure terminates either when all 
the available resources are reallocated among the operations or all the q opera-
tions have been examined. The procedure is simple in usage and has been used 
in various scheduling problems [70,88,92-93, etc.]. 

It can be well-recognized that since decision rule (13.1.10) is imbedded in 
decision-making for resource reallocation, the outlined above simulation model 
honors objective (13.1.7). 

Note that the general idea of the mini-max approach is as follows. In the 
course of projects’ realization the project system takes an urgent care of 
“weaker” projects which deviate from their trajectories and their chance con-
straints more than other projects. Those projects have to be supplied with re-
sources in the first place at the expense of other, “stronger” projects. Thus, the 
general idea of the mini-max objective (13.1.7) is to raise the weakest project as 
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much as possible in order to balance all the projects under realization. 
 
13.1.5  The cyclic coordinate descent subalgorithm 
As mentioned above, the suggested heuristic algorithm to solve the problem 

(13.1.3-13.1.6) comprises two levels. At the lower level the simulation model 
undertakes numerous simulation runs in order to manage the projects’ realiza-
tion on the basis of the mini-max principle. At the upper level the heuristic 
search subalgorithm undertakes cyclic coordinate optimization in order to obtain 
the optimal vector kR

r
. The procedure of the optimization is based on minimizing 

objective (13.1.4) cyclically with respect to coordinate variables dRRR ,...,, 21 . Co-
ordinate 1R  is optimized first, then 2R , and so forth through dR . The coordinate 
descent method is outlined in [53-54,83,89], has been successfully implemented 
in §§11.3, 12.1-12.2 and is incorporated in the procedure of the search subalgo-
rithm as follows: 

Determine the initial search point { }00
kRX =  by taking deliberately over-

stating values, e.g., max
0

kk RR = , dk ≤≤1 . It can be well-recognized that 
setting { }max

0
kRX =  results in 

Step 1. 

{ } ∗> iiki pDRp ,0
r

, ni ≤≤1 , (13.1.12) 
 and, thus, 0X  is a feasible solution. Note that for any initial search 

point 0X  relation (13.1.12) can be checked by means of simulation, on 
the basis of numerous simulation runs, by comparing the corresponding 
statistical frequency rates with pre-given values ∗

ip , ni ≤≤1 . If at least 
for one index i  relation (13.1.12) does not hold, problem (13.1.3-
13.1.6) has no solution. Otherwise apply the next step. 
Fix the initial values { }kR , 0XRk

rr
= , and start diminishing value 1R  by 

1R∆  consecutively, i.e., 111 RRrR ⇒∆⋅− , ,...,2,1=r  while all other coordi-
nates dRRR ...,,, 32  are fixed and remain unchanged. Each newly deter-
mined search point ( dRRRrR ,...,, 211 ∆⋅− ) has to be examined by means 
of simulation in order to verify the following statements: 
A. Checking a new search point results in decreasing objective 

(13.1.4); 
B. Restrictions (13.1.6) remain valid. 
In order to formalize the procedure of verification via a simulation 
model, we suggest: 
• to undertake M  simulation runs in order to obtain representative statis-

tics )1000500( −÷M ; 
• to modify objective (13.1.4) on the basis of M  simulation runs as fol-

lows: 

Step 2. 
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where 



 ≤

=
otherwise  0

0  if   1
)(

x
xα  , 



 <

=
otherwise  0

0  if   1
)(

x
xβ , 

)( mF  is the moment the last project terminates in the m -th simulation 
run, Mm1 ≤≤ , 

)(m
iF  is the moment the i -th project terminates in the m -th simulation 

run, 
iK  is a very large positive value (usually taken [53,118] close to 1710 ) 

in order to prohibit automatically cases { } ∗< iiki pD,Rp
r

 for any i , 
ni1 ≤≤ . 

 

Thus, verifying the validity of statements A  and B  independently from 
each other is substituted by checking the validity of the monotonous 
decrease of one objective (13.1.13). Note that for the sake of simplicity 
we have taken 0SMin 1ii

=  in (13.1.13). 
We proceed examining the monotonous decrease of estimate ∗Q  in the 
course of diminishing consecutively the first coordinate 1R , until either: 
1. The diminished value 1R  reaches its lower bound min1R , or 
2. The monotonous decrease of objective (13.1.13) ceases to hold for 

max11min1 RRR ≤≤ . 

Step 3. 

In any case value 1R  which corresponds to the minimal value of ∗Q , is 
fixed, and we start diminishing the second coordinate, 2R , by step 2R∆  
(with fixed values 1R  (newly obtained), 3R ,…, dR ). The process pro-
ceeds for other coordinates, etc., until the last coordinate, dR , is exam-
ined. 
Note that in the course of undertaking a coordinate search each succes-
sive search results always in decreasing objective (13.1.13). Otherwise, 
i.e., if a routine search step does not result in decreasing (13.1.13), the 
corresponding routine coordinate kR  is fixed and the next, the )1( +k -th 
coordinate 1+kR , starts to be examined. 

Step 4. Obtaining a new search vector { }kR
r

 in the course of optimizing all the 
coordinates separately, results in realizing the first iteration to deter-
mine the quasi-optimal values { }kR . All search steps kR∆  have to be 
diminished (mostly by dividing by two), and we proceed to minimize 
(13.1.13) cyclically with respect to the new coordinate variables, be-
ginning from 1R . 

Step 5. For all next iterations in the course of the coordinate optimization, a 
search is realized for each routine coordinate kR , dk1 ≤≤ , in two op-
posite directions, namely kk RR ∆−  and kk RR ∆+ , to determine the di-
rection of objective’s (13.1.13) decline. The direction which results in 
the highest objective’s decrease, has to be chosen. The search process 
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proceeds in that direction until the objective’s decrease ceases to hold. 
After undertaking a routine search iteration v , ,...,2,1=v  the objective 
value (13.1.4), vQ , referring to that iteration, has to be compared with 
the results of the previous, )1( −v -th iteration, by calculating 

( ) ( )

( )1

1
)(

−

− −
=∆ v

vv
v

Q
QQ . 

(13.1.14) 

Step 6. 

Thus, at least two iterations have to be undertaken. 
Step 7. If relation ε<∆ )(v  holds, i.e., if the relative difference between two ad-

jacent iterations )1( −vQ  and )(vQ  becomes less than the pregiven toler-
ance 0>ε , the algorithm terminates. Otherwise,  Step 2  has to be ap-
plied. 

 
13.1.6  Numerical example 
In order to check the fitness of the developed mini-max control model ex-

perimentation has been undertaken. Three simultaneously realized preliminarily 
projects are considered. The first project comprises two consecutive operations, 
while both the second and the third projects comprise three consecutively real-
ized operations. Two types of non-consumable resources participate in the sys-
tem. The projects’ parameters are as follows: 

Project No. 1 
15111 =r ; 17121 =r ; 
60112 =r ; 51122 =r ; 

( )40,3111 UO = ; ( )55,4812 UO = . 
Project No. 2 

15211 =r ; 20221 =r ; 27231 =r ; 
73212 =r ; 88222 =r ; 85232 =r ; 

( )38,3021 UO = ; ( )30,1822 UO = ; ( )39,2823 UO = . 
Project No. 3 

20311 =r ; 26321 =r ; 18331 =r ; 
64312 =r ; 78322 =r ; 80332 =r ; 

( )45,3031 UO = ; ( )28,1632 UO = ; ( )30,2033 UO = . 
Other system’s parameters are as follows: 

27min1 =R ; 50max1 =R ; $501 =s ; 
88min2 =R ; 160max2 =R ; $302 =s ; 

75.01 =p ; 80.02 =p ; 85.03 =p ; 
1271 =D ; 1402 =D ; 1503 =D . 

The optimization process is presented in Tab. 13.1. A conclusion can be 
drawn that the cyclic coordinate descent algorithm requires only two iterations 
with 23 search steps. Thus, the two-level heuristic algorithm performs well 
[90,118]. 
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Table 13.1.  Illustrative performance of the algorithm 
Search step 

number R 1 R 2 
No. of itera-

tion 
Total resource 

expenses Feasibility 

1 50 160 1 1,043,900 feasible 
2 49 160 1 1,036,750 feasible 
3 48 160 1 1,029,600 feasible 
4 47 160 1 1,022,450 feasible 
5 46 160 1 1,015,300 feasible 
6 45 160 1 1,008,150 feasible 
7 44 160 1 1,001,000 feasible 
8 43 160 1 1,070,300 non-feasible 
9 44 159 1 996,710 feasible 

10 44 158 1 992,420 feasible 
11 44 157 1 988,130 feasible 
12 44 156 1 983,840 feasible 
13 44 155 1 979,550 feasible 
14 44 154 1 975,260 feasible 
15 44 153 1 970,970 feasible 
16 44 152 1 966,680 feasible 
17 44 151 1 962,390 feasible 
18 44 150 1 958,100 feasible 
19 44 149 1 953,810 feasible 
20 44 148 1 949,520 optimal 
21 44 147 2 945,230 non-feasible 
22 43 148 2 1,014,860 non-feasible 
23 45 148 2 956,670 feasible 

 
13.1.7  Conclusions 
1. The developed optimization problem covers a realistic situation in a pro-

ject system, at the stage of developing preliminary projects. 
2. The problem can be solved by using a two-level algorithm. At the upper 

level a heuristic cyclic optimization procedure is carried out. At the lower 
level a simulation model is implemented. 

3. The developed model undertakes cost-optimization and can be used both 
in planning and monitoring several preliminary projects. 

4. The backbone of the simulation model is the outlined above decision rule 
which is based on the mini-max principle. The latter enables resource 
support to the “weakest” projects which deviate essentially from their tar-
gets, at the expense of “stronger” projects, which are more successful in 
the course of their realization. 

5. The model can be modified for the case of PERT projects with different 
priorities (see below). This is a perspective research since the objective is 
based on analyzing the projects’ different importance. 
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§13.2  Case of a group of PERT projects with different priorities 
13.2.1  Introduction 
The model described below resembles the one outlined in §11.3 with the ex-

ception of two important characteristics: 
• unlike the model outlined in §§11.3 and 13.1, the projects are of different 

priorities; 
• the model is aimed at determining the minimal due date for all projects. 
The problem [94] is to determine the generalized due date for all projects as 

well as the moments that resources are fed in and projects’ activities start, in or-
der to maximize the heuristic objective taking into account both the projects’ 
priorities and the corresponding chance constraints. Thus, the model is imple-
mented mainly on the planning stage. 

The problem is solved by means of simulation. Two optimization cycles are 
imbedded in the model. The external cycle deals with determining the minimal 
due date D  for all projects. Thus, the due date serves as the input value for the 
internal cycle. The latter uses heuristic decision-making rules to reallocate free 
available resources among the projects in order to meet the projects’ chance 
constraints. 

 
13.2.2  Notation 
Let us introduce the following terms: 
( )lll ANG ,  - the l -th network stochastic project, n1 ≤≤ l ; 

n  - number of  PERT  type stochastic network projects; 
( )lji,  - activity ( )j,i  entering project ( )lll A,NG ; 

kijr l  - capacity of the k -th type resources allocated to activity ( )lj,i , 
mk1 ≤≤  (pregiven); 

m  - number of different resources; 
kR  - total available capacity of k -th type non-consumable resources (pre-

given); 
D  - the general due date for accomplishing all network projects (to be 

determined); 
minD  - the minimal possible general due date (pregiven); 

lη  - the priority index (level of importance) of project ( )lll A,NG  (pre-
given); 

lp  - the minimal admissible probability for project lG  of meeting the due 
date D  on time  (pregiven); 

lijS  - the moments activities ( )lj,i  actually start (random variables to be 
determined within the projects’ realization); 

lF  - the actual moment project ( )lll A,NG  is completed (a random value 
determined on the model’s decision-making rule); 

D∆  - the time step in order to determine optimal value D . 
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13.2.3  The problem’s formulation 
Determine the total due date D  for all projects and the random starting mo-

ments lijS  for all the activities for two contradictive objectives: 
Dmin  (13.2.1) 

and 

{ }
( )[ ]









⋅∑
=

n

S
DP

ij 1

max
l

ll
l

η  (13.2.2) 

subject to 
minDD ≥ , (13.2.3) 

( ) ll PDP ≥ , (13.2.4) 
where ( ) { }DFDP ≤= ll Pr  is the simulated probability of project lG  to meet the due 
date D  on time. 

 

13.2.4  The problem’s solution 
The solution is based on three following principles: 
1. At the upper level a search for value D  is carried out by means of increas-

ing D  via consecutive steps by D∆ , i.e., DDD ⇒∆+  is realized. 
2. At the lower level a simulation model SM  is determined with input values 

D , { }lη , { }kR , { }kijr l , { }lP . 
3. A decision rule is imbedded in the SM  based on the idea of pairwise com-

parisons. 
Two different cases will be examined at each essential moment 0≥t  when 

certain activities ( )lvv ji ,  are ready to consume available resources ( )tRk : 
Case A: some activities may refer to the same project. 
Case B: all activities refer to different projects. 
 

13.2.5  Decision-making rule in Case A (DRA) 
When activities ( )lvv ji ,  refer to one and the same project ( )lll ANG ,  the deci-

sion-making rule consists of three steps and boils down to the following: 
Step 1. By means of simulation calculate values ( )lvv jiP ,  (the probability of 

the activity ( )lvv ji ,  to be on the critical path) for all activities seeking 
for resources. 

Step 2. Calculate for all activities under competition values lvv jit ,  (average 
duration) and ( ) ( ) lll vv jivvvv tjiPji ,,, ⋅=ξ . 

Step 3. Activity with maximal value ξ  is chosen as the winner. 
Thus, practically speaking, rule DRA is based on the knapsack approach 

[70]. Thus, after implementing DRA, only one winning activity from each pro-
ject will remain seeking for resources. 

 

13.2.6  Decision-making rule in Case B (DRB) 
DRB is based on the idea of pairwise comparison and is always used after 

carrying out DRA. Thus, before applying DRB, it is assumed that all competing 
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activities refer to different projects and present the corresponding winner by im-
plementing DRA. 

The following steps enter the rule DRB: 
Step 1. Sort all activities ( )lvv ji ,  in descending order of their priority indices. 
Step 2. Consider the first two activities, namely, ( )111, ji  and ( )222 , ji . Two op-

tions are examined: 
• the first activity is supplied with resources while the second one 
waits in the line for time period l11, jit , and 
• the second activity is supplied with resources while the first one 
waits in the line for l22 , jit . 
It is assumed that afterwards both projects do not wait in lines. 

Step 3. Calculate (by means of simulation) values ( )DP1  and ( )21 22 jitDP −  for 
the first project and values ( )DP2  and ( )12 11 jitDP −  for the second pro-
ject. 

Step 4. If ( ) ( ) ( ) ( )2112212211 2211 jiji tDPDPtDPDP −⋅+⋅≥−⋅+⋅ ηηηη , activity ( )111, ji  is 
the winner. Otherwise activity ( )222 , ji  wins the competition. 

 

13.2.7  The compound decision-making algorithm 
At any essential moment t  where at least one activity ( )lvv ji ,  is seeking for re-

sources to start operating, the compound decision-making algorithm has to be 
implemented. The algorithm comprises the following steps: 
Step 1. Arrange at any essential moment 0≥t  all activities ( )lvv ji ,  waiting for 

resources, in a descending order of their projects’ priorities lη . 
Step 2. For all ready activities referring to the same project undertake competi-

tion by means of DRA (only one winner allowed for each project). 
Step 3. For all projects with a single ready activity (seeking for resources) 

carry out a competition by means of DRB. The winner competes with 
the next competitive activity, until only one winner is left; let it be 
( )lww ji , . 

Step 4. If relation ( ) ( )tRjir kkww ≤l, , mk ≤≤1 , holds, activity ( )lww ji ,  is provided 
with resources. Go to Step 5. Otherwise, activity ( )lww ji ,  is excluded 
from the competition. Go to Step 1. 

Step 5. Update the free available resources ( ) ( ) ( )tRjirtR kkwwk ⇒− l, . Return to 
Step 1. 

Step 6. The process of free resource reallocation terminates when either all 
free resources ( )tRk  are allocated, or all competitive activities ( )lvv ji ,  are 
supplied with resources. 

 

13.2.8  The enlarged procedure of solving the optimization problem  
The solution of problem (13.2.1-13.2.4), thus, can be obtained by using the 

enlarged stepwise procedure as follows: 
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Step 1. Start examining the increasing value D , beginning from minD , by 
means of a search procedure: DDD ⇒∆+ , minDD ≥ . 

Step 2. For any value D  obtained at Step 1 simulate the projects’ realization 
on the basis of decision rules DRA and DRB. Those rules have to be 
incorporated in the simulation model. 

Step 3. Undertake M  simulation runs in order to obtain representative statis-
tics.  Calculate for all projects values ( )DPl , n≤≤ l1 . 

Step 4. If all values ( )DPl  satisfy chance constraint (13.2.4), determine the 
minimal D   satisfying restriction (13.2.3-13.2.4). Thus, the optimal so-
lution of problem (13.2.1-13.2.4) is obtained. Otherwise return to Step 
1. 

As to objective (13.2.2), it is embedded in the algorithm through decision 
rule DRB. 

 
13.2.9  Conclusions  
The following conclusions can be drawn from §13.2: 
1. The presented resource constrained reallocation model can be used in pro-

ject management as a decision support model for planning and monitoring 
several stochastic network projects. The model has been successfully used 
for small and medium size projects of PERT type. 

2. The outlined model is suitable for resource scheduling in stochastic net-
work projects, when the processing of certain activities is based on deliv-
ering resources, e.g., in high technology projects, defense related indus-
tries, opto-electronics, aerospace, etc. 

 
§13.3  Stochastic network model with target amount rescheduling 
13.3.1  Introduction 
The problem associated with developing multilevel on-line production con-

trol models under random disturbances for flexible manufacturing systems has 
been discussed in literature [50-54,61,63,73,83,87, etc.] and outlined in Chapters 
6, 11 and 12. Most of those investigations deal with not fully automated plants 
of ‘man-machine’ type where the output cannot be measured continuously on-
line, but only at preset control points. The main idea of the interaction problems 
between different levels in hierarchical control systems is based on the concep-
tion of emergency introduced by the scientific school of Golenko-Ginzburg (see, 
e.g., [63]). By using the idea that hierarchical levels can interact only in special 
situations, the so-called emergency points, one can decompose a general and 
complex multi-level problem of optimal production control into a sequence of 
one-level problems. We will show below that this general idea can be applied to 
stochastic network projects as well. 

Two different optimization cases are usually considered: 
1. Case with a conflicting two-criteria objective, namely, to maximize the 



 
 

270 

probability of completing the production on the due date, and to minimize 
the number of control points; but the first criterion is dominant. 

2. The objective is to maximize the expected net profit. 
A two-level system is considered to be composed of several different projects 

iU , ni ≤≤1 , at the lower level and a control device at the upper one. The upper 
system’s level is required to provide a given target amount V  by a given due 
date D  subject to a chance constraint, i.e. the least permissible probability p  of 
meeting the target on time is pregiven. Each project iU  has several possible 
speeds 1iv , 2iv , ... , imv , which are subject to random disturbances. The project’s 
output can be measured only at preset inspection (control) points. The target 
amount is gauged by a single measure, e.g. in square meters, and may be re-
scheduled among the projects. For each project, the average costs per time unit 
for each speed and the average cost of performing a single inspection at a con-
trol point to observe the actual output at that point, are given. 

In Chapter 6 we have outlined a cost-optimization on-line control model 
which for a single project determines both control points and speeds to be intro-
duced at those points, in order to minimize the project’s expenses within the 
planning horizon, subject to the chance constraint. We present a two-level on-
line control model under random disturbances, which centers on minimizing the 
system’s expenses subject to the chance constraint. The suggested two-level 
heuristic algorithm is based on rescheduling the system’s target among the pro-
jects both at 0=t , when the system starts functioning, and at each emergency 
point, when it is anticipated that a certain project is unable to meet its local tar-
get on time subject to a chance constraint. At any emergency point t  the remain-
ing system’s target tV  is rescheduled among the projects; thus, new local targets 

itV , ni ≤≤1 , ∑ =
i tit VV , are determined. New local chance constraint values itp  

are determined too. Those values enable the system to meet its overall target at 
the due date subject to the pregiven chance constraint p .  

After reassigning to each project iU  its new target itV  and the chance con-
straint value itp , the projects first work independently and are controlled sepa-
rately. At each k -th control point ikt  of project iU , given the actual amount al-
ready produced, decision-making centers on determining both the next control 
point 1, +kit  and the index j  of the new speed ijv  to proceed with up to that point, 

mj ≤≤1 . The on-line control for each project proceeds either until the next 
emergency point, or until the due date D . 

Rescheduling the remaining system’s target amount tV  among the projects is 
carried out by using heuristic procedures. Determining chance constraint values 

itp  is carried out by using a cyclic coordinate descent method in combination 
with a two-level simulation model. 

The main principal differences between the problems outlined in §§6.2-6.3 
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and the model under consideration is that: 
• in models outlined in Chapter 6 resources (e.g., GRU units) may be re-

scheduled among the projects while in the case under consideration each 
project may only vary the level of its intensity by changing the progress of 
the project’s movement to achieve the target, and 

• in the model under consideration the control device may reschedule the tar-
get amount among the projects. This results in raising the system’s flexi-
bility. 

The model can be applied, e.g., to such important construction projects like 
building several derricks (oil-wells) in a new oil-field to reach the oil-field’s to-
tal desired output (capacity). In the course of carrying out the project, a certain 
oil-well being for some reasons less effective may get help by lowering its plan 
target, at the expense of other and more powerful wells. Similar situations may 
be encountered in the mining industry, e.g., by ore production, etc. 

We refer the outlined below model to a mixed type since it combines control 
actions at emergency moments (and is, in essence, a control model), and deter-
mines over time new planning target amounts in the course of monitoring the 
projects. In our opinion, such a model may be a powerful facilitator for a variety 
of large-scale innovation projects. 

 
13.3.2  Notation 
Let us introduce the following terms: 

S  - the two-level system composed of n  projects iU , ni1 ≤≤ ; 
D  - the due date (pregiven); 

tD  - the length of the remaining planning horizon at moment t , 
tDDt −= ; 

F  - the actual moment the target amount is completed (a random 
value); 

p  - the chance constraint, i.e. the minimal permissible confidence prob-
ability of accomplishing the system’s plan on time (pregiven); 

itp  - the chance constraint value for each project iU  determined at the 
emergency moment 0t ≥ , ni1 ≤≤  (to be determined as an optimized 
variable); 

iks  - the index of the speed chosen by the decision-maker at the control 
point ikt ; 

ikt  - the k -th inspection moment (control point) of project iU , 
iN,...,1,0k = ; 

em
qt  - the q-th emergency moment at the system level, emNq1 ≤≤  (a ran-

dom value); 
iN  - the number of inspection moments for each project iU ; 
emN  - the number of emergency moments (a random value); 
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ijv  - the j -th speed of project iU  to reach its target, mj1 ≤≤  (a random 
value with pregiven density function ( )vf ij ); 

ijv  - the average of speed ijv . It is assumed that for each project iU  speeds  

1iv , 2iv , ... , imv  are sorted in ascending order of their average values 
and are independent of t . Thus, value imv  is the maximal average 
speed for project iU ; 

V  - the pregiven system target (planned program) gauged by a single 
measure (target amount); 

( ) ( )∑
=

=
n

1i

f
i

f tVtV  - the actual system’s output observed at moment t  (a random 

value); 
itV  - the target amount assigned to project iU  at the emergency point t  (to 

be determined); note that ∑ =
i

tit VV ; 

( )tV f
i  - the actual output of project iU  observed at moment t , Dt0 ≤≤ ; 

( ) 00V f
i =  (a random value); 

tV  - the system’s remaining target amount at moment t , VV0 = ; 

( ) 



 jVtVW it

f
ip ,,  - the p -quantile of the moment target amount itV  will be com-

pleted on conditions that: (a) speed ijv  is introduced for project iU  at 
moment t  and will be used throughout, and (b) the actual observed 
output of project iU  at moment t  is ( )tV f

i ; 
m  - the number of possible speeds (common to all projects); 
d  - the minimal time span between two consecutive control points ikt  

and 1k,it +  (pregiven); equal for all projects; 
ih  - the search step for determining optimal values itp ; 

∆  - the minimal value of the closeness of inspection moment ikt  to the 
due date D  (pregiven and equal for all projects); 

ija  - lower bound of random speed ijv  (pregiven); 
ijb  - upper bound of random speed ijv  (pregiven); 

C  - the total operational costs, penalties and charges accumulated for the 
system in the course of accomplishing the target amount (a random 
value); 

emC  - the average cost of rescheduling the remaining target amount tV  
among projects iU  by the system at a routine emergency moment 

0t ≥ ; 
ijC  - the average processing cost per time unit of speed ijv , ni1 ≤≤ , 

mj1 ≤≤  (pregiven); note that for a fixed i  relation 21 jj ≤  results in 
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21 ijij CC < ; 
insC  - the average cost of performing a single inspection of a project (pre-

given, equal for all projects); 
( )tC f

i  - the actual accumulated processing and inspection costs calculated at 
moment t  for project iU , Dt0 ≤≤ , ni1 ≤≤ , ( ) 00C f

i = ; 
∗C  - the penalty paid to the customer by the system for not accomplishing 

the target amount on time, i.e. when DF >  (a single payment, pre-
given); 

∗∗C  - the penalty cost for each time unit of delay DF −  (pregiven); 
∗∗∗C  - storage charges per time unit for the target amount’s completion be-

fore the due date (pregiven). 
 
13.3.3  The control model 
A two-level control model is considered where each level faces a stochastic 

optimization problem [87]. 
The  Problem  at  the  System  Level  (Problem A) 
At each emergency point em

qtt = , emNq ≤≤1 , 01 =emt , determine local production 
plans itV , ni ≤≤1 , together with local chance constraints itp , in order to minimize 
the expected total expenses 

{ }
C

itit pV ,
min  (13.3.1) 

subject to the chance constraint 
( ){ } pVDV f ≥≥Pr . (13.3.2) 

Note that random value C  satisfies 

( )[ ] ( )
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where 



 >

=
,otherwise0

DFif1
δ

 
(13.3.4) 

and values { }iks  and { }ikt  are obtained by solving Problem B at the project level. 
Values { }itV  at each emergency point t , including 0=t , are determined ac-

cording to a widely used heuristic procedure [54,61-64,84,151], namely 

∑
=

= n

i
im

im
tit

v

vVV

1

, 
(13.3.5) 

where imv  is the maximal speed which can be introduced for project iU . 
As to values { }itp , they are determined by using a cyclic coordinate descent 

algorithm. The search procedure is carried out by means of simulation, by un-
dertaking numerous realizations of a simulation model at the lower level in order 
to obtain representative statistics. The simulation model represents the process 
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of manufacturing for several projects iU  with input values { }itV  and { }itp , be-
tween two adjacent emergency points em

qt  and em
qt 1+ . In the case of a routine emer-

gency call the problem at the section level is resolved, new values { }itV  and { }itp  
are determined, and the manufacturing process proceeds at the lower level, for 
each project iU  independently. 

The  Problem  at  the  Project  Level  (Problem B) 
The cost-optimization control model for a single project has been formulated 

in Chapter 6. We have modified that problem for the case of several projects 
with additional cost parameters emC , ∗C , ∗∗C  and ∗∗∗C . 

For the case of an independent project iU , given the input values itV , itp , d , ∆  
and ijv , mj ≤≤1 , the problem is to determine both control points { }ikt  and speeds 
{ }

ikisv  to minimize the expenses 

{ } ( )[ ]








+−= ∑
−

=
+ insi

N

k
ikkiisvt

CNttCJ
i

ik
ikisik

1

0
1,,

min  (13.3.6) 

subject to 
( ){ } itit

f
i pVDV ≥≥Pr , (13.3.7) 
tti =0 , (13.3.8) 

( ){ }[ ]iti
f

iiTiN VTVTt
i

i
≥= Pr:min , (13.3.9) 

dtt ikki ≥−+1, , (13.3.10) 
∆≥− iktD ,  10 −≤≤ iNk , (13.3.11) 

( )[ ] DqVtVWqqjs it
f

ipmqik ≤∀==
≤≤

,,:min
1

. (13.3.12) 
Restriction (13.3.8) means that after reallocating target amounts at the routine 

emergency point t , the starting moment to proceed constructing, i.e., the first 
control point to undertake decision-making and to determine 0is  and 1it , is t . 
Note that at all emergency points the remaining target amount, as well as the due 
date, are updated, i.e., the ordinate 0=t  is shifted to the right. Restriction 
(13.3.9) means that the last inspection point is the moment target amount itV  is 
reached. Restrictions (13.3.10) and (13.3.11) ensure the closeness between two 
consecutive control points, as well as the closeness of the routine inspection 
point to the due date. Restriction (13.3.12) means that the speed to be chosen at 
any routine control point ikt  should not exceed the minimal speed which guaran-
tees meeting the deadline D  on time, subject to the chance constraint (13.3.7).  

The general idea of solving the problem (13.3.6-13.3.12), which is a very 
complicated stochastic optimization problem, is as follows. At each control 
point ikt  decision-making centers on the assumption (see §6.1) that there is not 
more than one additional control point before the due date. Two speeds have to 
be chosen at point ikt : 

1. Speed 
1ijv , iksj =1 , which has to be actually introduced at point ikt  up to the 
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next control point 1, +kit . 
2. Speed 

2ijv , 1,2 += kisj , which is forecast to be introduced at control point 1, +kit  

within the period [ ]Dt ki ,1, + . 
Thus, 1j  is determined in accordance to (13.3.12) and 2j  is determined by 

honoring chance constraint (13.3.7). As outlined in Chapter 6, at each routine 
control point ikt  all possible couples are singled out. The couple, which delivers 
the minimum of forecasted manufacturing and control expenses, has to be cho-
sen. Since couple ( )21, jj , together with the inspected value ( )ik

f
i tV  and values D  

and itV , fully determines the next control point 1, +kit , speed 
1ijv  is introduced 

within the period [ ]1,, +kiik tt . At moment 1, +kit  decision-making has to be carried out 
anew. 

 
13.3.4  The general idea of the two-level heuristic algorithm 
The general idea of the regarded heuristic algorithm is as follows: at each 

routine emergency point em
qt , emNq ,...,1,0= , decision-making centers on minimiz-

ing the future costs from point em
qt  until F , including the penalty and the storage 

costs. The costs representing the past (interval [ ]em
qt,0 ) are irrelevant for this on-

line control problem, and there is no need to remember the past decision [63]. 
The only relevant information to be stored is em

qt  and ( )em
q

f
i tV . Thus, decision-

making at the system level is carried out only at emergency points em
qt  including 

the moment 0=t  the system starts functioning. 
Decision-making at the system level at each routine emergency moment 
em
qtt =  centers on determining both new chance constraint values { }itp  and new 

target amounts itV  for the remaining planning horizon [ ]Dt, . Values { }itp  are ob-
tained by means of simulation, by a combination of a search algorithm and an 
on-line one-level control algorithm for several projects. The latter work inde-
pendently and are controlled separately at inspection points. It is generally as-
sumed that at the beginning of the work all the available resources are previ-
ously allocated among the projects. Those resources remain unchanged within 
the planning horizon, i.e. no resource reallocation is performed. Thus, the corre-
sponding speeds ijv  for each project iU  remain unchanged too. 

If for a certain project iU  at a routine inspection point ikt  it is anticipated that 
the project cannot meet its target itV  on time subject to the previously determined 
chance constraint itp , an emergency is declared, and decision-making is affected 
at the system level. The remaining target tV  at iktt = , together with the remaining 
time ikt tDD

ik
−= , is then updated. New quasi-optimal values { }itp , iktt = , together 

with new target amounts { }itV , are then determined. The newly corrected plan is 
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assigned to all projects, and the process proceeds further, until either the new 
emergency point or until the moment the target amount is completed. Thus, de-
cision-making at the system level centers on numerous recalculations of the sys-
tem’s plan subject to the chance constraint. This is carried out by using a fore-
casting simulation model with input values { }itit pV , , iktt = . The matrix { }itit pVZ ,=  
which delivers the minimum of total accumulated costs subject to the chance 
constraint p , is taken as the optimal corrected plan. Afterwards, that corrected 
plan is passed to the projects, and on-line decision-making is carried out at the 
project level. 

 
§13.4  Conclusions 
The following conclusions can be drawn from the Chapter: 
1. The models outlined in Chapter 13 are, in fact, the continuation of various 

models presented in Chapter 11. The similarity between these two classes 
of models results in operating both the planning and the monitoring 
(scheduling) stages of the project’s life cycle. The difference stems from 
the fact that scheduling models outlined in Chapter 11, unlike models of 
Chapter 13, are focused on feeding-in resources. In the concluded Chapter 
models are more concentrated on estimating truly planning parameters. 

2. Model (13.3.1-13.3.5), unlike other models outlined in the concluded 
Chapter, cannot be regarded as a scheduling model since it operates si-
multaneously as a control model and a planning model. In our opinion, 
this model may benefit in future from a variety of fruitful applications, 
especially for innovative projects. 

3. Model (13.3.1-13.3.5) is a particular case of the general cost-optimization 
model based on the chance constrained principle (see Chapter 6). The fit-
ness of the outlined algorithm has been checked by means of simulation 
[87,94,118,151]. 

4. Although cost-optimization models presented in Chapters 6 and 13 refer to 
one and the same class of control models, they can be used in different 
situations. Implementing target amount rescheduling is an attempt to build 
a bridge between planning and control models. In our opinion, such an at-
tempt is a positive one. 
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PART  V  
 HIERARCHICAL MODELS FOR PLANNING AND 

CONTROLLING SEVERAL STOCHASTIC NETWORK 
PROJECTS 

 
Chapter 14. Hierarchical Model for PERT-COST Projects (Planning 

Stage) 
 

§14.1  The model’s structure 
14.1.1  Introduction 
We will outline a hierarchical on-line control model for several PERT type 

projects being carried out simultaneously. On the project level, each project is 
controlled separately in order to minimize the number of control points subject 
to a chance constraint, which seeks to prevent deviation from the planned trajec-
tory within the planning horizon with pregiven probability. If at a certain control 
point it is anticipated that the project will not be on target subject to the chance 
constraint, then an emergency is called and the company level is faced with the 
problem of reassigning the remaining budget among the projects so that the 
faster ones may help the slower ones. Thus the model has two objectives: to 
minimize the number of control points and to maximize the probability that the 
slowest project can meet its due date on time. 

The following realistic assumptions are introduced: 
1. Time duration of each activity entering the project is approximately in-

versely proportional to the budget assigned to that activity [7,53-
54,64,68,92]. 

2. The time-cost curve for the activity with random duration and preset 
budget assigned to that activity may be determined on the basis of beta or 
alternative distributions (see Chapter 2). 

Two basic concepts are implemented in the outlined model: 
A. Decision-making at each control point is based on calculating and examin-

ing the probability of meeting the project’s due date on time; 
B. The on-line control model determines the next control point by solving a 

stochastic optimization problem: to minimize the number of control points 
under a chance constraint not to deviate from the planned trajectory. Such 
a constraint is, in essence, stricter than using confidence probabilities to 
meet the due date on time. 

We will consider a hierarchical control model and will describe the mathe-
matical formulations of all optimization problems that are imbedded in the 
model. The solutions to the problems enable control actions to be taken on dif-
ferent levels to meet the projects’ due dates on time. 
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14.1.2  Notation 
Let us introduce the following terms: 

The Company Level 
( )ANGk ,  - 

the k -th stochastic network project (graph) of PERT-COST type, 
nk ≤≤1 ; 

n  - the number of projects; 
ktG  - the remaining k -th network project at moment 0≥t ; ( )ANGG kk ,0 = ; 
kD  - the due date for the k -th project (pregiven); 
∗∗

kp  - probability which practically guarantees completion of the k -th pro-
ject on time (pregiven); 

∗∗∗ < kk pp - the least permissible probability for the k -th project to be completed 
on time (pregiven); both values ∗

kp  and ∗∗
kp  have to be set by practi-

tioners using expert methods; it may be considered, if not otherwise 
stated by the company management, that for two different projects 
with equal priority indices their corresponding confidence probabili-
ties ∗

kp  and  ∗∗
kp  will be  equal too; 

ktC  - the budget assigned by the company to the k -th project at moment 
0≥t ; 

∑
=

≥
n

k
kCC

1
0 - the total budget for n  projects at the company’s disposal; 

( )tCk  - available remaining budget to carry out project ktG  which is ob-
served at control point 0>t ; ( ) 00 kk CC = ; 

[ ]ktk Cp  - probability to accomplish the remaining project ktG  on time corre-
sponding to the allocated budget value ktC , 0≥t ; 

∗
ktC  - budget value satisfying [ ] ∗∗ = kktk pCp , 0≥t ; 

∗∗
ktC  - budget value satisfying [ ] ∗∗∗∗ = kktk pCp ; 
[ ]ktk CT  - random duration of project ktG  corresponding to the budget value 

ktC . Note that obvious relation [ ] [ ]{ }kktkktk DCTtCp <+= Pr  holds; 
( )[ ]tCT kk  - random duration of project ktG  with the remaining budget ( )tCk ; 

( )[ ]{ }kkkkt DtCTtp ≤+= Pr - probability to accomplish project ktG  on time with 
budget ( )tCk ; 

( )tCk
∗  - budget value satisfying ∗= kkt pp ; 

( )tCk
∗∗

 - budget value satisfying ∗∗= kkt pp ; 
Cδ  - minimal budget unit value by which budget ktC  may be changed; 
p∆  - minimal probability unit value by which confidence probability may 

be changed; 
kη  - priority value of the k -th project (pregiven); note that if ( )ANGk ,

1
 is 

of higher importance than ( )ANGk ,
2

, relation 
21 kk ηη >  holds. 
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The Project Level 
( )kji,  - activity leaving node i  and entering node j , ( ) ktk Gji ∈, , 0≥t ; 
( )kjic ,  - budget assigned to activity ( )kji, ; 
( ) min, kjic  - minimal possible budget to carry out activity ( )kji,  (pregiven); 
( ) max, kjic  - maximal budget required to carry out activity ( )kji,  (pregiven); in 

case ( ) ( ) max,, kk jicjic >  additional budget is redundant; 
( )kjit ,  - random duration of activity ( )kji, ; it is assumed that ( )kji,  has a beta-

distribution with density function: 
  ( )

( ) ( )[ ] ( )[ ] ( )[ ]2
4 ,,

,,
12 xjibjiax

jiajib
xp kk

kk
kij −−

−
= ; (14.1.1) 

( )kjiA ,  - pregiven value to satisfy 
( ) ( )

( )k

k
k jic

jiAjia
,
,, =   which is the lower bound for random value ( )kjit , ; 

( )kjiB ,  - pregiven value to satisfy 
( ) ( )

( )k

k
k jic

jiBjib
,
,, =   which is the upper bound for random value ( )kjit , ; 

On-line Project Control Level 
kN  - the number of control points for project ( )ANGk ,  (on-line control); 
( )tNk  - the number of  future control points for project ( )ANGk ,  beginning at 

moment t ; 
kgt  - the g -th control point for the k -th project, kNg ,...,1,0= , nk ≤≤1 , 

00 =kt ; 
k∆  - the minimal pregiven time span between two adjacent control points 

kgt  and 1, +gkt  (for practical reasons and in order to force conver-
gence); 

( )tV f
k  - state variable of project ktG  observed at control point t ; 

( )( )qpl
k tV  - planned trajectory curve between two adjacent control points (the q-

th iteration ) . 
Assume that various projects ( )ANGk ,  are of different importance. Thus, a 

priority index (value) kη  has to be set for each project by the management. The 
management may use for this purpose various expert methods such as the Delphi 
method [149], and take into consideration qualitative and quantitative properties, 
e.g., profit expectations, cash flow advantages, international trends, innovation, 
strategic issues, etc. After considering all the above mentioned issues, the com-
pany level has to define kη . The level of significance of each project can also 
practically be specified by the project delivery performance. For projects with 
random activity durations delivery performance is nothing else but the probabil-
ity of the project to meet its due date on time. 

 

§14.2  Budget allocation among several projects with different priorities 
Consider that the company management is faced with controlling n  PERT-

COST type network projects ( )ANGk , , nk ≤≤1 , which have to be carried out si-
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multaneously. Projects are of different importance and significance; for each 
project the corresponding priority index kη  is externally pregiven. The total 
budget C  at the company’s disposal to carry out all the projects is limited. Thus, 
the company is faced with the problem of optimal budget allocation among n  
network projects under consideration. This problem is to be solved [7,53-
54,64,92]: 

(a) once at the planning stage, at 0=t , i.e., before the projects’ realization, and 
(b) repeatedly in the course of the projects’ realization, at 0>t , when an 

emergency is called by one of the projects due to its deviation from the 
planned trajectory. In the latter case the remaining budget of all the unac-
complished projects is to be reallocated. 

Following is the solution of the general problem for the case 0≥t . Given for 
each project ktG , nk ≤≤1 , 

(a) desirable and least permissible confidence probabilities ∗∗
kp  and 

∗
kp , 

(b) priority values kη , 
• the problem is to determine optimal values ktC , nk ≤≤1 , to maximize the 

objective 
[ ]∑

=

⋅=
n

k
kktkC

CpJ
kt 1

1 max η  (14.2.1) 

subject to 

( )∑∑
==

=
n

k
k

n

k
kt tCC

11
, (14.2.2) 

[ ] [ ]{ } ∗∗∗ ≤≤+=≤ kkktkktkk pDCTtCpp Pr .
 

(14.2.3) 
Note that maximizing objective (14.2.1) means that the management first 

takes all measures to accomplish on time projects with higher priorities and af-
terwards handles less important projects.   

Problem (14.2.1-14.2.3) is a stochastic optimization problem with very com-
plicated non-linear convolutions [ ]ktk Cp . In order to simplify the problem we as-
sume that probability value [ ]ktk Cp  depends on budget value ktC  linearly, i.e., for 
each k -th project, relation 

[ ] [ ] [ ] [ ]
kt

ktkt

ktkktk

ktkt

ktkktk

CC
CpCp

CC
CpCp

ρ=
−
−

=
−
−

'''

'''

''''

''''

 
(14.2.4) 

holds  for any ''''''
ktktkt CCC >> , ktρ  being a constant value at a fixed moment t . It 

goes without saying that values ktρ  may change from project to project; but 
within the project at a fixed moment 0≥t  they remain unchanged. 

To solve problem (14.2.1-14.2.3) we have to solve an auxiliary problem as 
follows: 

For each  project  ktG , nk ≤≤1 , separately, determine two budget values ∗∗
ktC  

and ∗
ktC , to satisfy 

[ ]{ } ∗∗ =≤+ kkktk pDCTtPr ,
 

(14.2.5) 
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[ ]{ } ∗∗∗∗ =≤+ kkktk pDCTtPr . (14.2.6) 
The solution of this problem will be outlined below, at the project level. 
After solving problem (14.2.5-14.2.6) and determining values ∗∗

ktC  and ∗
ktC , 

nk ≤≤1 , we solve at the company level the budget reallocation problem. The 
procedure to solve this problem is as follows: 

Compare values ( )∑
=

n

k
k tC

1
 with ∑

=

∗
n

k
ktC

1
 and ∑

=

∗∗
n

k
ktC

1
; if ( ) ∑∑

=

∗

=

<
n

k
kt

n

k
k CtC

11
 problem 

(14.2.1-14.2.3) has no solution. We have either to reduce the desired confidence 
probabilities ∗

kp , or to cancel one of the least important projects, or to ask for ad-

ditional budget ( )∑∑
==

∗ −=∆
n

k
k

n

k
kt tCCC

11
. Such a trade-off is the sole prerogative of 

the company management. 

In case ( )∑∑
==

∗∗ <
n

k
k

n

k
kt tCC

11
 the solution of the problem is ∗∗= ktkt CC . Values ∗∗

ktC  

must be allocated to project ktG , nk ≤≤1 , while the remaining budget 

( ) ∑∑
=

∗∗

=

−
n

k
kt

n

k
k CtC

11
 may be used for other company activities. 

Case ( ) ∑∑∑
=

∗∗

==

∗ <<
n

k
kt

n

k
k

n

k
kt CtCC

111
 means that, in addition to the minimal budget 

values ∗
ktC , the remaining budget ( ) ∑∑

=

∗

=

−
n

k
kt

n

k
k CtC

11
 has to be reallocated among the 

projects according to objective (14.2.1). The thus determined optimal solution is 
as follows: 

Since value [ ]ktk Cp  depends on ktC  linearly, values [ ]ktk Cp , ∗
kp  and ∗∗

kp  satisfy 
[ ]

∗∗∗

∗

∗∗∗

∗

−
−

=
−

−

ktkt

ktkt

kk

kktk

CC
CC

pp
pCp ,

 
(14.2.7) 

and 

[ ] ( )∗∗∗
∗∗∗

∗
∗ −⋅

−
−

+= kk
ktkt

ktkt
kktk pp

CC
CCpCp .

 
(14.2.8) 

Substituting [ ]ktk Cp  in (14.2.1) for (14.2.8) we obtain 

∑
=

∗∗∗

∗∗∗∗∗∗

∗∗∗

∗∗∗
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⋅
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ppCJ

kt 1
1 max ηη .

 
(14.2.9) 

Taking into account that t  is fixed and denoting 

kk
ktkt

kk a
CC
pp

=⋅
−
−

∗∗∗

∗∗∗

η ,  kk
ktkt

ktkktk b
CC

CpCp
=⋅

−
−

∗∗∗

∗∗∗∗∗∗

η , 

we substitute objective (14.2.1) for 
( )∑

=

+=
n

k
kktkC

bCaJ
kt 1

1 max
 

(14.2.10) 

subject to 
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( )∑∑
==

=
n

k
k

n

k
kt tCC

11
, (14.2.11) 

∗∗∗ ≤≤ ktktkt CCC , nk ≤≤1 .
 

(14.2.12) 
Since kb  does not depend on ktC , objective (14.2.10) can be simplified, 

namely: 

∑
=

=
n

k
ktkC

CaJ
kt 1

1 max
 

(14.2.13) 

subject to (14.2.11-14.2.12) . 
Taking into account 0>ka , nk ≤≤1 , the optimal analytical solution of the re-

garded problem can be obtained by means of a step-wise algorithm as follows: 
Step 1. Assign to all projects ktG , nk ≤≤1 , their minimal budget values ∗

ktC ; 

denote the remaining budget ( ) CCtC
n

k
kt

n

k
k ∆=− ∑∑

=

∗

= 11
. 

Step 2. Reorder sequence { }ka  in descending order; let their new ordinal num-
bers be nfff ,...,, 21 . 

Step 3. Set 1=j . 
 

Step 4. Calculate ( ){ }CCC tftfj jj
∆−= ∗∗∗ ,minγ . 

Step 5. Determine for project tf j
G  its final budget jtftf jj

CC γ+= ∗ . 
Step 6. Update the remaining budget CC j ∆⇒−∆ γ . If 0=∆C  go to Step 9. 

Otherwise apply the next step. 
Step 7. Set jj ⇒+1 . 
Step 8. If nj ≤  return to Step 4. Otherwise apply the next step. 
Step 9. The algorithm terminates. 

It can be well-recognized that since sequence { }
jfa  is a descending one de-

termining the optimal solution results in assigning to each routine project 
jfG  as 

much additional budget from the remaining company budget C∆  as possible. 
Thus, the algorithm develops the optimal solution under the assumptions of line-
arity of [ ]ktk Cp . It can be proven that in the course of optimal budget realloca-
tion all the projects, besides not more than one, will obtain either values ∗

ktC  or 
∗∗

ktC . 
Assertion. There exists not more than one project ftG  for which ∗∗∗ << ftftft CCC  

holds. For all other projects qtG , { } fkq \∈ , qtC  is equal either to ∗
qtC  or to ∗∗

qtC . 
Proof. Assume that after optimal budget reallocation there are two different 

projects   rtG  and stG  with intermediate values ∗∗∗ << rtrtrt CCC  and ∗∗∗ << ststst CCC . 

Assume, further,   that sr aa > . Calculate budget value ( ) ( )[ ]∗∗∗ −−= rtrtrtrtC CCCC ,minε  
and transfer value Cε   from project stG  to project rtG . It can be well-recognized 
that in the course of such a reallocation: 
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(a) objective (14.2.13) will increase; 
(b) among the two projects under consideration no more than one will remain 

with the intermediate budget value; the other one will obtain either value 
∗∗

ktC , or ∗
ktC . 

Thus the former budget reallocation was not the optimal one.       
After undertaking budget reallocation among the projects the latter have to be 

controlled at the project level.  
 
§14.3  Projects of equal significance 
In this paragraph the case of several stochastic PERT-COST projects of equal 

importance, i.e., with equal priority values, will be considered. The idea of op-
timal budget reallocation among those projects, unlike the case outlined in 
§14.2, is based on the conceptions which have been outlined in [63] and are as 
follows: 

If a company operates PERT-COST projects with different importance, the 
management takes all measures to raise the performance of projects with higher 
priorities. This results in control policy to supply the maximal possible amount 
of resources to projects of higher significance and to leave the minimal permis-
sible resources to be utilized for less important projects. But in the case of pro-
jects which have equal importance the performance of the slowest project will 
determine the performance of the whole group of projects under consideration. 
Thus, the conception is to maximize the ability of the slowest project at the ex-
pense of the faster ones. 

Let us introduce for each stochastic network project ktG , 0≥t , the term 
which we will henceforth call “the project’s performance degree”. It can be cal-
culated at any routine control point t  and is equal to [ ]ktk Cp , i.e., it is the prob-
ability [ ]{ }kktk DCTt <+Pr  of completing the project on time. According to the 
conception outlined above the slowest project’s performance degree determines 
the possibility for the company to realize a group of projects within their due 
dates. Thus, the objective to be maximized is as follows [64]: 

[ ]ktkkC
CpJ

kt

minmax2 = , 0≥t ,
 

(14.3.1) 
subject to 

( )∑∑
==

=
n

k
k

n

k
kt tCC

11
, (14.3.2) 

[ ] ∗∗∗ ≤≤ kktkk pCpp ,  nk ≤≤1 .
 

(14.3.3) 
The problem is to be solved at moment 0=t  or to be repeatedly resolved at 

every emergency moment 0>t . If for any project ktG  at any control point t  it is 
anticipated that the project will fail to reach its due date on time with probability 
not less than ∗

kp , an emergency is called and at the company level the remaining 
total budget is to be reassigned among the unaccomplished projects so that the 



 
 

284 

faster one can contribute and speed up the slower one. 
To solve optimization problem (14.3.1-14.3.3) the same assumption will be 

introduced as for the case outlined in §14.2, i.e., that [ ]ktk Cp  depends on ktC  
linearly. 

Values ∗
ktC  and ∗∗

ktC  corresponding to confidence probabilities ∗
kp  and ∗∗

kp , have 
to be calculated for each project ktG , nk ≤≤1 , 0≥t . 

The heuristic procedure to obtain values ∗
ktC  and ∗∗

ktC  will be presented in 
§14.4. 

The solution of problem (14.3.1-14.3.3) is outlined below. 
Using (14.2.7) and (14.2.8) and substituting [ ]ktk Cp  in (14.3.1) for (14.2.8) 

we obtain 

( )
















−⋅

−
−

+= ∗∗∗
∗∗∗

∗
∗

kk
ktkt

ktkt
kkC

pp
CC
CCpJ

kt

minmax2 .
 

(14.3.4) 

Denoting kk
ktkt

kk

CC
pp

αη =⋅
−
−

∗∗∗

∗∗∗

, kk
ktkt

ktkktk

CC
CpCp

βη =⋅
−
−

∗∗∗

∗∗∗∗∗∗

, we obtain optimization 

problem as follows: 
Maximize 

[ ]{ }kktkkC
CJ

kt

βα += minmax2

 
(14.3.5) 

subject to (14.3.2) and 
∗∗∗ ≤≤ ktktkt CCC .

 
(14.3.6) 

A substitution 
[ ] ZC kktkk

=+ βαmin
 

(14.3.7) 
modifies problem (14.3.2, 14.3.5-14.3.6) to the following one: 

Z
ktC

max
 

(14.3.8) 
subject to (14.3.2), (14.3.6) and 

kktkCZ βα +≤ , nk ≤≤1 .
 

(14.3.9) 
Problem (14.3.2, 14.3.6, 14.3.8-14.3.9) can be solved by using linear pro-

gramming. We rely on a standard software package, LINDO [144] as the com-
putational tool. With the algorithm outlined above and by using standard per-
sonal computers budget reallocation can be easily performed by any project 
management. 

In conclusion, it has to be pointed out that in case ( ) ∑∑
=

∗∗

=

>
n

k
kt

n

k
k CtC

11
 the total 

budget is to be decreased by value ( ) ∑∑
=

∗∗

=

−=∆
n

k
kt

n

k
k CtCC

11
 which will be at the dis-

posal of the management for other purposes or projects .  

Case ( ) ∑∑
=

∗

=

<
n

k
kt

n

k
k CtC

11
 is similar to that outlined in §14.2, i.e., problem (14.3.1-

14.3.3) has no solution. 
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For projects of equal significance and with close due dates it is reasonable to 
set equal confidence probabilities ∗

kp  and ∗∗
kp . It is also recommended to increase 

for projects with earlier due dates the least permissible confidence probabilities 
∗
kp  relative to projects with tardy deadlines. Such a policy may prevent failures 

to execute projects on time. 
 
§14.4  Optimal budget reassignment for a PERT project 
After obtaining budgets ktC , nk ≤≤1 , from the company (see §§14.2-14.3) 

each project is carried out independently, until either the due date kD , or an 
emergency call for reallocating the remaining budget among the unaccom-
plished projects. Several important standard problems are to be solved at the 
project level. 

The first problem deals with optimal budget reallocation among the project’s 
activities to maximize the probability of meeting the project’s due date on time. 
This problem is solved independently for each project and therefore in order to 
simplify the problem’s terms we shall omit the project’s index.  

The problem is as follows [7,53-54,64,92]: 
Determine optimal values ( )jic ,  to maximize the objective 

( ){ }
( )Cp

jic ,
max

 
(14.4.1) 

subject to 
( ) ( ) ( )maxmin ,,, jicjicjic ≤≤ ,

 
(14.4.2) 

( )
( ) ( )

∑
∈

=
ANGji

Cjic
,,

, . (14.4.3) 
Here C  is the available budget assigned to project ( )ANG ,  and ( )Cp  is its 

probability to be accomplished on time. Note that value C  may be either the 
budget which has been allocated at the company level or the remaining budget 
which has been observed at a control point.  

Problem (14.4.1-14.4.3) is a complicated stochastic optimization problem 
which can be solved only by using heuristic procedures. Various variants of the 
heuristic to solve the problem are outlined in [7,53-54,62,64,92] and can be ap-
plied to PERT type projects only. 

The step-by-step procedure is as follows: 
Step 1. By any means reassign budget C  among the project’s activities 

( ) ( )ANGji ,, ∈  subject to ( ) ( ) ( )maxmin ,,, jicjicjic ≤≤  and ( )
( ) ( )

∑
∈

=
ANGji

Cjic
,,

,  to 

obtain a feasible solution of the problem. It is suggested to realize the 
step by using the bisection method [153] as follows: 

1.1 Start with 0=α , 1=β ; 
1.2 Determine two values: 

( )
( ) ( )

( ) ( ) ( )[ ]
( )
∑∑ ⋅+⋅−==∑

∈ jiANGji
jicjicjic

,
maxmin

,,
min1 ,,1, αα , 
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( )
( ) ( )

( ) ( ) ( )[ ]
( )
∑∑ ⋅+⋅−==∑

∈ jiANGji
jicjicjic

,
maxmin

,,
max2 ,,1, ββ . 

1.3 Calculate value 

( ) ( )
( )
∑ 








⋅

+
+⋅






 +

−=
∑+∑

=∑
ji

jicjic
,

maxmin
21

3 ,
2

,
2

1
2

βαβα . 

1.4 Compare values 1∑  and 2∑ . If Cδ<∑−∑ 12  go to 1.8; otherwise pro-
ceed to 1.5.  Note that Cδ  is a pregiven budget unit value. 

1.5 Examine relation 31 ∑≤≤∑ C . If it holds go to 1.6; otherwise apply 
Substep 1.7. 

1.6 Set 

23 ∑=∑ , ββα −=+− 1
2

1 , ββα =+
2

.  Return to Substep 1.3. 

1.7 Applying 1.7 means that 23 ∑<<∑ C  holds. Set 

13 ∑=∑ , αβα −=+− 1
2

1 , αβα =+
2

, and return to Substep 1.3. 

1.8 Value C≅∑3  with 

( ) ( ) ( )maxmin ,
2

,
2

2, jicjicjic ⋅++⋅−−= βαβα
 is the feasible solution. 

 

Step 2. Calculate ( ) ( )
( )jic

jiAjia
,
,, =  and ( ) ( )

( )jic
jiBjib

,
,, =  for all activities 

( ) ( )ANGji ,, ∈ . 
Step 3. Simulate values ( )jit ,  with density function (14.1.1). 
Step 4. Calculate the critical path length ( )[ ]jitLcr ,  and determine all activities 

( ) ( )ANGji ,, ∈  which belong to the critical path. 
Step 5. Compare values D  and ( )[ ]jitLcr , . If ( )[ ]jitLD cr ,≥  counter WW ⇒+1  

works; then go to Step 6. In case ( )[ ]jitLD cr ,<  apply Step 6 directly. 
Step 6. If a routine activity ( )ji,  belongs to the critical path counter ijij WW ⇒+1  

works. The step is implemented for all ( ) ( )ANGji ,, ∈ . 
Step 7. Repeat Steps 2-6 M  times in order to obtain representative statistics. 
Step 8. Calculate the average value 

( )( )

M
WCp q = , where q is the number of the current iteration. 

 

Step 9. Compare two adjacent average values ( )( )qCp  and ( )( )1−qCp . If 
( )( ) ( )( )1−> qq CpCp  holds, proceed to the next step. Otherwise apply Step 

16. 
Step 10.Calculate the frequency of each activity ( )ji,  of being on the critical 

path (on the basis of M  simulations carried out on Step 7). Denote 

those frequencies by ( )crLjip , , ( )
M
W

Ljip ij
cr =, . 

Step 11.Reschedule all the activities ( )ji,  as follows: 
• For activities ( )ji,  with ( ) 0, >crLjip  reschedule them in de-
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scending order of the product 
 ( ) ijcrLjip υ⋅, , (14.4.4) 
 where 
 ( ) ( )

( ) ( )maxmin ,,5
,2,3
jicjic

jiBjiA
ij ⋅

+
=υ . (14.4.5) 

 • Activities ( )ji,  with ( ) 0, =crLjip  have to be rescheduled at the 
end of the schedule in descending order of values ijυ  only since the 
product ( ) ijcrLjip υ⋅,  equals zero. 

Step 12.Determine activity ( )ξξ ji ,  with the highest order for which relation 
( ) ( ) 0,,

max1 >−= ξξξξ jicjicZ  holds. It goes without saying that activity 
( )ξξ ji ,  is placed at the beginning of the schedule and refers to the criti-
cal zone, ( ) 0, >crLjip ξξ . 

Step 13.Determine activity ( )ηη ji ,  with the lowest order for which relation 
( ) ( ) 0,,

min2 >−= ηηηη jicjicZ  holds. Activity ( )ηη ji ,  is at the end of the 
schedule and is a non-critical activity, which has practically no influ-
ence on the project’s duration. 

Step 14.Reassign cost values ( )21,min ZZZ =  from activity ( )ηη ji ,  to activity 
( )ξξ ji , . 

Step 15.Clear counter W  and return to Step 2. 
Step 16.Introduce changes in the heuristic procedure as follows: 

(a) in Step 9: for the case ( )( ) ( )( )1−≤ qq CpCp  instead of Step 16, proceed 
to Step 18; 
(b) in Step 14: value Z  to be transferred from activity ( )ηη ji ,  to ( )ξξ ji ,  is 
to be set equal to 1. Afterwards apply Step 17. 

Step 17.Take the rescheduled activities ( )ji,  arranged at Step 11 for the ( )1−q -
th iteration. Continue to Step 12. 

Step 18.End of the heuristic procedure. Further application of the algorithm 
will not lead to any increase of the confidence probability. 

Values ( )jic ,  obtained in the course of the ( )1−q -th iteration are considered as 
the optimal ones. The optimal value of the objective, i.e., the maximal confi-
dence probability, is value ( )( )1−qCp  calculated on Step 8. 

In conclusion, it can be well-recognized that in cases ( )
( ) ( )

∑
∈

<
ANGji

jicC
,,

min,  and 

( )
( ) ( )

∑
∈

>
ANGji

jicC
,,

max,  the corresponding confidence probabilities are 0 and 1, i.e., the 

problem obtains trivial solutions. 
In case ( )

( ) ( )
( )

( ) ( )
∑∑
∈∈

<<
ANGjiANGji

jicCjic
,,

max
,,

min ,,  the heuristic procedure outlined above 

is to be used. It will be henceforth referred to as Procedure I. 
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§14.5  The dual problem: Determining budget value corresponding to 
preset confidence probability 

The dual problem will be formulated and solved for PERT type projects. The 
problem under consideration is as follows: 

Given a PERT project ( )ANG ,  together with confidence probability p  to 
meet the due date D  on time, determine optimal values ( )jic , , ( ) ( )ANGji ,, ∈ , to 
minimize the objective 

( ){ }
( )

( ) ( ) 







= ∑
∈ ANGjijic

jicC
,,,

,min  (14.5.1) 

subject to 
( ) ( ){ } pDCTCp =≤= Pr , (14.5.2) 
( ) ( ) ( )maxmin ,,, jicjicjic ≤≤ , (14.5.3) 

where ( )CT  is the random project’s duration with assigned budget C . 
It can be well-recognized that problem (14.5.1-14.5.3) is, in essence, a dual 

problem for the direct one, (14.4.1-14.4.3). The heuristic solution outlined below 
is based on the heuristic procedure outlined in §14.4. Unfortunately, problem 
(14.5.1-14.5.3) is a stochastic optimization problem which due to non-linear 
constraints cannot be solved in the general case. Thus only heuristics can be ap-
plied to obtain an approximate solution. 

The step-by-step heuristic procedure is as follows: 
Step 1. Choose budget value 

( )
( ) ( )

∑
∈

=
ANGji

jicC
,,

min1 , . 

Step 2. Choose budget value 
( )

( ) ( )
∑
∈

=
ANGji

jicC
,,

max2 , . 

Step 3. Calculate 
( ) ( )[ ]

( ) ( )
∑
∈

+⋅=
+

=
ANGji

jicjicCCC
,,

maxmin
21

3 ,,5.0
2

. 

Step 4. Solve optimization problem (14.4.1-14.4.3) for values 1CC = , 2CC =  
and 3CC = . Denote the determined probability values by p , p  and p , 
correspondingly. 

 

Step 5. Compare values p  and p . If ppp ∆<− , go to Step 9. Otherwise apply 
Step 6. Here p∆  is the pregiven minimal value by which a confidence 
probability can be increased or decreased. 

 

Step 6. Examine relation ppp ≤≤ . If it holds, proceed to Step 7. Otherwise 
apply Step 8. Note that relation ppp ≤≤  is an evident one since p  and 
p  are the minimal and maximal confidence probabilities for the project 
to meet its deadline, correspondingly. 

Step 7. Set 23 CC ⇒ , 
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( ) ( ) ( )max
maxmin ,

2
,, jicjicjic

⇒
+ . Return to Step 3. 

Step 8. Set 13 CC ⇒ , 
( ) ( ) ( )min

maxmin ,
2

,, jicjicjic
⇒

+ . Return to Step 3. 

Step 9. Value 3CC =  represents the minimal budget value to be determined 
while values ( )jic ,  obtained at Step 4 when solving optimization prob-
lem (14.4.1-14.4.3) for  3CC =  are the optimal ones. 

It can be well-recognized that problem (14.5.1-14.5.3) is solved by using the 
bisection method [153] in combination with the heuristic Procedure I outlined in 
§14.4. 

The outlined heuristic procedure delivering a solution to the inverse problem 
(14.5.1-14.5.3) will be henceforth referred to as Procedure III. 
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Chapter 15.  Hierarchical On-Line Control Model for PERT-COST 
Projects (Control Stage) 

 

§15.1  The control model 
In Chapter 14 we have developed planning and control techniques but we 

have not considered on-line control procedures. In this chapter we shall develop 
a hierarchical on-line control model including several PERT type projects of one 
and the same importance. 

The following hierarchical control model is outlined [64]: 
At any control point 0≥t  to determine: 
• optimal budget values ktC  assigned to each project ktG  of PERT type, 

nk ≤≤1 , 
• optimal budget values ( )kjic ,  assigned to activities ( ) ktk Gji ∈, , 
• optimal control points kgt  to inspect project ktG , 

in order to minimize the total number of future control points ( )tN k  for all pro-
jects ktG  

{ } { } ( ){ }
( )∑

=
≥

n

k
kjicttC

tN
kkgkt 1,,,

min , (15.1.1) 

and to maximize the performance degree of the slowest project 

{ } { } ( ){ }
[ ]{ }



 ≤+

≥ kktkkjicttC
DCTt

kkgkt

Prminmax
,,,

, (15.1.2) 

subject to  
[ ] [ ]{ } ∗∗∗ ≥≤+=≥ kkktkktkk pDCTtCpp Pr , (15.1.3) 

( )∑∑
==

=
n

k
k

n

k
kt tCC

11
,
 

(15.1.4) 

( )
( )

kt
Gji

k Cjic
ktk

=∑
∈,

, ,
 (15.1.5) 

( ) ( ) ( ) maxmin ,,, kkk jicjicjic ≤≤ ,
 

(15.1.6) 
kkggk tt ∆≥−+1, , nk ≤≤1 ,

 
(15.1.7) 

00 =kt ,
 

(15.1.8) 
kkN Dt

k
= .

 
(15.1.9) 

Thus, objective (15.1.2) enables the slower projects to obtain help from the 
faster ones in the course of the projects’ realization. Objective (15.1.1) is evident 
since project inspection is a costly operation. 

Problem (15.1.1-15.1.9) is a stochastic optimization problem with two con-
flicting objectives and a variable number of constraints. The problem cannot be 
solved in the general case and allows only heuristic solutions. The general con-
trol model can be modified to the hierarchical on-line control model that is pre-
sented in Fig. 15.1 and comprises three optimization problems. Problem I, at the 
company level, enables optimal budget reassignment among the projects. The 
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problem’s solution, i.e., the budget assigned to each project, serves as the initial 
data for Problem II (at the project level), where budget is redistributed among 
the project’s activities to maximize the probability of meeting the project’s 
deadline.  

 
Figure 15.1.  Hierarchical on-line control model (emergency at 1, += gktt ) 

 
The solution of Problem II serves, in turn, as the initial data for Problem III, 

which carries out on-line control, i.e., determines optimal control points kgt  to 
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inspect the progress of the project. This is done by determining the planned tra-
jectories that must be repeatedly corrected in the course of the project’s realiza-
tion. The chance constraint to meet the target on time with probability not less 
than ∗

kp  is substituted for a stricter one, namely, not to deviate from the planned 

trajectory at any moment [ ]kkg Dtt ,∈  with a probability not less than ∗
kp . If, at any 

control point kgtt = , nk ≤≤1 , kNg ≤≤1 , it turns out that project ktG  deviates from 
the planned trajectory, an error signal is generated, and decision-making is based 
on solving Problem II to reassign the remaining budget among the remaining 
project’s activities to maximize value ktp . Here value [ ]{ }kktkkt DCTtp ≤+= Pr  is 
the probability of accomplishing on time project  ktG  with available budget ( )tCk . 
If the problem’s solution enables the project’s deadline to be met, subject to the 
chance constraint, i.e., if ∗≥ kkt pp  holds, a corrected planned trajectory is deter-
mined and Problem III is resolved to determine the next control point 1, +gkt . Oth-
erwise, i.e., in case ∗< kkt pp , an emergency signal is generated and decision-
making is carried out at the company level. Problem I is resolved under emer-
gency conditions to reassign the remaining budget among the unaccomplished 
projects. Thus, in the course of controlling a group of projects, the latter are first, 
at 0=t , optimized on line from top to bottom. In the case of an emergency, the 
generated “bottom-top” signals are converted into control actions to enable the 
projects’ due dates to be met on time. 

Budget reassignment problems (which we call here Problem I) at the com-
pany level are outlined in §§14.3-14.5. Note that we have deliberately intro-
duced two additional levels (Scheduling and Inspection Levels). Both levels are 
auxiliary ones and do not enter the “control circle” comprising levels I-III. 
However, the presence of both additional levels clarifies the process of monitor-
ing several projects. 

 
§15.2  Optimal budget reassignment among activities (Problem II) 
This problem is repeatedly resolved at the project level in two cases: 
(1) When budget ktC  is assigned to project ktG  at moment 0≥t  at the com-

pany level, nk ≤≤1  (after solving Problem I). Thus, the initial data for 
solving Problem II is value ktC . 

(2) When, in the course of an on-line control, it turns out that project ktG  de-
viates from its planned trajectory. Here, the initial data for Problem II is 
the actual remaining budget ( )tCk  which has been observed at routine 
control point kgtt = . 

In both cases the problem is to reallocate the budget among activities 
( ) ktk Gji ∈,  to maximize the probability of completing the project by its due date 

kD . A stochastic optimization problem is solved for each project ktG  separately: 
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determine optimal values ( )kjic ,  to maximize objective 

( ){ } ( ){ }
[ ]{ }
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DCTtp
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 (15.2.1) 

subject to (15.1.6) and 
( )

( )
kt
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k Qjic

ktk

=∑
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, .
 (15.2.2) 
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Problem II is solved by applying Procedure I outlined in §14.4 to a PERT 
project ktG .   

A dual problem of practical use can be formulated as follows: for each pro-
ject ktG  separately, given probability value kp , determine budget value ktC  
which, when solving the optimization problem (15.1.6, 15.2.1-15.2.2), results in 
delivering the maximum to the objective equal to kp , 

[ ] kktk pCp = , nk ≤≤1 . (15.2.3) 
Problem (15.1.6, 15.2.1-15.2.3) can be solved by using Procedure III outlined 

in §14.5. 
It can be clearly recognized that carrying out optimal budget reassignment 

among project’s activities results in providing first critical activities with budget 
values ( )kjic ,  that are as close as possible to the corresponding values ( ) max, kjic . 
The remaining budget is redistributed among non-critical activities that have 
practically no influence on the project’s duration. 

 

§15.3  On-line control model at the project level (Problem III) 
After undertaking budget reassignment among the projects the latter are real-

ized and controlled independently. The problem of on-line control of any project 
ktG , nk ≤≤1 , is, in essence, to determine, at each routine control point kgt , the 

next control point 1, +gkt  honoring objective (15.1.1). Note, that before carrying 
out the on-line control, the project management has to reassign the budget value 

ktC , kDt ≤≤1 , among activities ( )kji, , i.e., has to solve optimization problem 
(15.1.6, 15.2.1-15.2.2). This can be easily realized for practically all PERT type 
projects, even on personal computers. 

Like any other on-line control it has to be carried out by comparing the state 
variable of the progress of the project at control points with the corresponding 
values of the planned project target (trajectory). Thus, to implement on-line con-
trol, we have to determine for each project ktG  its planned trajectory curve ( )tV pl

k  
together with the state variable ( )tV f

k . 
We suggest that the on-line control problem be solved as follows: 
At any control point kgt , nk ≤≤1 , kNg ≤≤0 , determine the next control point 

1, +gkt  to minimize the objective 
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{ }
( )kgktt
tN

kggk >+1,

min , (15.3.1) 
subject to  

00 =kt , kkN Dt
k

= , (15.3.2) 
kkggk tt ∆≥−+1, ,

 
(15.3.3) 

( ) ( ){ } 1,:Pr +
∗ ≤≤∀≥≤ gkkgk

pl
k

f
k ttttptVtV .

 
(15.3.4) 

Restrictions (15.1.4-15.1.6) are not imbedded in the model since they are 
honored in Problems I and II, which are solved before carrying out on-line con-
trol. Note that chance constraint (15.3.4), unlike (15.1.3), does not include 

[ ]ktkk Cpp ≥∗∗ . (15.3.5) 
This is because restriction (14.3.6) in Problem I includes (15.3.5) and thus 

prohibits assigning additional redundant budget to any project ktG . If at a control 
point 0>t  it is anticipated that due to most favorable circumstances a part of the 
project budget is redundant that extra budget will be reassigned at the first 
emergency call, by solving Problem I at the company level. Note that chance 
constraint (15.3.4) is, in essence, stricter than (15.1.3). The latter only ensures 
that the project’s due date is met on time with a probability not less than ∗

kp , 
while chance constraint (15.3.4) enables the state variable ( )tV f

k  not to exceed 
the planned trajectory ( )tV pl

k  at any moment t  within the planning horizon [ ]kD,0 . 
In §4.1 we have already outlined the general idea of determining single pro-

ject’s trajectories and calculating next control points. We will overview those 
concepts in greater detail, especially in connection with other control techniques 
of the hierarchical control model for several network projects. 

The general idea of the on-line control is presented in Fig. 15.2 and is as fol-
lows: 

At each routine control point kgt , kNg ≤≤0 , inspection is undertaken to ob-
serve the remaining budget ( )kgk tC . Value ( )kgk tC  is the state variable ( )tV f

k  at 
point kgtt = . At the beginning of the project’s realization, at 00 == ktt , ( ) kk CC =0 , 
and since according to its plan project ( )ANGk ,  has to be accomplished not later 
than at kDt =  together with its full budget utilization, we determine the planned 
trajectory curve (first iteration) ( )( )1tV pl

k  by a straight line connecting two points 
with coordinates [ ]kC,0  and [ ]0,kD . Thus we obtain 

( )( )

k

k
k

pl
k D

CtCtV ⋅−=1 , (15.3.6) 

which is used within the interval [ ]1,0 ktt ∈ , up to the first control point. 
Note that no restrictions are imposed on the project’s actual cost-duration 

function except for the fact that such a function has to be continuous and de-
creasing. 

If, at a routine control point 0>kgt , it is observed that ( ) ( )( )q
kg

pl
kkgk tVtC ≤  (q-th 

iteration), there is no need for any interference in the project’s realization, since 
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the project meets a stricter chance constraint than (15.1.3). Thus, the progress of 
the project proceeds, trajectory curve ( )( )qpl

k tV  remains unchanged, and the adja-
cent control point 1, +gkt  has to be determined. In case ( )( ) ( )kgk

q
kg

pl
k tCtV < , an error 

signal is generated and we have to examine the project in greater detail. Optimi-
zation Problem II, i.e., problem (15.1.6, 15.2.1-15.2.2) has to be solved, with 

( )kgkkt tCQ = , kgtt = , in order to obtain the maximal probability of the project meet-
ing its deadline on time without any additional help from other projects. If solu-
tion ktp  satisfies ∗≥ kkt pp , then new budget values ( )kjic ,  obtained by that solu-
tion are reassigned among activities ( )kji, . A corrected planned trajectory curve 

( )( )1+qpl
k tV  (( 1+q )-th iteration) has to be determined by a straight line connecting 

two points with coordinates ( )[ ]kgkkg tCt ,  and [ ]0,kD . The corresponding trajectory 

curve to be used within the interval [ ]1,, +gkkg tt  is as follows: 

( )( ) ( ) ( )
kgk

kgk

kgk

kgkkqpl
k tD

tC
t

tD
tCD

tV
−

⋅−
−

⋅
=+1 , (15.3.7) 

If relation ∗< kkt pp  holds, an emergency is called, all projects are inspected at 
moment kgtt = , and budget reassignment among the projects is introduced on the 
basis of solving Problem I. After obtaining new values ktC , kgtt = , optimization 
problem (15.1.6, 15.2.1-15.2.2) is solved again for all projects kgt , nk ≤≤1 , to de-
termine optimal budget values ( )kjic ,  assigned to the activities. Afterwards, new 
planned trajectories ( )( )1+qpl

k tV  are determined for all projects 
kgktG , nk ≤≤1 , 

( )( )

kgk

kt

kgk

ktkqpl
k tD

C
t

tD

CD
tV kgkg

−
⋅−

−

⋅
=+1 , (15.3.8) 

to determine next control points 1, +gkt , and the projects’ realization proceeds.  
It can be clearly recognized that in the course of the project’s realization its 

actual cost-duration function (irrespective of any assumption of that function) is 
approximated closer and closer by repeatedly corrected trajectory curves 
(15.3.6-15.3.8) between adjacent control points. This is illustrated in Fig. 15.3 
for the case of a concave cost-duration function. If solving Problem II results in 

∗≥ kkt pp , an emergency is not called and each new trajectory comes closer to the 
project’s consumption curve. 

Since minimizing the number of future control points results in maximizing 
the time span between two routine adjacent control points 1, +gkt  and kgt , the prob-
lem at hand is to maximize the value 

kggkkg tt −= +1,δ ,
 

(15.3.9) 
subject to (15.3.2-15.3.4). 

Denoting ( ) ( ) ( )tHtVtV k
f

k
pl

k =− , we substitute optimization problem (15.3.2-
15.3.4, 15.3.9) for: 
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kgC kgkt

δmax
 

(15.3.10) 
subject to (15.3.2-15.3.3) and 

( ){ } ∗≥≥ kk ptH 0Pr ,
 

nk ≤≤1 ,
 

(15.3.11) 

 
Figure 15.2.  Corrected planned trajectory curves for on-line control  

(emergency at 3ktt = ) 
 

Let us examine random variable ( )tHk , kgtt > , in greater detail. Since each ac-
tivity  duration ( ) ktk Gjit ∈,  is a random variable with a density function depend-
ent on budget value ( )kjic , , random variable ( )tHk  is a result of multiple random 
disturbances. Thus, it is reasonable to assume that ( )tHk  has a normal distribu-
tion with parameters ( )[ ]tHE k  and ( )[ ]tHV k . Note that both these values can be 
easily simulated to calculate their corresponding unbiased and consistent esti-
mates 

( ) ( )( )∑
=

=
M

r

r
kk tH

M
tH

1

1 ,
 

(15.3.12) 
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( )[ ] ( )( ) ( )[ ]∑
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2
2

1
1 , (15.3.13) 

where M  is the number of simulation runs and ( )( )tH r
k  is the value ( )tHk  obtained 

by the r -th simulation. 

 
Figure 15.3.  A concave consumption function Ck(t) approximated by trajec-

tory curves  (no emergency) 
 

Note that chance constraint (15.3.11) can be written in another form 
( ) ∗≥ kpqφ , (15.3.14) 

where 
( )
( )[ ]tH
tHq

k

k

σ
−= ,

  
( ) ∫

∞
−

=
x

u

duex 2

2

2
1
π

φ .
 

(15.3.15) 

According to (15.3.10) and (15.3.11) the maximal value ∗T  satisfying 
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( )[ ]{ }∗

≤≤

∗ ≥= kDtt
pqtT

kkg

φ:max ,
  

kkgtt ∆≥− ,
 

(15.3.16) 
should be determined as the next control point 1, +gkt . 

In practice, 1, +gkt  can be calculated by means of simulation with a constant 
step of length k∆ . The procedure of consecutively increasing value kgtt >  step-
by-step is followed until restriction (5.3.16) ceases to hold. Thus, problem 
(15.3.2-15.3.3, 15.3.10-15.3.11) can be solved by means of simulation in order 
to capture the last moment before the project deviates from its target. 

The on-line algorithm to determine the next control point 1+gt  for a single 
project is outlined in §4.1. 

 

§15.4  A hierarchical heuristic algorithm 
The goal of this section is to unify all optimization and simulation problems 

on different levels to create an on-line control algorithm for several PERT-
COST projects. 

The steps of the algorithm are as follows: 
Step 1. At moment 0=t  the input data is externally given: 

• the initial data for all activities ( )kji,  entering the projects, nk ≤≤1 ; 
• probabilities ∗

kp  and ∗∗
kp  for all projects; 

• company’s total budget C  to carry out the projects; 
• projects’ due dates kD , nk ≤≤1 . 

Step 2. At time 0=t  solve dual optimization problem (15.1.6, 15.2.1-15.2.3) 
for all projects ( )ANGk , , for cases ∗= kk pp  and ∗∗= kk pp , respectively. 

Step 3. At time 0=t  solve budget reassignment Problem I (14.3.2, 14.3.6, 
14.3.8-14.3.9) to determine budget values 0kC . Note that although 
Problem I can be solved analytically it is based on a heuristic assump-
tion that [ ]ktk Cp  is a linear function. 

Step 4. For all projects separately at time 0=t , solve optimization Problem II 
(15.1.6, 15.2.1-15.2.2) to determine activity budget values ( )kjic , , 

nk ≤≤1 . 
Step 5. For all projects separately at time 0=t , determine planned trajectories 

( )( )

k

k
k

pl
k D

CtCtV ⋅−=1 , 0>t , nk ≤≤1 , 0kk CC = .  

Note that Step 5 is the end of the planning stage 
Step 6. For all projects separately, at time 0=t , determine (see §4.1) the next 

control points kgt , kNg ≤≤0 . 
Step 7. Determine { }kgkgk

ttt min== ∗
∗ , ∗k  being the index of the project to be in-

spected first: if  ∗=∗
kDt   proceed to Step 15. Otherwise apply the next 

step. 
Step 8. Inspect project tk

G ∗  at time ∗t . If  ( ) ( )∗∗
∗∗ ≤ tVtC pl

kk
, apply Step 10. Oth-
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erwise go to Step 11. 
Step 9. Determine for project tk

G ∗  its corrected planned trajectory: the 

straight line connecting points ( )[ ]∗∗
∗ tCt k,  and [ ]0,∗kD . 

Step 10. Determine for project tk
G ∗  its next control point 

1, +∗ gk
t  (see §4.1). Re-

turn to Step 7. 
Step 11. If ( ) ( )∗∗

∗∗ > tVtC pl
kk

, solve optimization Problem II for ( )∗
∗= tCQ kkt , ∗= tt , 

∗= kk . If the maximized objective satisfies ∗
∗∗∗ ≥ ktk pp  apply the next 

step. Otherwise proceed to Steep 13. 
Step 12. Carry out budget reassignment among activities ( ) ∗kji,  on the basis of 

the unchanged budget ( )∗
∗ tCk

. Return to Step 9. 
Step 13. Call an emergency and observe all projects at moment ∗t . Solve 

budget reassignment Problem I (14.3.2, 14.3.6, 14.3.8-14.3.9) and de-
termine new values ∗kt

C , nk ≤≤1 . 
Step 14. For all projects ∗kt

G  solve optimization Problem II to obtain new val-
ues ( )kjic , , nk ≤≤1 . Return to Step 9. 

Step 15. Inspect project ∗kt
G  at its due date, ∗=

k
Dt . If the project is completed, 

apply the next step. Otherwise proceed to Step 17. 
Step 16. If there are other projects being uncompleted at moment ∗t , go to 

Step 7. Otherwise apply Step 18. 
Step 17. Consider a new due date for project tk

G ∗  (a non-formalized proce-
dure). Return to Step 13. 

Step 18. The algorithm terminates. 
The algorithm is performed in real time; namely, each iteration of the algo-

rithm can be performed only after the remaining budget for each project is actu-
ally inspected. The control points cannot be predetermined. However, if we want 
to evaluate the efficiency of the hierarchical control model, we can simulate the 
algorithm’s work by random sampling of the actual duration of activities. By 
simulating the algorithm’s work many times, the probability of completion on 

time and the average number of control points ∑
=

n

k
kN

1
, as well as the average 

number of budget reassignments, can be evaluated. 
Note, in conclusion, that the developed control model does not consider new 

techniques of project scheduling. However, we cannot simulate a network pro-
ject at any control point without determining start times for each activity. In our 
algorithm (Steps 8, 10 and 15), project simulation has been carried out by setting 
start times for each activity ( )kji,  equal to the earliest possible time of realization 
of node i  (on the basis of already simulated activity durations). As to projects to 
be realized in real time, we suggest that activities ( )kji,  be scheduled between 
adjacent control points kgt  and 1, +gkt , according to the existing techniques used by 
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the project managers. These techniques are generally poor, since determining a 
good deterministic schedule of a network project comprising activities of ran-
dom durations is a thankless task. In combination with proper on-line control, 
such techniques become more effective since the project schedule with biased 
estimates is repeatedly corrected over time. This fully complies with our phi-
losophy outlined in Chapters 1 and 3. However, on our opinion, even better re-
sults may be achieved by unifying techniques outlined in Chapters 11-13 in con-
junction with the results presented in Chapters 14-15. 

 

§15.5  Numerical example 
The company is faced with carrying out three network projects of PERT-

COST type. The initial projects’ data is presented in Tab. 15.1-15.3 [64]. The 
projects’ parameters are as follows: 

801 =D ;
 

55.01 =∗p ;
 

70.01 =∗∗p . 
1302 =D ; 70.02 =∗p ;  90.02 =∗∗p . 
1503 =D ; 60.03 =∗p ; 80.03 =∗∗p . 

10321 =∆=∆=∆ . 
The total budget at the company’s disposal to carry out the projects is 

$000,835=C . 
In order to illustrate the work of the algorithm we will outline a simulation 

run below. 
Solving problem (15.1.6, 15.2.1-15.2.3) for cases ∗= kk pp  and ∗∗= kk pp , 

3,2,1=k ,  results in obtaining values ∗
0kC  and ∗∗

0kC  as follows: 
55.27110 =∗C ;

 
70.27610 =∗∗C ;

 
 

18.26620 =∗C ; 44.27620 =∗∗C ;  
47.27930 =∗C ; 22.28530 =∗∗C ;  

Solving the budget reassignment Problem I (14.3.2, 14.3.6, 14.3.8-14.3.9) at 
0=t  we obtain: 
1. 70.27610 =C . Solving the budget reassigning Problem II (15.1.6, 15.2.1-

15.2.2) at the project level results in [ ] 55.070.0 1101 =>= ∗pCp . 
2. 52.27420 =C  with the corresponding [ ] 70.085.0 2202 =>= ∗pCp . 
3. 78.28330 =C . Solving Problem II results in [ ] 60.069.0 3303 =>= ∗pCp . 
After the budget has been reassigned among the projects the latter are con-

trolled separately. 
Control points 11t , 21t  and 31t  (see algorithm outlined in §4.1) are as follows: 
7011 =t ; 12021 =t ; 1031 =t . Since ( )31211131 ,,min tttt =  Project 3 has to be inspected 

first. Simulating ( )103C  we obtain ( ) ( )( ) 86.2641010 1
33 == plVC .  

Thus, we redistribute the remaining budget among the remaining activities in 
order to calculate the maximal probability of the project being able to meet its 
deadline on time without any additional help. Solving Problem II results in ob-
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taining ( )[ ] 60.077.010 333 =>= ∗pCp . Thus, the on-line control proceeds with new 
budget values ( )3, jic  and the new planned trajectory.  

 
Table 15.1.  Initial data for Project 1 
No. i  j  ( )min, jic  ( )max, jic  ( )jiA ,  ( )jiB ,  

1 1 2 1 10 25 81 
2 1 3 1 5 22 60 
3 1 4 1 6 75 105 
4 1 5 4 20 80 132 
5 1 6 1 5 30 45 
6 1 7 6 40 160 200 
7 2 3 8 20 50 100 
8 3 13 10 20 110 220 
9 3 15 4 123 90 120 

10 4 14 6 14 50 100 
11 5 9 6 18 150 200 
12 5 13 4 8 105 140 
13 6 9 1 8 80 150 
14 7 8 2 8 42 60 
15 8 10 2 8 20 32 
16 8 11 4 8 40 80 
17 9 11 3 7 90 120 
18 9 12 5 7 42 60 
19 10 20 3 6 60 89 
20 10 21 6 12 105 140 
21 11 19 5 20 150 200 
22 11 21 6 14 50 100 
23 12 18 4 10 90 120 
24 13 18 4 12 48 60 
25 13 19 4 8 63 110 
26 14 16 1 6 58 102 
27 14 17 1 4 23 94 
28 15 16 3 10 85 120 
29 15 17 3 6 60 104 
30 16 22 4 10 70 93 
31 17 23 7 12 74 140 
32 18 23 4 10 80 120 
33 19 23 4 10 40 87 
34 20 21 1 6 32 72 
35 21 23 4 10 63 95 
36 22 23 5 12 87 128 

 

The next control point 32t  is determined by using the algorithm outlined in 
§4.1: 2032 =t . Simulating ( )203C  we obtain ( ) ( )( ) 62.2502099.25620 2

33 =>= plVC . 
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Solving Problem II results in  ( )[ ] 79.02033 =Cp  which exceeds the minimal value 
60.03 =∗p . 

 

Table 15.2.  Initial data for Project 2 
No. i  j  ( )min, jic  ( )max, jic  ( )jiA ,  ( )jiB ,  

1 1 2 2 8 80 160 
2 1 3 1 6 72 110 
3 1 4 1 8 30 75 
4 1 5 2 15 207 257 
5 1 6 1 8 25 45 
6 1 7 8 30 160 200 
7 2 15 3 8 158 205 
8 3 14 10 15 110 220 
9 3 15 5 10 90 120 

10 4 9 8 12 200 250 
11 5 13 5 10 205 240 
12 5 14 4 12 210 270 
13 6 9 2 5 80 150 
14 7 8 3 10 202 265 
15 8 11 2 10 160 192 
16 8 12 6 10 180 207 
17 9 10 1 5 90 120 
18 9 11 3 10 42 60 
19 10 11 2 5 60 80 
20 11 19 7 15 120 170 
21 11 20 4 8 63 110 
22 11 21 8 12 150 200 
23 12 19 5 10 190 230 
24 13 17 4 12 160 220 
25 13 18 5 10 148 180 
26 14 16 1 7 58 102 
27 14 18 1 7 23 94 
28 15 16 4 9 85 120 
29 16 22 4 11 70 93 
30 17 22 5 10 182 253 
31 17 23 6 10 274 340 
32 18 20 2 8 80 120 
33 19 23 2 5 90 137 
34 20 22 1 4 32 72 
35 21 23 3 8 143 195 
36 22 23 5 12 87 128 

 

Thus, the on-line control proceeds with new values ( )3, jic  and the new trajec-
tory curve ( )( )3

3 tV pl . The next control point (see §4.1) is 3033 =t . Simulating the 
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actual remaining budget results in ( ) ( )( ) 29.2363042.24530 3
33 =>= plVC . Solving 

again the optimal redistribution Problem II among the remaining activities re-
sults in ( )[ ] 60.077.030 333 =>= ∗pCp . A new planned trajectory is determined with 
the next control point 14034 =t . Since ( )140,120,70min7011 ==t  we now inspect the 
first project at 70=t . 

 
Table 15.3.  Initial data for Project 3 
No. i  j  ( )min, jic  ( )max, jic  ( )jiA ,  ( )jiB ,  

1 1 2 3 6 162 231 
2 1 4 1 6 111 203 
3 1 5 7 15 207 257 
4 1 6 3 5 117 186 
5 1 7 2 10 160 200 
6 2 3 4 20 102 149 
7 2 15 3 6 158 205 
8 3 14 10 15 110 220 
9 3 15 4 8 90 120 

10 4 9 5 10 200 250 
11 4 14 7 12 150 200 
12 5 13 6 10 205 240 
13 6 9 4 8 173 231 
14 7 8 2 10 202 265 
15 8 11 3 8 160 192 
16 8 12 6 10 180 207 
17 9 10 2 4 90 161 
18 9 11 3 8 142 237 
19 10 21 4 10 205 240 
20 11 19 4 15 120 170 
21 11 20 4 10 63 110 
22 11 21 8 14 150 200 
23 12 19 4 10 190 230 
24 13 17 4 10 160 220 
25 13 18 5 10 148 180 
26 14 16 2 6 58 102 
27 15 16 4 8 85 120 
28 15 17 3 7 60 104 
29 16 22 4 10 70 93 
30 17 22 5 10 182 253 
31 17 23 6 9 274 340 
32 18 20 3 5 80 120 
33 19 23 3 6 90 137 
34 20 22 1 10 32 72 
35 21 23 2 10 143 195 
36 22 23 6 10 87 128 
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Simulating ( )701C  results in ( ) ( )( ) 59.347070.1370 1
11 =<= plVC . Thus, we continue 

carrying out the project without any budget redistribution. The next control point 
of the project will be its due date, i.e., 8012 =t . By means of simulation, it was 
determined that the project meets the due date on time, and we proceed to con-
trolling Projects 2 and 3. 

The next control point is 12021 =t  (Project 2). Simulating ( )1202C  results in 
( ) ( )( ) 12.2112048.2120 1

22 =<= plVC . We continue carrying out Project 2 and inspect 
the latter at the due date 1302 =D . Simulating ( )1302C  shows that the project also 
meets its due date on time. 

The last control point is 14034 =t  (Project 3). Simulating value ( )1403C  results 
in ( ) ( )( ) 45.2014027.1140 4

33 =<= plVC . We proceed to carry out the project without 
changing its planned trajectory. At the due date 1503 =D , we inspect the project 
by means of simulation. Project 3 also meets its due date on time. Thus the 
simulation run is accomplished. All the projects have met their due dates on time 
and there was no need for additional budget reassignment among the projects. 

Ref. [92] presents some numerical results of the model’s performance for a 
group of ten projects being controlled simultaneously. It can be well recognized 
that all the projects are expected to be completed before the assigned due dates 
with not less than the pregiven probability ∗p  according to the total allocated 
budget. 

In [92] the results of 100 simulation runs for an individual project are out-
lined. We have chosen Project #7 with initial parameters as follows: 

1407 =D ;
 

85.07 =∗p ;
 

868,37 =C ;
 

10=∆ . 
The computational results including both the average number of control 

points and the actual probability of meeting the due date on time, are as follows: 
1. The average number of control points is 4.93. 
2. The actual probability 89.07 =p  of carrying out Project 7 within the due 

date is higher than the pregiven confidence probability 85.07 =∗p . 
A conclusion can be drawn that the outlined above model can successfully 

control multiple projects. 
 
§15.6  Conclusions 
The following conclusions can be drawn from Chapters 14-15: 
1. The hierarchical control model can be used for practically all activity-on-

arc network projects with independent activities of random durations and 
cost-duration functions. The model can be used both for controlling single 
projects and several projects with a restricted company budget. 

2. Successful experimentation has been undertaken for the case when the 
density function of each activity duration ( )kjit ,  can be approximated by 
the beta distribution law, while value ( )kjit ,  is approximately inversely 
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proportional to the budget ( )kjic , . Other alternative distributions, e.g., 
normal, uniform, triangle, etc., together with other cost-duration functions 
can be implemented as well, on condition that each activity duration can 
be simulated on the basis of the budget value assigned to that activity. 

3. The outlined control model does not impose any restrictions on the 
budget’s actual cost-duration function. The on-line control is established 
so that the cost-duration function in the course of the project’s realization 
is approximated closer and closer by repeatedly corrected trajectory 
curves between adjacent control points. 

4. When simulating the project (either to determine a routine control point or 
to simulate the available remaining budget) we determine start times for 
each activity. The appropriate techniques of project scheduling outlined in 
Chapters 11-13, for the case of activities of random durations, become 
more effective in combination with on-line control. 

5. Several optimization problems are embedded in the model. They can all 
be easily solved on a PC, especially for projects with a medium number of 
activities. 
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Chapter 16.  Hierarchical Decision-Making Model for Alternative 
Stochastic Network Projects 

 

§16.1  The problem’s description 
16.1.1  Introduction 
This Chapter is not only a modification but a further development of Chap-

ters 14-15 since an alternative controlled model is usually more complicated 
than a PERT-COST model. 

We will consider a three-level decision-making model for controlling sto-
chastic network projects. The upper level (the company level) is faced with the 
problem of optimal budget reassignment among several projects. We will con-
sider network projects of CAAN type (see Chapter 8) with random activity dura-
tions and alternative outcomes in key nodes. There are two different types of al-
ternative events. The first one reflects stochastic (uncontrolled) branching of the 
project development. The alternative event of the second type is of a determinis-
tic nature, i.e., the project manager chooses the outcome direction. 

At the medium level (project level) the management determines on the basis 
of the assigned budget the optimal subnetwork (joint variant) which will be real-
ized within the progress of the project. Choosing the optimal joint variant de-
termines the optimal outcome direction at every decision node which will be 
reached in the course of the project’s realization. The objective is either the pro-
ject’s duration or the probability of meeting the due date on time. 

At the subnetwork level the project is controlled according to the chosen op-
timal joint variant. The latter is inspected periodically by calculating the confi-
dence probability of meeting the due date on time. If for any reason the project 
does not meet the chance constraint, i.e., the probability becomes less than the 
minimal pregiven value, budget reassignment among the remaining activities 
has to be undertaken. If despite all control actions the project cannot meet the 
chance constraint not to deviate from the target, then an emergency is called and 
the company level is applied to reassign the remaining budget among the unac-
complished projects. 

The main goal of this Chapter is to develop a unified three-level decision-
making model and to indicate planning and control actions and optimization 
problems for all levels. 

 
16.1.2  Notation and initial data 
It can be well-recognized that the terms at the Company Level fully coincide 

with those outlined in §14.2 for the hierarchical on-line PERT-COST model - 
one has only to substitute the PERT-COST type graph by the CAAN type. How-
ever, terms at the lower hierarchical levels are subject to significant amend-
ments, as follows: 
The Project Level 

ktrkt GS ⊂  - the r -th joint variant of project ktG  (a subnetwork of PERT or GERT 
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type obtained by choosing certain directions in decision nodes and 
excluding  unfixed directions), ktmr ≤≤1 ; 

ktkt GS ⊂ξ  - the optimal joint variant of project ktG ; 
ktm  - number of joint variants in project ktG ; 
frktL  - the full (overall) variant (realization of a GERT type subnetwork rktS  

by simulating random alternative branchings), obtained by the f -th 
simulation; 

rktp  - the probability of  joint variant rktS  to meet due date kD  on time ; 
( )Qprkt  - confidence probability of the joint variant to be accomplished on 

time with available budget ktCQ =  or ( )tCQ k= ; 
( )pCrkt  - budget value which enables rktS  to meet the deadline with probabil-

ity p . 
The Subnetwork (Joint Variant) Level 
( )kji,  - activity leaving node i  and entering node j , ( ) ktk Gji ∈, , 0≥t ; 
( )kjic ,  - budget assigned to activity ( )kji, ; 
( ) min, kjic   

- 
minimal possible budget to carry out activity ( )kji,  (pregiven); 

( ) max, kjic   
- 

maximal budget required to carry out activity ( )kji,  (pregiven); in 
case ( ) ( ) max,, kk jicjic >  additional budget is redundant; 

( )kjit ,  - random duration of activity ( )kji, ; it is assumed that ( )kji,  has a beta-
distribution with density function (14.1.1); 

( )kjiA ,  - pregiven value to satisfy 
( ) ( )

( )k

k
k jic

jiAjia
,
,, =   which is the lower bound for random value ( )kjit , ; 

( )kjiB ,  - pregiven value to satisfy 
( ) ( )

( )k

k
k jic

jiBjib
,
,, =   which is the upper bound for random value ( )kjit , ; 

For each activity ( ) ktk Gji ∈,  the initial data is given as follows: 
i ; j ; ( )kjih , ; ( )kjip , ; ( ) min, kjic ; ( ) max, kjic ; ( )kjiA , ; ( )kjiB , . 
Here ( )kjih ,  designates the direction arc ( )kji, , ( ) 0, =kjip  denotes that node i  

in ( )ANGk ,  or ktG  is of PERT type. In case ( ) 1,0 << kjip  node i  is a random mile-
stone, i.e., it has an alternative random outcome, while ( ) 1, =kjip  means that 
node i  is a decision node of deterministic type. 

 

§16.2  Auxiliary Procedures I-IV 
Direct and inverse heuristic auxiliary Procedures I and III have been consid-

ered in §§14.4-14.5 for PERT type projects. But in the case of a CAAN type 
project the joint variant that corresponds to the optimal outcome from a decision 
node, may be a GERT type subnetwork. Thus, optimal budget reassignment 
among network activities is actual for GERT type projects as well. But if the op-
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timal joint variant ( )ANGS krk ,⊂  is a GERT type network it is impossible to real-
locate the budget among all the activities ( ) rkk Sji ∈,  since in the course of the 
project’s realization a part of the activities will not actually be carried out. We 
will therefore formulate a modified version of problem (14.4.1-14.4.3) for a 
GERT type project as follows [65,92]: 

Given a GERT network ( )ANG ,  together with a pregiven budget value C  and 
due date D , to maximize the objective 

( )Cpmax  (16.2.1) 
subject to 

( ) ( ) ( )maxmin ,,, jicjicjic f ≤≤ , (16.2.2) 
( )

( ) ( )
Cjic

ANGji

f

f

≤∑
∈ ,,

, . (16.2.3) 

Here ( ) fji,  denotes activity ( ) ( )ANGji ,, ∈  which will actually be carried out in 
the course of the project’s realization. A heuristic procedure of the problem’s 
solution which will be called henceforth Procedure II, is outlined below. The 
step-by-step procedure is carried out by means of simulation as follows: 
Step 1. Simulate the non-contradictive outcomes in ( )ANG ,  to obtain a full 

variant ( )ANGL ,⊂ . Denote by fL  a full variant obtained in the course 
of the f -th simulation. Note that the simulated fL  is a PERT subnet-
work. 

Step 2. Apply Procedure I to fL  to determine the maximal confidence prob-
ability 

 
( ){ }

( )f

jic
LCp

,
max  (16.2.4) 

 subject to 
 ( ) ( ) ( )maxmin ,,, jicjicjic f ≤≤ , (16.2.5) 
 ( )

( )
Cjic

fLji

=∑
∈,

, . (16.2.6) 
Step 3. Repeat Steps 1-2 M  times to obtain representative statistics. 
Step 4. Calculate 
 ( ) ( )∑

=

=
M

f

fLCp
M

Cp
1

1 , (16.2.7) 

 where ( )Cp  is the maximal value of objective (16.2.1) to be deter-
mined. 

A modified version of the dual problem (14.5.1-14.5.3) is formulated and 
later on solved by means of simulation for a GERT network. The problem is as 
follows:  

Given a GERT network ( )ANG ,  with a pregiven confidence probability p  
and due date D , to minimize objective 

Cmin  (16.2.8) 
subject to (16.2.2-16.2.3) and 
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( ) pCp = . (16.2.9) 
The corresponding step-by-step heuristic solution, which will be called Pro-

cedure IV, is as follows: 
Step 1. Is similar to Step 1 in Procedure II. 
Step 2. Apply Procedure III to subnetwork fL  to obtain the minimal budget 

value 
 

( )
[ ]f

jic
LC

,
min  (16.2.10) 

 subject to (16.2.2-16.2.3) and 
 ( ) [ ]{ } pDLCTCp f =≤= Pr . (16.2.11) 
Step 3. Is similar to Step 3 in Procedure II. 
Step 4. Calculate the average 
 [ ]∑

=

=
M

f

fLC
M

C
1

1 , (16.2.12) 

 where C  is the minimal budget value of objective (16.2.8). 
Procedures I-IV develop a solution to all the optimization problems at the 

project level for CAAN type projects. 
 
§16.3  The hierarchical decision-making model 
Let us turn to the description of the hierarchical decision-making model 

which is presented in Fig. 16.1. The model comprises three levels: company 
level → project level → subnetwork level. Several concepts are implemented in 
the model: 

1. Planning is undertaken at the company and the project levels and results 
in: 
a) optimal budget assignment among the projects; 
b) determining, for each project separately on the basis of the available 

budget, the optimal joint variant to be controlled in the course of the 
project’s realization. 

2. Controlling is carried out at the subnetwork level and is based on: 
a) observing the joint variant periodically or at each key node; 
b) calculating confidence probabilities of the joint variant to meet the 

project’s deadline; 
c) reassigning, if necessary, the available budget among the remaining 

activities of the joint variant to raise the confidence probability. 
3. If it is anticipated that despite all control actions the joint variant cannot 

meet the chance constraint not to deviate from the target, an emergency 
is called and the model applies the company level to undergo budget re-
assignment. Thus, in the model to be considered planning procedures 
are realized from top to bottom while control actions are introduced in 
the opposite direction, until at one of the levels a revised plan will be de-
termined which enables all the projects to meet their due dates on time. 
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We have used this general idea for planning and controlling network pro-
jects with arbitrary number of levels in the previous chapters. 

4. The presented model is a dynamic model and includes t  as one of the pa-
rameters. Therefore we have to use for each joint variant at moment 0≥t  
a three-indexed  notation rktS  where r  is the index of the joint variant of 
the k -th project, ktmr ≤≤1 , nk ≤≤1 , ktm  being the number of joint vari-
ants of the k -th project at moment t . 

5. Two values are repeatedly calculated when controlling joint variants: 
a) ( )Cprkt  - confidence probability of the joint variant rktS  to be accom-

plished on time with available budget ktCC =  or ( )tCC k= , and 
b) ( )pCrkt  - budget value which enables rktS  to meet the deadline with 

probability pprkt = . Note that ( )Cprkt  and ( )pCrkt  are direct and in-
verse functions which can be calculated by applying to rktS  Proce-
dures I (II) or inverse Procedures III (IV), correspondingly. 

6. All planning and control procedures at each hierarchical level are gov-
erned by the main problem of that level. Thus, main Problems I-III form 
the framework of the hierarchical model (see Fig. 16.1). 

Problem I, at the company level, is outlined in §§14.2-14.3 and enables op-
timal budget assignment among the projects. The problem is solved on the plan-
ning stage, at 0=t , and later on repeatedly resolved under emergency conditions, 
in the course of the projects’ realization.  

By means of certain assumptions imposed on the project’s “cost-confidence 
probability” function, Problem I can be solved on the basis of calculating for 
each project budget values ∗

ktC  and ∗∗
ktC  which enable meeting the projects’ due 

dates on time with probabilities ∗
kp  and ∗∗

kp , correspondingly. Those budget val-
ues are determined at the project level and together with the initial pregiven data 
of the CAAN model they serve as the input for Problem I. 

Problem II, at the project level, is solved separately for each project. The 
problem’s solution enables determining and singling out from the initial CAAN 
model all the joint variants. For each joint variant separately the confidence 
probability of meeting the project’s due date on time is calculated. This is car-
ried out by using Procedure I if the joint variant is a PERT network, or Proce-
dure II, in the case of a GERT network. Later on the optimal joint variant is de-
termined and the progress of the project follows the optimal direction up to the 
nearest decision node. 

In the course of carrying out the optimal joint variant the latter is controlled 
at the subnetwork level. If the joint variant is a PERT model budget values 

( )kjic ,  have to be assigned to the corresponding activities ( )kji,  by using Proce-
dure I at the project level. If the optimal joint variant is a GERT model we can-
not redistribute budget ktC  among all the activities. Controlling a GERT subnet-
work is then based on Problem III which is solved at moment 0=t  and is repeat-
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edly resolved in each sequentially encountered random alternative node of the 
remaining joint variant. 

 
Figure 16.1.  The hierarchical decision-making model 

 
Problem III is as follows: 
(a)  divide the remaining joint variant into two subgraphs. The first one is a 

PERT graph which is realized before meeting the nearest random alternative 
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node, while the second subgraph is a GERT model; 
(b)  divide the remaining budget into two parts. The first part is to be opti-

mally reassigned among the activities of the first subgraph while the second part 
is left for the future, i.e., for the second subgraph. Budget reassignment is car-
ried out by using Procedure I. 

In the course of controlling the optimal joint variant N  we suggest to calcu-
late either periodically or in each sequentially encountered key node the prob-
ability ktpξ  of meeting the due date on time. That probability is calculated via 
simulation. If value ktpξ  becomes less than ∗

kp  we apply Problem III to undertake 
optimal budget reassignment among the optimal joint variant’s activities. If that 
control action is ineffective, i.e., ktpξ  remains less than ∗

kp , an emergency is 
called. Values ∗

ktC  and ∗∗
ktC  are then calculated for all the unaccomplished pro-

jects to carry out optimal budget reassignment at the company level. 
 
§16.4  Decision-making at the project level 
The main problem at that level is to determine and to single out from the ini-

tial CAAN graph all the joint variants (Problem II). The solution of that problem 
is outlined in Chapter 8 and is based on lexicographical scanning of the initial 
CAAN model. Thus, for each CAAN model ktG , subnetworks ktrkt GS ⊂ , 

ktmr ≤≤1 , are determined. Every joint variant rktS  is either a PERT or a GERT 
subnetwork. 

 Note that in the course of developing a project there may be changes in the 
parameters of some activities, e.g., durations, costs, outcome probabilities, etc., 
since activity networks are usually revised over time. In such a case Problem II 
has to be resolved in every sequentially encountered decision node since revis-
ing a project may result in changing its optimal joint variant. If the network re-
mains unchanged Problem II has to be solved only once, at 0=t . 

The next problem at the project level is to determine confidence probabilities 
of meeting the due date on time 

( )[ ]{ }kkrkrkt DtCTtp ≤+= Pr , ktmr ≤≤1 , (16.4.1) 
for all joint variants ktrkt GS ⊂ . Here ( )[ ]tCT krk  is the random duration of joint 

variant rktS  on the basis of the available budget ( )tCk . 
Note that value ( )tCk  may be either budget ktC  assigned by the company level 

at moment 0≥t , or the project’s reduced budget for new joint variants ktrkt GS ⊂ , 
after resolving Problem II (see Fig. 16.1).     

Values rktp  on the basis of budget ( )tCk  can be calculated by using either Pro-
cedure I  (if rktS  is a PERT model) or Procedure II (in the case of a GERT 
model). Note that in the first case determining rktp  is carried out together with 
optimal budget reassignment among activities ( ) rktk Sji ∈, . Thus, in this case us-
ing Procedure I delivers a heuristic solution to the optimization problem: deter-
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mine optimal values ( )kjic ,  to maximize 

( )
( )[ ]{ }kkrkjic

DtCTt
k

≤+Prmax
,

 (16.4.2) 
subject to 

( )
( )

( )tCjic k
Sji rktk

=∑
∈,

, , (16.4.3) 

( ) ( ) ( ) maxmin ,,, kkk jicjicjic ≤≤ .
 

(16.4.4) 
If rktS  is a GERT model value rktp  is calculated but the budget is not reas-

signed among the activities. 
After determining values rktp  for each rktS  the optimal joint variant ktSξ  is 

chosen which satisfies 
rktmrkt pp

kt≤≤
=

1
maxξ .

 (16.4.5) 
If ∗≥ kkt ppξ  holds, the optimal joint variant ktSξ  is controlled at the subnetwork 

level.   Otherwise project k  fails to meet its chance constraint (14.2.3) and the 
dual problem has to be applied for all rktS  to determine two budget values: 

( )∗

≤≤

∗ = krktmrkt pCC
kt1

min
 (16.4.6) 

and 
( )∗∗

≤≤

∗∗ = krktmrkt pCC
kt1

min ,
 

nk ≤≤1 .
 (16.4.7) 

If rktS  is a PERT model the dual problem is as follows: determine optimal 
values ( )kjic ,  to minimize value ( )∗

krkt pC   

( ){ }
( )[ ]∗

krktjic
pC

k,
min

 (16.4.8) 
subject to (16.4.4)  and 

( )[ ]{ } ∗∗ =≤+ kkkrktrk pDpCTtPr . (16.4.9) 

This  problem  can  be  solved  by applying  Procedure III  to each  joint vari-
ant  ktrkt GS ⊂ . If rktS  is a GERT model, value ( )∗

krkt pC  can be calculated by apply-
ing Procedure IV, but without optimal budget reassignment. Afterwards the 
company level is applied to solve Problem I to reassign the budget among the 
projects. Note that values ∗

ktC  and ∗∗
ktC  correspond to joint variants ktS

1ξ  and ktS
2ξ . 

In practice case 21 ξξ ≠  occurs very seldom but, generally speaking, values 1ξ  and 
2ξ  may differ. It has been outlined in §14.2 that solving Problem I results in as-

signing to all projects except not more than one, values ∗
ktC  and ∗∗

ktC . Since  for  
those  projects  their  optimal  joint  variant  ktSξ  and  values ∗≥ kkt ppξ  have al-
ready been determined before resolving Problem I, we can apply straightforward 
the subnetwork level. For only one project with values ∗∗∗ << ktktkt CCC , value ktpξ  
and optimal joint variant ktSξ  are to be determined. 
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§16.5  Controlling joint variants at the subnetwork level 
16.5.1  Controlling joint variants of GERT type 
To control the optimal joint variant ktSξ  at the subnetwork level, control ac-

tions outlined in §16.3 have to be undertaken. If ktSξ  is a GERT model choosing 
that joint variant at the project level does not mean that budget ( )tCk  has already 
been reassigned among activities ( ) ktk Sji ξ∈, . Moreover, since ktSξ  comprises 
random alternative outcomes, a certain part of the activities will not be carried 
out in the course of the project’s realization. Thus, before the beginning of car-
rying the project out on the basis of  joint variant ktSξ , the management has to 
reassign a part of budget ( )tCk  among those activities which will be realized 
first, and which precede the first random alternative outcome in ktSξ . It can be 
well-recognized that such activities will be carried out in any case. The govern-
ing problem at the subnetwork level is Problem III which is repeatedly resolved 
at each random alternative node. The problem is as follows: 

a) divide the remaining joint variant ktSξ  at any moment t  when a random 
outcome is met, into two subnetworks ⊕

ktSξ  and ⊕⊕⊕ = ktktkt SSS ξξξ \ . Here ⊕
ktSξ  is 

a PERT network which will be realized before meeting the adjacent ran-
dom outcome, while ⊕⊕

ktSξ  comprises random outcomes and is a GERT 
network. 

b) divide the remaining budget ( )tCk  into two parts: ( )tCk
⊕  and 

( ) ( ) ( )tCtCtC kkk
⊕⊕⊕ −= . The first has to be utilized by realizing subnetwork 

⊕
ktSξ , while the second part is to be left for the future subnetwork ⊕⊕

ktSξ . 
c) reassign budget ( )tCk

⊕  optimally among activities ( ) ⊕∈ ktk Sji ξ,  in order to 
maximize the confidence probability of meeting the deadline, i.e., 

( ){ } ( )
( )[ ] ( )[ ]{ }kkkkkSjijic

kt DtCTtCTtp
ktkk

≤++= ⊕⊕⊕

∈
⊕⊕⊕

⊕ ξξξ
ξ

Prmax
,,,

 (16.5.1) 

subject to 
( ) ( ) ( )tCtCtC kkk =+ ⊕⊕⊕ , (16.5.2) 

ktktkt SSS ξξξ =⊕⊕⊕ ∪ , (16.5.3) 
( )

( )
( )tCjic k

Sji
k

ktk

⊕

∈

=∑
⊕
ξ,

, , (16.5.4) 

( ) ( ) ( ) maxmin ,,, kkk jicjicjic ≤≤ .
 

(16.5.5) 
The suggested step-wise heuristic to solve Problem III is as follows: 

Step 1. Single out subnetwork ktkt SS ξξ ⊂⊕  of PERT type which precedes the first 
random alternative outcome. 

Step 2. Simulate the non-contradictory outcomes in ⊕⊕
ktSξ

 to obtain a PERT 
subnetwork ⊕⊕

ktfL ξ . Here f  denotes the number of the simulation run. 
Step 3. Unify subnetworks ⊕

ktSξ  and ⊕⊕
ktfL ξ  to obtain a simulated full joint variant 
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ktfL ξ . Note that ⊕⊃ ktktf SL ξξ . 
Step 4. Reassign budget ktC  among activities ( ) ktfLji ξ∈,  to maximize the 

probability of meeting the due date on time. This can be carried out 
by applying Procedure I to subnetwork ktfL ξ  (Procedure I is outlined in 
§14.4). Denote budget values ( )kjic ,   obtained in the course of carry-
ing out Step 4, by ( ) f

kjic , . 
Step 5. Calculate 

( ) ( )
( )

∑
⊕∈

⊕ =
kt

f
k Sji

f
k

f
k jictC

ξ,

, ,  

( ) f
k tC⊕  being the part of budget ( )tCk  assigned to PERT subnetwork 
⊕
ktSξ

 in the course of the f -th simulation run. 
Step 6. Repeat Steps 2-5 M  times to obtain representative statistics. 
Step 7. Calculate 

( ) ( ) ( )∑
=

⊕⊕⊕ ==
M

f

f
k

f
kk tC

M
tCtC

1

1 . 

Step 8. Solve budget reassignment optimization problem: reassign budget 
value ( )tCk

⊕  among activities ( ) ⊕∈ ktk Sji ξ,  to minimize the duration of 
subnetwork ⊕

ktSξ . The step is carried out by implementing Procedure I. 
Thus the project management obtains values ( )kjic ,  for ( ) ⊕∈ ktk Sji ξ,  which en-

able to proceed with the project’s realization, until the next adjacent random al-
ternative milestone. 

Steps 1-8 are repeatedly carried out for the reduced joint variant after reach-
ing each random alternative outcome during the progress of the project. 

 
16.5.2  Controlling joint variants by confidence probabilities 
If a routine key node reached in the course of the project’s realization is a de-

cision node, Problem II is applied to determine possible new joint variants, on 
condition that ktG  has been revised. Otherwise the last problem at the subnet-
work level is applied, to determine the confidence probability ktpξ  (budget reas-
signment is not required) by means of simulation (see Fig. 16.1). 

The problem of calculating confidence probabilities can be solved in every 
sequentially reached key node by using intensive simulation. The corresponding 
step-wise algorithm to calculate ktpξ  without budget reassignment is as follows: 
Step 1. If ktSξ  at moment t  is a PERT subnetwork apply the next step. Oth-

erwise apply Step 7. 
Step 2. Simulate duration values ( )kjit ,  for each activity ( ) ktk Sji ξ∈, . This 

can be easily undertaken since all budget values ( )kjic , , ( ) ktk Sji ξ∈, , 
are fixed and remain unchanged between two adjacent budget real-
locations. The techniques to be used are similar to those outlined in 
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§§14.4-14.5. 
Step 3. Determine for the PERT network with simulated deterministic val-

ues ( )kjit ,  its critical path length f
crL . 

Step 4. If k
f
cr DLt ≤+  holds counter ∗∗ ⇒+ MM1  works. Otherwise apply the 

next step with unchanged ∗M . 
Step 5. Repeat Steps 2-4 M  times to obtain representative statistics. 
Step 6. Calculate 

M
Mp kt

∗

=ξ  and proceed to Step 12. 

Step 7. Simulate GERT network ktSξ  to obtain a full variant ktfL ξ . 
Step 8-10. Steps 8-10 are similar to Steps 2-4, besides that ktSξ  is replaced by 

ktfL ξ . 
Step 11. Repeat Steps 7-10 M  times. Thus each simulation run comprises 

simulations of random outcome directions in a GERT network ktSξ , 
together with simulations of random durations ( )kjit ,  for a simu-
lated PERT subnetwork ktfL ξ . Return to Step 6 . 

Step 12. The algorithm terminates. 
If ∗≥ kkt ppξ  the progress of the project continues. Otherwise, i.e., ∗< kkt ppξ  (see 

Fig. 16.1), we apply Problem III to undertake optimal budget reassignment 
among activities ( ) ktk Sji ξ∈, . If this control action fails too, an emergency is de-
clared and the hierarchical decision-making model has to undergo budget reas-
signment at the company level (Problem I), as it is presented in Fig. 16.1. 

Note that for PERT or PERT-COST projects it is sometimes reasonable to 
implement on-line control, similar to that outlined in Chapter 15: 

• at the project level (when either the project or its optimal joint variant ktSξ  
are PERT projects), or 

• at the lower level when subgraph ⊕
ktSξ  is a PERT project. 

On-line control is based on determining inspection (control) points to evalu-
ate the actual progress of the project. At those control points the project is in-
spected and decision-making centers on: 

• determining the next control point; 
• reassigning if necessary the remaining budget ( )tCk  among the remaining 

project’s activities ( t  is the routine control point); 
• applying to the company level to obtain support from more successful pro-

jects. 
Note that between two adjacent control points we do not introduce any con-

trol actions besides the project’s scheduling. It has to be pointed out (see Chap-
ters 1, 3) that control actions do not abolish various scheduling rules, which 
have been outlined in Chapters 11-13. 
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§16.6  Optimization problems for joint variants comprising activities of 
random durations and consuming renewable resources 

16.6.1  Introduction 
It can be well-recognized that the outlined above, in §§16.1-16.5, techniques 

are based on the following assumptions: 
• the outlined hierarchical model enables monitoring alternative stochastic 

network projects of PERT-COST type only; 
• all activities entering the model are of deterministic duration; 
• all projects are of equal importance. 
However, an essential part of R&D projects (especially innovative ones) pos-

sess activities of random duration (see Chapter 2) and consume renewable re-
sources of different types (see §§6.2-6.3, 12.1-12.4). Being related to different 
areas of technology, industry and life sciences, certain innovative projects are of 
different importance and have to be monitored with different priorities. All those 
additional assumptions have to be taken into account for the outlined below op-
timization models. 

In the present §16.6 we will outline the case of consuming renewable gener-
alized resource units (GRU) which have been introduced in §§6.2-6.3 to solve 
optimization problems under chance constraints. We will assume that each ac-
tivity entering the model is carried out by means of a certain amount of GRU 
(externally pregiven). 

We will consider the general optimization problem of reallocating a certain 
restricted amount of GRU at the company’s disposal among several simultane-
ously carried out alternative stochastic network projects of CAAN type. Thus, 
the optimization problem is of mixed type since it refers both to the planning (at 

0=t ) and control stages (at 0>t ). 
The outlined below optimization model is actually a combination of models 

outlined in §§6.2-6.3, 8.1-8.5, 14.2, 16.1-16.3. At moment 0=t  the model has to 
reallocate optimally among the projects the total amount of GRU; further on, all 
projects work independently. At every encountered in the course of each pro-
ject’s realization decision-making node α  the model has to choose the optimal 
joint variant for that project. 

 

16.6.2  Notation 
Let us introduce the following terms: 
( )ANGk ,  - the k -th alternative stochastic project of CAAN type, mk ≤≤1 ; 

m  - the number of projects; 
ktG  - the remaining “truncated” k -th network project at moment 0≥t ; 

( )ANGG kk ,0 = ; 
kD  - the due date for the k -th project (pregiven); 

( )kji,  - activity ( )ji,  of the k -th project; 
tN  - the total number of GRU at the company’s disposal at moment 

0≥t , NN =0  ( N  pregiven); 
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( )knjit ,  - random duration of activity ( )kji,  on condition that the activity is 
carried out by means of ( )kjin ,  GRU, ( ) ( ) ( ) maxmin ,,, kkk jinjinjin ≤≤  
(probability law externally pregiven); 

( ) 1, min ≥kjin - lower bound of GRU to operate activity ( )kji,  (pregiven); 
( ) max, kjin   - upper bound of GRU to operate activity ( )kji,  (pregiven); 
( )knjit ,  - average value of ( )knjit , ; 

∗
kp  - the least permissible probability for the k -th project to meet its due 

date on time (pregiven); 
∗∗ > kk pp  - the probability that practically guaranties for the k -th project to be 

completed on time (pregiven); 
ktn  - the number of GRU assigned to the k -th project ktG  at moment 0≥t  

(optimal value to be determined); at moment 0=t , kkt nn = ; 
( )ktkt nT  - random duration of project ktG  corresponding to the amount ktn  of 

GRU assigned from the company; 
ktrkt GS ⊂ - the r -th joint variant of project ktG  at moment 0≥t  (a subnetwork 

of PERT or GERT type obtained by implementing the algorithm 
outlined in §§8.1-8.5); 

ktkt GS ⊂ξ - the optimal joint variant of project ktG ; 
frktL  - full (overall) variant (realization of a GERT network rktS  by simu-

lating random alternative branching of the f -th simulation), 
rktfrkt SL ⊂ ; 

( )frktLn  - the number of GRU assigned to the full variant frktL ; 

ktm  - the number of joint variants in project ktG ; 
( )rktSn  - the number of GRU assigned to rktS  at moment 0≥t ; 
kη  - priority value of the k -th project (pregiven). Similarly to §16.1, 

21 kk ηη >  means higher importance of ( )ANGk ,
1

 relatively to 
( )ANGk ,

2
. 

Note that at 0=t : kkt nn = , ( ) ( )kkktkt nTnT = , rkrkt SS = , frkfrkt LL = , kkt mm = , 

kkt SS ξξ = . 
The following rules, similar to those outlined in §§6.2-6.3, have to be imbed-

ded in the problem’s solution: 
• each activity has to be operated by at least one GRU; 
• one GRU cannot operate simultaneously more than one activity; 
• GRU can be transferred from one project to another at emergency mo-

ments only. 
 
16.6.3  The model 
Similarly to the model outlined in §§16.1-16.5, the model under considera-

tion: 
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a) At moment 0=t  reassigns the entire amount of GRU at the company’s 
disposal among the projects ( )ANGk , , mk ≤≤1 , in order to: 
• determine optimal values kn , mk ≤≤1 , to maximize 

( ){ }[ ]








≤⋅∑
=

m

k
kkkkn

DnT
k 1

Prmax η  (16.6.1) 

subject to 

Nn
m

k
k ≤∑

=1
, (16.6.2) 

( )kk Snn ξ= , kmr ≤≤1 , (16.6.3) 
( )

( )
( ) min,

,max kSjik jinSn
kk ξ

ξ ∈
≥ , (16.6.4) 

where kSξ  is a PERT subnetwork,  

( )
( )

( ) 



≥

∈ min,
,maxmax kLjifkf jinLn

kfk ξ
ξ , (16.6.5) 

where kfL ξ  is a full variant of a GERT subnetwork kSξ ,  
{ } ∗≥≤ kkk pDTPr , mk ≤≤1 . (16.6.6) 

Objective (16.6.1) is evident since the management takes all measures to 
accomplish most important projects as soon as possible. Restriction 
(16.6.3) means that each k -th project, after obtaining kn  GRU items, has 
to consume them in order to carry out the optimal joint variant of that 
project. Restriction (16.6.4) means that for the case of the optimal joint 
variant of PERT type value kn  has to exceed all the lower bounds of 

( )kjin ,  for activities entering that joint variant. In the case, when a joint 
variant (or the project itself) is a GERT subnetwork, restriction (16.6.5) 
enables that project to be carried out. Restriction (16.6.6) honors the 
chance constraints. 

b) After determining values kn  each project ( )ANGk ,  proceeds working in-
dependently. At each decision point 0≥t  with deterministic alternative 
outcomes the model: 
• singles out all the joint variants and determines the optimal one; 
• checks the possibility of reaching the due date kD  on time subject to 

(16.6.6). 
The first stage is outlined and described in depth in §§8.1-8.5. The second 

stage has to be formalized as follows: 
• for each project ktG , mk ≤≤1 , 0>t , solve the problem: determine the  

minimal capacity of GRU opt
ktn  satisfying 

( )kt
opt
kt Snn ξ= , (16.6.7) 
( )

( )
( ) min,

,max kSjikt jinSn
ktk ξ

ξ ∈
≥ , (16.6.8) 

(if ktSξ  is a PERT subnetwork), 
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( )
( )

( ) 



≥

∈ min,
,maxmax kLjifktf jinLn

ktfk ξ
ξ , (16.6.9) 

(if ktSξ  is a GERT subnetwork and frktL  is its f -th full variant), 
( )[ ]{ } ∗≥≤+ kk

opt
ktkt pDnTtPr . (16.6.10) 

Call henceforth optimization problem (16.6.7-16.6.10) Problem A. 
If it turns out that for one of the projects Problem A cannot be solved, an 

emergency is declared, and the total amount tN  at the company’s disposal 
(which may be changed overtime in comparison with N ) has to be reallocated 
among the projects. 

 
16.6.4  Subsidiary optimization Problem A for a single project 
In order to simplify the problem we will omit the project’s index k . The 

problem’s initial data is as follows: 
Given: 
( )ANG ,  - stochastic alternative network project of CAAN type; 

( ) ( )ANGji ,, ∈ - activity entering the project; 
( )jin ,  - number of GRU to operate activity ( )ji, , ( ) ( ) ( )maxmin ,,, jinjinjin ≤≤ ; 
( ) 1, min ≥jin - lower bound of value ( )jin ,  (pregiven); 
( )max, jin - upper bound of value ( )jin ,  (pregiven); 

n  - restricted number of GRU to carry out the project; 
( ) ( )[ ]jinjit ,, - random value of activity ( )ji,  duration, on condition that ( )jin ,  

GRU participate in executing ( )ji,  (all p.d.f. of ( ) ( )[ ]jinjit ,,  are externally pre-
given); 
D  - the project’s due date; 

∗p  - chance constraint for the project to meet its due date on time; 
rS  - the r -th joint variant of project ( )ANG , ; 
The problem is to determine the minimal total optn  of GRU in order to carry 

out the project on time with probability not less than ∗p . 
The step-wise solution of Problem A is as follows: 

Step 1. According to the techniques outlined in §§8.1-8.5, single out all the 
joint variants entering ( )ANG , . Let them be m, 1S , 2S ,…, rS ,…, mS . 

Step 2. For each routine joint variant rS  check, to which type of subnetwork 
(PERT or GERT) it does belong. If rS  is a PERT type network, apply 
the next step. Otherwise proceed to Step 4. 

Step 3. Solve problem (16.6.7-16.6.10) to minimize optn  for a network with 
deterministic structure and random activities durations. The solution 
is outlined in §6.2. If the determined value satisfies nn opt ≤ , go to Step 
7. Otherwise apply Step 6. 

Step 4. In case of a GERT type joint variant proceed as follows: 
4.1 Determine the  minimal value 
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( )

( ) 



=

∈ min,min ,maxmax jinn
rSjif

, (16.6.11) 
 where f  denotes the number of a full variant rfr SL ⊂  obtained by 

simulating random alternative outcomes in a GERT subnetwork. 
4.2 Undertake numerous simulation runs ( M runs) in order to obtain rep-

resentative statistics). Number M  can be determined by techniques 
outlined in Chapter 3 [27]. In the course of a single simulation run we 
obtain a full variant, i.e., a chain of several consecutive activities. 

4.3 Simulate random durations of all activities entering the full variant 
according to their p.d.f. ( )[ ]

min
, njit . Calculate the summarized duration 

of the full variant. Assume it to be equal the simulated project’s dura-
tion. Compare the latter with due date D . 

4.4 On the basis of M  simulation runs calculate average value 
M
Mp

∗

= , 

where ∗M  stands for the number of simulation runs with the project 
accomplished in time not exceeding D . If ∗≥ pp , go to Step 7. Other-
wise apply Step 5. 

Step 5. Increase minn  by one, minmin 1 nn ⇒+ . If minn  exceeds n , proceed to Step 
6. Otherwise return to Substep 4.2. 

Step 6. Withdraw the joint variant under consideration and proceed examin-
ing the next one. Go to Step 7. 

Step 7. Check if all the joint variants entering the project, have been exam-
ined. If not, return to Step 2. Otherwise proceed to the next step. 

Step 8. Examine all joint variants which have not been withdrawn yet, and 
choose the optimal one with the minimal value optn . The obtained 
value is the problem’s solution. 

If all the joint variants have been withdrawn, Problem A  cannot be solved 
and either n  has to be increased, or the due date has to be changed, or probabil-
ity ∗p  must be decreased. 

 
16.6.5  The general problem’s solution 
The enlarged step-wise algorithm of solving problem (16.6.1-16.6.6) resem-

bles the algorithm outlined in §14.2 for the case of several PERT-COST projects 
with different priorities and is outlined below. 

Note, in advance, that the presented algorithm for solving problem (16.6.1-
16.6.6) does not depend on the time moment t . If 0>t , i.e., in the case emer-
gency was called, we have to change all terms in (16.6.1-16.6.6) as follows: 

( ) ( )ktk jinjin ,, ⇒ , 
rktrk SS ⇒ , 
opt
kt

opt
k nn ⇒ , 

tNN ⇒ , etc. 
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Thus, we will not rewrite model (16.6.1-16.6.6) with additional term t . The 
step-wise algorithm of solving the general optimization problem is as follows: 
Step 1. For all m projects ktG , mk ≤≤1 , independently, solve at moment 0≥t  

subsidiary optimization Problem A outlined in 16.6.4, both for prob-
ability values ∗

kp  and ∗∗
kp . Denote solutions of the problem by ( )∗opt

kn  
and ( ) ∗∗opt

kn , mk ≤≤1 , correspondingly. 
Step 2. Assign to all projects ktG  their minimal resource capacities ( )∗opt

kn . 
Step 3. Calculate the remaining resource reserve 

( )
t

n

k

opt
kt NnN ∆=− ∑

=

∗

1

. If 0<∆ tN , the problem has no solution, and the 

system’s structure, i.e., either tN , or { }∗
kp , or { }kD , has to be changed. 

Otherwise apply the next step. 
Step 4. Reorder projects ktG  in ascending order of their priority indices kρ . 

Let the new projects’ ordinal numbers be mfff ,...,, 21 . 
Step 5. Set 1=j . 
Step 6. Calculate 

( ) ( )( )[ ]t
opt
j

opt
jj Nnn ∆−= ∗∗∗ ,minγ . 

Step 7. Determine for project tf j
G  its new optimal resource capacity 

opt
fjf jj

nn =+∗ γ . 
Step 8. Update the remaining resource reserve 

tjt NN ∆⇒−∆ γ . If 0=∆ tN  go to Step 11. Otherwise apply the next 
step. 

Step 9. Set jj ⇒+1 . 
Step 10. If mj <  return to Step 6. Otherwise apply the next step. 
Step 11. The algorithm terminates. 

The proof of the solution’s optimality fully resembles the proof outlined in 
§14.2. As to techniques of GRU reallocation at emergency moments emt , when 
for at least one of the projects Problem A cannot be solved, they are outlined in 
§6.3 [84]. 

Note, in conclusion, that the case of alternative projects requiring GRU and 
with equal priority indices kη  can be examined by implementing a combination 
of model (16.6.1-16.6.6) and the algorithm for PERT-COST projects outlined in 
§14.3. 

 

§16.7  Numerical example 
In conclusion, the performance of the three-level decision-making model out-

lined above, in §§16.1-16.5, is illustrated by a numerical example. 
The company is faced with realizing three stochastic network projects of 

CAAN type. The projects’ initial data is presented in Tab. 16.1-16.3 [65]. The 
projects’ parameters are as follows: 
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501 =D ;  60.01 =∗p ; 85.01 =∗∗p ; 2=η ; 
802 =D ;  70.02 =∗p ; 90.02 =∗∗p ; 3=η ; 
1003 =D ;  70.03 =∗p ; 95.03 =∗∗p ; 5=η ; 

 

Table 16.1.  Initial data for Project 1 
No. i  h  j  p  ( )min, jic  ( )max, jic  ( )jiA ,  ( )jiB ,  

1 1 1 2 1 14 44 220 841 
2 1 2 3 1 23 38 182 560 
3 1 3 4 1 39 65 430 685 
4 2 1 5 0 35 57 390 882 
5 2 2 6 0 21 58 320 795 
6 3 1 8 1 38 55 160 600 
7 3 2 11 1 38 57 200 400 
8 4 1 14 0 36 77 683 920 
9 4 2 15 0 50 75 610 820 

10 5 1 7 0 34 54 220 780 
11 6 1 7 0 35 69 290 740 
12 7 1 17 1 17 55 192 560 
13 7 2 20 1 14 56 220 800 
14 8 1 9 0 18 42 100 550 
15 8 2 10 0 17 57 100 600 
16 9 1 10 0 15 40 300 460 
17 10 1 17 1 35 68 200 380 
18 10 2 20 1 19 55 200 620 
19 10 3 21 1 25 50 342 500 
20 11 1 12 0 15 40 405 740 
21 11 2 13 0 17 55 380 710 
22 12 1 18 0 16 35 360 580 
23 13 1 18 0 15 20 205 440 
24 14 1 16 0 18 57 500 700 
25 14 2 15 0 18 42 400 610 
26 15 1 15 0.5 27 59 490 820 
27 15 2 22 0.5 39 75 508 820 
28 16 1 21 0 37 75 520 804 
29 17 1 23 0.6 18 42 320 520 
30 17 2 19 0.4 38 58 510 810 
31 18 1 21 0.8 15 37 98 202 
32 18 2 22 0.2 15 37 183 294 
 

The total initial budget at the company’s disposal to carry out the projects 
equals 000,1=C . In order to illustrate the performance of the model, we will out-
line below: 

• optimal budget reallocation among the projects obtained by solving Prob-
lem I (at the company level); 

• optimal joint variants for each project obtained by solving Problem II and 
applying Procedures I-IV (at the project level); 
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Table 16.2.  Initial data for Project 2 
No. i  h  j  p  ( )min, jic  ( )max, jic  ( )jiA ,  ( )jiB ,  

1 1 1 2 0 32 48 533 887 
2 1 2 3 0 31 46 494 864 
3 1 3 4 0 31 48 573 922 
4 1 4 5 0 21 45 510 898 
5 1 5 6 0 31 48 523 820 
6 1 6 7 0 38 60 560 900 
7 2 1 3 1 38 65 489 667 
8 2 2 15 1 23 32 731 919 
9 3 1 13 0.6 32 55 510 720 

10 3 2 14 0.2 34 52 440 640 
11 3 3 15 0.2 35 50 490 720 
12 4 1 9 1 30 52 500 950 
13 4 2 14 1 37 57 555 900 
14 5 1 13 0 30 50 355 840 
15 6 1 9 0 22 56 480 850 
16 7 1 8 0 33 55 487 855 
17 8 1 10 1 32 50 420 932 
18 8 2 11 1 36 51 412 888 
19 9 1 12 0.7 31 45 490 854 
20 9 2 11 0.3 33 50 502 888 
21 10 1 20 1 22 45 499 873 
22 10 2 21 1 35 50 505 840 
23 11 1 16 1 37 55 550 870 
24 11 2 21 1 30 52 500 810 
25 12 1 18 0 30 50 490 820 
26 13 1 17 0.6 30 52 660 820 
27 13 2 18 0.1 30 50 518 878 
28 13 3 19 0.3 24 48 663 810 
29 14 1 16 1 31 47 658 802 
30 14 2 17 1 31 47 623 894 
31 15 1 17 0 23 45 660 804 
32 15 2 19 0 24 49 485 820 
33 16 1 22 0 34 51 470 893 
34 17 1 22 1 35 60 282 553 
35 17 2 23 1 56 75 874 940 
36 18 1 23 0 32 48 480 820 
37 19 1 23 0 32 45 440 847 
38 20 1 21 0 31 44 432 872 
39 21 1 23 0 33 44 463 895 
40 22 1 23 0 32 75 222 528 
 

• control actions at the subnetwork level for Project 3 with the highest prior-
ity. 
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Table 16.3.  Initial data for Project 3 
No. i  h  j  p  ( )min, jic  ( )max, jic  ( )jiA ,  ( )jiB ,  

1 1 1 2 1 13 26 252 460 
2 1 2 3 1 13 28 166 580 
3 1 3 4 1 13 20 200 585 
4 1 4 5 1 17 25 190 642 
5 1 5 6 1 12 18 160 405 
6 1 6 7 1 18 30 160 600 
7 2 1 5 0.6 13 25 150 500 
8 2 2 15 0.4 13 28 183 620 
9 3 1 13 1 15 25 210 720 

10 3 2 14 1 14 24 120 640 
11 3 3 15 1 15 20 190 620 
12 4 1 9 0.3 15 24 400 850 
13 4 2 12 0.4 15 20 100 520 
14 4 3 14 0.3 17 37 300 800 
15 5 1 13 0 15 20 205 640 
16 6 1 10 0 12 15 480 850 
17 7 1 8 0 13 25 162 490 
18 8 1 9 1 12 25 230 462 
19 8 2 11 1 16 20 280 580 
20 9 1 11 0.9 12 20 190 620 
21 9 2 12 0.1 13 20 282 560 
22 10 1 20 0 12 30 120 580 
23 10 1 21 1 15 28 205 480 
24 11 2 16 1 17 30 300 800 
25 11 2 21 0 18 22 400 810 
26 12 1 18 0 15 20 190 620 
27 13 1 17 1 14 24 320 620 
28 13 2 19 1 14 28 263 610 
29 14 1 16 0.7 12 24 100 600 
30 14 2 17 0.3 12 24 141 600 
31 15 1 17 0 13 15 360 740 
32 15 2 19 0 14 19 165 620 
33 16 1 22 0 14 30 240 700 
34 17 1 18 1 21 32 352 500 
35 17 2 22 1 18 25 260 720 
36 18 1 22 0 18 26 260 440 
37 19 1 22 0 25 30 380 787 
38 20 1 21 0.4 12 28 262 542 
39 20 2 22 0.6 15 22 287 482 
40 21 1 22 0 13 23 323 595 
 

Project 1 comprises 7 joint variants. Using Procedures I-IV results in deter-
mining values 
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20810 =∗C ; 22110 =∗∗C ; 521 == ξξ ; 
For Project 2 which comprises 96 joint variants we obtain 

70920 =∗C ; 73620 =∗∗C ; 2421 == ξξ ; 
while for Project 3 with 20 joint variants values 

6030 =∗C ; 7330 =∗∗C ; 921 == ξξ ; 
have been calculated. Thus, values 5, 24 and 9 are indices of the optimal joint 
variants of Projects 1-3, correspondingly. 

Solving the budget reallocation problem at 0=t  (see §16.2) we obtain [65]: 
1. 21810 =C . This value assigned to Project 1 enables maximal confidence 

probability [ ]{ } 75.050Pr 1010,1,5 =<== CTpp ktξ  for the 5 -th joint variant 

0,1,5SS kt =ξ . This optimal joint variant is presented in Tab. 16.4 and is a 
PERT subnetwork. Note that due to ∗∗∗ << 101010 CCC  value 0,1,5p  satisfies 

85.075.060.0 10,1,51 =<=<= ∗∗∗ ppp . 
2. ∗== 2020 709 CC . Since 20C  is the minimal possible value which can be as-

signed to Project 2, the corresponding confidence probability is also the 
minimal one: 70.00,2,24 == pp ktξ  for the 24 -th joint variant. The optimal 
joint variant 0,2,24SS kt =ξ  is presented in Tab. 16.5 and is a GERT subnet-
work. 

3. ∗== 3030 73 CC . Since 30C  is the maximal possible budget which can be as-
signed to Project 3, it corresponds to the maximal confidence probability 

95.00,3,9 == pp ktξ  for the 9 -th joint variant 0,3,9S . The latter is presented in 
Tab. 16.6 and is a GERT subnetwork. 

 
Table 16.4.  Project 1: Optimal joint variant #5 after budget reassignment 

(PERT type subnetwork) 
i  h  j  p  ( )min, jic  ( )max, jic  ( )jiA ,  ( )jiB ,  
1 2 3 1 23 38 182 560 
3 1 8 1 38 55 160 600 
8 1 9 0 18 42 100 550 
8 2 10 0 17 57 100 600 
9 1 10 0 15 40 300 460 

10 3 21 1 25 50 342 500 
 
In order to illustrate control actions at the subnetwork level we will outline a 

simulation run for the most important project, i.e., Project 3. Assume for sim-
plicity that the project will not be altered in the course of its realization.  

Since the project’s optimal joint variant 0,3,9SS kt =ξ  is a GERT subnetwork we 
have to solve first, at 0=t , Problem II to single out subgraphs ⊕

0,3,9S  and ⊕⊕
0,3,9S , to 

determine budget values ( )03
⊕C  and ( )03

⊕⊕C  and to reassign budget ( )03
⊕C  among  
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activities ( ) ⊕∈ 0,3,93, Sji . The solution is presented in Tab. 16.3 and is as follows: 
 
Table 16.5.  Project 2: Optimal joint variant #24 after budget reassignment 

(GERT type subnetwork) 
i  h  j  p  ( )min, jic  ( )max, jic  ( )jiA ,  ( )jiB ,  
1 1 2 0 32 48 533 887 
1 2 3 0 31 46 494 864 
1 3 4 0 31 48 573 922 
1 4 5 0 21 45 510 898 
1 5 6 0 31 48 523 820 
1 6 7 0 38 60 560 900 
2 1 3 1 38 65 489 667 
3 1 13 0.6 32 55 510 720 
3 2 14 0.2 34 52 440 640 
3 3 15 0.2 35 50 490 720 
4 1 9 1 30 52 500 950 
5 1 13 0 30 50 355 840 
6 1 9 0 22 56 480 850 
7 1 8 0 33 55 487 855 
8 2 11 1 36 51 412 888 
9 1 11 0.7 31 45 490 854 
9 2 12 0.3 33 50 502 888 

11 2 21 1 30 52 50 810 
12 1 18 0 30 50 490 820 
13 1 17 0.6 30 52 660 820 
13 2 18 0.1 30 50 518 878 
13 3 19 0.3 24 48 663 810 
14 2 17 1 31 47 623 894 
15 1 17 0 23 45 660 840 
15 2 19 0 24 49 485 820 
17 2 23 1 56 75 874 940 
18 1 23 0 32 48 480 820 
19 1 23 0 32 45 440 847 
21 1 23 0 33 44 463 895 
 
1) Subgraph ⊕

0,3,9S  (a PERT network) comprises activities ( )33,1  and ( )314,3  
which at any rate will be carried out before the first random outcome 
(node 14). 

2) Subgraph ⊕⊕
0,3,9S  (a GERT network) comprises two connecting paths 

( )316,14  → ( )322,16  and ( )317,14  → ( )322,17  with a random alternative out-
come in node 14. 

3) Values ( )03
⊕C  and ( )03

⊕⊕C  equal 35 and 38, correspondingly. 
4) Reassigning budget ( ) 3503 =⊕C  among activities ( )33,1  and ( )314,3  results in 
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( ) 173,1 3 =c  and ( ) 1814,3 3 =c . 
5) Budget value ( ) 3803 =⊕⊕C  is left for developing subnetwork ⊕⊕

0,3,9S  after 
node 14 is reached. 

 
Table 16.6.  Project 3: Optimal joint variant #9 after budget reassignment 

(GERT type subnetwork) 
 i  h  j  p  ( )min, jic  ( )max, jic  ( )jiA ,  ( )jiB ,  

1 2 3 1 13 28 166 580 ⊕
0,3,9S  

3 2 14 1 14 24 120 640 
14 1 16 0.7 12 24 100 600 
14 2 17 0.3 12 24 141 600 
16 1 22 0 14 30 240 700 

⊕⊕
0,3,9S  

17 2 22 1 18 25 260 720 
 
Simulating activity duration ( )33,1t  with density function (14.1.1) and budget 

( ) 173,1 3 =c  results in ( ) 263,1 3 =t . Thus, decision node 3 will be reached at 26=t  
and since ( )ANG ,3  has not been revised, calculating confidence probability at 

26=t  has to be undertaken. We obtain 95.026,3,9 == pp ktξ  and since that value ex-
ceeds 70.03 =∗p  we proceed developing the project. Simulating ( )314,3t  with as-
signed budget ( ) 1814,3 3 =c   results in ( ) 1914,3 3 =t . Thus, node 14 is reached at 

451926 =+=t . Simulating the outcome direction in node 14 we obtain a sub-
graph comprising activities ( )317,14  and ( )322,17 . The calculated confidence prob-
ability is 70.094.045,3,9 >== pp ktξ .  Reallocating the remaining budget ( ) 3803 =⊕⊕C  
among activities ( )317,14  and ( )322,17  results in ( ) 1917,14 3 =c  and ( ) 1922,17 3 =c . 
Simulating activity duration ( )317,14t  with density function (14.1.1) and budget 

( ) 1917,14 3 =c  we obtain ( ) 2117,14 3 =t . Thus, key node 17 will be met at 
662145 =+=t . Since node 17 is a decision node we have to recalculate the confi-

dence probability at 66=t , i.e., to obtain value 66,3,9p . Determining 
70.089.066,3,9 >=p  and proceeding to carry out the project we simulate 

( ) 2522,17 3 =t . Thus, we reach the sink node 22 at 100912566 3 =<=+= Dt , and 
Project 3 meets its due date on time. 

 
§16.8  Conclusions 
The following conclusions can be drawn from the Chapter: 
1. The outlined above hierarchical models refer to the decision support 

models class. Decision-making can be undertaken by the project man-
ager at any hierarchical level. The models indicate control actions and 
solve optimization problems at the company → project → subnetwork 
levels. 

2. Both groups of models outlined in Chapters 14-15 (a hierarchical on-line 
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control model for PERT-COST projects) and Chapter 16 (hierarchical 
decision-making models for PERT-COST and GRU type projects) com-
prise planning and control stages. In both groups of models planning 
procedures are carried out from top to bottom, while control actions de-
velop in the opposite direction. 

3. The main difference between the two groups of hierarchical models un-
der comparison is as follows: 
• model (15.1.1-15.1.9) is an on-line control model which periodically 

determines routine control points and trajectory curves while models 
outlined in §§16.1-16.3 and 16.6 are usually not based on classic con-
trol techniques and resemble theoretical grounds outlined in §3.5. 
Those models refer to the advisory class on behalf of the project man-
ager. 
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Chapter 17.  Estimating the Quality of Stochastic Network 
Projects 

 

§17.1  The projects’ quality problem 
17.1.1  Introduction 

In recent years we have developed and outlined in [7,54] a novel concept of the 
organization system’s utility. Nowadays, the existing utility theory centers on 
analysing the competitive quality of organization systems’ outcome products 
rather than dealing with the quality of the systems’ functioning, i.e., with or-
ganization systems in their entirety. This may result in heavy financial losses, 
e.g., when excellent project objectives are achieved by a badly organized pro-
ject’s realization [7]. 

Thus, a conclusion can be drawn that the existing utility theory cannot be 
used as the system’s quality techniques. We have undertaken research in the 
area of estimating the quality of the system itself, e.g., the system’s public utility. 
We will consider a complicated organization system which functions under ran-
dom disturbances. Such a system usually comprises a variety of qualitative and 
quantitative attributes, characteristics and parameters, which enable the system’s 
functioning. The problem arises to determine a generalized (usually quantitative) 
value which covers all essential system’s parameters and can be regarded to as a 
system’s qualitative estimate.  We will henceforth call such a generalized value 
the system’s utility. 

Thus, the system’s utility signifies the quality of the system’s functioning. 
We will call the system’s utility a weighted linear function of the system’s 

parameters with constant coefficients.  The parameters are divided into: 
• independent parameters,  where for each parameter its value may be pre-

set and may vary independently on other parameters’ values,  and 
• dependent parameters whose values may not depend uniquely on the 

values of independent parameters. However, when optimized (for the 
same values of independent parameters), they are solely dependent on 
those values. 

Both independent and dependent parameters together with the coefficients of 
the utility function, are externally pregiven. 

If an organization system functions under random disturbances and com-
prises  1n   independent basic parameters ( )

11, niR ind
i ≤≤ , and 2n  dependent basic 

parameters   ( )
21, njR dep

j ≤≤ , the harmonization problem boils down to maximize 
the system’s utility   

( ) ( )










+= ∑ ∑

= =

1 2n

1i

n

1j

dep
jj

ind
iiS RRU αα  (17.1.1) 

subject to certain restrictions. We suggest determining the optimal vector 
( ) ( ) ( ) ( ) ( ) ( )( )dep

n
dep

2
dep

1
ind

n
ind

2
ind

1 21
R,...,R,R,R,...,R,RR ∗∗∗∗∗∗∗ =  (17.1.2) 
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which delivers maximization to the system’s utility SU , by means of the follow-
ing sequential stages: 
Stage I - implement a look-over algorithm to examine all feasible combina-

tions of independent basic values  ( ){ }ind
iR ; 

Stage II - determine optimal values ( ){ }dep
optjR  for all dependent parameters by 

means of values  ( ){ }ind
iR   obtained at the previous stage; for each 

j -th dependent parameter an individual optimization model (called 
henceforth the partial harmonization model jPHM ), is used. The 
latter enables the optimality of each value ( )dep

optjR  which solely de-
pends on the combination ( ){ }ind

iR ; 
Stage III - calculate the system’s utility  SU   via  (17.1.1)  for the combination 
  ( ){ }ind

iR ,  ( ){ }dep
optjR  (17.1.3) 

  obtained at  Stages I  and  II; 
Stage IV - calculate the optimal system’s utility by determining the optimal 

combination (17.1.2) for all independent and dependent parameters 
which delivers the maximum to sU . 

If, due to the high number of possible combinations ( ){ }ind
iR , implementing 

Stage I  requires a lot of computational time, we suggest using a simplified heu-
ristic search procedure, e.g., a cyclic coordinate search algorithm (CCSA), 
which has been outlined in greater detail in Chapters 11-13. 

Thus, we consider an approximate harmonization’s problem solution as fol-
lows. At the first stage a relatively simple search algorithm in the area of inde-
pendent parameters, e.g., the cyclic coordinate descent method [114], is imple-
mented. At the second stage, in order to evaluate the optimal value of each de-
pendent parameter, an optimization problem jPHM , 21 nj ≤≤ , has to be solved. 
Thus, the idea is to obtain independent parameters’ values at the first stage and 
to use them as input values of all partial harmonization models at the second 
stage. 

PHM is usually a stochastic optimization model which is solved on the basis 
of simulation modeling. However, in certain cases, e.g., reliability and safety 
engineering problems, various PHM require more complicated formulations. In 
such cases we suggest to use additional heuristic models in order to implement 
realistic quantitative links between the system’s attributes. For various depend-
ent parameters the PHM may be formulated and solved by means of expert in-
formation [7,54]. 

The techniques of estimating the stochastic network project’s utility by 
means of harmonization are outlined below. 

We will use a multi-stage solution of harmonization problems [7,54]. At the 
first stage a look-over algorithm to examine all feasible combinations of inde-
pendent basic values, is implemented. The independent parameters’ values ob-
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tained at that stage are used as input values at the second stage where for each 
dependent parameter a local subsidiary optimization problem is solved in order 
to raise the system’s utility as much as possible. Solving such a problem enables 
the solely dependence of the optimized value on any combination of independ-
ent input parameters. At the next stage the system’s utility value is calculated by 
means of basic parameters’ values obtained at the previous stages, with subse-
quent search for the extremum in order to determine the optimal combination of 
all basic parameters’ values delivering the maximum to the system’s utility. 

 

§17.2  Harmonization model for PERT-COST projects 
17.2.1  The problem’s description 
For stochastic PERT-COST network projects three parameters are imple-

mented in the model: 
• the budget C  assigned to the project which has to be redistributed among 

the project’s activities; 
• the due date D  for the project to be accomplished; 
• the project’s reliability R , i.e., the probability of meeting its due date on 

time subject to the pre-assigned budget C . 
The harmonization model’s solution is achieved by means of implementing a 

two-level heuristic algorithm. At the upper level a cyclic coordinate search algo-
rithm (CCSA) to determine the quasi-optimal couple (budget – due date) is sug-
gested. At the bottom level a high-speed heuristic procedure serving as a partial 
harmonization sub-model (PHM), is implemented:  on the basis of input values 
(the assigned budget and the set due date) to maximize the probability of meet-
ing the deadline on time by undertaking optimal budget reallocation among the 
project’s activities. 

We will calculate the project’s utility by 
[ ] [ ] [ ]0R0D0C RRDDCCU −⋅+−⋅+−⋅= ααα , (17.2.1) 

where 0C , 0D  and 0R  are the least permissible budget, due date and reliability 
values which can be implemented in a PERT-COST project,  while values  C ,  
D   and  R   are the corresponding current values for a project under considera-
tion.  Linear coefficients Cα , Dα  and Rα  define additional partial utilities which 
the project obtains by refining its corresponding parameter by a unit’s value. 
Note that parameters C  and D  are in-dependent parameters since they can be 
preset beforehand independently on each other, while parameter R  is practically 
defined by values D  and C  and, thus, is a dependent parameter. For the case 

0CC = , 0DD =   and 0RR = , the project’s utility is called the basic utility and is 
usually pregiven beforehand. Note that quantitative relations between parame-
ters C , D  and R  are complicated, since setting a couple of values C  and D  re-
sults in a variety of possible values R  depending on the budget reassignment 
among the project’s activities. Thus, an additional optimization problem to 
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maximize the reliability value on the basis of preset values C  and D  has to be 
imbedded in the project’s harmonization model. 

Besides those  worst  permissible pregiven values 0C , 0D  and 0R , one can de-
fine the  best  pregiven possible correspondent values - the minimal budget 00C  
to be assigned to the project, the earliest due date 00D  (there is no need in ac-
complishing the project before 00D ), and the maximal reliability value 00R  (usu-
ally 100 =R ). It can be well-recognized that any project values C , D  and R  satisfy 









≤≤
≤≤
≤≤

.RRR
DDD
CCC

000

000

000

 (17.2.2) 

According to Chapters 2 and 14, all random activity durations are assumed to 
have a beta-distribution, with the p.d.f. (14.1.1): 

( ) ( ) ( )( )2
ijij4

ijij
ij tbat

ab
12tp −−
−

= ,   

where  
ij

ij
ij c

B
b =   and  

ij

ij
ij c

A
a = ,  ijA   and  ijB   being pregiven constants for each ac-

tivity  ( )ji,   entering the PERT-COST network model. 
 

17.2.2  Harmonization model 
The harmonization model is as follows: determine optimal non-contradictive 

project parameters ( )optC , ( )optD  and ( )optR  resulting in the maximal project’s utility 

{ }
( )

{ }
( ) ( ) ( ){ }0R0D0C0

R,D,CR,D,C
RRDDCCUxaMGUxaM −+−+−+= ααα  (17.2.3) 

subject to 
( )

0
opt

00 CCC ≤≤ , (17.2.4) 
( )

0
opt

00 DDD ≤≤ , (17.2.5) 
( )

0
opt

00 RRR ≥≥ . (17.2.6) 
Note that since the basic utility 0U  is a constant value which remains un-

changed, it may be canceled and, thus, the model satisfies 

{ }
( )

{ }
( ) ( ) ( ){ }0R0D0C

R,D,CR,D,C
RRDDCCxaMGUxaM −+−+−= ααα  (17.2.7) 

subject to (17.2.4-17.2.6). Values C , D  and R  are called  non-contradictive if 
budget C  can be reassigned among the project activities to satisfy 

( ){ } RDGTPr
ijc =≤  (17.2.8) 

subject to 

( )
∑ =

j,i
ij Cc . (17.2.9) 

Solving problem (17.2.3-17.2.7) can be carried out by solving two sequential 
problems: to determine an optimal budget value C  and an optimal due date D  
(Problem 1)  and to carry out the PHM  (Problem 2) [7,54]. 
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Problem 1 centers on determining an optimal couple ( ) ( )( )optopt DC ,  by means of 
a look-over algorithm that checks the feasibility of each possible combination 
( )DC, . If the number of combinations is high enough and taking into account 
that: 

• each combination requires a  PHM  solution,  and 
• Problem 1 is a NP-complete one, 
- solving both problems on a look-over basis requires a lot of computational 

time [54].  To avoid this obstacle, we use a two-level high-speed approximate 
heuristic algorithm.  At the upper level a heuristic simplified search procedure, 
e.g., a cyclic coordinate sub-algorithm [114], has to be carried out in the two-
dimensional space in order to determine an optimal combination ( )DC, .  At the 
bottom level, a heuristic high-speed procedure to optimize the partial harmoni-
zation model DC

PHM
,  with independent input values C  and D , has to be im-

plemented. Thus, we substitute objective (17.2.7) by 
{ } ( ){ }R,D,CUD,C

PHMD,CCCSAxaM
D,C

⇒∪ , (17.2.10) 

where ∪  stands for a unification sign. 
 

17.2.3  Partial harmonization model PHM(C,D)=R 
As outlined above, parameters C  and D  are input values of the model as well 

as values minijc , maxijc , ijA  and ijB , ( ) ( )ANGji ,, ⊂ . The problem is as follows: de-
termine optimal reassigned budget values ijc  for each activity ( ) ( )ANGji ,, ⊂ , to 
maximize the project’s conditional reliability, i.e., 

{ }
( )

( ){ }



 ≤

∑ =
DGTPrxaM

ij

j,i
ijij

c
Cc,c

 (17.2.11) 

subject to 
maxmin ijijij ccc ≤≤ , (17.2.12) 

( ) ( )
∑

⊂

=
A,NGj,i

ij Cc . (17.2.13) 

The procedure of optimizing problem (17.2.11-17.2.13) has been outlined in 
§§14.4-14.5. Various variants of the algorithm are presented in [7,54,61,92]. 

 

§17.3  Estimating the utility of a portfolio of PERT-COST projects 
17.3.1  Introduction 
This presentation is actually a continuation of §17.2 and considers a compli-

cated hierarchical system comprising a variety of projects of different signifi-
cance. Such projects usually emerge in constructing new industrial and popu-
lated areas, where the significance of certain local projects entering the system 
may undergo changes within the projects’ realization. The latter often happens 
in the course of changing management policy as well as the economic situation. 

Another harmonization model covers a simplified although important case 
when all projects happen to be of equal significance and do not undergo drastic 
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changes in the course of their implementation.  The harmonization model be-
comes simpler in usage, and is based on determining optimal utility values via 
minimax principles [7,54]. 

Each project entering the portfolio comprises three essential, basic parame-
ters which define the project’s utility: 

• budget kC  assigned to each project ( )A,NGk , nk1 ≤≤ ; 
• the appropriate due date kD ; 
• reliability parameter ( )kkk D,CR , 

( )
( ){ }

( )
( ) 











=≤= ∑
kk j,i

kkkk
j,ic

kkk Cj,icDTPrxaMD,CR , 
 

(17.3.1) 

where kT  signifies the moment project ( )ANGk ,  is completed (a random 
value), on condition that budget kC  is assigned to ( )ANGk ,  and optimally reallo-
cated between activities ( )kji, . It goes without saying that relation ( )

( )
∑>

kji
kk jicC

,

,  

holds, otherwise project ( )ANGk ,  cannot be carried out. 
For each k -th project its utility kU  is calculated as follows [7,54]: 

( ) ( ) ( )[ ]k0kkkRkk0Dkk0Ck RD,CRDDCCU
kkk

−+−+−= ααα , (17.3.2) 

where kC0 , kD0  and kR0  are the least permissible basic values  that can be ac-
cepted in the course of the project’s realization, nk ≤≤1 , while 

kCα , 
kDα  and 

kRα  
stand for local (partial) utilities per each parametrical unit. 

 

17.3.2  Assumptions 
For the models under consideration we will henceforth accept the same rea-

sonable assumption [7,54,64,92] which has been accepted in §14.2, namely (see 
14.2.4): 

reliability parameter ( )kkk D,CR  depends on budget value  kC  linearly, i.e., 
within each project ( )A,NGk  with fixed due date kD  relation 

( ) ( ) ( ) ( )
kkD

k00
"
k

kk00kk
"
kk

k00
'
k

kk00kk
'
kk

CC
D,CRD,CR

CC
D,CRD,CR

ρ=
−

−
=

−

−  (17.3.3) 

holds, where ( )
( )

( )
( )
∑∑ ≥>>>≥

kk ji
kkkkk

ji
k jicCCCCjic

,
min00

"'
0

,
max ,,  and 

kkDρ depends 

only on the project’s index k  and the due date kD . Here kC00  presents the mini-
mal possible budget value assigned to the k -th project. Note that 

kkDρ  may alter 
only when budget reassignment is undertaken at a fixed moment, otherwise the 
structure of the project  ( )ANGk ,   may undergo drastic changes. It goes without 
saying  that values 

kkDρ  may differ from project to project. 
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17.3.3  Harmonization model’s application 
Budget reassignment among the projects has to be carried out: 

• at the beginning of the planning horizon, i.e., at 0t = ; 
• at a certain moment t  when at least for one k -th routine project values kD  

and kη   undergo changes; 
• at a certain moment t  when one of the projects is accomplished. 

 

17.3.4  Case of different and equal projects’ importance 
For a project management system with projects of different importance we 

have solved [7,54,64] the harmonization problem with objective 
( )∑

=
⋅=

n

1k
kk1 UJ η . (17.3.4) 

Maximizing objective (17.3.4) means that the project management takes all 
possible measures first to support projects with higher priorities. Only after-
wards it takes care of other, less important, projects. 

In case of projects with equal priorities we will implement another objective 
satisfying [7,54,92] 

{ }
k

kD,C
2 UniMxaMJ

kk

= . (17.3.5) 
Objective (17.3.5) means that for projects with equal significance the project 

management takes all measures to support the “weakest” projects on the account 
of the “stronger” and the “faster” ones. That means, in turn, implementing a pol-
icy resulting in control actions aimed on projects’ leveling, in order to smooth 
the differing projects’ utilities. 

 

§17.4  Harmonization model for projects with different priorities 
The problem is as follows: for each k -th project determine optimal due date 

kD  and budget value kC , nk ≤≤1 , as well as optimal reassignment values for each 
activity ( )kjic , , ( ) ( )ANGji kk ,, ⊂ , to maximize the objective: 

{ } ( ){ }
( ) =⋅= ∑

=

n

1k
kk

j,icD,C
1 UxaMJxaM

kkk

η  

{ } ( ){ }
( ) ( ) ( )[ ][ ]









−+−+−⋅= ∑
=

n

1k
k0kRkk0Dkk0Ck

j,icD,C
RRDDCCxaM

kkk
kkk

αααη  
(17.4.1) 

subject to 
CC

n

1k
k =∑

=

, (17.4.2) 

( )
( ){ }

k
j,i

k Cj,ic
k

=∑ , (17.4.3) 

( ) ( ) ( ) maxkkmink j,icj,icj,ic ≤≤ , (17.4.4) 
k0kk00 CCC ≤≤ , (17.4.5) 

k0kk00 DDD ≤≤ , (17.4.6) 
k00kk0 RRR ≤≤ , (17.4.7) 
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( ) ( ) ( )kk00kkkkkDk00k D,CRD,CRCC
k

−=− ρ , (17.4.8) 
( )

( ){ }
∑≥

kj,i
minkk00 j,icC , (17.4.9) 

( )
( ){ }
∑≤

kj,i
maxkk0 j,icC ,  nk1 ≤≤ . (17.4.10) 

Problem (17.4.1-17.4.10) has been solved in [7,54,64,92]. Extensive experi-
mentation has verified the model’s effectiveness [7,64]. 

 

§17.5  Harmonization model for projects of equal significance 
The problem of maximizing the system’s utility can be formalized as fol-

lows: for each k -th project determine budget value kC  and due date kD , nk ≤≤1 , 
to maximize utility of the project with the least utility value, namely, 

{ }
== k

kD,C
2 UniMxaMJ

kk

 

{ }
( ) ( ) ( ) 








−+−+−= k0kRkk0Dkk0C

kD,C
RRDDCCniMxaM

kkk
kk

ααα  

 
 

(17.5.1) 
 

 
subject to (17.4.2-17.4.10). 

Since the maximin approach has presented itself in a very good light  both in 
production planning and control [54,63] and in project management 
[54,92,118,151],  objective (17.5.1) has been suggested as a priority technique 
for improving utility values in complicated project management systems operat-
ing under random disturbances. 

Problem (17.4.2-17.4.10, 17.5.1) has been solved in [7,54,64,92]. 
Note that the general idea of solving both problems outlined in §§17.4-17.5 

has been outlined in §§14.2-14.3 when reassigning the company’s budget among 
the projects. Thus, a certain linkage between the concepts of harmonization and 
optimal resource reallocation can be drawn. 

All the outlined above concepts can be used for the case of several alternative 
stochastic network projects of CAAN type, outlined in §§16.1-16.6. For the case 
of PERT-COST projects the combination of models outlined in §§14.2-14.3 and 
§§17.1-17.5 provides good results (see [7]), while for the case of renewable re-
sources, e.g., resource capacities in the form of GRU, we recommend the com-
bination of models outlined in §§14.2-14.3, §16.6 and §§17.3-17.4. The har-
monization models for a portfolio of alternative stochastic projects may vary, 
but all the principal concepts remain the same. 
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§17.6  Numerical example: Estimating the quality of a single PERT-
COST project 

Consider a PERT-COST type project with random activity durations and 
p.d.f. satisfying (14.1.1). 

The basic project’s parameters are as follows: project’s budget C , due date D  
and reliability R . Partial utility coefficients are 0.1=Cα , 5.0=Dα  and 0.1=Rα , 
while the initial search steps (first iteration) for CCSA  are 4=∆ C  and 2=∆ D . 
The number M   of simulation runs for the PHM  is taken 000,2=M . Other pro-
ject’s parameters are as follows: 7.00 =R , 95.000 =R , 2500 =C , 23000 =C , 950 =D , 

8500 =D , 10=Cδ ,  0.2=Dδ , 1.0=Rδ  and 001.0=ε . 
The second iteration for the CCSA  is carried out with 0.2=∆ C  and 0.1=∆ D , 

while all further iterations, 2≥v , are carried out with 0.1=∆ C  and 0.1=∆ D . 
The performance of the harmonization model’s algorithm is illustrated on 

Tab. 17.1.  
 

Table 17.1.  Performance  illustration  of  the  harmonization  algorithm  (for  a  
beta-distribution  p.d.f.) 

№ 
of  search 

steps 

 
C  D  R  

№  v  
of iteration Feasibility 

 
Utility 
( )R,D,CU  

Value  ( )vU   
after 

the  v -th 
iteration 

0 250 95 1.000 1 Feasible 2.50 2.50 
1 246 95 0.996 1 Feasible 2.90 2.90 
2 242 95 0.922 1 Feasible 3.02 3.02 
3 238 95 0.793 1 Feasible 2.13 3.02 
4 242 93 0.861 1 Feasible 3.41 3.41 
5 242 91 0.723 1 Feasible 3.03 3.41 
6 244 93 0.895 2 Feasible 3.55 3.55 
7 246 93 0.912 2 Feasible 3.52 3.55 
8 240 93 0.814 2 Feasible 3.14 3.55 
9 244 94 0.936 2 Feasible 3.46 3.55 

10 244 92 0.835 2 Feasible 3.45 3.55 
11 245 93 0.914 3 Optimal 3.64 3.64 
12 243 93 0.875 3 Feasible 3.45 3.64 
13 245 94 0.951 4 Feasible 3.51 3.64 
14 245 92 0.855 4 Feasible 3.55 3.64 

Since values ( )3U  and ( )4U  coincide, the algorithm terminates after the fourth iteration 
 

Thus, the optimal utility value equals 64.3 . 
The following conclusions can be drawn from the Table: 
The cyclic coordinate search algorithm for determining the optimal utility of 

a medium-size project requires only four iterations to carry out the optimization 
process.  The increase of the project’s utility parameter after completing the 
fourth iteration (14 search points), as compared with the initial search point, 



 
 

339 

shows utility improvement of approximately 45%. Thus, it can be well-
recognized that the two-level heuristic algorithm to optimize the project’s har-
monization model performs well. 

Numerical examples for several stochastic network projects are outlined in 
[7,54]. 

 
§17.7  Application areas 
Harmonization models can be applied directly to all kinds of PERT-COST 

network projects with uncertainties associated with activities’ durations but 
without either technological risks or uncertainties on the stage of marketing the 
project’s products.  Such projects usually refer to the  public service area, like 
constructing new hospitals, schools,  stadiums, theatres, bridges and tunnels, 
new urban areas,  factories, etc. In our opinion, those projects represent an 
overwhelming majority of existing projects and, thus, require good quality 
monitoring. For such projects we suggest to use the newly developed harmoni-
zation techniques both for estimating the project’s utility and for introducing 
regulating control actions at inspection points to enhance the progress of the pro-
ject in the desired direction. Thus, harmonization modeling enables certain on-
line control procedures for projects under random disturbances. 

Besides the example outlined above, the developed harmonization principle 
covers a broad spectrum of other hierarchical organization systems, especially of 
man-machine type. Several important examples of potential areas of implemen-
tation are presented here [54]. 
I. Consider a complicated multilevel technical system to be designed, e.g., a 

new commercial aircraft. Here the number of basic parameters  which ac-
tually define the aircraft’s utility, exceeds three by far; the basic parameters 
are as follows: 

 • the budget assigned for constructing the new aircraft (an independent 
parameter); 

 • the number of passengers to be taken on board (an independent parame-
ter); 

 • the flight distance (a partially dependent parameter); 
 • the average cruise speed (a dependent parameter); 
 • the reliability value, i.e., the probability of the aircraft within a specified 

exploitation period not to develop any critical failure which may result 
in air fleet accidents,  sometimes of catastrophic nature (a dependent pa-
rameter); 

 • an environmental failure parameter, e.g., the level of noise (a dependent 
parameter); 

 • various technical design parameters,  e.g. the aircraft’s size,  weight or 
even certain aesthetic features which nowadays may influence the air-
craft’s priority level  (usually dependent parameters),  etc. 

 It goes without saying that increasing the number of basic parameters re-
sults in a dramatic increase of the level of complexity of the regarded har-
monization model. 
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II. In agriculture, e.g. in cotton harvesting, a multilevel decision-making con-
trol system is especially useful for cotton-growing areas with restricted re-
sources. Since all cotton harvesters are equipped with trailers, one of the 
independent basic parameters of the model should be the amount of trailers 
available to each harvester. Other basic parameters may be singled out as 
follows: 

 • the volume of the trailer (an independent parameter); 
 • the number of trailers used to form the so-called “cotton trains” deliver-

ing raw cotton to the cleaning factory (an independent parameter); 
 • the number of harvesters (an independent parameter); 
 • the weather forecast (a random disturbance parameter); 
 • the type and agricultural quality of soil (an independent parameter); 
 • the harvesting period for cotton (an independent parameter); 
 • the budget to be assigned for cotton harvesting in a cotton-growing dis-

trict (a dependent parameter); 
 • harvesting expenses per square unit of plantation (a dependent parame-

ter); 
 • the weight of cleaned cotton obtained from the above (a dependent 

parameter),  etc. 
 The cotton harvesting organization system is, thus, an extremely compli-

cated one.  However, using harmonization models as suggested in this pa-
per may result in significantly increasing the system’s utility. 

III. A promising application area of the discussed theory and methodology lies 
in developing new approaches for designing hospitals (or providing capital 
investments for expanding existing medical health facilities) in rural areas. 
The basic parameters to determine hospital’s utility  may be listed as fol-
lows: 

 • the main costs of designing and building a new hospital (an independent 
parameter); 

 • the population to be serviced (an independent parameter); 
 • accessibility and the geographical distance from the hospital to most 

remote settlements (an independent parameter); 
 • the number of beds (a dependent parameter); 
 • various quality and quantity parameters of medical care (partially de-

pendent parameters); 
 • the average number of days for a patient to stay in the hospital, i.e., the 

patient’s  “turnover” value (a dependent parameter), etc. 
 Thus, a hospital is a good field for implementing harmonization trade-off 

problems.  Note that within the last three decades numerous decision-
making models on health care and health service have been described in 
various publications. However, attempts to define the hospital’s utility in 
its entirety have not been undertaken as yet. 

Thus, the problem under consideration can be regarded as a fruitful one in 
stochastic Project Management. 
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§17.8  Conclusions 
The following conclusions can be drawn from the Chapter: 
1. We will implement the utility concept as a generalized system’s quality es-

timate which takes into account several essential parameters. The latter 
usually define the quality of the system as a whole. We have developed a 
generalized harmonization problem in order to maximize the system’s 
utility.  The corresponding model is optimized by means of a two-level 
heuristic algorithm. At the upper level (the level of independent parame-
ters) a relatively simple search procedure, e.g., the cyclic coordinate algo-
rithm, has to be implemented. At the lower level partial harmonization 
problems to optimize the dependent parameters, have to be used. 

2. For stochastic PERT-COST network projects three parameters are imple-
mented in the model: the budget assigned to the project, the due date and 
the project’s reliability to meet the due date on time. The harmonization 
model’s solution is achieved by means of implementing a two-level heu-
ristic algorithm. At the upper level a cyclic coordinate search algorithm to 
determine the quasi-optimal couple (budget – due date) is suggested. At 
the bottom level a high-speed heuristic procedure serving as a partial 
harmonization sub-model, is implemented: on the basis of input values 
(the assigned budget and the set due date) to maximize the probability of 
meeting the deadline on time by undertaking optimal budget reallocation 
among the project’s activities.  For the case of several stochastic network 
projects the developed theory enables determining optimal parametrical 
values for all projects in order to achieve the maximal utility level for the 
unification of all projects. The developed algorithm to optimize the har-
monization model for a hierarchical project management system in R&D 
design offices, presents a two-level heuristic procedure. At the upper level 
a cyclic coordinate search algorithm together with a subsidiary model to 
verify the feasibility is implemented. At the lower level certain linear pro-
gramming techniques can be applied to obtain an approximate solution.  
The harmonization model can be used both for projects with different pri-
orities and for projects of equal significance. 

3. For projects with renewable resources the following three parameters have 
to be implemented in the model: the number of GRU, the due date and the 
project’s reliability. Optimizing the GRU assignment is facilitated by 
means of techniques outlined in §§17.3-17.4 (for fixed-structure stochas-
tic network projects) and in §16.6 (for alternative projects of CAAN 
type). 

4. It can be well-recognized [7,54] that the outlined above techniques can be 
applied to estimate the quality of numerous projects in economics, safety 
engineering, construction, health care and life sciences, industrial engi-
neering, etc. 
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Conclusions 
 
1. This monograph is a result of all the best which has been developed by my-

self and my scientific school in Russia and Israel within the past five decades 
in the area of stochastic network modeling with emphasis on innovative pro-
jecting. 

2. In the monograph, we have outlined a variety of novel hierarchical models 
to monitor stochastic network projects with restricted resources. The pre-
sented hierarchical models include indicating control actions and optimiza-
tions problems for all levels. The models can be implemented for a very 
broad spectrum of R&D projects, especially for innovative projects. The 
software to simulate the models can be implemented on a PC, mainly for pro-
jects with a medium amount of activities. The outlined hierarchical control 
models can be used for practically all activity-on-arc network projects with 
independent activities durations and cost-duration functions. The models can 
be used both for controlling single projects and several projects with re-
stricted company budget. 

3. A broad variety of simulation and optimization models to monitor hierarchi-
cal R&D projects can be subdivided into three main classes: 
• planning models; 
• on-line control models; 
• scheduling models. 
As to the structure of the stochastic project’s network, the latter may refer to: 
• projects with fixed (deterministic) structure, and 
• projects with stochastic alternative structure. 
All the models presented in the book have been outlined according to this 
classification. Several important models (mostly scheduling ones) refer si-
multaneously to more than one class (usually planning and scheduling mod-
els). 

4. On-line control models enable both determining inspection (control) points 
gt  to inspect the project and to determine its speed 

gt
υ  to proceed with until 

the next control point 1+gt . Such a model comprises a stochastic optimization 
problem with a non-linear chance constraint and a random number of opti-
mized variables. The problem is too difficult to be solved in the general case. 
Thus, heuristic solutions have been developed [54,62,64,66,73,86-87]. 
Three types of heuristic algorithms have been presented and described in the 
monograph: 
A. Using sequential statistical analysis to maximize the time span 

ggg ttt −=∆ +1  and, thus, minimizing the number of inspection points 
[64,66,68]. 
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B. Using the concept of a risk averse decision-maker [63,68,72]. However, 
algorithms of both types A and B are unfit to solve cost-optimization 
problems. 

C. Using the chance constrained principle [54,73,83-84], when the problem 
at a routine control point gt  is to determine the proper speed τυ  and the 
next control point 1+gt  in order to minimize total processing costs within 
the planning horizon, subject to a chance constraint. At each control point 
the decision-maker centers around the assumption that there is no more 
than just one additional control point before the due date. 

5. Algorithms of type C have been primarily aimed at organization systems 
[54,73], but later on have been essentially refined for stochastic network pro-
jects, both for the case of a single project [83] and for several stochastic pro-
jects [84]. The refinement centers on the idea, that determining speed τυ  is 
carried out by means of a long-term forecasting on the basis of the p -
quantile estimation, while determining the next control point 1+gt  is based on 
a short-term forecasting by means of substituting random values for their av-
erage estimates. 

6. The backbone of the monograph is the research which has been undertaken 
in the area of alternative stochastic network models. In our opinion, this area 
suits mostly modern innovation projects. The high level of indeterminacy in 
conjunction with permanent changes in the network’s structure makes alter-
native stochastic models the perfect technique to formalize decision-making 
“brain-storming”. Two controlled models are outlined - the CAAN model 
[53-57,68,75,82] and the more generalized GAAN model [53,67]. 

7. The CAAN model is a fully divisible controlled alternative activity network 
for projects with both random and deterministic alternative outcomes in key 
nodes. At each routine decision-making node, the algorithm singles out (by 
means of lexicographical lookover) all the subnetworks (joint variants) corre-
sponding to all possible outcomes from that node. Decision-making results in 
determining the optimal joint variant and in following the optimal direction 
up to the next decision-making node. The model can be applied to networks 
with non-intersecting fragments only. 

8. For the case of time-cost optimization of a CAAN model the monograph 
presents an iterative approximate algorithm enabling a quasi-optimal solution 
with two parameters. Extensive experimentation has shown [9,75,82] that the 
approximate algorithm performs well and provides high accuracy solutions. 

9. The GAAN model [9,53-54,67-68,157] is a non-divisible network which, 
being more complicated than its ancestor CAAN, is nevertheless more rele-
vant to highly complicated R&D projects when decision-making has to be 
facilitated with incomplete or inadequate information on the alternatives. 
Such a model is particularly important for innovative R&D projects with 
multiple alternative technology choices, when several alternative ways exist 
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for reaching intermediate and ultimate goals. The model can be widely used 
in optoelectronics, aerospace and defense-related industries, in projecting 
new software (Information Technology Projects), in R&D projects both with 
multiple technologies and stochastic evolution of technology leading to obso-
lescence effects [9,67,134], as well as in many other projects of innovative 
nature. 

10. The monograph includes several resource scheduling models for managing 
stochastic network projects. The first type of models is based on resource re-
allocation to determine optimal planned start moments in order to minimize 
total management expenses. This approach has been successfully imple-
mented for the case of consecutive operations entering the project. The re-
garded model has been applied for a group of projects, and experimentation 
verifies that the model’s algorithm performs well [53,74,151]. 
Another resource supportability model has been outlined for monitoring sev-
eral stochastic projects in the form of network graphs. The model covers a 
flexible project management system. It minimizes the average operational 
expenses subject to the chance constraints, for each project separately. The 
model can be used in project management as a decision support techniques 
for planning and monitoring several stochastic network projects. It has been 
successfully used for small and medium size projects of PERT type. The pre-
sented model is suitable for resource scheduling in stochastic network pro-
jects, when the processing of certain activities is based on delivering re-
sources [79-80]. 

11. Several presented resource supportability models center on using two re-
source delivery schedules: 
• for extremely costly and rare resources; the corresponding resource deliv-

ery moments have to be predetermined and calculated beforehand, i.e., be-
fore the project actually starts; 

• for limited resources which are at the disposal of the project and have to 
be hired at a predetermined time. 

The objective of the resource supportability model boils down to minimizing 
the total average expenses of the resource consumption within the planning 
horizon. Optimization is facilitated by means of simulation, in combination 
with a cyclic coordinate descent method and a knapsack resource reallocation 
model. The algorithm performs well and enables the model’s flexibility 
[53,81,151]. 

12. The monograph includes a resource constrained scheduling model for pro-
jects under random disturbances and with alternative structure based on a 
two-level decision-making [85]: 
• at alternative deterministic decision nodes; the purpose is singling out all 

alternative subnetworks in order to choose the one with the minimal aver-
age duration; 
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• at the project’s essential moments when at least one activity is ready to be 
operated but the available amount of resources is limited. A competition 
among those activities is carried out to determine the subset of activities, 
which have to be operated first and can be supplied by available resources. 
Such a competition is carried out by a combination of a knapsack resource 
reallocation model and a subsidiary simulation algorithm. 

Since an alternative stochastic network model is usually structured from sub-
networks of GERT type, the regarded resource constrained project schedul-
ing algorithm is based on multiple realization of a standardized resource con-
strained algorithm for GERT models. The algorithm can be “tuned” for any 
probability distribution of activity durations. 

13. Various hierarchical control models for monitoring several stochastic net-
work projects are presented. The included models cover the following cases: 
• several PERT-COST -type projects; 
• several CAAN type projects with budget resources; 
• several CAAN type projects with renewable resources.  

14. A multilevel on-line control model for several PERT-COST projects to be 
realized simultaneously is outlined. On the project level each project is con-
trolled separately to minimize the number of control points, subject to a 
chance constraint not to deviate from the planned trajectory within the plan-
ning horizon with pregiven probabilities. If at the control point it is antici-
pated that the project will not be on target subject to the chance constraint, 
then an emergency is called and the remaining projects’ budget is reassigned 
at the second level among the remaining projects so that the faster ones may 
help the slower. Such a budget reassignment is also performed at the plan-
ning stage, i.e., before the beginning of the projects’ realization. Two con-
flicting objectives are embedded in the model: one to minimize the number 
of control points and the other to maximize the probability for the slowest 
project to meet its due date on time. 

15. A hierarchical decision-making model for controlling CAAN type projects 
with cost resources is presented. For multilevel control models of such type, 
the upper level (the company level) is usually faced with the problem of op-
timal budget reassignment among several network projects. On the medium 
level (project level) the management determines the optimal outcome direc-
tion at every deterministic alternative decision node (milestone) which is 
reached in the course of the project’s realization. In order to determine both 
the optimal outcome and the corresponding subnetwork, one has to calculate 
average durations for all subnetworks subject to the limited budget. The sub-
network with the minimum average duration (after solving the budget reas-
signment optimization problem for all subnetworks to minimize the average 
duration) determines the optimal outcome direction at the decision node. 
Later on, the project is carried out on the lower level according to the chosen 
subnetwork, until the next decision node. 
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16. For the case of monitoring a multilevel system comprising several CAAN 
type projects with renewable resources of GRU type we have outlined sev-
eral optimization models aimed at GRU reallocation among the projects. 
Both cases of projects of different and equal significance are examined. 

17. In case of monitoring a complicated stochastic network project we suggest 
to honor the following concepts [68]: 
• Scheduling and control procedures must not be incorporated in one model. 
• A control model has to be based on probabilistic approaches and has to 

implement probabilistic terms. Such a model has to be used only at several 
control (inspection) points. We suggest applying the control model not to 
the initial network (which for some projects may comprise a large amount 
of activities), but to a modified one, with a medium amount of activities at 
the utmost. For such a modified model, an activity can be a subnetwork (a 
fragment) of the initial network. 

• Scheduling procedures are applied to the initial network and are carried 
out between two adjacent routine control points. They are usually based 
on heuristic procedures (sometimes very doubtful) and may result in bi-
ased estimates and errors. But the latter are periodically corrected by 
means of introducing proper control actions. 

• Thus, we recommend developing the on-line control model as an addi-
tional tool, as a decision-making support model to assist the project man-
ager carry out the project. On the basis of such a model, the project man-
ager may implement any action he finds reasonable, e.g., to enhance the 
progress of the project. 

18. In the case of a large-scale project [68]: 
• First, modify the initial large-scale project to an enlarged aggregated net-

work of medium size (comprising not more than 40÷50 activities). 
• Second, apply to that aggregated project on-line control techniques in or-

der to determine the project’s proper speeds and inspection points. 
• Third, reaggregate the enlarged project to its initial size. 
• Four, reschedule the activities between the adjacent inspection (control) 

points according to their average values, i.e., implement deterministic 
scheduling techniques for project’s fragments between adjacent decision-
making points. The latter can be utilized as corrective indications. 

19. We have outlined the newly developed [7,54] techniques to estimate the 
quality of stochastic network projects. Estimating the project’s quality is 
based on application of the harmonization theory [54] to a linear function of 
basic project’s parameters. 

20. The monograph presents a standard and very effective two-level heuristic 
algorithm to solve a variety of outlined optimization problems (see, e.g., 
Chapters 11-13). At the lower level the simulation model undertakes numer-
ous simulation runs to manage the project’s realization. At the upper level a 
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heuristic search subalgorithm carries out cyclic coordinate optimization to 
determine the optimal coordinate variables. Extensive experimentation [49-
54,92,118,151] has shown the efficiency of the algorithm. 
As a matter of fact, we have chosen the cyclic coordinate search method and 
have used it successfully over a lengthy period because of the deep affection 
we developed to it from the very beginning, in recognition of its major bene-
fits which combine relative simplicity with outstanding performance. This 
does not ban of course from integrating in future additional non-linear search 
methods which might prove to be quite useful as well. 

21. This monograph covers not only innovative R&D projects. Other network 
projects of innovative nature, e.g., long-term projects in the construction in-
dustry when creating and building unique installations, designing or develop-
ing new transcontinental pipe-lines, etc., can be planned and controlled by 
using the outlined theory. Note that the latter can be applied to any network 
project with a high level of uncertainty, namely: 
• projects with random activity durations, but without milestones (decision 

nodes) and feedback loops; 
• projects with both random activity durations and decision nodes (mile-

stones of deterministic type); 
• projects with random activity durations, milestones of both random and de-

terministic types and feedback loops. The latter type is often used when 
designing and creating new machines and unique installations with no 
similar prototypes in the past. When using our theory we do not see any 
principal difference between designing a unique missile or projecting a 
unique software (Information Technology Projects). 

To sum up, there are various industries operating with high technology pro-
jects, when the nature of the problems is unknown at the start of the project 
and where alternative technical solutions can be found in key nodes. 
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