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||| Editorial

In the middle of the 20™ century a group of gifted scientists including
D.Malcolm, L. Roseboom, C. Clark and W. Fazar, suggested a new method of
project management based on network analyzing. This method which acquired
world-wide popularity under the name PERT provided excellent application re-
sults in managing complex space- and defense-related projects “Apollo” and
“Pollarius”. In the 60-s and 70-s, many scientists from all over the world did
their best to further develop theoretical and application aspects of the PERT
methodology.

Yet, as soon as in the early 80-s the promising PERT legacy began transmit-
ting distress signals. The main problem boiled down to the growing gap between
the latest theoretical PERT achievements, on one hand, and the rather poor level
of practical field implementations based on insufficient and improper assump-
tions, on the other. The latter almost reduced the universal PERT method to
merely managing models of deterministic type only. All other models of manag-
ing complex R&D projects not only including random stochastic elements and
restrictions but also displaying stochastic structure being subject to random in-
fluences and disturbances, either disappeared from the scientists’ working table
or became subject to fierce and often justified practitioners’ criticism. As a mat-
ter of fact, from the very first days of PERT implementations a number of vigi-
lant and emphatic scientists warned [13,101,128,142,152] the broad interna-
tional PERT community about difficulties and even principal failures originating
from infertile attempts to implement complicated probabilistic models on the ba-
sis of primitive assumptions reducing their profound stochastic nature to a cheap
determinate palliative. When the latter scenario was chosen, any kind of moni-
toring the project’s model became virtually impossible; as a result, the pregiven
due date was most commonly unmet.

Following the regarded misfortunate developments, the PERT method
through recent years ceased to meet its primary objective, namely, providing a
powerful on-line control method for complex stochastic network projects; in-
stead, it downgraded to a kind of advisory information system with control ac-
tions linked to managerial decisions only. The Russian delegation to the 22™
World Symposium of the International Project Management Association (Rome,
2008) mentioned that every complex system being denied its scientific basement
ceases to be creational and vibrant. Nowadays, the Russian Federation decided
to create within its borders a science-oriented future-city Skolkovo aimed at de-
veloping pioneering high-tech projects of immense complexity and importance.
That is why we may be nothing but proud to accommodate the Publishing House
to issue the new scientific monograph by Golenko-Ginzburg Dimitri on monitor-
ing complex and often unique stochastic network projects. The author made an
ambitious and at the same time successful attempt to demonstrate that it is his
theory and that of his scientific school developed and cherished through the last
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50 years first in the USSR and later on in Israel with fruitful links to colleagues
and followers in the nowadays Russian Federation, that suits mostly the novel
innovative projects developed at Skolkovo, which require modern probabilistic
models of multi-choice and stochastically-driven nature.

Referring to the monograph’s contents, it can be well-recognized that practi-
cally all top questions related to:

¢ planning stage modeling;

e on-line control models;

e stochastic network project scheduling under chance constraints;

e hierarchical control models for several stochastic network projects,

- have been explicitly and thoroughly outlined. All types of presented mod-
els are applicable to both types of stochastic R&D projects, namely:

a) projects with fixed structure and random activities’ durations;

b) projects with alternative structure and stochastic multi-variant outcomes.

Thus, a conclusion can be drawn that the monograph represents a useful re-
search which is published in due time and within the right scientific community
which is by all means mature to make the utmost benefits from its legacy.

The monograph can be used as tutorial for graduate scholars specializing at
“Project Management”, “Industrial Engineering”, “Operations Research”, as
well as in Academic Institutions and Design Offices.

Scientific Editor
Vladimir Voropaev - Professor, SOVNET President,
Academician of the Russian Academy of Natural Sciences



||| Preface

It is important for me to share with my readership the reasons which brought
me to the decision to write this book. Circa five decades ago a scientific group in
the former USSR under my supervision started undertaking research in the area
of managing stochastic network projects. In the 60’s and 70’s 1 was responsible
for R&D stochastic network projecting linked to the Ministry of Aviation. After
my immigration to Israel in 1985 the group proceeded with the research, being
ultimately joined by gifted Israeli scholars. Today, thanks to my ongoing par-
ticipation in the major world conferences held by the International Project Man-
agement Association (IPMA), I am well-informed about the current state of
things in my research area. The resulting picture is neither one-sided nor simple.

It can be well-recognized that the initial period of excitement caused by the
effectiveness of the primary network models applied to world-renowned R&D
projects “Pollarius” and “Apollo” (1960-1970), gave way to a phase of sobering
not to say disappointment. At that period it became clear enough to anybody in-
volved that the variety of existing projects can be subdivided into two different
types. The first one is characterized by a very low level of indeterminacy, more-
or-less simple graph structure with a well-known, standard project’s goal. This
type of projects comprises, e.g., construction enterprises aimed at providing
standardized living houses in populated areas, where all activities entering the
network projects, have practically deterministic durations. In order to monitor
such projects one has merely to substitute the duration of a certain activity
(when necessary) by its mean value. Thus, the network project becomes in fact
deterministic, and can be easily managed. There is no need in on-line control,
and the project manager is fully satisfied by receiving periodically advisory in-
formation.

The second type of projects is characterized by high indeterminacy and is
usually aimed at creating new unique high-technology products, which have no
prototypes in the past. The project’s activities’ durations are random values with
a large variance range. Projects may comprise branching nodes of random or de-
terministic types and milestones of deterministic type (decision nodes). Monitor-
ing such projects cannot be facilitated by means other than on-line control mod-
els. Representative examples of this type can be found among R&D projects, es-
pecially those linked to innovative technologies.

Over the years run, the fate of both projects’ types was different. Non-
complicated projects nowadays are lucky to benefit from the world-wide support
of above 350 software packages available on market, with the annual sales reve-
nue of over 25 billion dollars [158]. On the contrary, complicated R&D projects
have very much of a feel of being left behind.

From the beginning, in the early 80’s, an attempt was made to manage
unique complicated projects by merely the same techniques as those which did
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so well for the case of simple deterministic projects. This attempt, however,
proved very soon to become a major failure. Within more than a decade this
shortcoming has been the subject of a prolonged professional debate involving
also sharp and sometimes emotional criticism [101,128,143, etc.].

In our opinion, the main reason for the nowadays situation when complicated
projects are all usually completed late and remain, in practice, uncontrolled,
boils down to the very fact that they are carried out under random disturbances
(new estimates of random nature without any prior experience, random activi-
ties’ durations, periodical revisions of networks over time due to random emer-
gency situations, etc.). However, project managers usually [128] avoid probabil-
istic terms since they are not sufficiently trained. They are trying to control
highly complicated projects with uncertainty by using deterministic techniques.
This leads to biased estimates that underestimate the actual time required to ac-
complish the project. Therefore the targeted project’s due date can rarely be met.

Since I am undertaking research mainly for that (second) type of projects, |
was often asked about the reasons of such inconsistencies. The question be-
comes even more challenging in view of the well-known fact that many of our
Japanese colleagues demonstrate over years convincing success of numerous re-
alized innovative projects with a high level of indeterminacy [141,148]. That is
why I carefully examined the situation to compare results accumulated by our
scientific group with those stemming from Japanese conceptions.

As a result of this cross-over examination, it became evident that as far as our
scientific group is concerned, our main research philosophy is not only non-
contradictive but even close to the basic Japanese conceptions of planning and
controlling with uncertainty. Moreover, they supplement each other.

What is the essence of the Japanese philosophy when controlling a system
with uncertainty and being at the outset of something which is basically inde-
terminate? Many examples from high performance practice in Japan show that
under such circumstances the control system should not work to a predetermined
plan, but should be inherently adaptable, seeking at each decision node to assess
the best route forward, reconfiguring if appropriate the ultimate goals.

Note that the subproblem of determining the best route may be very difficult
and complicated, especially for systems with a high level of indeterminacy.
Solving this subproblem usually results in solving the general control problem.

Further, what is our philosophy in project planning and control with indeter-
minacy? We are not predetermining the initial network model; moreover, in cer-
tain cases the structure of such a model may be indeterminate. At the initial
stage of the project’s realization, the network may be restricted to a source node
and several alternative sink nodes (goals) together with some milestones (a deci-
sion-tree model). Various activities are usually of random duration. Such a sto-
chastic alternative network is renewed permanently over time, including changes
in the ultimate goals. At each decision node our techniques enable us to choose
the optimal outcome. Decision making is repeatedly introduced for the renewed
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network at every sequentially reached decision node.

Thus, the modern project manager should not fear indeterminacy but on the
contrary, has to treat the latter the way the Japanese do, i.e., as a friend and as-
sistant, and avoid excluding indeterminacy from the international Project Man-
agement community like the devil being banished from church.

In 1996 1 was appointed key speaker of the NATO workshop “Managing and
Modeling Complex Projects” [68]. From the broad spectrum of various planning
and control problems for stochastic network projects, within several days of dis-
cussion it was decided to choose and recommend for practical usage four mile-
stones, namely

1. Alternative network models.

2. On-line control models.

3. Stochastic network project scheduling.

4. Multilevel control models for several stochastic network projects.

Since that forum 15 years have elapsed but little was done if at all to resolve
the above mentioned stochastic project management contradiction. In certain
senses, the situation even became more critical [158]. As a matter of fact, former
PERT creators [117] have been brilliant scientists, both in mathematics, indus-
trial engineering and management. Nowadays, their majority are not with us any
longer. New project managers have certain experience in managing industrial
enterprises but nothing more than that! Most of them are not trained either in
cybernetics (including the probabilistic area) or in industrial engineering. Some
of them prefer undertaking voluntaristic decisions which are not based on any
theoretical grounds. This leads to an extremely dangerous situation when sci-
ence is emasculated de-facto from PM.

It can be well-recognized that in the last several years a variety of countries,
especially those entering the BRIC group (Brasilia, Russia, India, and China),
exercise a great effort to boost and modernize their industries. This, in turn,
causes for the necessity to carry out ambitious innovative projects, the majority
of them belonging to the regarded class of complicated stochastic network pro-
jects. Taking into account that since 1977, when the excellent monograph by S.
Elmaghraby [40] has been published, not a single book on managing stochastic
network projects has been presented to the readers, it becomes clear why 1 de-
cide to write this book. The general idea is to summarize all the results devel-
oped by our scientific group within five decades in order to help the innovative
projects companies to carry out their projects on the basis of scientifically
grounded planning, control and scheduling techniques.

This is not a text-book but a monograph. The difference between the two
causes me to refrain from rewriting anew classical theoretical grounds devel-
oped and presented so well like [40]; instead, I use to quote appropriate refer-
ences.

This monograph refers not only to R&D projects but to all other complicated
projects under random disturbances, which are innovative in nature. For exam-
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ple, the venture of constructing the Trans-Siberian pipe-line from the Arctic
coast to China cannot be catalogued as an R&D enterprise; yet, it definitely in-
volves a great amount of sophisticated models of alternative type with branching
outcomes. Thus, to carry out such a project successfully the manager really has
to be experienced in stochastic network control and participate in a great amount
of “brain-storming”. Another example may be associated with developing a
multi-well major oil/gas field with variable well capacities, to minimize the pro-
ject’s total expenses as well as consecutive exploitation costs, etc.

The structure of the book is as follows. We have subdivided the monograph
into five main parts. The first part “General Concepts of Stochastic Network
Projects” comprises the first three chapters. In Chapter 1 a brief characteristic of
the most essential models to monitor stochastic network projects, is presented.
In Chapters 2-3 a justification of determining the main parameters of stochastic
network projects by means of analytical and simulation methods, as well as their
usage in planning, controlling and scheduling, is outlined.

The second part “On-Line Control Models for Stochastic Network Projects”
considers the mostly used on-line control models, namely:

e models based on sequential statistical analysis (Chapter 4),

e models based on risk averse decision-making (Chapter 5), and

e models based on the chance constraint principle (Chapter 6).

The third part “Alternative Stochastic Network Models” is the core of the
book and comprises four chapters. Chapter 7 presents the general description of
an alternative stochastic model, Chapter 8 - the fully divisible controlled alterna-
tive activity network (CAAN), Chapter 9 - the non-divisible controlled GAAN
model. Chapter 10 outlines a two-parametrical optimization algorithm for the
CAAN model.

The fourth part “Resource Constrained Project Scheduling for Stochastic
Network Projects” comprises three chapters. Chapter 11 considers various re-
source supportability models without predetermined resource delivery schedules
in advance, while Chapter 12 presents deterministic resource delivery schedules,
1.e., before the project actually starts. In Chapter 13 various resource support-
ability models of mixed type, which can be used both on planning and control
stages, are outlined.

The fifth part “Hierarchical Models for Planning and Controlling Several
Stochastic Network Projects” comprises four last chapters. Chapters 14-15 pre-
sent a hierarchical on-line control model for PERT-COST projects. In Chapter
14 the planning stage models are outlined, while Chapter 15 presents local on-
line control models together with a unified three-level hierarchical model includ-
ing planning, on-line control and scheduling stages. In Chapter 16 two hierar-
chical decision-making models for a CAAN type alternative model are pre-
sented. Both cases of cost resources (a hierarchical PERT-COST model) and re-
newable resources are considered. Thus, Chapters 14-16 cover our basic results
in creating hierarchical on-line control models as well as hierarchical support
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models. In Chapter 17 novel harmonization models to estimate the stochastic
network projects’ utility, are outlined. Here the concept of utility signifies the
quality of the project’s functioning.

In conclusion, I would like to thank my gifted pupils N. Archangelski,
D.Blokh, A. Gonik, V. Kuzmin, S. Livshitz, A. Malisheva and Sh. Sitniakovski
who helped me in preparing the book’s material.

I am deeply obliged to Prof. Vladimir Voropaev for his valuable editorial as-
sistance as well as to Dr. Avner Ben-Yair for his excellent secretarial duties.

I am privileged to thank my colleagues Profs. Vladimir Burkov and Sergey

Barkalov for their great help and support in the course of compiling the mono-
graph.
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PART |
GENERAL CONCEPTS OF STOCHASTIC NETWORK
PROJECTS

Chapter 1. A Survey of Planning, Controlling and Scheduling
Models in R&D Innovation Projects Under Random
Disturbances

§1.1 Alternative stochastic network projects

1.1.1 Basic stochastic network models for innovative projects

From the broad spectrum of various planning, control and scheduling models
for stochastic network R&D projects the following ones can be considered [68]:

1. Alternative network projects under random disturbances with various alter-
native outcomes in key nodes. The control model chooses the optimal outcome
direction at every decision node that is reached in the course of the project’s re-
alization.

2. On-line control models for network projects, for which the project’s pro-
gress can be evaluated only by means of inspection in control points. The pro-
ject’s due date and the chance constraint to meet the deadline are pregiven. An
on-line control model determines both the control points and the control actions
to be introduced at those points to reorient the progress of the project in the de-
sired direction.

3. Stochastic network project scheduling with several non-consumable activ-
ity related limited resources. Each activity is operated at a random speed that
depends on the resource capacities assigned to that activity. The model deter-
mines, for each activity entering the project, both starting time values and corre-
sponding resource capacities. The model’s objective is to minimize the expected
project duration.

4. A multilevel control model for several stochastic network projects which
unifies the models outlined above.

1.1.2 Alternative network projects under random disturbances

While the literature on PERT and CPM network techniques is quite vast, the
number of publications on alternative networks remains very scanty. Various au-
thors, e.g., Eisner [37], Elmaghraby [38-40], Pritsker [131-133], Whitehouse
[161], etc., introduced the concept of a Research and Development (R&D) pro-
ject as a complex of problems and actions towards achieving a definite goal.
Several adequate network models for such projects have been considered. The
first significant development in that area was the pioneering work of Eisner [37]
in which a “decision box” with both random and deterministic alternative out-
comes was introduced. Elmaghraby [38] introduced additional logic and algebra
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in network techniques, while Pritsker, Happ and Whitehouse [131-133,161] de-
veloped the GERT techniques for alternative network models with stochastic
outcomes in key nodes. Xespos and Strassman [166] introduced the concept of
the stochastic decision tree, while Crowston and Thompson [28-30] and later on
Hasting and Mello [99] suggested the concept of multiple choices at such alter-
native nodes, when decision-making is of deterministic nature (Decision CPM
models). Lee, Moeller and Digman [111,123] developed the VERT model that
enables the analyst to simulate various decisions with alternative technology
choices within the stochastic decision tree network. Golenko-Ginzburg [53-57]
has developed a unified controlled alternative activity network (CAAN model)
for projects with both random and deterministic alternative outcomes in key
nodes. At each routine decision-making node, the developed algorithm singles
out all the subnetworks (the so-called joint variants) that correspond to all possi-
ble outcomes from that node.

Decision-making results in determining the optimal joint variant and follow-
ing the optimal direction up to the next decision-making node. However, the
techniques thus far developed can only be applied to fully-divisible networks
that can be subdivided into non-intersecting fragments. The CAAN model does
not include non-fully-divisible networks. Thus, the model is not relevant to most
R&D projects, since the latter are usually structured from non-divisible subnet-
works. Golenko-Ginzburg and Blokh [67] have developed a more universal al-
ternative network - the Generalized Alternative Activity Network (GAAN
model). All types of the previously developed alternative network models,
namely, Eisner’s model, GERT, Decision-CPM, VERT and CAAN networks,
are particular cases of the GAAN model.

1.1.3 The GAAN model

Let’s take a brief overview of the GAAN model. A detailed description of the
latter will be presented later on, in Chapter 9.

A GAAN model 1s a finite, oriented, acyclic activity-on-arc network G(wv,4)
with the following properties:

I. G(w, 4) has one source node n, and no less than two sink nodes »'.

II. Each activity (;, j)e 4 refers to one of the following three different types:
Type 1: activity (;, j) is a PERT activity (PA) with the logical “must fol-
low” emitter in node ; and the “and” receiver in node ;;
Type 2: activity (;, ;) 1s an alternative stochastic activity (ASA) with the
logical “exclusive or” emitter in node ;. Each (;, j)e 4 of ASA
type corresponds to a probability o< p, <1, while node i com-

prises a set of at least two probabilities p,, Y p, =1;
J

Type 3: activity (i, j) is an alternative deterministic activity (ADA) with
the logical “exclusive or” emitter in node ;. Node ; is a decision-
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making node, and the sum of the corresponding transfer prob-
abilities (at least two of them) is assumed to be unity.

II. Activities of all types may come out of the same node ieB. Thus,
unlike the CAAN model, the GAAN model is not a fully-divisible net-
work.

IV. Activities of all types may enter one and the same node.

A joint variant of the GAAN model G(N,4) 1s a subgraph (subnetwork)
G*(N *,A*) satisfying the following conditions:

1. G*(N *,A*) has one source node coincident with that of graph G(v, 4).

2. If G*(N*,A*) comprises a certain node i, 1.e., ie N*, then G*(N*,A*) com-

prises all activities (i, j) of types PA and ASA leaving node ;.

3. If G*(N*,A*) comprises a certain node ; having alternative outcomes of
ADA type in the GAAN model G(v,4), then G*(N*,A*) comprises only
one activity of this type leaving that node.

4. G*(N *,A*) 1s the maximal subgraph satisfying conditions 1-3.

Call a full variant of joint variant G*(N *,A*) a subnetwork of PERT type
G"(N",4")c G"(N",4") which can be extracted from the latter by simulating
non-contradictory outcomes of ASA type in interconnected nodes and excluding
alternative non-simulated outcomes.

Call the probability of realizing a full variant G the product of all values p,

for all activities of ASA type entering the full variant.

1.1.4 Decision making in CAAN and GAAN -type models
To control a project, such as any production process, it is necessary to intro-
duce decision-making in order to reach the goal while optimizing a given objec-
tive (the optimized value OV ) subject to certain restrictions (the restrictive val-
ues RV ). When the objective is the project’s duration, the primary restriction is
usually the project’s cost, and vice versa. For a project represented by a GAAN
type model decision-making boils down to choosing the directions of the pro-
ject’s progress in controlled nodes (decision-making nodes) with alternative out-
comes of ADA type, since alternatives of ASA type are uncontrollable. Thus the
optimization problem consists of the following steps:
Step 1. At each decision-making node which has been reached at moment ¢ in
the course of the project’s realization,
e to determine and to single out all the joint variants from the remain-
ing project G, at moment ¢;

e to calculate the optimized value or and all the restrictive values
RV for each variant.

Step 2. To determine the optimal joint variant and to follow the optimal direc-
tion up to the nearest decision-making node. The problem should be
repeatedly solved for the reduced network in every sequentially
encountered decision-making node.
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1.1.5 Mathematical formulation

The mathematical formulation of the optimization problem is as follows
[57,67]: determine the optimal joint variant G** < G(N, 4) that optimizes the ob-
jective function

slrlo Jramgyen) 3 [ Flo-)eelo™] (1.L1)
subject to
Elo, (G )]={GH§G* [Qv (¢)-priG™ }} <H,, 1svsV. (1.1.2)

Here, F(G™) is the objective function of full variant G*, Pr{G™}| is the prob-
ability of realizing G*, 0,(G™) is the v-th constraint criterion, and H, is the pre-

set restriction level for that criterion. Note that for certain particular cases, the
value of ¥ may be zero, i.e., the optimization problem is unconstrained, or the
problem comprises only one constraint (1.1.2) without objective function
(1.1.1).

Since problem (1.1.1-1.1.2) is NP-complete [10,67], in order to obtain the
optimal solution one has to develop a lookover algorithm to single out all the
joint variants.

The idea to enumerate the joint variants of the CAAN model [57] is based on
introducing lexicographical order to the set of maximal paths in the CAAN
graph. The corresponding lookover algorithm is very simple in usage [57,68]. In
the case of a GAAN network the order on the set of paths has to be substituted
for the order on the set of subgraphs [67]. To develop the enumeration algo-
rithm, we use the ideas to enumerate the so-called trajectories for assignment
problems, or special matrices for traveling salesman problems [9,67]. Note that
singling out the maximal trajectory for an assignment problem is similar to de-
termining the joint variant with the maximal objective value. Since a trajectory
can be regarded as a vector and the latter, in turn, can be mapped onto a set of
integer numbers, the trajectories can be enumerated. Similar ideas are used in
developing a lookover algorithm to enumerate and single out all the joint vari-
ants [67].

If the number of joint variants becomes very high, the developed lookover
algorithms (both for the CAAN and GAAN models) require much computa-
tional time, especially for networks with many alternatives. Golenko-Ginzburg,
Blokh and Gutin suggested an approximate method which is based on the ideas
of combinatorial optimization with two parameters [75,82]. Unfortunately, the
developed method suits only the CAAN type network models.

Note, in conclusion, that alternative stochastic models (ASM) may be costly
and complicated in usage. But for modern and complex innovation projects the
gain from implementing such models may be tremendous.
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§1.2 On-line control models for network projects

After determining the optimal joint variant (in the case of an alternative net-
work project) the latter is realized and controlled in order to meet the project’s
due date on time. A joint variant may be either a PERT, or a GERT type net-
work, usually with random activity durations. For most R&D projects the pro-
gress of the project cannot be inspected and measured continuously, but only at
preset inspection points. An on-line control has to determine both inspection
points and control actions to be implemented at those points to alter the progress
of the project in the desired direction. On-line control is usually carried out to
minimize the number of inspection points needed to meet the target, since in-
specting the project’s output is usually a costly operation. In addition, on-line
control for a stochastic network project has to be carried out subject to a chance
constraint. Thus, the generalized on-line control model has to be formulated as
follows [64,66,68]: determine both optimal control points #, to inspect the pro-

ject and optimal control actions CA(tg,rg) to be implemented at those control
points (r, being the index of the control action), in order to minimize the number
w of inspection points

MinW (1.2.1)
subject to

Prit,.r, {2 p’, (1.2.2)

ty =0, (1.2.3)

ty =D, (1.2.4)

toy —t, ZA. (1.2.5)

Note that if implementing a control action CAlt,,r, ) results in determining the

project’s speed v, to proceed with until the next control point ¢, and if several

alternative speeds can be chosen, then the optimal control action enables adopt-
ing the minimal speed while honoring chance constraint (1.2.2) [66,68].

It can be well-recognized that control model (1.2.1-1.2.5) is in fact a stochas-
tic optimization problem with a non-linear chance constraint and a random
number of optimized variables. Such a problem is too difficult to solve in the
general case. Thus, heuristic control algorithms have been developed [64, 66,
68, 72] to determine the next inspection point ¢ . Three algorithms are consid-

ered:
A. Using sequential statistical analysis to maximize the time span
At, =t —t,.
B. Using the methodology of a risk-averse decision-maker.
C. Using the methodology of the chance constraint principle.
Algorithm A [66,68] solves the on-line control problem as follows: to maxi-

mize the objective (., -, ) subject to (1.2.3-1.2.5) and
Priy, >V (e, |2 p*y Ve, <ts<t,,,. (1.2.6)
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This problem can be solved by determining the maximal value 7* satisfying

T" = %%){t :l;/(q,)Zp*}. (1.2.7)
Here
1 . ’% ﬁt *
= du, q,=——, H =V, -V'lt,), 2
v == le 2dus g =5 () (1.2.8)

while H, and s(#,) designate the average and variance of random value H,,

correspondingly. In practice, 7° can be calculated by means of simulation with a
constant step of length A . The procedure of increasing : step-by-step is followed
until (1.2.7) ceases to hold. The thus determined value 7* satisfies ¢, + 7~ =+

g+l
Algorithm B is based on the concept of risk-averse decision-making [68,72].
Given a routine inspection point ¢ , the project’s output observed at that moment

v, and the control action CA(tg,rg) to be implemented at moment ¢, up to the
next inspection point, the problem is to determine that next point ¢, . As for Al-
gorithm A, the objective is to maximize the time span

g +1

~1,). Value ¢, is de-
termined so that even if the project develops most unfavorably in the interval

[zg ,tgﬂ}, i.e., with the minimal rate v‘(tg,rg ) then introducing the most effective

control action CA(tgH,r) at moment ¢, enables the project to meet its target on

time, subject to the chance constraints. Here r is the index of the most effective
control action, e.g., » 1s the index of the highest possible speed to be introduced.
Value is determined via “risk-averse” heuristics

I/tg + V'(tg > rg thﬂ - tg )+ ‘_}(tg+l ’I/'XD - tg+1 ) = V* * (1 29)
Note that the minimal rate v'(tg,rg) can be substituted for a ,-quantile of the
random speed v(tg,rg) when the confidence level , is close to zero.

Both on-line control algorithms are implemented in real time. However, on
order to check the validity of any of them, the algorithms’ functioning can be
simulated. The comparative efficiency of Algorithms A and B has been tested
on various examples of medium-size PERT projects. A general conclusion can
be drawn [68] that applying the second algorithm rather than the first results
both in essentially smaller computational time and in cheaper project realization.
Both methods honor the chance constraint p* and can be implemented for vari-

ous control models for projects of PERT type.

Note that the above outlined on-line control models can also be applied to
control projects of GERT type, i.e., to network projects which comprise various
random alternative outcomes. For such projects, a certain part of the activities
will not be carried out in the course of the project’s realization. Golenko-
Ginzburg et al [65] recommend splitting the remaining project into two sub-
graphs at each decision-making node. The first would be a PERT graph that is
realized before meeting the nearest random alternative node, while the second

19



subgraph is a GERT network. After the next random alternative node is reached
and the random outcome is simulated, the procedure of subdividing the remain-
ing project is carried out anew.

However, both models A and B do not support solving cost-optimization
problems. This shortcoming called for the creation of the on-line control model
C which is a cost-optimization model and based on the so-called chance con-
straint principle [73,83-84].

Given the average processing costs per time unit for each activity to be oper-
ated under each speed, together with the average cost of performing a single in-
spection at the chosen control point, the problem at a routine control point ¢, is

to determine the proper speed v and the next control point ¢, in order to

minimize the total processing costs within the planning horizon, subject to a
chance constraint. At each control point, decision-making centers around the as-
sumption that there is no more than one additional control point before the due
date. Following that assumption, two speeds v*) and v*:) have to be chosen at a
routine control point ¢ :

1. Speed v*) which has to be actually introduced at point , up to the next

control point ¢

g+l

2. Speed v which is forecast to be implemented at control point 7,

the due date b.

The couple (v, v()) providing the minimal total cost expenses, has to be ac-
cepted.

The model is particularly effective when each activity can be measured as a
partial accomplishment of the entire planned program.

We suggest applying control model C for small- and medium-size projects.
In cases of large projects, we suggest aggregating the initial model order to
transfer the latter to an equivalent one, but of medium- or small-size. After ob-
serving the project’s output at a routine control point and introducing proper
control actions, i.e., determining the new processing speed and the next control
point, the aggregated network is transformed back to the initial one, and the pro-
ject’s realization proceeds.

up to

1

§1.3 Stochastic network project scheduling with non-consumable lim-

ited resources

Golenko-Ginzburg, Gonik and Sitniakovski have developed a variety of algo-
rithms on resource constrained project scheduling under random disturbances
and with limited resources [68-71,74,78-80,90,93-94].

An activity-on-arc network project of PERT or GERT type with random ac-
tivity durations is considered. Several non-consumable activity related re-
sources, such as machines or manpower, are utilized to carry out the project.
Each activity (i, /) in such a project requires resources of various types k with
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variable capacities r,. Each resource capacity », assigned to any activity is lim-
ited within pregiven bounds ;" and ;™. Each type of resource & is in limited
supply with a resource limit R, that is fixed at the same level throughout the

project’s duration. It is assumed that each activity is operated at a random speed
that depends on the resource capacities assigned to that activity.
The problem is to determine, for each activity (i, /) entering the project, both

the starting time values s, i.e., the timing of feeding-in resources, and the re-
source capacities r, for each type of resource k assigned to that activity. The

problem’s goal is to minimize the expected project duration [71].
The problem’s mathematical formulation is as follows:

Min £17(6/5,,.70 ) (1.3.1)
subject to

et <y < 90 j)e G(N, 4), (1.3.2)

RZ(Z‘/SU,;;';I()SRI{(Z‘) V>0, 1<k<n. (1.3.3)

Model (1.3.1-1.3.3) is a stochastic optimization problem that cannot be
solved analytically in the general case; the problem allows only a heuristic solu-
tion. Decision-making, i.e., determining values s, and r,, is facilitated at deci-

sion points 7, and 7, either when one of the activities (i, ;) is finished and addi-

tional resources become available, or when all activities (i, /) leaving node ; are
ready to be processed. Thus, both values s, and », are not calculated before-

hand and are random variables dependent on our future decisions. If one or more
activities (i, j, (i j, b (i,,» 7, ), m =1, are ready to be processed at a routine de-

cision point ¢ and all of them can be supplied by all types of available resources
of maximal capacity, the needed resources are fed in and activities (;,,, ),

I<g<m, start to be operated at moment ¢, i.e., S, =t, r, =r"™, 1<k<n.

igJq igigk ?
Otherwise, a competition has to be arranged to choose the optimal subset of ac-
tivities that can be supplied by available resources.

An important auxiliary procedure precedes holding the competition, namely,

calculating, for all the competitive activities (i, j, ), their conditional probabili-
ties pli,,/,) to be on the critical path in the course of the project’s realization.
Calculating values p(i,,,) is carried out via simulation: at each decision point,

all the activities that have not yet started to be operated are simulated using the
corresponding probability density functions.

Two cases are considered [68]:

a) all resource capacities r, for each k-th type of resources are fixed and re-

main unchanged;

b) values », may vary within pregiven bounds 73" and ;™.

21



In the first case random values ¢, do not depend on values r,, and the corre-

sponding density functions remain unchanged in the course of the project’s
simulation. Later on, the critical path of the remaining graph with simulated ac-
tivity durations is determined. By repeating this procedure many times, the cal-
culated frequencies for each activity (i, , ) to be on the critical path are taken as

pli,.j,)- Values p(i,,;, ) enter the zero-one integer programming model to carry

out the competition [70].
For the case of variable resources r, resource capacity values r, that will

be assigned to the activities under competition are unknown beforehand; the
same goes for all other activities in the remaining project. Thus, we are unable to
simulate the activities” durations, that depend parametrically on values » . To

overcome these difficulties, the authors in [71] use heuristics, e.g., by assuming
ry =0.5- (Uk o ) After calculating conditional probabilities p(i, /) the knap-

sack reallocation problem among the competitive activities has to be solved at
each decision point [71].
For the case of fixed », a classical zero-one programming problem with a

precise solution can be formulated as follows: determine integer values &

iqjq ?

1< ¢ <m,to maximize the objective

Ma {Z[i pli,.J,) ]} (1.3.4)

q/q

subject to

m

Z(éiqjq'riik)SRk(t)9 I<k<n, (1.3.5)

979
q=1
where
{O if activity (i oo ) will not obtain resources,
=

éij

q

1 otherwise .

In the case of variable resource capacities », a heuristic model is suggested

[71]. Since the project management has to choose the subset of activities and to
reallocate among them the available resources in order to maximize the total
contribution to the expected project duration, the following resource realloca-
tion problem (to be solved at each decision point ¢) is suggested:

Determine optimal values S, and r ,, 1<k<n, 1<g<m, to maximize the

objective

J = Maxk{ZQ, S A )} (1.3.6)
subje(;: tgq " h

< <™ v, )e GV, 4), (1.3.7)
i(@iqjq-riqjqk)SRk(t) Vt>0, 1<k<n, (1.3.8)

9=l
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where & . 1s as before.
974

Problem (1.3.6-1.3.8) is NP-complete. Both a precise solution facilitated by
means of a lookover algorithm, and a heuristic solution based on an essential
diminishing of the set of feasible solutions to be examined, are obtained [71].

The resource constrained project scheduling algorithm comprises the knap-
sack problem (1.3.4-1.3.5) or (1.3.6-1.3.8), together with the auxiliary problem
to determining conditional values p(i, j). The algorithm to solve problem (1.3.1-
1.3.3) is implemented in real time: namely, all activities can be operated only
after obtaining necessary resources. Decision moments £, and 7, cannot be pre-

determined. However, should the question of evaluating the efficiency of the re-
source constrained project scheduling model (1.3.1-1.3.3) arise, the algorithm’s
functioning can be simulated by random sampling of the actual duration of ac-
tivities. By simulating the algorithm many times, the average project’s duration
as well as the probability of accomplishing the project by a given due date (if
necessary) can be estimated. Intensive experimentation [68] has been carried out
for various medium-size PERT and GERT projects with several (3+5) non-
consumable limited resources. A conclusion can be drawn that the algorithm
performs well and is easy to handle.

Further progress in the area of developing resource constrained project
scheduling models has been achieved by the scientific school of Golenko-
Ginzburg [69-74,77-90]. Several types of models have been developed. The first
model considers a simplified case of several stochastic projects in the form of a
chain of consecutive operations. Models of the second type consider several si-
multaneously realized stochastic network projects of PERT type. Resource
scheduling models of the third type also cover PERT type projects, but with two
different kinds of renewable resources:

a) extremely costly resources (A-resources) which have to be utilized for a
short time within the project’s time span. Such resources have to be pre-
pared and delivered externally at planned moments;

b) renewable resources (B-resources) which are at the system’s disposal.

In all types of models each project’s activity utilizes several non-consumable
related resources with fixed capacities, e.g., machines or manpower. Each type
of resource at the management’s disposal is in limited supply, with a resource
limit that is fixed at the same level throughout the entire project’s duration, i.e.,
until the last project is actually accomplished. For each operation, its duration is
a random variable with given density function. Processing costs per time unit to
hire and to utilize all the total available resources are pregiven.

The problem is to determine:

o the earliest starting moment for each project’s realization;

e the limited resource levels for each type of resources to be stored during

the projects’ realization;

e the moment when resources are fed in and projects’ activities start, -
in order to minimize the average total expenses of hiring and maintaining re-
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sources subject to the chance constraints.

For the third class of developed models the problem boils down:

a) to predetermine in advance, i.e., before each projects starts to be realized,
the deterministic delivery schedule for A-resources which are not at the
projects’ disposal;

b) to determine both the starting times and the resource capacities to be util-
ized for activities which require limited renewable B-resources which are
not at the projects’ disposal;

c) to determine the starting moment s of each project’s realization, -

in order to minimize the average total projects’ expenses subject to the chance
constraint.

The problem is solved by means of simulation, in combination with a cyclic
coordinate descent method and a knapsack resource reallocation model. The
simulation model comprises three optimization cycles and can be used for small-
and medium-size projects only. Otherwise, aggregation has to be applied.

Our basic concept which has been fully supported by the NATO Forum
“managing and Modeling Complex Projects” (Kiev, Ukraine, December 1996)
is as follows:

a) Scheduling and control procedures must not be incorporated in one model.

b) A control model has to be based on probabilistic approaches and has to
implement probabilistic terms. Such a model has to be used only at sev-
eral control (inspection) points. We suggest applying the control model
not to the initial network (which for some projects may comprise a large
amount of activities), but to a modified one, with a medium amount of ac-
tivities at the utmost. For such a modified model, an activity can be a sub-
network (a fragment) of the initial network.

c¢) Scheduling procedures are applied to the initial network and are carried
out between two adjacent routine control points. They are usually based
on heuristic procedures (sometimes very doubtful) and may result in bi-
ased estimates and errors. But the latter are periodically corrected by
means of introducing proper control actions.

d) Thus, we recommend developing the on-line control model as an addi-
tional tool, as a decision-making support model to assist the project man-
ager carry out the project. On the basis of such a model, the project man-
ager may implement any action he finds reasonable, e.g., to enhance the
progress of the project.

§1.4 Multilevel control model for several stochastic network projects
with restricted resources

For many years the scientific school of Golenko-Ginzburg has undertaken
extensive research in the area of hierarchical project management [7,53-54,64-
65,68,92].

A company realizing several stochastic network projects G,(N,4), 1<i¢<d, is
considered. The total budget ¢ at the company’s disposal to carry out the pro-
jects is limited. A hierarchical control model [68] as presented in Fig. 1.1 is sug-
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gested. At each level the model undertakes optimal control actions as follows:

e at the company level the control action boils down to optimal budget reas-
signment among the projects (Problem I);

e at the project level, in case of an alternative stochastic network project, its
optimal joint variant is determined (Problem II);

e at the project level, if the project is of PERT or GERT type, optimal con-
trol actions result either in optimal budget reallocation among the project
activities (Problem IIIA for PERT-COST projects) or in determining op-
timal speed of the project’s realization (Problem IIIB); thus, solving Prob-
lems IITA and IIB results in optimizing the progress of the project to-
wards its goal, in order to re-orient the project in the desired direction;

e at the inspection level, on-line control is carried out, i.e., optimal control
points to inspect the progress of the project are determined (Problem IV);

e at the lowest level considered, namely, the scheduling level, resource con-
strained project scheduling is implemented by reallocating, if necessary,
non-consumable resources among the project’s activities (Problem V). Al-
though Problem V is an optimization one, it cannot be regarded as a con-
trol action. This is because the problem’s solution is not based on the pro-
ject’s output ¥, which is observed at control point ¢, .

Optimal budget reallocation (Problem I) can be formulated for two alterna-
tive cases:

a) projects are of equal importance;

b) projects have different priorities n,, 1<¢<d.

In case of a), the optimization problem becomes as follows [7,54,92]:
At any moment ¢ > 0 reassign budget among projects to optimize objective

d
= Marf S -2, (C, )} (1.4.1)
L=l
subject to
d
2.C.<C, (1.4.2)
=1
P,(C,)>p" VI:1<1<d. (1.4.3)
In case of b), the problem is as follows:
J, z%ax%inpn(ch)? t20, (144)

subject to (1.4.2-1.4.3). Both problems are solved at time ¢ =0 or have to be re-
peatedly resolved at >0, after an emergency is declared at the project level.
Problems (1.4.1-1.4.3) and (1.4.2-1.4.4) are solved by means of simulation, un-
der additional heuristic assumptions [64].
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Optimal budget reassignment among d different
‘—l stochastic network projects (Problem I) EOII;{)any
ev
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Choosing the optimal direction of the project’s progress ) ;’;o'ec ¢
for stochastic network projects with alternative decision )
nodes (Problem II)

Optimal joint variant

Level

Introducing optimal control actions for non-alternative
e———— projects of PERT or GERT type: optimal budget re-

The project is allocation among the project activities for PERT-COST
ma&ﬁeet its projects (Problem IMIA) or determining the optimal
deadline on time speed of the project’s realization (Problem IIIB), etc.
subject to the

chance constraint

gz\e project’s due d&::te can Pl%nned trajii:tory curve Inspection
met subject to the is determine:
chance cog]straint (control)

Determining inspection (control) points by using on- !
line control (Problem IV). Observing the project’s Leve
output V,,  at the control point tg and evaluating the
project’s deviation from the planned trajectory

No The project deviates from the
Tiiks Sij deviatipn | planned trajectory

Reallocating non-consumable resources by realizing Scheduling
resource constrained project scheduling (Problem V) Level

Figure 1.1. Multilevel control model (at moment t,)

Problem I is outlined in Chapter 14, while Problem II is considered in Chap-
ter 16. As to Problem IITA, it can be formulated as follows:
Given budget C, assigned to project G,(N,4) at moment ;, determine opti-

mal values (i, /), (i, /)€ 4, to maximize objective

%‘% {P/r (C/r )} (1.4.5)
subject to
T (1.4.6)
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ch/ =C,. (147)

(i)

Problem (1.4.5-1.4.7), together with several related optimization problems, is
solved by means of simulation [7,54,62,64,92].

Problem IIIB can be applied to various stochastic network projects with vari-
able speeds, e.g., to construction projects where each activity can be operated at
several possible speeds that are subject to random disturbances. Such speeds
may correspond to different hours a day per worker and, thus, depend on the de-
gree of intensity of the project’s realization. Thus index r, of the control action

is the index of the speed to be introduced at each control point ¢, . For projects

with variable speeds two optimization objectives may be implemented [66]:
e to minimize the number of inspection points, and
¢ to minimize the average index of the project’s speeds.
The control model is as follows: at any routine control point ¢ , determine

values ¢, and r, to minimize two contradicting objectives

{%{f}{W(tg )} (1.4.8)
{tz\@}{;g(tg )} (1.4.9)
subject to

toy — 1, 2A, (1.4.10)
r, =11l/€i<nr{rg :Pr(tg,rg)Zp*}. (1.4.11)

Restriction (1.4.11) means that at each control point ¢, the problem is to de-

termine the minimal index of the project’s speed that, with the given chance
constraint guarantees meeting the project’s due date on time. Thus, the restric-
tion prohibits unnecessarily high intense speeds. The solution of optimization
problem (1.4.8-1.4.11) is outlined in [66].

The solution of Problem IV, i.e., determining control points ¢, [68], is out-

lined in Chapters 4 and 15-16. Both algorithms A and B may be applied, but the
second one is more efficient and requires less computational time [72]. The so-
lution of the scheduling Problem V at the lowest hierarchical level is outlined in
[70,72]. The solution of Problem I serves as the initial data for Problems II and
III (at the project level). The solution of Problem III serves, in turn, as initial
data for Problem IV, which carries out on-line control, i.e., determines the opti-
mal control points to inspect the progress of the project. This is done by deter-
mining the planned trajectories that must be repeatedly corrected in the course of
the project’s realization. If, at any control point, it turns out that a project devi-
ates from the planned advancement trajectory, an error signal is generated, and
decision-making takes place based on resolving Problem III to re-orient the pro-
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gress of the project in the desired direction, 1.e., to maximize the probability of
meeting the deadline in time. If the problem’s solution enables the project’s
deadline to be met, subject to the chance constraint, a corrected planned trajec-
tory i1s determined and Problem 1V is solved again to determine the next control
point. Otherwise, an emergency signal is generated and decision-making takes
place at the company level. Problem I is resolved under emergency conditions to
reassign the remaining resources (e.g., the remaining budget) among the non-
accomplished projects. Thus, in the course of controlling a group of projects, the
latter are first optimized on line “from top to bottom”. In the case of emergency,
the generated “bottom-to-top” signals are converted into control actions to en-
able the projects’ due dates to be met on time.

§1.5 A linkage between deterministic and stochastic approaches in pro-

ject management

1.5.1 The main stages

It can be well-recognized that controlling a large-scale stochastic R&D net-

work project, e.g., of PERT type, cannot be facilitated by using deterministic
methods only. Substituting random activity durations by their corresponding av-
erage values leads to unavoidable mistakes, mainly in calculating the project’s
parameters. Thus, the project remains practically uncontrolled. However, it is
also practically impossible to apply stochastic techniques to a large-scale pro-
ject, since the existing control procedures usually prove to be unfit for large-
scale organization systems [54,147,149]. Thus, the only possible outcome to be
suggested is as follows:

1. First, modify the initial large-scale project to an enlarged aggregated net-
work of medium size (comprising not more than 40+50 activities).

2. Second, apply to that aggregated project all the stochastic control tech-
niques under consideration, in order to determine the project’s proper
speeds and inspection points.

3. Third, reaggregate the enlarged project to its initial size.

4. Four, reschedule the activities between the adjacent inspection (control)
points according to their average values, i.e., implement deterministic
scheduling techniques for project’s fragments between adjacent decision-
making points. The latter can be utilized as corrective indications.

Let us examine the main stages of the regarded procedure in greater detail.

1.5.2 _Developing enlarged aggregated networks with random activity dura-
tions

According to the project’s Work Breakdown Structure (WBS) [149], an ini-
tial network is presented in the form of a group of lists of initial activities. The
name of the activity is taken from the WBS.

We will henceforth call a fragment a list of activities together with all the
links both entering and leaving that fragment. The step-by-step procedure [53-
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54] of developing an aggregated network is as follows:
Given:
e activities (i, j) entering the PERT initial network G(,4);
e random activity durations ¢, with pregiven density distribution.
Step 1. Simulate random durations 1, (i, j) = G(N, 4).
On the basis of simulated values ¢, calculate for each ie N the earliest

}:
,,
@
N

moment of the event’s realization, 7¢(i), where & denotes the index of
the simulation run.

Repeat Steps 1 =2 m times in order to obtain representative statistics.
Calculate

T, ()= min T°();

1<e<M

}Om}c‘:)
= |+
o |0
Rl

T, (i)z max Té(i)-

1<E<M
Ste By using decomposition methods [49,149,153] subdivide the initial set
into enlarged fragments. Each fragment comprises a list of detailed ac-
tivities together with all links connecting activities entering the list
(“internal” links) as well as “external” links connecting the fragment
with other fragments.
Steps 6—10 have to be implemented for each fragment F  G(N, 4) separately.
Step 6. Determine two events i” and i, which we will call henceforth the start

and the finish events of fragment F, respectively:
i;, e F delivers the minimum to Min {7, (i)}, and

:

if, € F delivers the maximum to Min {r,,)}, where 7 (i) and 7,,(i)

have been calculated on Step 4.

For both events i’ and i}, calculate the earliest and the latest moments
(refer also to Step 4): 7, (%), 7,,(i)> T (%), T (05, )-
Calculate the minimal fragment’s duration ;" =T, (zf )— T, (i:; )

Calculate the maximal fragment’s duration ™ =T, (zf )— T (iF).
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Step 10. Assume that the fragment’s duration z, is a random variable with a -

distribution density function

pF(x)=L)4(x—r?‘" Yo —xf

max min
(TF —TF

within the range [r;“'“ T } The justification of this probability law

d

will be demonstrated in Chapter 2.
Thus, the project is aggregated with random durations of enlarged activities.

1.5.3 On-line control problems for medium-size projects

For most medium-size network projects under random disturbances the pro-
gress of the project cannot be inspected and measured continuously, but only at
preset inspection points. On-line control determines both inspection points and
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control actions to be implemented at those points in order to alter the progress of
the project in the desired direction. Such control actions may boil down to the
following:

1) redistributing the budget among the project activities in order to enhance

the project’s speed, or

2) introducing additional shifts, etc., to change the speed of the progress of

the project without investing additional resources, etc.

Such control actions are usually aimed at minimizing either the number of in-
spection points, or the average project’s speed subject to a chance constraint to
meet the project’s due date on time. The corresponding control algorithms are
outlined in Chapters 4-6 and can be applied to small- and medium-size projects
only.

After implementing the control actions the modified aggregated network has
to be transformed back to the initial network.

Consider a medium-size PERT type network model with due date p. A de-
sirable probability p* that in practice enables completion of the project in time,

is pregiven. At each control moment ¢, the project management may introduce
several possible alternative speeds v, to proceed with until the next control
point. Let ¥, be the project’s output (project volume) observed at control point
t>0 and let the project’s target (goal) be »*. Denote Pr(tg,v,g) the confidence
probability to accomplish the project in time after introducing speed v, at con-
trol point ¢, .

The main control problem [68] boils down to determining both control (in-
spection) points ¢, (g =1.2,..,N ) and speeds v, to proceed with from that point

on until the next adjacent control point ¢, in order to minimize number N of
inspection points

g (1.5.1)
subject to

Pr{tg,v,/g }Zp*’ (1.5.2)
t, =0, (1.5.3)
ty=N, (1.5.4)
toy —t, ZA. (1.5.5)

Pregiven value A is usually introduced to force convergence.
Note that if introducing control actions results in determining the project’s

speeds v, to proceed with until the next control point ¢, and if several alterna-

tive speeds can be chosen, then the optimal control action enables implementing
the minimal speed to develop the project honoring chance constraint (1.5.2).
Control model (1.5.1-1.5.5) is a stochastic optimization problem with a non-
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linear chance constraint and a random number of optimized variables. Such a
problem proves to be too difficult to solve in the general case, especially for
large-size projects.

§1.6 Conclusions

1. After introducing control actions outlined in §1.2, the modified medium-
size aggregated network is transformed back to the initial network and the
project’s realization proceeds.

2. All other procedures at the project’s level, e.g., scheduling procedures, are
carried out for the initial network between two adjacent control points by
using traditional deterministic techniques based on the activities’ average
durations. Although such calculations usually comprise biased estimates
and evaluation errors, they are periodically corrected by introducing
proper control actions. That is why those procedures in combination with
control actions are more effective than without controlling the project in
inspection points.

3. The suggested approach has to be implemented as an additional tool in or-
der to help the project manager to realize the project on time. Applying
the corresponding techniques does not result in undertaking any revisions
in traditional project management procedures.

In the next two Chapters we are going to undertake a review of all probabilis-
tic aspects and parameters of stochastic network modeling. Later on we will out-
line in detail the problems of network R&D projecting under random distur-
bances.
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Chapter 2. Random Activity Durations in Stochastic Project Man-
agement

§2.1 Justification of probability laws for man-machine network activity

durations

In all Network Analysis Methods (NAM) applied to planning and control
while creating a new complicated advanced technology project with uncertainty
of its activity durations, it is common to assume those durations being in fact
random variables. In other words, indeterminate activity durations are assumed
to be randomly distributed with a probability law accepted for the regarded
NAM and common to all activities engaged. As to parameters of the probability
law, they are preset for each activity by their responsible executers on the basis
of either standard values, or a-priori considerations, or their personal profes-
sional experience. Nearly for all NAM the activity durations’ probability density
function (p.d.f.) is a-priori assumed to possess the following qualities:

a) continuity;

b) unimodality;

c) two non-negative intersection points between the p.d.f. and the x axis.

The most common probability law conforming to the above requirements is
the famous beta-distribution which is successfully used in major NAM [7, 22,
39,46,49-51,98,100,104,116-117,125,146,etc.].

The general property of beta-distribution boils down to a variety of insignifi-
cant random factors with only minor influence on the p.d.f. shape, aside a few
random factors of significant influence. As a result of the latter the resulting
p.d.f. shape becomes usually asymmetrical. This circumstance becomes domi-
nant when executing the majority of the network activities. This is also the main
reason to a-priori preference of beta-distribution as the typical p.d.f. for man-
machine operations.

The relation for beta-distribution p.d.f. may be written down as

! x"M1=x)"" for 0<x<1,

B(p.q.x)=1 B(p.q) (2.1.1)
0 for x<0,x>1,
where B(p,q) stands for the beta-function
SRR A V)N ()
B(p,q)=|x""(1- dx = ———=, 2.1.2
(p CI) Jo.x ( x) X F(p+q) ( )

and the gamma-function I'(z) is determined as

D(z)=[etdr,
0
while for integer - the function I'(z)=1-2-...-(z—1)=(z-1)!. The central moment
of order » may be calculated as

1 1x,+,,_1 ) x:B(p+r,q)
B(P,CI)J; (1-2)"d B(p.q) (2.1.3)

For » =1 we obtain the relation for average E(x)
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- Bp+lg) _Tlp+r(@(p+q) _ p

) B(p.q) T(p+q+1(p)(q) p+q’ @.1.4)
Variance V(x) (for » =2) may be calculated as follows:
a_Be+24) ((p Y __ plpr) p P

-2 e O e @19

It can be well-recognized that specific function properties in (2.1.1) depend
parametrically on , and 4, while for p>2 (and, correspondingly, for ¢ >2) the
p.d.f. turns zero in its left (or right) terminal point together with its first deriva-
tive. For 1< p <2 (and, correspondingly, 1< ¢ <2) the p.d.f. has a vertical tangent
in its left (or right) terminal point. For 0< p <1 (and, correspondingly, 0<¢<1)
the p.d.f. turns infinity, if values of x fall into the left (right) terminal point,
while a vertical line intersecting its left terminal point would be the tangent. For
p<0 (and, correspondingly, ¢<0) the integral in (2.1.2) turns infinity, which
means the p.d.f. ceases to exist.

The justification of using probability laws for man-machine operations in or-
ganization systems under random disturbances has been considered in [7,49,54].
It can be well-recognized that the outlined results fully comprise the case of ac-
tivity networks in stochastic project management. Two cases have been consid-
ered [7,49,54]:

e case of one processor to operate a man-machine activity;

e case of several processors.

The first case covers a man-machine operation which is carried out by one
processor, 1.e., by one resource unit. The processor may be a machine, a proving
ground, a department in a design office, etc.

It is assumed that the operation starts to be processed at a pregiven moment
7,. The completion moment F of the operation is a random value with distribu-

tion range [7,,7,]. Moment 7, is the operation’s completion moment on condition
that the operation will be processed without breaks and without delays, i.e.,
value 7, is a pregiven deterministic value. Assume, further, that the interval
[7,,7] is subdivided into » equal elementary periods with length (7, - 7,)/ n. If
within the first elementary period [7,, 7, +(7, -7,)/n] a break occurs, it causes a
delay of length A =(7, - T)/ n. The operation stops to be processed within the
period of delay in order to undertake necessary refinements, and later on pro-
ceeds functioning with the finishing time of the first elementary period

T0+(T1 _To)/n +(T2—T1)/n =T, + (T2—T0)/n.

It is assumed that there cannot be more than one break in each elementary pe-
riod. The probability of a break at the very beginning of the operation is set to
be ». However, in the course of carrying out the operation, the latter possesses
certain features of self-adaptivity, as follows:

e the occurrence of a break within a certain elementary period results in in-
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creasing the probability of a new break at the next period by value ,, and

e on the contrary, the absence of a break within a certain period decreases
the probability of a new break within the next period, practically by the
same value.

The probabilistic self-adaptivity can be formalized as follows:

Denote 4* the event of occurrence of a break within the (i +1)-th elementary
period, on condition, that within the ; preceding elementary periods & breaks
occurred, 1<k<i<n. It1is assumed that relation

k p+kn
P4f) = Trin (2.1.6)
holds. Note that (2.1.6) is, indeed, a realistic assumption.

Relation (2.1.6) enables obtaining an important assertion. Let P(4°) be the
probability of the occurrence of a break within the (i +1)-th period on condition,
that there have been no breaks at all as yet. Since

0 V4
P(4°) = e (2.1.7)
it can be well-recognized that relation
P(AikH) — P(Aik) n
; = — (2.1.8)
Pla?) p

holds. Thus, an assertion can be formulated as follows:

Assertion. Self-adaptivity (2.1.6) results in a probability law for delays with a
constant ratio (2.1.8) for a single delay.

Let us calculate the probability p,, of obtaining m delays within » elemen-

tary periods, 1.e., the probability of completing the operation at the moment
F=T+mA=7T+2(1,-T).
n

The number of sequences of » elements with m delays within the period
[1,,F] is equal c”, while the probability of each such sequence equals

{lm_[1 (p+ in)}rﬁl(l —n+ in)}

i=0 i=0

(2.1.9)

n—1

H(1+in)

i=0
Relation (2.1.9) stems from the fact that if breaks occurred within 7 periods
and did not occur within & periods, the probability of the occurrence of the delay
at the next period is equal
p+hn
1+ (k+h)
while the probability of the delay’s non-appearance at the next period satisfies
l-n+#kn
T+ (kehhy (2.1.11)
Using (2.1.10-2.1.11), we finally obtain

(2.1.10)
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m,n

Note that n=0, i.e., the absence of self-adaptivity, results in a regular bino-
mial distribution.

Let us now obtain the limit value p,, on condition that , - « . It has been
shown [49,54] that the p.d.f. of random value ¢ = lim”" satisfies

n—w
pelx) = B(;’q) (1) (2.1.13)
where B(p,q) represents again the beta-function. Thus, relation (2.1.13) practi-
cally coincides with (2.1.1).

Thus, changing more or less the implemented assumptions, we may alter to a
certain extent the structure of the p.d.f. At the same time, its essential features
(e.g., asymmetry, unimodality, etc.) remain unchanged.

The considered in [7,49,54] case of several processors enables conclusion as
follows:

1. For a broad spectrum of activities being processed by means of several
identical resource units, the corresponding time — activity density func-
tions prove to be asymmetric functions with finite upper and lower distri-
bution limits. Those p.d.f.’s are close to a beta-distribution p.d.f.

2. Various assumptions in activity — time analysis (and in risk analysis as
well!) center on determining a numerous “family” of beta-distributions
with different versions - parameters p and 4 - of the general p.d.f. (2.1.1).
Those versions may result in changing certain estimates for certain activi-
ties. At the same time, they have practically no influence on the project as
a whole.

3. Thus, a general conclusion can be drawn that a random activity — time
duration has a very high potential to be close to one of the beta-
distribution probability density functions. The obtained theoretical
grounds cover a broad variety of activities including the man-machine ac-
tivities (with one processor) and semi-automated activities (with several
processors).

§2.2 The basic concepts of PERT analysis

In the course of creating the theoretical and methodological basis for NAM,
additional information is required. This information should include the probabil-
istic network model of developing the new complicated advanced technology
project, as well as estimates of parameters entering the p.d.f. of activity dura-
tions #(;, /) within the network.

This section will be dedicated mostly to the description of probabilistic mod-
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els in PERT-type systems. The methodological basis of research and develop-
ment in PERT includes the following assumptions [22-23,25,42,49-51,100,116-
117,etc.]:
1. Activity duration (i, ;) is a random variable distributed on the interval
[a,b] by the beta-distribution law with p.d.f.
o(t)=Clt—-a) "' (b-t)" . (2.2.1)
2. P.d.f. ¢(t) central moments - namely, average E(x) and variance V(x) -

may be determined from relations
a, +4m; +b;

Eli, j)= =", (2.2.2)

Vi, j)= (bi/' — 4 )2 (2.2.3)

A ]) T 2.
where 4, b, and m, stand, correspondingly, for the optimistic, pessimis-
tic and most probable (modal) duration estimates preset by the responsible
executers of activity (i, ).

Additional assumptions refer to the methodology of calculating network pa-
rameters in general and would be outlined in the following sections. As demon-
strated below, relations (2.2.2-2.2.3) may be partly considered as being of em-
pirical origin.

Consider p.d.f. ¢(t) with parameters p-1=a, g-1=y, a=0, b=1. We obtain

o(t)=Cct (1 -1t), (2.2.4)
where

_ F(a +y+ 2)

- F(a + I)F(y + 1) .

Standardized parameters E(x), m, and ¥(x) in this case will satisfy

o +1
E(x)_a+y+2’ (2.2.5)
o
m, = vl (2.2.6)
() = (@+r+1)
(a +7/+2)2(a +7/+3)
In can be well-recognized that the standardized modal value m_ is connected

(2.2.7)

with activity duration estimates «,, 5, and m, by means of relation

_my—ay

m, = )
b; —ay

Modal estimate m, (together with its standardized value m_ ) is preset by re-
sponsible executors and may be regarded as a fixed value; thus, relation (2.2.6)

enables to express parameter , by means of «:
l-m,

y=a

(2.2.8)

m

X
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1- ) )
™. is a constant value, it

m

X

proves beneficial to re-write the p.d.f. relation ¢(¢) in the form of

o) = e (1- o), (2.2.9)
where the unbound parameter a determines properties of the curve of the corre-
sponding density function. When diminishing « the curve becomes more slop-

Since for each considered activity (i, /) the ratio

ing and turns into the uniform distribution law with variance ¥ (x)= é and aver-

age E(x)z%. For increasing values of « the curve becomes increasingly less

asymmetrical and approximates the curve shape of normal density distribution.

For m, — 1 distribution function (2.2.9) approximates the power function Cr“,
for m, —» 0 p.d.f. ¢(¢) approximates the s -function of Dirac. Abrupt changes of
m, cause significant fluctuations of the asymmetry coefficient. Thus, density
function (2.2.9) satisfies conditions of unimodality, continuity and possesses two
non-negative intersection points with the x axis. It can be well-recognized that,
in other words, (2.2.9) conforms to the necessary requirements of network activ-
ity durations distribution law outlined in the previous section.

Assume ¢=(x—a)/(b—a) and switch over to a non-standardized distribution
law

F()= N —af (b —xyla ), (2.2.10)
where N = [(b —a)""" Bla +1,y + 1)}1 . Taking into account (2.2.8), relation

Y= a[i - 1j holds. The modal value m can be easily calculated from relation
m

alb—m)=y(m—a). (2.2.11)
It can be well-recognized [49] that the first and the second central moments
(average E(x) and variance V(x), being designated as K, and K,, correspond-
ingly) comply with the following relations
(@+y+2)K, =(a+y+2)m+(a+b)-2m,
(@+y+3)K,=(a+b)K, —ab-K}.
Central moments of higher orders (for » =2,3,...) may be determined by a re-
current relation
(@+y+2+n)K,, =nla+b)K, -n[K,K, +(n-1)K,K, , +..+K K] (2.2.12)
The relation for K, may be re-written as
K —m= 2 ((a+b)_mj’
a+y+2 2

and finally we obtain

E(x)=k, <o t7Imtlard) (2.2.13)

o+y+2

After carrying out a thorough statistical analysis taking into account both
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empirical and experimental subjects, the creators of PERT methodology estab-
lished [117] that « +y ~4. This enables developing the following modification

for the recurrent relation (2.2.12)
6K, =(a+b)+4m,
71K, =(a+b)K, —ab-K},
4K, =(a+b)K, —2K K, ,
3K, =(a+b)K, —2(K,K, +K?), etc.
Variance ¥(x) on condition « +y =4 may be determined from (2.2.14) as fol-
lows:
2 2
V(x):Kzz(b;g) —%[“;b—m} . (2.2.15)
If the modal value appears in the vicinity of the average (a+5b)/2, variance
V(x) may be estimated as v (x)=(b-a)’/28; if, on the contrary, the modal value
falls close to the border of a, this would result in ¥ (x)=5(p - )’ /252 . Thus, it can
be well-recognized that the variance is slightly affected by the modal value posi-

(2.2.14)

tion and may be located in the interval [(b—a)2 /49, (b-a) /25] The latter cir-

cumstance enabled creators of PERT to replace the more accurate although
somewhat cumbersome relation (2.2.15) by its much easier approximation
V(x)~(b-a) /36. (2.2.16)

As far as the average is concerned, the first relation from those listed in

(2.2.14) boils down to the well-known PERT estimate
E(x)=(a+b+4m)/6. (2.2.17)

A number of researchers (e.g., [23,25,36,42,95,116,146,etc.]) suggest a
slightly different justification for approximate relations (2.2.16-2.2.17). On the
basis of estimates o =2++/2, y =2 -+/2 or vice versa (a =2—+/2,y =2 +/2 ) sug-
gested by Pearson, one may obtain relations (2.2.16-2.2.17) directly from the
previously established formulae (2.2.11-2.2.12). Although, it should be noted
that by the latter approach, we are in fact fixing parametrical values m_ quite
rigidly (the same goes of course for values m as being connected with m_ by
m=m,(b—a)+a). This inflexibility contradicts to the principle of empowering
the responsible executor to estimate values m on the basis of his personal pro-
fessional experience and skills.

Thus, it can be well-recognized that the theoretical grounds of PERT contain
certain fundamental contradictions, which would be outlined in greater detail be-
low. These contradictions stem mostly from the fact that it is impossible to de-
rive relations (2.2.16-2.2.17) directly from (2.2.10), since three parameters out
of four in (2.2.10) depend on assessing values a, » and m by responsible execu-
tors, while imposing any additional binding assumptions on these three will im-
mediately cause discrepancies with the accepted estimation procedure.
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Let us consider possible inaccuracies in estimating average E(x) and variance
V(x) due to assumptions which had to be made in the theoretical grounds of
PERT. These inaccuracies can be separated into three groups:

a) a group of errors due to accepting the beta-distribution law as the standard
probabilistic instrument for man-machine activity durations; we will des-
ignate those errors as type 1;

b)a group of errors originating from using relations (2.2.16-2.2.17) to
estimate average FE(x) and variance V(x) on condition that activity
durations p.d.f. is indeed represented by (2.2.1) - errors of type 2;

c) a group of errors (call them type 3) caused by inaccuracies of estimating
parametrical values a, » and m by responsible executors (experts) on
condition that both p.d.f. (2.2.1) and relations (2.2.16-2.2.17) are indeed
applicable.

McCrimmon and Ryavec [116] conducted research as to possible errors in
estimating average E(x) and variance ¥(x) due to accepting the beta-distribution
law as the only standard probabilistic instrument for man-machine activity dura-
tions (errors of type 1), on condition that parametrical values a, » and m are
predetermined by responsible executors as anticipated. For the sake of simplicity
consider the standardized distribution interval with a4=0, b=1,

0<m, =(m—-a)b-a< % While comparing various distribution laws with simi-

larly shaped central moments (quasi-uniform distribution with the average close
to 0.5, and quasi-delta distribution law with the average matching the modal
value m), the following marginal total errors have been identified:

a) for the standardized average E(x) error A, equals A, = %(1—2mx);

b) for the standardized standard deviation o the maximal error A, equals
1
A2 = g .

It can be well-recognized that error A, depends parametrically on modal
value m_; when m_ gets close to the interval margin A, might become as large as
33%, while error A, does not depend on the modal value.

Estimate for A, has been subsequently improved by Lukaszewicz [115] who

demonstrated that the maximal total error for a single-mode continuous distribu-

tion in interval [0,1] should not exceed A, =%[1—n;*‘j. Thus, the results by

McCrimmon and Ryavec, on one hand, and of Lukaszewicz, on the other hand,
provide a perfect match for distributions with modal values close to zero, but

they differ substantially for m_ ~ % , which as a matter of fact proves to be the

most common case in practice.
Consider now [116] maximal total errors in estimating average E(x) and
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standard deviation o, for beta-distribution populations caused by assumption
o, =%(b—a) and approximation E(x)=(a+b+4m)/6, namely, type 2 errors. Us-

ing relations (2.2.5-2.2.7) for estimating standardized values of average, mode
and variety, correspondingly, and comparing them with appropriate assessments
utilized in PERT, we obtain the following relations for errors A, and A, (for

a=0,b=1):
|4mx+l mx(a+l)|
YT i
o+2m . 518
1 [+ Yo—am. +m.) (2.2.18)
A, == . .
6 (+2m, ) (o +3m,)

Further analysis of (2.2.18) reveals that depending on parameters involved,

errors A, and A, may obtain the following highest values:
max A, =33%
{max A, =17% .

Finally, consider type 3 errors A, and A, on assumption that both the beta-
distribution law and relations (2.2.16-2.2.17) are indeed applicable and true, but
the experts’ estimates of parameters a, » and m may contain inaccuracies. Fol-
lowing [116], assume that a, » and m denote true values of the lower and higher
bounds as well as of the mode of the distribution, while responsible executors
acting as experts determine approximate estimates ¢,, ¢, and ¢, of the same satis-

fying 0.8a<t, <1.la; 09h<t, <1.2b; 0.9m<¢, <1.1m. Apply additional condition

(2.2.19)

a<m< a—;b and obtain the worst total estimate for error A, (type 3):

A=

1 max{| (0.8a+3.6m+0.9b)—(a+4m+b) |(l.1a+4.4m+1.2b)—(a +4m + b)|} _
a | 6 il 6
1 (a+4m+2b
B %( b—a J .
In the same way, the corresponding estimate A, for o, may be calculated as
A, = 1 max{ 0.95-1.1a —(b—a)|,|1.2b—0.8a —(b—a)|} _1lb+a
b—a 6 6 |30 b-a

As for previous types of errors, modal value m does not influence the esti-
mate for A,.

Internal contradictions within the methodology of determining probabilistic
parameters for network activity durations distribution in PERT caused scientific
researchers dealing with development and implementation of NAM, to criticize
the method [22-23,25,36,49,116,etc.]. Some of the critics include recommenda-
tions as to further improvement and modification of the regarded procedure, as
outlined in the following sections.

(2.2.20)

(2.2.21)
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§2.3 Attempts to refine the PERT assumptions

To sum up, no one scientific discussion in the last five decades caused so
much agitation and excitement as the ongoing attempts to improve the PERT
analysis based on the subjective determination of the “optimistic”, “most likely”
and “pessimistic” activity-times (a, mand b, respectively). There are, indeed,
nothing but a few areas as open until now to such a sharp criticism as in PERT
applications.

The creators of PERT [22,44-45,116-117,etc.] worked out the basic concepts
of PERT analysis, and suggested estimates of the average and variance values
(2.2.2-2.2.3) subject to the assumption that the density distribution of the activ-
ity time is a beta-distribution (2.2.1). Take once more a brief overlook of the
heated discussion as to PERT weaknesses and challenges.

Grubbs [95] pointed out the lack of theoretical justification and the unavoid-
able defects of the PERT statements, since estimates (2.2.2) and (2.2.3) are, in-
deed, “rough” and cannot be obtained from (2.2.1) on the basis of values a, m
and » determined by the analyst. Various authors noted [46,49,146,162] that
there is a tendency to choose the most likely activity-time m much closer to the
optimistic value « than to the pessimistic one, », since the latter is usually diffi-
cult to determine and so is chosen conservatively large. Moreover, it is shown
[49] that value m_, being subsequently determined, has approximately one and
the same relative location point in [a,b] for different activities. This provides an
opportunity to simplify PERT analysis at the expense of some additional as-
sumptions. McCrimmon and Ryavec [116], Lukaszewicz [115] and Welsh [160]
examined various errors introduced by imposing PERT assumptions, and came
to the conclusion that these errors may be as great as 33%. Murray [125],
Donaldson [36] and Coon [25] suggested certain modifications of the PERT
analysis, but the main contradictions remained. Farnum and Stanton [42] pre-
sented an interesting improvement of estimates (2.2.2-2.2.3) when the modal
value m is close to the upper or lower limits of the distribution. This modifica-
tion, however, makes the distribution law rather uncertain, and makes it difficult
to simulate the activity network. However, it can be shown that there are still
theoretical grounds for improving the estimates without complicating the PERT
analysis. We will present some modifications of the PERT model under various
assumptions which may refine the model’s accuracy.

In our opinion, assumption a +y ~4 may become inadequate since the actual

standard deviation may be smaller than % , especially in the tails of the distribu-
tion [58]. In order to make the assumption more flexible, we assume that the

sum o +y 1n (2.2.6) is approximately constant but not predetermined, 1.e., rela-
tion

o +y ~ Z -const (2.3.1)
holds. From (2.2.6) we obtain
o=27m,, (2.3.2)
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and values E(x) (2.2.5) and ¥(x) (2.2.7) are

Zm_ +1
Ex)=Z2, (2.3.3)
\+Z+Z°m, —Z°m’

To satisfy the main PERT assumptions we introduce a reasonable statement
[58]: the average value V(m,) for 0 <m_ <1 has to be equal %6’ Le.,

V(m, im, =%- (2.3.5)

Substituting (2.3.4) by (2.3.5) and solving (2.3.5) for z, we obtain Z =4.55.
Approximating z to 4.5 and getting

S S

o =4.5m_ 236
7/:4.5(1—mx), (2.3.6)
we finally obtain
E(x)= 9'";; 2, 2.3.7)
1 2
= —(22+81m, 81
7(x) 1268( +81m, —81m?), (2.3.8)

together with the (ﬁn;d density distribution function
I'(6.5 4.5m, 4.5(1-m, )
ol)= Tasm +1G5—4sm) (1-1) ' (2.3.9)
Density function (2.3.9) can be simulated, e.g., by the acceptance-rejection
method [43], but this requires much computational time.
For a simplified approximation z=5 we, in turn, obtain a simplified beta-
function

o(t)=C " (1=r)tm) (2.3.10)
with parameters
E(x)=5’";”, 2.3.11)
1 >
V(x)—ﬁ(6+25mx —25m?). (2.3.12)

Here coefficient ¢ stands for
r@)
r(5m, +1)-T(6-5m_)
For the general beta-distribution of activity time, estimates (2.3.7-2.3.8) are
transformed to

C=

(2.3.13)

E(x):%’;”zb, (2.3.14)
(b-a) m-—a (m—ajz
=~ ¢22+81- -81 .

Vi) =geg 122481 — 81— (2.3.15)

For the simplified case 7z =5 estimates (2.3.11-2.3.12) are transformed to
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E(x)=&;"+b, (2.3.16)
V(x):%{6+25-’;1__5—25(’;1__5j } 2.3.17)

Note that when the estimated mode m_ is close to the upper or lower limits of
the distribution, variance (2.3.8) provides a better approximation to % ¢> than

(2.3.12). However, estimate (2.3.8) is essentially more complicated and more
difficult in usage, especially in simulation modeling. Thus, all attempts to amend
the PERT analysis models result in raising the complexity of the latter. A con-
clusion can be drawn that a certain compromise has to be agreed upon in order
to close the acute scientific discussion. At the same time, one has to bear in
mind that both estimates (2.3.12) and (2.3.8) being more complicated perform
better (from the theoretical point of view) than the “classical” estimates (2.3.5-
2.3.7).

Let us turn to another important simplification in PERT assumptions. Ana-
lyzing over a lengthy period different network projects [49], one may come to
the conclusion that the “most likely” activity-time estimate m is practically use-
less. Its relative location in time interval [a,b] is usually close to the point
(2a+b)/3. In the course of the analysis a group of analysts was requested to de-
termine subjectively (for a large number of activities selected from different pro-
jects) for optimistic a, pessimistic » and most likely m completion times. Af-
terwards two different samples of values m were compared by means of statisti-
cal testing — the one obtained from the analysts’ subjective estimations, and the
other by calculating m* = (2a + »)/3. This experimentation has been repeated over
and over again with the same result: the samples under comparison belonged to
one and the same general population.

Table 2.1 presents a sample of 20 activities which have been selected from
one of the R&D projects. The difference between the two samples of m versus
m* under comparison is not statistically significant (even with 0.01 level).

After the elimination of the “most likely” estimate, the additional improving
suggestion would be assuming o =1 and y =2. Various statistical experiments

[49] lead to the conclusion that these additional assumptions are, indeed, reason-
able, since they simplify PERT analysis and do not change essentially the pa-
rameters of the network project. Thus, the general density distribution can be

modified to
12

(p(t)=m(t—a)(b—t)2 (2.3.18)
with the average, variance and mode as follows:

E(x)=0.2(3a +2b), (2.3.19)

V(x)=0.04(b—a), (2.3.20)

m=(2a+b)/3. (2.3.21)
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Table 2.1. Numerical values of m versus m"

Activi Value a ‘ Value » ‘ Value m Value m” (approximated to integer
ctivity -
(determined by an analyst) numbers)

1 16 21 18 18
2 20 45 30 28
3 10 25 16 15
4 6 13 8 8
5 20 35 24 25
6 12 20 15 15
7 15 27 18 19
8 3 9 5 5
9 18 28 22 21
10 10 15 13 12
11 25 40 28 30
12 24 40 30 29
13 25 50 30 33
14 30 60 35 40
15 20 35 24 25
16 20 50 25 30
17 15 40 22 23
18 30 55 40 38
19 30 65 38 42
20 7 13 10 9

Thus, the PERT statements can be replaced by a simpler methodology, since
the analyst will be from now on asked to determine only two values — the opti-
mistic and pessimistic activity-times. It goes without saying that for an individ-
ual activity there may be certain deviations in estimating the average and the
variance when applying the three- and the two-value methodologies. But for a
project as a whole there is in most cases no practical difference; i.e., for the pro-
ject’s main parameters there is no essential deviation. In practice, values a, m
and » in PERT analysis are subjectively determined by the person responsible
for the completion of the activity. He is usually not a specialist in mathematical
statistics, as is stated in some PERT studies [49-50], and determining the most
likely activity-time may become a real problem for him.

The PERT modification with two values has been introduced in many practi-
cal network-planning systems [49-54] which have functioned successfully for a
long time.

The following conclusions can be drawn from the study:

a) The PERT analysis is efficient, and can be used in project management
when each activity is carefully estimated by an experienced analyst. Oth-
erwise, the two-value modification with the beta-distribution density func-
tion (2.3.18) and simple estimates (2.3.19-2.3.20) for the average and
variance is preferable as being simple and not less efficient.
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b) The commonly used subjective estimates of the average and variance in
PERT analysis can be replaced by improved estimates (2.3.7-2.3.8) or
(2.3.11-2.3.12). The latter provide better accuracy if the estimated mode is
located in the tails of the distribution.

§2.4 A challenge against beta-density? A new approach to the activity-

time distribution in PERT

2.4.1 Introduction

Problems associated with computing the density function of the completion
time of PERT stochastic networks have been discussed extensively in scientific
literature. Numerous publications refer mostly to three main directions.

The first one is associated with a direct and general solution of the problem
of determining the completion-time distribution by sequential reduction of the
initial network under various assumptions [45,103,107,119]. The activity net-
work is partitioned into standard subnetworks of two different classes — activi-
ties in series and activities in parallel — each subnetwork being later reduced to
an equivalent arc. The results obtained can be applied to small networks only.
For large-size networks the solution boils down to interchanging the convolution
and maximization integral operators, and is too complicated.

Various research has been undertaken to derive the upper and lower bounds
of the completion-time distribution for discrete and continuous activity-time dis-
tributions [51,53,102-103]. In the same course, attempts have been made to de-
rive bounds with better accuracy for normally distributed activity-times
[103,119,135-138], but the results obtained are not far from those of Clark [22].
Although this direction still seems to be a promising one, it needs further, more
successful, achievements.

The main shortcoming of both directions is the non-stability of the activity-
time distribution with respect to convolution and maximization. We call activ-
ity-time distribution unstable with respect to convolution (maximization) if the
sum (maximum) of two independent activity-times has another distribution. Un-
fortunately, the beta-distribution, which is generally superior to other activity-
time distributions in project planning, is unstable with respect to both convolu-
tion and maximization. As a result, a new direction has appeared: various re-
search has been carried out either to replace the beta-distribution by another one
[8,102,162-163], or to explore the errors involved in approximation of both the
maximum and sum of two independent random beta variables, each by another
beta variable [51,76].

In our opinion, replacing the beta-distribution by the normal one (which is
stable with respect to convolution) contradicts the basic principles of PERT
analysis. As outlined in Section 2.1, activity-time distribution, unlike the normal
one, is asymmetrical for many reasons [49,51,53-54,60]. Since the activity time
is always positive, whoever wishes to use normal distribution has to apply it in
the positive area only. However, the transformed distribution becomes unstable
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with respect to convolution.

As to beta-distribution, the error involved in assuming that the maximum of
two beta variables is also a beta variable can be indicated by the Kolmogorov-
Smirnov one-sample test [75,96]. Various experiments show [75] that the close-
ness of the approximation depends significantly on the ratio » of the variable
ranges. If inequality 0.4 <r»<2.5 does not hold, the approximation should be re-
jected. Otherwise the error measure D,, fits the test with confidence probability
close to one. However, even 510 sequential maximizations may pile up the ap-
proximation error to a substantial value. Thus, beta-distribution can be regarded
stable to maximization for small networks only.

In this section we present an asymmetric activity-time distribution which is
close to the beta-distribution. That distribution is stable with respect to maximi-
zation, and is close to stable with respect to convolution [60].

2.4.2 Stable distributions with respect to convolution
By definition, a cumulative probability distribution function (c.d.f.) F(x) is
regarded stable with respect to convolution if for any a,,a, >0, b,, b, there exist
values a, >0, b, such that, for all x, relation
F(a1x+bl)*F(a2x+b2):F(a3x+b3) (2.4.1)
holds, (*) being the convolution operator.
It can be shown [51,60,76] that if and only if the distribution is stable with
respect to convolution, relation
Ing(t)= iyt — Clt|” {1+iﬂﬁw(t,a)} (2.4.2)
holds, ¢(t) being the characteristic function of the probability density function
(p.d.f) f(x), a, B, y, C constants — namely, 0<a <2, -1<B <1, C>0, y any
real value - and

tgza if a=#l
o(t,o)=

—Int otherwise.
T

Value a =2 corresponds to the normal distribution, values a =1, p =0 to the
Cauchy distribution, values o =0.5, =1, y =0 and C =1 to the p.d.f.

f(x)=m'exp{—2l—x}» x>0. (2.4.3)
Denote henceforth the set of stable distributions with respect to convolution
by D,, where «a is the characteristic index in (2.4.2).
Theorem 1

When x - «, the p.d.f. of D, is asymptotically close to B(a’ﬂ), ~1<B <1,

a+l

0<a <2, where B is independent of x.
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Theorem 1 is proved in [51] by examining different cases of the p.d.f. of D,
in the distribution tails.

2.4.3 Stable distributions with respect to maximization
By definition, a c.d.f. F(x) is regarded stable with respect to maximization if

for any a,,a, >0, there exists a value a, >0 such that, for all x> o0, relation

F(alx)F(a2x)=F(a3x) (2.4.4)
holds.
Theorem 2
The c.d.f.
F(x)= exp{_@ }’Q’WW >0 (2.4.5)
0 otherwise

is stable with respect to maximization on the set of distributions with identical v.
Proof
The proof is obtained by substituting (2.4.5) in (2.4.4).
Note that mode m satisfies
/v
L
=0 — | . 2.4.6
" (U + l] ( )
For v >1 average E(x) satisfies
E(x)= er(” ‘1j ,
v _ (2.4.7)
F(x) = J.ax’le’”da.

0

When maximizing » random variables with parameters 6,,0,,....0,, respec-
n 1/v
tively, we obtain the same distribution with parameters v and o__ =(Z inj .
i=1
Distribution F, can be easily restricted from below, namely

F(x)= exp{‘(x?a)u} Jor x> a0 (2.4.8)

0 otherwise .

Denote henceforth the set of stable distributions with respect to maximization
by D, .
Theorem 3

As x— o, the p.d.f. of D, 1s asymptotically close to %, A4=v0" being a
X

constant independent of x.

Proof

The proof is obtained from examining the p.d.f.
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06" 0
f,(0)=1x" epo;j } Jorx=0 (2.4.9)

0 otherwise.

Corollary

As x— o, the p.d.f. of D, 1s asymptotically close to the p.d.f. of D, with
values 0<a =v<2.

The proof is obvious. A conclusion can be drawn that in the distribution tails
the p.d.f. of D, can be regarded as a stable one with respect to maximization,

and vice versa. This is important, especially as most of the approximation errors
appear just in the distribution tails.

2.4.4 Experimentation
In order to examine the closeness of the beta-distribution to the D, distribu-

tion, various examples were run. Since any beta-distribution can be transformed
toa standa(rd p.d.f.)
I'im+n+2

)= s 0 1)

we examined the closeness between two standard distributions (2.4.9) and

(2.4.10). This can be achieved [51,53,76] by equating the (1-p)-th quantile,

p<<1, of the D, distribution (2.4.9) with the upper level of the standard beta-

distribution. Later on, values 6 and v are determined, such that the main pa-
rameters (the average, variance, and the most likely values) of both distributions
under comparison are close to each other, respectively. For example, the p.d.f.
(2.4.10) with m =1, n=2, which is often used in project planning [49], is close
to the D, distribution with v =2 and 6 =0.32 (p=0.1); moreover, the main pa-

x"(1-x)", 0<x<1, mn>-1, (2.4.10)

rameters practically coincide.
Note that the set of D, distributions (2.4.9) is preferable for practical applica-

tions since it corresponds to a broad spectrum of beta-distributions and has sim-
ple formulae for calculating the average and most likely values.

2.4.5 Conclusions

We consider the problem of computing the density function of the comple-
tion time of PERT stochastic networks. An activity-time distribution is sug-
gested which is stable to maximization and close to the beta-distribution. Thus
classical network-reducing methods, e.g., Martin’s algorithm [119], can be es-
sentially simplified.

Based on the results outlined above, we recommend using the c.d.f. (2.4.5)
for activity-time distribution purposes in stochastic PERT networks. Index 6
varies from activity to activity, while parameter v which may be interpreted as
the uncertainty level for the project as a whole, is kept constant. From the dis-
cussion outlined above, it follows that value v =2 is preferable.
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A subnetwork =, of »n independent activities (i, j) in parallel is thus reduced

1/v
to an equivalent arc with parameters v, =v and 6, { ZG;} . From (2.4.7) we
(1,/)ez,

obtain that a subnetwork X, of » activities in series can be reduced to one arc

with average
. v-1
E(z,)= ZE(Z,J)=F(—) 2.0, (2.4.11)
(= L Jijezs

It follows from the corollary that the c.d.f. D, _,, being stable with respect to

maximization, can be regarded as a stable one with respect to convolution too.

An additional reason for this approximation can be obtained by examining rela-

tions (2.4.7) and (2.4.11) with similar structure. Distribution D, _, fits, especially,

when the analyst estimates the activity time by one value, namely by the most
likely time m. In this case the corresponding value 6 is immediately determined
by (2.4.6), parameter v being externally pregiven. It goes without saying that
when each activity is carefully examined and later on estimated by an experi-
enced analyst, the three-value PERT analysis is efficient and can be imple-
mented in project management. But for entirely new innovative R&D projects
including activities with no similar prototypes in the past, the estimates of the
pessimistic and optimistic duration times are usually rather poor [49,164], e.g.,
pessimistic assessments are chosen conservatively large, etc. Under such cir-
cumstances PERT analysis estimates may misrepresent the real activity distribu-
tion, and the one-value estimate m is more simple but not less efficient. Since
F,(x) can be easily transformed to distribution range a <x <o, the three-value

L

activity-time estimates (a,» and m) can also be used when necessary. Note that
when using F (x), all the network-reducing methods, e.g., Martin’s algorithm

[119], are essentially simplified since only one variable parameter, 6, is utilized.

49



||| Chapter 3. Estimating Parameters of Stochastic Network Models

§3.1 New concepts in stochastic network models’ parameters

In numerous books (see, e.g., [48-54,121-122,130]) a variety of algorithms to
calculate the network’s critical path length by means of simulation, has been
outlined. Simulation methods can be used for calculating other network parame-
ters, which determine the level of intensity for both activities and paths forming
a part of a network with random activity durations. In [49] we have introduced
the concept of the , -quantile intensity level of path L which is calculated as fol-
lows

Ky (L) =W, e (L)}, (3.1.1)

where k, (L) determines the intensity level of path . for a fully deterministic

int

network model calculated by
Ko (L)=%- (3.1.2)
Here #(L) denotes the length of path L connecting the network’s source and
terminal nodes, while ¢’ () denotes the summarized duration of activities enter-
ing both path 7 and the critical path L, with length 7, . To determine value
W, {k, (L)} one should undertake N multiple simulation runs for all activities en-

tering the considered stochastic network model. In the course of each simulation
run the deterministic value k(L) has to be calculated. The ,-quantile intensity

int

value for any activity (i, j) entering the stochastic network can be determined by
Ky i ) =W, Ul (i )} (3.1.3)
where intensity value &, (i, j) for activity (i, ;) entering a deterministic network
has to be calculated [48-49,53] by
Here ¢ (i, )., and ¢7(, /), denote, correspondingly, the summarized dura-

tions of all activities coinciding and not coinciding with the maximal path con-
necting the network’s source and terminal nodes, and passing through activity

(i)
In the same way, another level of intensity - the so-called ,-quantile reserve
level [48-49,53] - can be determined by
K i.7) =W, e 025 (3.1.5)
where k, (i, ) has to be calculated for a network with deterministic activity du-
rations (i, j) [49,53]

ki (w)=%, (3.1.6)

values ¢(j) and (i) being the earliest and the latest moments for realizing
events (nodes) ; and ;, correspondingly.
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Implementing the ,-quantile concepts enables subdividing the entire set of
activities entering a stochastic network, into three parts - the critical, the inter-
mediate and the reserve zones. We suggest allocating to the critical zone all ac-
tivities (i, /) with values w, {k, (i, j)} exceeding the preset level 1-n (1 >0). Note
that increasing value 5 results in increasing the volume of the critical zone. This
fully corresponds to the concept of confidence level [20] which is widely im-
plemented in mathematical statistics. Thus, practically speaking, using network
analysis models with random activity durations leads to introducing new con-
cepts in planning and controlling network projects, namely, defining , -quantile
confidence zones as follows:

a) p-quantile critical zone comprises activities (i, /) with w {,.(,j)}> p, (in

real design offices p, ~0.8+0.9);

b) p-quantile reserve zone unifies activities satisfying w {k, (i, j)}< p, (in

practice p, ~0.2+0.3);

C) p-quantile intermediate zone comprising the remaining activities (i, ;)

satistying p, <w, {k, (i, j)} < p, -

It can be well-recognized that the easiest means of determining the regarded
confidence zones for any network with random activity durations and pregiven
values p, and p, is to undertake multiple simulation runs by the Monte-Carlo
method, i.e., by simulating activity durations with p.d.f. (2.2.1) (or any other
probability law). In the course of each simulation run deterministic values
k. (i,j) (using (3.1.4)) have to be calculated for each activity (i,j) entering the
network. After carrying out N simulation runs statistical empirical frequencies
for the ~-amount sample for each activity to fall into one of the three zones
have to be calculated. Note that usually such a frequency is determined by

— N..
P, = Nj , where N, denotes the number of cases (from N runs) when value

k.. (i), being calculated by (3.1.4), is either less than p, (reserve zone), or ex-
ceeds p, (critical zone) or belongs to the intermediate zone. For any (i,;), by
means of the statistical hypothesis theory [25], we can compare values p , p,

and p, in order to determine as to what zone does activity (;, /) belong. Thus, if
N is sufficiently large to provide representative statistics, values p, form the
three confidence zones.

Similar to intensity estimates (3.1.1-3.1.4), new conceptions based on calcu-
lating the p-quantiles for reserve estimates, have to be implemented in NAM

with stochastic activity durations. Besides estimates (3.1.5-3.1.6), we suggest
using [49,53] the p-quantile of a full time reserve for each activity (i, j) calcu-

lated by w, iR, ()}, where the full time reserve r,,(;, ) for a deterministic
network (being simulated each time by means of a routine simulation run) satis-
fies
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Rfull (i, J) =1 (J)_ Loar (i)_ l(i, J) . (3 1 7)
Such an estimate is used in various books on network planning [49,53,149].
As to introducing the concept of p-quantile of a fiee reserve for activity (i, /),
the latter may, correspondingly, be calculated by

WAR e G ) = W, e ()= 0, (1) = 10, )} (3.1.8)
Finally, the p-quantile of time reserve for path L may be determined as
W AR(L) =W AT, (L)} (3.1.9)

Note that increasing confidence probability p results always in decreasing
the corresponding p-quantiles of time reserves R(i,;) and R(L). This, in turn,
averts unreasonable time resource transmissions between network activities
which may cause unstable equilibrium situations.

Another concept of estimating time reserves from a probabilistic point of
view is as follows [49,53]: denote ¢ ,(;, ;) the planned time to execute activity
(i, 7). Estimate

W, 7)=W, e GN =W, 4t () =1, G ) (3.1.10)
can be used in various NAM models [49,53] as a pregiven due date for starting
activity (i, /), i.e., as a milestone. Under certain circumstances relation (3.1.10)
may represent a realistic physical meaning.

§3.2 Estimating the accuracy of probability network parameters by
means of simulation

Consider the accuracy of estimating one of the network parameters by means

of simulation for a fixed and pregiven number N of simulation runs, namely, by

estimating the earliest moment of event’s & realization. Let ¢ (k) be the earliest

moment for event & to be realized in the ;-th simulation run. The sample under
consideration comprises the set {,(k)}, 1<i< N . A random value

:%IZN}ti(k) (3.2.1)

1s the estimate of average E{i(x)} of the earliest moment when event (node) & 1s
realized. Variance V{ ()} of random value (k) has an estimate

S2[e(k) Z[t () (3.2.2)

Since zl,(k) are independent and E[r,(k)]= E[t(k)], V[t,(*)]=V[:(k)] hold, we ob-
tain

{ A 1} El(k))
)= L= 1),

In accordance with the Lyapunov theorem [27] relations
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\/ﬁ N—oo

(3.2.3)
o)~ El(e)] !
—R_)]_S "k <z 5 \/_ Iexp N
JN o
hold. Thus, for sufficiently large N relation
RIOREIO EES LOIREt (324)

holds, where

®(z)= \/;_ﬂ J:exp{—%}dt, z>0.

For a preset probability value o, from 2d(z, )=« , one can determine value z,
satisfying

i)z, S g, Mo (323)

Estimate the accuracy of standard deviation § as an approximate value of
olt(k)]. Analyzing

Elt, (k)= E[d®)] = Ele(k)- E[tk)]” =V[e(k)]= o [(k)],
Vi) - Ep )l =vie(k)- E[k)] = u, - p3 =03,
and taking into account
-5 oo

we obtain from the Central Limit Theorem [27]

Sy —o?tlk
P12, <#<zl Fjexp{——}dt— ®(z,)-d(z,)- (3.2.6)
\/ﬁ N—o
This means that value {SN —9 [t(k)]}\/ﬁ for large N is approximately distrib-
0,

uted with the normal p.d.f. Taking into account that S2 -S> = {Z(k)—E[t(k)]}2 , We
obtain

JN(s: _sz):m{;(k)_g[t(k)]} | (3.2.7)
From the other side, any ¢ as small as possible satisfies [27]
lim P{‘Z(k)— (k) > %} -0, (3.2.8)

since Chebyshev’s inequality enables
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Plle-£le]|<e}<— VEe].

For sufficiently large N we obtain
. e | _JN _o’lew)]
P{|t(k)—E[t(k)]| . ﬁ} . -2 W]

which, in turn, enables relation (3.2.8).
Thus, lim " AN {|t E[t(k)]|}—> 0 holds, and we obtain probability conver-

gence lim "N (k) E[t(k)]f’ =0. From analyzing (3.2.6) and (3.2.7), one may

conclude that values +NS2 and NS> for sufficiently large N are asymptoti-
cally normally distributed, 1.e.,

SZ _ 2 k z 2
lim Pqz, < ¢ <z = \/;_ Iexp{—%}dt (3.2.9)
e 2 T 2y
VN

holds. Taking into account that o7 = u, — u7, we arrive at the conclusion that §°
is normally distributed with parameters [az [t(k)],%(u4 - yj)} Thus, parameter S

can be regarded as an unbiased and sustainable estimate for variance o[¢(k)]. On

the basis of probability convergence lim "

S
oo o)

=1, we finally obtain

lim P12z, <S+£t(k)]<z1 \/_J.exp{——}dt (3.2.10)

2G[t(k)w

and value s for a sufficiently large N is asymptotically normally distributed,

with parameters {o[t(k)],m} :

To estimate value o, by substituting central moments u, and u, for their
sample estimates m, and m,, we finally obtain the approximate equality

Sho-wf -,
c,~S§,= = N _{%;[ti(k)_t(k)]z}

or, taking into account (3.2.2),

5, =5, = \/%{iti(k)_;(k)n_s4[t(k)]. 3.2.11)

It can be well-recognized [27] that if a random value ¢ is normally distrib-

uted, its central moments satisfy +/u, — u? ~~/2c*. This enables the approximate
equality

2
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Gyo— i N o2 o (3.2.12)
* 26k)WN  20[tk)NN 20N V2N o
Estimates (3.2.3) or (3.2.5), (3.2.10) or (3.2.12) enable calculation of the

proper sample amount N (number of simulation runs) required to ensure estima-
tions E[t(k)]~ (k) and o*[t(k)]~ $*[¢(k)] with predetermined accuracy, correspond-
ingly. To determine N for the case of estimating the average value one has to
preset the confidence level a and the accuracy of substituting E[¢(k)]~ «(k), i.e.,
inequality

P{K@—Eb@ﬂ

should hold. By using (3.2.3) and inequality z,, - SE%)] <¢, we finally obtain

NSO (3) =l (3.2.14)

By representing the limit error as a quota of the standard deviation value
&

)

NZ@‘I(Z)/qz. (3.2.15)

It can be well-recognized that from similar considerations, (3.2.14) may be
substituted also for

- @ (lez[t(k)] ) df‘(‘;j/qf | (32,16
where ¢, :ﬁ,

Similarly, the required number of simulation runs may be assessed by means
of (3.2.10), (3.2.12). Indeed, from

P{|S—G|Sza %}:2@(%)205

<g}2a (3.2.13)

, (3.2.14) may be transferred to a simplified form

Za (0 o ¢, , we obtain the restricted from below

V2N

in conjunction with inequality

sample value N estimate

o 0% ) o)

N> 25202 -2 (3.2.17)
80' ' 80'
or
Nzob‘l(jj/zqi, g, === (3.2.18)

Thus, we have considered the problem of estimating the number N of simu-
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lation runs to be able deciding with required confidence as to whatever p -
quantile zone each activity (i, /) has to be allocated. As outlined in §3.1, two
probabilities p, and p,, p, < p,, are pregiven. In case p, > p, activity (i,j) be-
longs to the critical zone, when p, < p, activity (i,j) has to be allocated to the
reserve zone. For p, > p, > p, activity (i, j) refers to the intermediate zone. Al-

though put in easy terms, the appropriate decision-making when grounded on
solid statistical theory [27], becomes not that obvious. The main reason for that
stems from the fact that in allocating activities (i, /) to the three zones, we sub-

stitute the theoretical probability p, by its simulated statistical frequency
p,=N,/N (see §3.1). To avoid statistical inconsistencies in such a procedure,

consider the regarded decision-making in greater detail.
In terms of theoretical probability p,, assume p, > p,, i.e., the appropriate ac-

tivity (i, ) belongs to the critical zone. With the help of the well-known de
Moivre-Laplace Theorem [27], we obtain for this case

P{%<p1 —k‘/pl'—[;v_plj}<l—fje><p{—%} t= \/— IeXp{——}dt (3.2.19)

Let us preset the confidence level o, i.e., the probability of the fact that for
the theoretically true event (namely, p; > p,) we will not take a false decision on

the basis of the simulated statistical frequency p, = ~, /N and will not wrongly

allocate activity (i, /) to the second or third zones (intermediate or reserve). For
the sake of determinacy, assume o =0.95.

: N, - _
From relation P{Wy <p -k ‘DIIT‘DI} <1-a value & may be singled out by

means of
1 17 ’
k=F'(a); F(k)=ﬁj.exp{—%}dt=a. (3.2.20)

For a =0.95 we obtain & =1.65. Thus, the difference between p, and p, with
probability « should not exceed

F(a)- % —e. (3.2.21)

After calculating the deviation value ¢, we are able to determine the required
number of simulation runs N by

N> %;pl)[F 1)) (3.2.22)
Thus, after fixing the confidence level o , we determine the deviation limit ¢.

The latter means that after carrying out N~ simulation runs, with N satisfying
(3.2.22), empirical frequency p, =N, /N should belong to interval [p, - ;1] (for

the case of p, > p,). In other words, to check inequality p, > p,, one has to carry
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out N simulations and later on to compare the calculated value of p,  with
p—¢.If p, < p, —e the conclusion should be drawn that relation p, > p, is false

and activity (i, /) should not be placed in the critical zone.

All other hypothesis referring to other activities and different zones, have to
be checked in a way similar to that outlined above.

§3.3 Simulating stochastic network models by means of equivalent

transformations

We will outline several algorithms of simulating stochastic networks to de-
termine their critical path length (or, more exact, a statistical analogue of the
critical path distribution). This is achieved by constructing a transformed net-
work of lower size but with equivalent probability distribution parameters. We
will henceforth call two stochastic networks equivalent ones if their parameters’
p.d.f. practically coincide. Creating an equivalent network model of lower size
enables simulating the latter by lower computational time.

Note that the problem of transferring the initial network to one of a smaller
size, but with similar p.d.f. parameters, has been a common research area for
many scientists (e.g., [35]). We have not been an exclusion, although all the re-
sults obtained can be used for small- and medium-size networks only. We will
present an alternative approach outlined in [49].

To obtain an equivalent network we have to exclude from the initial one all
the activities which have no influence on the statistical parameters of the net-
work as a whole. Two methods to develop equivalent stochastic networks will
be outlined:

1. Analytical method.

2. Method based on simulation modeling.

The first method is based on singling out the subset of activities which theo-
retically cannot belong to a critical path in the course of a routine simulation
run. The following theorems [49] are at the underlay of the analytical method:

Theorem I. Given a stochastic network model with activities (i, j), each with

a random duration beta-distributed in the interval [a(i, j);5(;, j)] (all positive val-
ues ali, j) and b(i, j) pregiven). All m paths connecting the source and the termi-
nal events, are enumerated and denoted L,,L,...,L,. Let N simulation runs be
carried out, and denote:

e ¢(z;) - the duration of path £, in the ;-th simulation run;

e ¢z, ), - the critical path length of the deterministic network model with set

(i, j)=ali. /).
The theorem asserts that for each one of ¥ simulation runs there exists at
least one path L, satisfying t(L{;_)>t(LC, )a; here ; stands for the number of the

simulation run.
Theorem I1. For each simulation run the deterministic critical path length is
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not less than «(r,, ), .

cr Ja

Theorem III. Activity (i,;) belongs to the subsets of possible critical paths,
1.e., has a probability exceeding zero to be found on the critical path in the

course of a routine simulation, if ]z ]b >, ), holds. Here ‘j]ﬁ denotes the

length of the maximal path comprising (i, ), for a deterministic network with
bli, j)=1(i, ).

Denote the subset of possible critical paths in the stochastic network under
consideration, by Q. Thus, it can be well-recognized that a network with struc-
ture Q is equivalent to the initial network.

Theorem IV. Activity (i, /) belongs to set Q if its full reserve r,,(i, ;) calcu-
lated as

{Rﬁ,{” (ia J) =1y (J)_ Loar (i)_ t(ia J)
(i /)= b(i. /)
for a deterministic network, is less than «(z,, ), - (L., ), -

cr cr

(3.3.1)

The outlined above theorems [49] enable developing the following step-wise
algorithm to construct an equivalent network model:
Step 1.Set (i, j)=ali, j) for all activities (i, ;).
Step 2. Calculate the critical path length «(z,,), .
Step 3. Set (i, j) = b(i, j) for all activities (i, ;).
Step 4. Calculate the critical path length «(z,, ), .
Step 5. Using (3.3.1), calculate full time reserves r,, (i, j) for all activities (i, )
entering the network.
Step 6.1f R, (i, j)> 4L, ), - (L, ), holds, exclude activity (i, ;) from set Q of ac-
tivities comprising the equivalent network.
Step 7.1n case R, (i, /)<L, ), - (L., ), include activity (i, ) into set Q.

Note that implementing the above algorithm does not necessarily result in es-
sential reducing the volume of the initial network. To further improve the proce-
dure, a refined algorithm [49] can be suggested. By the amended procedure, ac-
tivity (i, /) should belong to set 0 on condition that in the course of a routine
simulation run the maximal path in the deterministic network connecting the
source and the terminal nodes, and comprising activity (i,), is the network’s
critical path with probability not less than ¢ > 0.

In other words,

Pl )=1,}>&>0 (3.3.2)
holds.
Denote the average duration of path L™ comprising activity (i) by

E{z[Lj;‘“ ]} and its variance - by 02{z[Lj;“ ]} Several assumptions are implemented
in the modified algorithm:
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1. The length of any path . is normally distributed with average r= > (i, /)
(i.j)eL
and variance ¢} = > o’ [t(i, j)];
(i,7)eL
2. The p.d.f. of the critical path is similar to the p.d.f. of the maximum of all
paths entering the network.
Thus, the network can be regarded as a unification of two paths as follows:

a) the critical path L_;

b) the maximal path L comprising activity (i, ;).

It is shown [49] that activity (i, /) can be included in the equivalent network
o if

Ry (i:)) < o[R 1 (i IN2O7 (1~ 26), (3.33)
where @(z)= \/;_HJ:exp{—%}dt, z>0.

The step-wise procedure of the modified algorithm may be outlined as fol-
lows:
Step 1. Determine all activities belonging to the critical path, for the case

i, j)= 10, j)-

Step 2. Calculate variance V{t(Lcr )}

:

>0 [ti. /).

(i./)eLe,

:

Step 3. Determine all activities belonging to the maximal path £, comprising

:

activity (i, j), for Step 1, i.e., for «(;, j)= (i, j).
Step 4. Calculate variance V{z(Lj;‘“ )}: > o[, )]

(i, j)eLi™

:

Step 5. Calculate the variance of the full time reserve by
PR G = I, s vl )] (3.3.4)
Step 6. If R, (i, /)> 3,/V[R ., (i, /)] holds, exclude activity (i, ;) from set Q of ac-

tivities comprising the equivalent network.

Step 7. In case R, (i, /)< 3,/V[R . (i, /)] include activity (i, j) into set Q.

Note that using this refined algorithm decreases the volume of set Q0 essen-
tially in comparison with its previously outlined initial version. However, both
methods may be implemented only for medium-size networks (comprising circa
40-50 activities).

Determining the equivalent set 0 may be also facilitated by means of simula-
tion modeling. One has only to carry out a comparatively small number of simu-
lation runs in order to single out activities with values «, (i, /) exceeding the pre-

int

:
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given levels. In the course of simulation we use the models (practically without
any changes) outlined above, in §3.2.

§3.4 Estimating parameters of stochastic networks by significant paths’
analysis

Consider an analytical method described in [49] which is of certain interest.
This method is applicable for analyzing the distribution of the earliest accom-
plishment of an arbitrary event k¢ of a network model (including, of course, the
terminal event).

The essence of the method boils down to singling out from the entire set of
paths entering the regarded event &, the most significant paths having a major
influence on the distribution law F,(¢) of the earliest accomplishment of that

event. It should be noted that the regarded method imposes less “severe” re-
quirements to the knowledge of the distribution laws of the activities’ durations
than many other methods, including the simulation method. If network simula-
tion requires knowledge of the density distribution function for each network ac-
tivity, for the significant paths analysis it is sufficient to determine average val-

ues ¢ and variances V(¢) of the activities’ durations. Thus, it can be well-
recognized that for determining average values and standard deviations both tri-
ple-parametrical PERT estimates as well as double-parametrical ones, can be
successfully implemented, namely

E—a+4m+b E—3a+2b
6 5
by as well as by
Gt: Gt:
6 5

Each event & of a network model may be regarded as a terminal one with re-
gards to a certain fragment of this model. That is why all further considerations
are applied to terminal events, since it does not impose on the discussed method
any real restrictions.

The earliest possible accomplishment of a terminal event ¥ of a network
model may be determined from the following relation:

T, = max{t(L, ),¢(L, ).....t(L, )} 3.4.1)
where (L, )#(L,).....t(L,) represent random values corresponding to all paths’
lengths of the network model which connect the initial event with the terminal
one.

It can be well-recognized that 7, itself may be regarded as a random value,

while the probability of accomplishing the terminal event by a certain moment ¢
may be calculated as

F(t)=P{T, <t}=P{(L,)<t,t(L,)<t,...t(L,) < t}. (3.4.2)
The length ((z,) of path 1, may be determined as the sum of all activities’
durations entering this path, namely

60



r,)= S )) (3.4.3)

(i.j)eL,
where (i, /) stands for the duration of activity (i, ).
Since network models comprise usually activities of a similar specification
level, different values #(i, /) may be regarded as comparable by their relative in-

fluence on random fluctuations of the sum ¢(z,) in (3.4.3). According to the

Central Limit Theorem and taking into account the assumption about independ-
ency of the network model activities’ durations, the distribution of random value
((z,) for a total of 5-7 addendums may be approximately considered as normal

with mean value

L,= LZ?(AJ) (3.4.4)
and variance
Pz, )= 2. ) (3.4.5)

where summarizing is carried out for all activities comprising path L, .
The joint distribution of random values L ,L,...,L, is also a multidimensional
normal distribution. Thus, relation (3.4.2) may be represented as

t t
F(e)= [ [ fult1 050t )dt \dl .0, (3.4.6)
where f,(¢,,7,,...¢,) denotes the multidimensional normal density distribution
L (L)
: L, : V(L) : : :
with mean , variance and correlation coefficients matrix
L, r(z,)
1
pp 1

. Here p, stands for correlation coefficient between L, and L,

P Poy e |
which, in turn, is determined by relation

2 Vi j)
Ly (3.4.7)

In (3.4.7), condition L, N L, means that summarizing is carried out for activi-
ties common for both paths 7, and 7. If for a given network no paths have
common activities at all, then values «(Z,),#(L,).....#(L,) become independent (in
the probabilistic sense of the word). In such a case

1 t-L,
F(z)z—ng{q{m}ll, (3.4.8)
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: [ au is the Laplace function.
2r
As a matter of fact, network paths usually do have common activities, which

is a good reason why (3.4.8) is in a general case unfit for determining F(f). Be-
sides, the main difficulty in calculating F(¢) boils down to the fact that even for a
medium-size network model the total number of paths becomes significantly
high. Thus, implementing computer algorithms enabling a total lookover of the
network paths with subsequently determining their dependence (correlation) es-
timates, as well as directly solving the n-dimensional integral (3.4.6), becomes
an enormously complicated and time-consuming problem. At the same time, ex-
amining random values similar to (3.4.1) shows [49] that when n — « they start
displaying some asymptotic features, which become substantial already for
n=15+20. The latter property enables singling out from the entire set of net-
work paths a limited subset of about 15 =20 significant paths which have the ma-
jor influence on distribution function parameters.

As demonstrated by examining real-life network projects [49], model paths
L characterized by the greatest mean values L, of their durations and possessing
at the same time the least correlation with the rest of the paths ,,L,,...,L, , would
have the utmost influence on distribution function parameters.

Thus, to determine the distribution function F(¢) and its respective parame-
ters, one should establish about 1520 significant network paths with subse-
quently creating the random value

77 =max{t(L, ), {(L, ).t (L, )}, m =15+20, (3.4.9)
representing with sufficient accuracy the theoretical F{t).

In [49] several algorithms to single out the required set of significant paths
for a given network model, including determining the mean values and variances
of their durations by (3.4.4) and (3.4.5), are outlined. The below listed network
model parameters are assumed to be known and are part of the input information
for the algorithms:

e mean values (;, /) and variances V{(i, )} for all activities’ durations;

where @(x)=

e mean value L. and variance V{L,} for the critical path duration. The critical
path in the network model is the one with the longest duration when
tG, j)=1G,/);

o full time reserves R, (i, j) for all activities in the network model, when their
durations (i, /) have been determined by their mean values; it can be well-
recognized that in such a case the full time reserve for any given activity (i, /)

may be calculated as the residual between the critical mean values path L.,
and the longest mean values path L, comprising the regarded activity; in
other words, R, (i, j)= Lo — max {Z}

(i./)eL,

62



3.4.1 Significant paths search algorithm

The essence of the described algorithm boils down to a lookover procedure
comprising not the entire set G of all network model activities but a subset ¢
comprising activities whose full time reserves are less than a pregiven permissi-
ble level. The amount of activities entering subset G' increases along the in-
crease of their full time reserves from the minimal level to the permissible one.

The permissible level r,, of full time reserves for a given network model

may be calculated by means of the following empiric relation [49]

R,, =(1.5+20\V{L, }. (3.4.10)
The significant paths search algorithm consists of the following steps:
Step 1. For each activity (i, /) auxiliary value x, is being determined,

_ 17 lf (iaj)ELcr
- 07 lf(l%])él’cr
Step 2. For all events jeL, parameter o, is being calculated, equal to the

(3.4.11)

5

accumulated sum of duration variances for all activities on the critical
path preceding event ;:

&)
o, = Y Vi) (3.4.12)
k=0
(k,()EL(,‘

Step 3.  For the given activity (i) check condition x, =1. If the condition
holds, go to Step 9, otherwise (e.g., when x, =0) proceed to the next
step.

Step 4. For all events ; check condition ie L. If the condition holds, go to

Step 5, otherwise proceed to Step 6.

Step 5. For the considered activity (i, ) check whether it belongs to any al-
ready established significant path excluding the critical path. If “yes”,
go to Step 7, otherwise proceed to Step 8.

Step 6. The procedure of the step is identical to that of Step 5, with the only
exception that in case of the positive answer to the question go to
Step 9, otherwise - to Step 10.

Step 7. For the considered activity (i,j) determine auxiliary value «,. Set

a; =0, + V{t(i,j)}.

Ste For the considered activity (i,j) determine auxiliary value o,. Set

:

Otij =, .

}:
4
Q
o

For the considered activity (i,j) determine auxiliary value o,. Set
a, =v, +V1{i, j)}. As to parameter v,, its calculation is outlined in the
below Step 12. Note that for the initial event (e.g., when i=0) v, =0.
Step 10. For the considered activity (i, ;) determine auxiliary value «,. Set

a .. :VI..
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Step 11. Check whether auxiliary value o, has been determined for all activi-

ties (i, /) entering event ;. If “yes”, go to the next step, otherwise re-
turn to Step 3.
Step 12. For the considered event ; calculate parameter v, as follows:

v, = min(a, ). (3.4.13)
Activity (i, j) for which «, reaches its minimal value is being marked
by assigning £, =1.

Step 13. Check whether parameter v, has been calculated for all events ;. If

(13

yes”, proceed to the significant paths laying out algorithm. Other-
wise, return to Step 3.
It can be well-recognized that the above outlined significant paths search al-
gorithm provides for each event ; of the network model its assigned parameter

value v . As a matter of fact, parameter v, represents the minimal sum of activi-

ties durations variances for activities common to a certain path L, and the set of

already laid out significant paths of the network. Minimization is carried out for
all paths L, (v=12,..,k) entering event ;.

3.4.2 Algorithm for laying out significant paths
Significant path 7, to be determined is laid out through network model

events with the least values of parameter v , starting from the terminal event.
The algorithm comprises the following main steps:

Step 1. For the given event ; determine set of events {i} directly preceding ;.
Also determine the corresponding set of activities {(i, j)} connecting
each ; with ;.

Step 2. Verify marker 5, values for activities {(i, /) determined at Step 1 (see
procedure of Step 12 from the previous significant paths search algo-

rithm outlined above).
Step 3. Determine event ; from set {if from which activity (i, ;) with », =1

starts. Check whether event ; is the initial one. If yes, go to the next
step. If no, assign ; index ; and return to Step 1.

Step 4. The sequence of events determined on Steps 1-3, together with the
corresponding set of activities, form the required significant path L, to

be laid out. For L, calculate its respective duration mean value and

variance:
L, = ;Z(i,j), (3.4.14)
ViL = LZV{t(i,f)}- (3.4.15)
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3.4.2 Algorithm for determining mutual correlation among significant paths
The algorithm described in [49] is intended to determine correlation coeffi-
cients of the newly established significant path 7, with each path belonging to

the set {z, | of significant paths previously established. For every couple of sig-
nificant paths L, and L, correlation coefficient p , is calculated. The procedure

of the algorithm boils down to the following steps:
Step 1. Determine the set of activities (i, ) belonging jointly both to L, and

L,
Step 2. Check condition {(i, j)j=@. If the condition holds, assign p , =0 and

go to Step 5, otherwise proceed to the next step.
Step 3. Calculate correlation coefficient p , by relation

S

v

pvp :mﬁ (3.4.16)

where s, stands for the sum of duration variances of activities (i, /)

belonging jointly bothto L, and L, .

Step 4. Compare calculated value p  with the pregiven permissible target
p,. =08+09. If inequality p  <p holds, return to Step 1. Other-
wise, when p > p it can be well-recognized that the newly laid out
significant path L is practically quite similar to the already existing
path L, and, thus, wouldn’t have any further influence of the distribu-

tion function F(¢) of accomplishing the network terminal event. Go to
Step 5.
Step 5. The algorithm for determining mutual correlation estimates among
significant paths terminates.
Consecutive implementation of the above outlined algorithms enables sin-
gling out from the entire set of paths entering a given event, a subset of signifi-
cant paths {z,} (u=12,.,m,m=15+20) alongside with their durations mean val-

ues (L,,L,,..,L, ), variances (V{L,},V{L,},...,V{L,}) and correlation coefficients ma-
trix Py
As mentioned above, determining F(¢) is subject to multiple (z-dimensional)

integrating of a multi-dimensional normal distribution function, while the sig-
nificant paths method succeeded in reducing the dimensions space of (3.4.6) to a
total of » =15+ 20. Unfortunately, even in the reduced case the existing analyti-
cal solution methods for such problems prove to be extremely complicated,
which makes their practical implementation virtually impossible.

For determining statistical moments of distribution function F(¢) one may
apply a method outlined in [49]. Its essence is based on the fact that a random
value 7, =max{L,,L,....,L, } may be represented as follows:
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V= max(L1 ,L, ),
= 7L b
Vs max(yl 3) (3.4.17)

T, = max(ymfz L, )

Mean value and variance of y, may be determined, in their turn, as listed be-
low:
y, = ZlF(a)+ZzF(—a)+c((a),

V)= (0 v @)+ (2 ) FCa) s (2 + 2)are) -6,
:LI—LZ (3418)

a ;
a’ = V{LLII}+ VAL b= 2p, VL VL, ],
where p,, designates the correlation coefficient between L, and L,.

On assumption that random value y, is distributed normally, similar relations
apply for determining y, and V{y,}. Proceeding analogously, determine eventu-
ally mean value and variance of 77. Assuming 7 also distributed normally, one

may obtain p -quantile assessments of the entire time span for accomplishing the

project as a whole.
To implement the regarded procedure, there is need to know the correlation
coefficient between random values 7, and max{L,L,...,L, ,} at each step of the

algorithm. This correlation coefficient, in its turn, may be assessed with suffi-
cient accuracy by the multiple correlation coefficient p, {L,,L,.....L, ,} which de-

termines the dependency measure between , and set {L,,L,,...L, ,}:

A*

Pu AL Lo Lt} = (3.4.19)
where

P P2 Pr(k-1) 0

1 P - Pt Pk

A*:(_l)k P2 1 <o Paj-ry P | (3.4.20)

Py Pl L puap

1 P2 Py
1
A= P12 p(k—l)z (3421)
Pik-1)  Paf-1) -+ 1

To assess the accuracy of the discussed method of determining , -quantile
assessments of the entire time span for accomplishing the project as a whole, the
methodology of statistical simulation of the random value 7 =max{L,,L,,....L, |

may be implemented.
Let us illustrate the latter by numerical example represented in Fig. 3.1.
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Consider a network model comprising activities with randomly distributed

durations, their mean values and variances being determined by relations
“(. o Gy tamy; + b,
)=
Gij 3 6( - j) g
with the results of the calculations presented in Tab. 3.1.
Tab. 3.2 represents network paths £, (k=1,2,.. 15) as Well as mean values L;
and variances V{L,} of their durations: 7, = >4(, /) Za
A ="
For the regarded numerical example, consider the procedure of applying the
significant paths search algorithm in conjunction with the algorithm for laying
out significant paths.

5-8-11

2O,

Figure 3.1. Network model example

b

Table 3.1. Statistical parameters for network model activities

Activity | 1(i, j) o, | Activity | (i, ) oy | Activity | (i, ) o}
(1,2) | 8.0 011 | 3,4 | 2.0 011 | (5,7) | 8.0 0.44
(1,3) | 8.0 0.11 | (3,6) | 6.0 044 | (6,7) | 4.0 0.11
(1,4) | 10.0 1.00 | 4,5 | 2.0 0.11 | (6,8) | 8.0 1.00
2,4 | 20 0.11 | 4,6) | 3.0 025 | (7,9 | 9.0 1.00
2,5 | 7.0 1.00 | 4,7) | 14.0 1.00 | (8,9 | 9.0 1.00

From the paths represented in Tab. 3.2 choose path L, =(1,4,7,9) with Ls =33
and regard it as the critical one L . Determine the permissible level r , of full
time reserves R, =2,/V{L,}=3.5 and the permissible target value of the correla-

tion coefficient p

oy = 0.8
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1. From the entire set of activities entering the network single out the subset
0 of activities with the full time reserves parameter not less than the per-

missible level r , . It can be well-recognized that this subset doesn’t com-
prise activities (4,5) and (6,7) which are excluded from further examination.
Determine values x : x, = x,, = x,, =1; for all other activities x, =0.

3. Calculate auxiliary parameter , for activities on the critical path: o, =0,
0w,=10, , =20, o, =3.0.

Table 3.2. Network paths and their durations parameters

Network paths i V{Lk} Network paths Li V{Lk}
L=(1,2,5,7,9) 32 2.55 | Ly=(1,4,6,7,9) 26 2.36
L,=(1,4,5,7,9) 29 2.89 | Lip=(1,3,4,7,9) 33 2.22
L;=(1,3,6,7,9) 27 1.56 | L;;=(1,3,4,6,7,9) 26 1.58
Ls~=(1,2,4,5,7,9) 29 1.67 | Lix=(1,3,6,8,9) 31 2.55
Ls=(1,3,4,5,7,9) 29 1.67 | Lis=(1,2,4,6,8,9) 30 1.71
L¢=(1,2,4,7,9) 33 222 | Li4~(1,4,6,8,9) 30 2.69
L=(1,2,4,6,7,9) 26 1.60 | L;s=(1,3,4,6,8,9) 30 1.91
Ls=(1,4,7,9) 33 3.00

The below Tab. 3.3 represents the following procedure of sequentially apply-
ing the significant paths search algorithm in conjunction with the algorithm for
laying out significant paths.

Accumulated final results of implementing both algorithms are brought to-
gether in Tab. 3.5.

At the output of computerized analysis of the regarded network model, the
following paths have been determined as significant (these paths are visually in-
dicated in Tab. 3.2 by grey marker): {L,,L,,L,,L,}. Tab. 3.4 displays the calcu-

lated correlation coefficients matrix p  for the regarded paths (for any pair of

paths L, and r,, the correlation coefficient p is calculated by relation
1

2
Y = Gi' *
P ,/V{LVE-V{LMEL‘%# )

The results of determining distribution function parameters for the moment
of accomplishing the terminal event (9) are exhibited in Tab. 3.6.

On assumption that the terminal event’s (9) accomplishment is distributed
normally with mean A, =34.16 and standard deviation o, =1.53, we may deter-
mine now the probability p{<:,, (9);, where ¢, (9) stands for the earliest mo-
ment of accomplishing event (9), by relation

e SR
P{tﬁtm,y(9)}:6 NS | exp{—zﬁngl dt =0.222.
9 —00

9
Tab. 3.7 showcases comparative results of estimating statistical parameters of
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the regarded network model, by means of three competing methods (the above
outlined analytical procedure versus classical PERT and the Monte-Carlo simu-
lation method).

It can be well-recognized that the outlined above method of significant paths
is essentially closer to the exact results (1 = 34.20) obtained by means of simu-
lation than the classical PERT methods.

Table 3.3. Detailed procedure of sequentially applying the search and laying

out algorithms

Step of
Serial| the algo- Description of procedure
rithm
Significant paths search algorithm
1 | Step3 |Choose from subset Q activity (1,2). For the chosen activity x,, =0
2 | Step4 |Check whether event (1) belongs to the critical path - “Yes”
3 | Step5 |Check whether activity (1,2) belongs to any already established sig-
nificant path - “No”
4 | Step 8 |Calculate auxiliary value a,,: a,, =w, =0
5 | Step 11 |Check whether auxiliary value o, has been determined for all activi-
ties (i, /) entering event (2) - “Yes”
6 | Step 12 |Calculate parameter v,: v, =a,, =0. Activity (1,2) is being marked by
assigning A, =1 and is excluded from further examination
7 | Step 13 |Check whether subset O is empty - “No”
8 | Step3 |Choose from subset Q activity (1,3). For the chosen activity x,, =0
9 | Step4 |Check whether event (1) belongs to the critical path - “Yes”
10 | Step 5 |Check whether activity (1,3) belongs to any already established signifi-
cant path - “No”
11 | Step 8 |Calculate auxiliary value a;: o, =0, =0
12 | Step 11 |Check whether auxiliary value o, has been determined for all activi-
ties (i, /) entering event (3) - “Yes”
13 | Step 12 |Calculate parameter v,: v, =a,;, = 0. Activity (,3) is being marked by
assigning 4, =1 and 1s excluded from further examination
14 | Step 13 |Check whether subset QO is empty - “No”
15 | Step3 |Choose from subset O activity (1,4). For the chosen activity x,, =1
16 | Step 9 |Calculate auxiliary value o,: o, =v, +o;, =1
17 | Step 11 |Check whether auxiliary value o, has been determined for all activi-
ties (i, j) entering event (4) - “No”
18 | Step3 |Choose from subset O activity (2,4). For the chosen activity x,, =0
19 | Step4 |Check whether event (2) belongs to the critical path - “No”
20 | Step 6 |Check whether activity (2,4) belongs to any already established sig-

nificant path - “No”
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21 | Step 10 |Calculate auxiliary value a,,: o,, =v, =0

22 | Step 11 |Check whether auxiliary value o has been determined for all activi-
ties (i, j) entering event (4) - “No”

23 | Step 3 |Choose from subset Q activity (3,4). For the chosen activity x,, =0

24 | Step4 |Check whether event (3) belongs to the critical path - “No”

25 | Step 6 |Check whether activity (3,4) belongs to any already established sig-
nificant path - “No”

26 | Step 10 [Calculate auxiliary value o, : oy, =v; =0

27 | Step 11 |Check whether auxiliary value o has been determined for all activi-
ties (i, /) entering event (4) - “Yes”

28 | Step 12 |Calculate parameter v,: v, = min(c,,, 0, 005, )= 0. Activity (2,4) is be-
ing marked by assigning h,, =1. Activities (1,4), (2,4), (3,4) are ex-
cluded from further examination

29 | Step 13 |Continue calculations in the same manner until parameter v, is deter-
mined for all network model activities. Then switch over to laying out
significant paths

Algorithm for laying out significant paths
1 | Step 1 |Choose event (9) and determine the set of activities entering this event
- {(7.9)89))
2 | Step 2 |Verify marker 5, values for activities (7.9) and (89): h, =0, hy =1
3 | Step 3 [Locate event (8) and check whether it is the initial event - “No”
4 | Step 1 |Determine the set of activities entering event (8) - {(6,8)}
5 | Step2 |Verify marker 5, value for activity (6,8): hy =1
6 | Step 3 |Locate event (6) and check whether it is the initial event - “No”
7 | Step 1 |Determine the set of activities entering event (6) - {(3,6),(4,6)}
8 | Step2 |Verify marker 5, values for activities (3,6) and (4,6): hy, =1, h,, =0
9 | Step 3 [Locate event (3) and check whether it is the initial event - “No”

10 | Step 1 |Determine the set of activities entering event (3) - {(1,3)}

11 | Step 2 |Verify marker 5, value for activity (1,3): by =1

12 | Step 3 |Locate event (1) and check whether it is the initial event - “Yes™

13 | Step4 |The sequence of activities (1,3), (3,6), (6,8), (89) forms the required
significant path to be laid out

Table 3.4. Correlation coefficients matrix p,, for significant paths
b L L L L
LV 8 10 12
L 1 0.36 0.24 0
Ly 0.36 1 0.78 0
L, 0.24 0.78 1 0.05
L, 0 0 0.05 1
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§3.5 Upon monitoring stochastic network projects with time parameters

In the section under consideration we will not describe the control techniques
as a feedback model which allows project managers identifying deviations from
the target and initiating corrective actions to reorient the progress of the project
in the desired direction. We are committed to outline such control techniques in
the following chapters of this monograph. Instead, we are going to describe the
use of various stochastic network’s parameters entering an information-advisory
system, without optimization techniques whatsoever. For projects under random
disturbances such an information-advisory system may determine the probability
of meeting the target’s due date on time and is more effective on the planning
stage, where the project’s workable plan has to be checked. Note that planning
does not end when the project starts to be realized since replanning and updating
goes hand by hand with on-line control.

Table 3.5. Accumulated final results of applying the search and laying out
algorithms

vy 1[2[2]2]3]2]5]E] 2] [E]E]2] |2
Event | 1 | 2 | 3 4 5 6 7 8 9
LO=L,| + n + n
Xf |---/0]0|1]0]0]0]O0 0|1 0]0]1 0
O; 0 1.0 2.0 3.0
Qi 000 (10O |O0|O0]O 1.0/ 1.0 0] 01|10 0
\4 0]0]0 0 0 0 0 0 0
hi |- 1 1 0 1|0 1
L@ |+ - + + +
i |--] 0 |0.11/1.0] 0 |0.11] O ]0.55 1.0/ 1.0 0 |1.55|1.0 2.55
\4 0] 0 |0.11 0 0 0.55 0 1.55 1.0
hy || I 1 0 1 1 0
L® [ +]+ + + +
i |---10.11/0.11]1.0/0.11|0.11]1.11]0.55 1.01.11 1.55|1.55]2.11 2.55
\4 0 [0.11/0.11 0.11 1.11 0.55 1.11 1.55 2.11
hy | —| 1 0] 10 1 0 1 0
L9 |+ - + + +
Table 3.6. Consecutive estimates of random distribution function parameters
o _ Standard devia-
Auxiliary parameter A, Mean A, :
’ tion o,
A =Ly 33.00 1.73
A, =max{Ly, L, 33.61 1.65
Ay = max{l2,L1} 33.97 1.57
A, =max{A,, L, | 34.16 1.53

Note that some problems of controlling stochastic network projects have al-
ready been outlined above, in Chapter 1. The main difference between those
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parts of the book is that in Chapter 1 the material is outlined on behalf of the
creators of projects’ control models, whereas in Chapter 3 we describe the prob-
lem of monitoring a project to be used by the project manager who is often un-
familiar with modern control approaches in project management.

Table 3.7. Comparative estimates of the project’s random duration parame-
ters by means of different methods

Pt < t,,, 0))

Methods Ao Oy
PERT 33.00 1.73 0.500
Monte-Carlo 34.20 1.55 0.219
Analytical 34.16 1.53 0.222

On the planning stage the project manager has first to preset the confidence
level p, i.e., the probability of meeting the project’s target on time, while the
due date has to be pregiven as well. It goes without saying that value p depends
fully on the complexity, novelty and indeterminacy of the project’s goal. Several
important concepts in determining the project’s due date have to be imple-
mented:

a) the project’s due date is calculated by adding to the project’s starting mo-
ment the , -quantile of the project’s duration. In some projects under ran-
dom disturbances the ,-quantile is not pregiven, but calculated on the ba-
sis of the previously preset due date. As a rule, such direct and inverse
calculations can be carried out by simulative modeling, as outlined in
§§3.1-3.2.

b) confidence values about the progress of the project have to be obtained
regularly and later on analyzed and compared with the previously estab-
lished p-quantile value. In the simplest case the critical path durations to
be determined over time have to be compared with their ,-quantile esti-
mates.

Practically, four different situations may emerge at the planning stage

[49,53]:

1. The critical path length does not differ essentially from other paths enter-
ing the critical zone (see §3.1) while the ,-quantile estimates (e.g., for
p=0.7 and p=0.8) differ substantially from each other. This may occur
when the project comprises a group of activities which have a certain ten-
dency to be on the critical path and an essentially lower probability to be-
long to other paths of the critical zone. In certain cases they may possess a
large variance of their durations. Such a situation may take place either by
non-objective underestimating the activities’ parameters . and » by their
executors, or by impossibility for one reason or another to estimate their
optimistic and pessimistic durations. At any case those activities have to
be checked in order to narrow the interval [4,5].
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2. The p-quantile estimates do not differ essentially one from another, as

well as the network’s paths entering the critical zone. This results in a cer-

tain steadiness of the progress of the project.

3. The ,-quantile estimates, as well as the paths entering the critical zone
differ from each other essentially. Similar to case (2), we have no reasons
to suspect the executors in presenting deliberately incorrect activity pa-
rameters.

4. The p-quantile estimates differ from each other non-essentially, while
the paths entering the critical zone differ essentially one from another.
This is a relatively rare situation and, if observed, might be explained by
the following reasons:

a) the path with the highest probability to become critical in the course of
the project’s realization comprises activities with larger average dura-
tions than other paths entering the critical zone, but the latter possess
higher duration variances than the first one. It should be noted that , -
quantile values depend both on average and variance values as distinct
from the critical paths durations depending only on their averages.
Such a case needs to be clarified in order to correct the information ob-
tained from activities executors;

b) in certain cases the postulated p.d.f. for a group of activities may devi-
ate from the true distribution law. The reason may be established by
simulation modeling.

To sum up, only ,-quantile estimates are the stochastic network parameters
which have to be compared periodically with the project’s due date, within the
course of the project’s implementation. In case of essential deviations the pro-
ject’s structure has to be corrected, until the deviation will become insignificant.
The corrective actions may boil down either to changing the project’s due date
or amending the project’s targets. Periodical information regarding , -quantile
estimates’ changes within the course of the project’s realization is usually for-
warded to the manager in a form similar to that of Tab. 3.8.

Columns 1-4 are self-explainable. Columns 5-9 represent the information re-
garding the progress of the project, usually in equidistant time moments
t,,t,,...t,, etc. The information is intended for the project manager and refers to

project’s milestones {y} - the most important events including the terminal
event. At any routine moment ¢, the project is inspected and the following sto-

chastic network model’s parameters are determined. Column 7 presents the con-
fidence probability p_ .(y) to reach milestone , by means of inspection at mo-

ment ¢, while column 6 showcases the analogous value obtained at the previous
inspection point ¢,_,. Column 9 contains the calculated time moment p_ -quantile
of reaching node , on the basis of the updated project at moment ¢, while col-
umn 8 displays similar information obtained at the previous moment ¢,_,. Note
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that p  is a pregiven confidence probability to be accepted by the project man-

ager before the project actually starts. By examining the changes in columns 6-7
and 8-9, correspondingly (for all milestones ; ), the manager estimates the pro-
gress of the project and, if necessary, takes appropriate decisions. The latter may
include quite sophisticated corrective control actions, e.g., plan’s updating, re-
source reallocation, amendment of project’s targets, etc. Possible control actions
will be examined and outlined in greater detail in the next chapters of our mono-
graph.

Table 3.8. Information on the progress of the project

No. of calcula-
. . Date | Page
tion Expected moments of mile-
System code , oL
. Ana- stones’ realizations Total
Basic
lyzed pages
Develop-| _ Milestones Realization moments 0
Serial ment Cod Inspected Pregiven g
era stage {o}e Name |Date of| Confidence p_, Due date g
IS
code ! ) ‘. 1, t t, QS
1 2 3 4 5 6 7 8 9 10

Responsible Executor

Thus, the outlined techniques refer to the planning stage which is usually
deeply linked to on-line control. Note that the term “plan™ usually means time
scheduling for all activities entering the project. Without scheduling the project
cannot actually be realized since resources cannot be delivered in time to ensure
proper execution of activities. Thus, bridges have to be build between the plan-
ning, control, and scheduling stages. For a network project to be carried out un-
der random disturbances the problem of linking together those three main stages
refers to one of the most complicated problems in project management which
has not been solved as yet. Note that the complexity of this problem stems from
the contradictions still being part of the PERT techniques and discussed in depth
in Chapter 2.

In conclusion, let us present the three main concepts of solving this main
problem in stochastic project management.

The first concept is based on analytical methods to determine calendar plans
of scheduling activities with random durations. The general idea is to substitute
each random activity duration by a deterministic one, with duration equal to the
average value of the initial activity. Thus, we deal further on with a determinis-
tic network project which enables calculating scheduling parameters on the basis
of determine values ¢, (i) and ¢, (i)). Due dates for reaching the project’s mile-

stones can be easily calculated. Thus, control actions at the on-line control stage
(in case of essential deviations from the target) boil down to introducing addi-
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tional external resources in order to compensate the deviations. Such a monitor-
ing has to be aimed, first, at lowering the durations for activities entering the
critical zone. Note that a deterministic model is easy to operate, although it usu-
ally requires additional resources and, thus, raises the cost of the project. Vari-
ous project management companies use, in addition to the regarded compensat-
ing resources, a flexible policy of changing the intensity of activities’ realiza-
tion, especially for activities entering the critical zone. However, the described
concept would not be recommended for complicated innovative R&D projects,
since the damage caused by such a “simplified” monitoring may be very high.
From the theoretical point of view such a deterministic model cannot be ac-
cepted, since substituting random values by their average values results in unbi-
ased errors which in certain cases may become as high as 40-50% [49,152,157].
According to the second concept, activities’ calendar planning and schedul-
ing is determined by means of simulation. Given the project’s due date p and all
the activities’ parameters «(i, ;) and »(;, j), it is not difficult to calculate the p -
quantile estimates, i.e., confidence probabilities for all the project’s milestones
to be reached in the course of the project’s realization. If for milestone y the , -

confidence value w (y) to reach this event is calculated, then all activities (k,y)
entering y have to take value w (y) as a schedule for their latest time to be fin-
ished. Certain activities will now possess probabilistic time reserves outlined in
§3.1. Thus, it becomes possible to calculate for such a , -quantile scale new cal-
endar plans ¢, (i) and ¢ (j). Note that , -quantile estimates of reaching a certain
event y as early as possible, may be transformed to the latest possible moment

of reaching the same milestone. The methodology involved will not undergo
drastic changes.

For the simulation concept the new durations of executing a routine activity
(i, j) may be determined by

i, j) =W, {t.0, =W, 1t ()} (3.5.1)
i, J) =W, o )} = Wi 1,0, ) (3.5.2)

Relations (3.5.1-3.5.2) enable developing compensative control actions to
diminish the deviation from the project’s target. Although such an approach re-
quires certain mathematical experience on behalf of the project’s managing
team, it seems more realistic and provides less unavoidable errors. The main
shortage of the approach is that in certain cases (not very often ones) implement-
ing relations (3.5.1-3.5.2) might introduce changes in the very topology of the
network’s structure.

The third approach is, as a matter of fact, a combined one and has been out-
lined in Chapter 1. It is based on the following concepts. Monitoring (i.e.,
scheduling) the project is carried out by analytical estimates, while on-line con-
trol is realized by means of simulation. To our opinion, such a combined method
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is the best and the most justified one. Control actions are implemented on the
basis of the project’s inspection in periodically determined control points, and
the deviations from target trajectories are obtained without errors. Thus, local
errors caused by deterministic scheduling, are periodically corrected at each rou-
tine control point, within the project’s functioning.

§3.6 Conclusions

The following conclusions can be drawn from the Chapter:

1. In stochastic network project management the existing classical network
parameters developed for deterministic networks, have to be substituted
for probabilistic parameters. We recommend using the ,-quantile values
which are especially beneficial for PM systems of information-advisory
type.

2. Simulation modeling remains as yet the easiest in application, especially in
comparison with analytical methods. Being interesting from the theoreti-
cal point of view, the latter can be applied in practice to calculate network
parameters for small-size networks only.

3. Monitoring stochastic network projects has to be carried out on two levels.
On the lower level simplified deterministic scheduling has to be imple-
mented whereas at the upper level controlling has to take place by using
appropriate on-line models.

4. With only time parameters involved monitoring stochastic network pro-
jects can be carried out by project managers who can be easily empow-
ered and qualified. For the case of time-cost parameters monitoring be-
comes more complicated and requires special experience and scientific
skills. The latter case refers fully to modern innovative projects.
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PART I
ON-LINE CONTROL MODELS FOR STOCHASTIC
NETWORK PROJECTS

||| Chapter 4. On-Line Control Models Based on Sequential Analysis

§4.1 On-line control model for a PERT-COST project with a fixed speed

4.1.1 Introduction

This section presents results outlined in [64,66,68] with the aim of develop-
ing an on-line control model for various types of stochastic network projects. A
hierarchical on-line control model for several PERT-COST type projects being
carried out simultaneously is considered.

On the project level, each project is controlled separately in order to mini-
mize the number of control points subject to a chance constraint, which seeks to
prevent deviations from the planned trajectory within the planning horizon with
pregiven probability. If at the control point it is anticipated that the project will
not be on target subject to the chance constraint, then an emergency is declared
and the company level is faced with the problem of reassigning the remaining
budget among the projects so that the faster ones may help the slower ones.
Thus, the model has in fact two objectives: minimizing the number of control
points and maximizing the probability that the slowest project can meet its due
date on time.

We will not describe the mathematical formulations of all optimization prob-
lems that are imbedded in the hierarchical model. Those problems will be out-
lined in depth in Chapters 14-15 when considering the hierarchical cost-
simulation control model. Instead, in the present section we will focus on ana-
lyzing only one element of the multilevel control model, namely, the problem of
determining the next control point ¢, for a single PERT-COST project.

In order to proceed, we will require several notations.
4.1.2 Notation

Let us introduce the following terms:
G(N,4) - network project (graph) of PERT-COST type;

D - the due date of the project (pregiven);

P - least permissible probability for the project to be accomplished on
time (pregiven);

C(t) - the remaining budget which is not utilized at moment ¢;

G(t) - the remaining network of the project at point ¢;

A - the minimal time span between two consecutive control points in

order to force convergence (pregiven);
(i, 7)€ G(N, A)- activity leaving node i and entering node ;;
ti,j) - random duration of activity (i, );
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ci,j) - budget assigned to activity (i, j);

Ali,j) - pregiven value to satisfy A(i,j)/c(i, j)=ali, j), which is the lower
bound of random value «(, j);

B(i,j) -pregiven value to satisfy B(i,;)/c(i,j)=b(i, /), which is the upper
bound of random value «(, j);

N(t) - the remaining number of control points to inspect the progress of the
project, beginning with moment ¢; N(0)= N (total number of control
points);

, - the ¢ -th control point, g =0,1,.,N ;

V*(t) - the planned trajectory curve.
V/(t) -the state variable observed at the project’s inspection in control
point ;.
We will adopt the justification outlined in Chapter 2 and, thus, assume the
p.d.f. of activity (i, ) duration as follows:
12 .. ..
fi/' (x) = [b(i,j)— a(i,j)]4 [x - a(laj)][b(l’])_ x]2 : (4 1. 1)
4.1.3 On-line control problem at the project level
Like any other on-line control it has to be carried out by comparing the state
variable of the progress of the project at control points with the corresponding
values of the planned project target (trajectory). Thus, to carry out on-line con-
trol, we have to determine for each project G(t) its planned trajectory curve
v " (¢) together with the state variable v/ (¢).
At the project level the following control model has to be implemented [64]:
At any control point ¢,, 0< g < N, to minimize the objective

min N(t,) (4.1.2)
subject to

t,=0

{IN =D, (4.1.3)
ton —t, A, (4.1.4)
Pr{Vf (t)<v (z)} >p" Viit, <t<t,,. (4.1.5)

The general idea of the on-line control is as follows:
At each routine control point ¢ , g =0,,..., N, inspection is undertaken to ob-

serve the remaining budget C(tg). Value C(tg) is the state variable ¥/ (¢) at point
t=t,. At the beginning of the project realization, at ¢ =¢, = 0, the budget is still
unspent with C(0)=C, and since according to its plan project G(N,A4) has to be

accomplished not later that at + = b together with its full budget utilization, we
determine the planned trajectory curve (first iteration) »*(x)") by a straight line

connecting the two points with coordinates [0,C] and [D,0]. Thus, we obtain
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y e ()0 :C_t.%, (4.1.6)
which is used within interval ¢ [0,7,], up to the first control point.
Note that no restrictions are imposed on the project’s actual cost-duration ex-
cept for the fact such a function has to be continuous and decreasing.

If, at a routine control point ¢, >0, it is observed that C(tg)g v (tg )(q) (g-th 1t-

eration) there is no need for any interference in the project’s realization, since
the project meets in fact a stricter chance constraint than required. Thus, the
progress of the project proceeds, trajectory curve v #(¢)) remains unchanged,
and the next control point has to be determined. If, on the contrary, inequality
C(tg)> yr (tg )(q) 1s observed, an error signal has to be generated, and we have to

examine the project in greater detail. Optimization problem at the higher level
has to be solved, in order to calculate the maximal probability of the project
meeting its deadline on time without any additional help from other projects. If
solution p, satisfies p, > p*, then new budget values c(;, j) obtained by that solu-

tion are reallocated among activities (i, 7). A corrected planned trajectory curve
v (t)(q”) ((g+1)-th iteration) has to be determined by a straight line connecting

two points with coordinates [zg ,C(zg )} and [D,0]. The corresponding trajectory

curve to be used within the interval |7, ,tgﬂ} is as follows:

pl(\a+l) _ D'C(tg) ) C(tg)
) = b Upor (4.1.7)
It can be clearly recognized that in the course of the project’s realization its
actual cost-duration function (irrespective of any assumption on that function) is
approximated closer and closer by repeatedly corrected trajectory curves (4.1.6-
4.1.7) between adjacent control points.
Since minimizing the number of future control points results in maximizing

the time span between two routine adjacent control points ¢, and ¢_, the prob-

lem at hand is to maximize the value
8y =ty 1, (4.1.8)
subject to (4.1.3-4.1.5).
Denoting vV (¢)-V'(¢t)= H(), we substitute optimization problem (4.1.3-
4.1.5,4.1.8) for:

max o, (4.1.9)
subject to (4.1.3-4.1.4) and
Pr{H(t)>0}> p*. (4.1.10)

Let us examine random variable H(t), />, , in greater detail. Since each ac-

tivity time duration (i, j)e G(¢) is a random variable with a density function de-
pendent on budget value c(;, j), random variable H(t) is a result of multiple ran-
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dom disturbances. Thus, it is reasonable to assume that H(¢) has a normal distri-
bution with parameters E[H(¢)] and V[H(¢)]. Note that both these values can be

easily simulated to calculate their corresponding unbiased and consistent esti-
mates

()= ﬁifﬂ”(r), @.1.11)
SZ[H(t)]:ﬁi[H(’)(t)—ﬁ(t)T , 4.1.12)

where um is the number of simulation runs and #")(¢) is the value H(¢) obtained

by the r-th simulation.
Note that chance constraint (4.1.10) can be written in another form

$(q)> p°, (4.1.13)
where
)
S[E ()] (4.1.14)

¢(x)= \/;_ﬂ Iexp{—%}du.

According to (4.1.9) and (4.1.10) the maximal value 7" satisfying

T :gli%{t:[¢(4)zp ]}, (4.1.15)
tg+l _tg A,

should be determined as the next control point ¢, .

In practice, ¢,,, can be calculated by means of simulation with a constant step

1

of length a. The procedure of consecutively increasing value ¢ > step-by-step

is followed until restriction (4.1.15) ceases to hold. Thus problem (4.1.3-4.1.4,
4.1.9-4.1.10) can be solved via simulation in order to capture the last moment
before the project deviates from its target.

The on-line algorithm to determine the next control point ¢, is outlined be-

1

low.

4.1.4 The on-line algorithm to determine the next control point
The algorithm determines at each control point ¢, for project G(,) the next

control point ¢, . The step-wise procedure of the algorithm is as follows:
Step 0. Given at time ¢ =¢,:
e the remaining budget c(;, ) which is not utilized at moment /=, ;

e the project’s due date p;
e the remaining network of the project G(z, );

o values 4(i,j) and B(;, ) for activities (i, )< Glt, );
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Step 6.

e budget values c(i, ) for activities (i,/)e Gl ), > c(i./)=c(r,);
(i./)eG i,
e minimal confidence probability p".
Determine the project’s planned trajectory:
D-Cl\t Clt
Vp[(t): (g)—t' (g)’ .
D~—t, D-t, ¢
Determine the minimal value of the next control point ¢,,,
T" =t, +A.
If 7 > p go to Step 15. Otherwise apply the next step.
Simulate random time duration for each remaining activity (i, /) G(r, ).

Simulating p.d.f. (4.1.1)

12 -
/i) {B(z’, j) 4G, j)]‘ {x c(i, j)
cli.j)  eli.j)
can be easily implemented by transformation
_A@))
clij)
Bli,j) _Ali.))
cli,j) i, j)
and then using the classical Neumann method [43] for simulating a
standard beta distribution with density function s (x)=12x(1-x)*. After
simulating the standard beta value -, we may calculate the desired
random value (i, j) by
o)== [ 2ol A
cij) ej)] G.j)
Single out all the activities entering the remaining network that have
been accomplished (according to their simulated time durations) up to
the moment 7° + A . If, at that moment, an activity is under way but has
not yet been finished, calculate the ratio of the time the activity has ac-
tually been in progress and the simulated activity duration.
Calculate the summarized amount of budgets c(;, /) for activities sin-
gled out at Step 5. For the partially operated activities we include the
corresponding ratio of their budgets. Denote the utilized budget within

t=>t

the time period [zg T +A} by AC(tg,T* +A).

Calculate value H(T" +A)=v"(T" + A)+ AC(t,,T* +A)-C(z, ).
Repeat the procedure of Steps 4-7, m» times independently (» - suffi-
ciently large number of simulation runs). Denote by (" +A) value

H(T" + A) obtained by the »-th simulation run, 1< » < .
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H(r" + )

S|H(T" +A > where

Step 9. Calculate value ¢ = -

HI +a)=—> HO(T" +4),

s*[H(r +A)]:—Z[ N +A)-H(T +A)} .

Step 10. If relation ¢(¢)> p* holds apply the next step. Otherwise go to Step 13.

Step 11. If 7 + A > D go to Step 15. Otherwise apply the next step.

Step 12. Increase value 7 by A, 1.e. 7"+ A =7". Return to Step 4.

Step 13. Value 7 is the next control point ¢, . Inspect the project at moment
T

Step 14. Check inequality C(t,, )< ", ). If inequality holds, return to Step
1 without changing the planned trajectory. Otherwise apply the higher
level of the multilevel on-line control model. Solve the appropriate op-
timization problem and determine new planned trajectory y (tgﬂ)(q”).

Update the information available at Step 0. Proceed to Step 1.

Step 15. Inspect the project at moment p. If the target has not been reached ap-
ply the higher hierarchical level. Otherwise the project’s goal is
reached and the algorithm terminates.

Note that when increasing value 7° by a and applying Step 4 (from Step 12),
we must not simulate time durations (i, /) anew. All calculations and decision-
makings on Steps 5-10 for increasing values 7°, 7" +A, 7" +2A,..., are carried
out on the basis of the » simulation runs that have already been realized for the
minimal time value 7° (see Step 8). It goes without saying that at the new rou-
tine control point ¢ ,, we reapply all the simulations for a revised network.

§4.2 On-line control model with variable speeds

4.2.1 Introduction

Consider an activity-on-arc network project of PERT type with random activ-
ity durations. The accomplishment of each activity is measured in percentages of
the total project. Each activity can be processed at several possible speeds that
are subject to random disturbances. The number of possible speeds is common
to all activities. For each activity, speeds are sorted in ascending order of their
average values - namely, speeds are indexed. It is assumed that at any moment
¢t >0 activities, that are operated at that moment, have to implement speeds of
one and the same index. That is to say, for all teams working simultaneously, the
shift has to be of equal length. It can be clearly recognized that the index of the
speed indicates the speed that actually determines the project’s realization.

The progress of the project can be evaluated only by means of inspection at
control points that have to be determined. Assume, further, that the project’s
speed can be changed only at a control point, that is, all the project’s activities,
being realized between two adjacent control points, have to be operated with
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speeds of one and the same index. There exists only one exception: if an activity
must continue in operation through a control point, the activity speed cannot be
changed.

The project’s due date and the minimum permissible probability of meeting
the deadline on time are both pregiven.

Two basic concepts have to be implemented in the on-line control model:

1) the number of control points has to be minimized, since inspecting the

progress of the project is a complicated and costly procedure;

2) the project should avoid unnecessary surplus speeds, since repeated and
lengthy work at higher speeds can prematurely wear out resources utilized
in the project.

In the further outlined control model, a stochastic control problem is formal-
ized and solved at each control point. Two conflicting objectives are imbedded
in the model:

1) to minimize the number of control points, and

2) to minimize the average index of the project’s speeds within the planning
horizon.

At each routine control point, decision-making centers on determining the
next control point and the new index of the speeds (for all activities to be oper-
ated) to be employed up to that point.

This section is a further development of §4.1 where an on-line control model
has been suggested for a PERT-COST project. That model, however, cannot be
applied to projects with variable speeds.

We will outline an on-line control model and will describe the mathematical
formulation of the optimization problem that is imbedded in the model. The so-
lution of the problem enables control actions to be taken at inspection points to
meet the project’s due date on time. A heuristic algorithm is outlined, its effi-
ciency is evaluated by means of simulation. In 4.2.5, the algorithm to determine
the speed at the next routine control point is presented. 4.2.6 deals with the sub-
problem of determining the next control point for on-line control.

4.2.2 Notation
Let us introduce the following terms:
G - a PERT type project at moment >0, G, =G ;

(i, /)€ G - the project’s activity;

ol - the k-th speed to process activity (i,7), 1<k <m;

m - number of possible speeds;

e - random duration of activity (i, /) when processed at speed v'");
al" - lower bound of random activity duration ¢*) (pregiven);

piH) - upper bound of random activity duration ) (pregiven);

Py - percentage of activity (i, /) in the entire project (pregiven);
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D - the due date of the project (pregiven);

p - least permissible probability of meeting the project’s due date on
time (pregiven);

N(t) - the remaining number of control points to inspect the progress of the
project, beginning with moment ¢; N(0)= N (total number of control
points);

t, - the g -th control point, g =0,1,...,N; ¢, =0, ¢, =D;
the index of the project’s speed to be implemented within interval

S _lilg,l‘g+1:|,lﬁsg§m;

_ 1 Ve, b1 '

k(tg): 5 Y5, (¢, —t.) - the average index of the project’s speeds begin-

g Tl

ning with control point ¢ , g >0
k* < {1,m}- the lower bound of surplus speeds. The latter can be used only in

an emergency to enable meeting the deadline subject to the chance
constraint;
A - the minimal time span between two consecutive control points ¢,

and ¢,,, in order to force convergence (pregiven);

1

Pr{G,,s,} - probability that the project will reach its due date D on time, on

condition that from moment ¢ until D, only speed with index s, will

be used throughout;

V/(¢) - actual project output (in percentages of the entire project) observed
at moment >0, V/(0)=0;

v - the planned entire project volume (pregiven).

Similar to relation (4.1.1), assume random activity duration (" distributed by
the beta-law with p.d.f.

ﬁ(k)(x):m[x—a;k)][blgk) —x]2. 4.2.1)

The initial data of the control model for each activity (i, j) includes:

i5 5 pysals b5 alms b,

Note that for each activity (i, j), the speed indices & are sorted in descending

order of the corresponding average values 19, namely, k >k, results in

Efj{ﬁ) < El(jk) .

Besides beta-distribution with p.d.f. (4.2.1), the outlined control model may
adopt additional alternative probability distributions. A variety of probability
distributions from which to choose for activity durations is outlined in Chapter
2, as well as in [54,105-106,163]. In order to evaluate the performance of the
control model, we will outline below comparative results with other practically
used distributions, namely, the uniform and the normal ones.
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4.2.3 The control model

In §4.1, we presented on-line procedures for a PERT-COST project. But we
did not consider the possibility of several operating speeds, and all the model’s
parameters were based on cost values. This is the focal point of the main differ-
ences from the on-line control model outlined below.

Several basic concepts are imbedded in the model:

a) the model comprises a chance constraint to meet the deadline;

b) the total number of inspection point has to be kept to a minimum to make
the control less costly and less difficult;

c) since operating at higher speeds (i.e., with higher intensities) is always
costlier than at slower ones, the average index of the project’s speeds has
to be minimized also.

The related optimization problem is therefore as follows:

At any routine control point ¢ , determine values ¢ , and s, to minimize

both:
e the number of future control points

gmin M) 4.2.2)
¢ and the average index of future project’s speeds
in k(c,) (4.2.3)
subject to
ton =1, 2 A, (4.2.4)
lon—t, =N Vg:is, 2k", (4.2.5)
D-t,, >A, (4.2.6)
t, =0, 4.2.7)
ty=D, (4.2.8)
Pr{Gtg S, 1}< p < Pr{Gtg ) S g } (4.2.9)

Restriction (4.2.9) means that at each control point ¢, , the problem is to de-

termine the minimal index of the project’s speed that, with the given chance
constraint, guarantees meeting the project’s due date on time. Thus, the restric-
tions prohibits unnecessarily high speeds.

Restriction (4.2.5) means that if decision variable s, refers to a surplus speed

the latter has to be implemented within a restricted time interval of length A . Af-
terwards the project has to be inspected anew. Thus, both restrictions (4.2.5) and
(4.2.9) encourage using possible slower speeds but honoring the chance con-
straint of meeting the project’s due date on time.

Problem (4.2.2-4.2.9) is a stochastic optimization problem with two conflict-
ing objectives, a non-linear chance constraint and a random number of opti-
mized variables. It can be well-recognized that such a problem is too difficult to
be solved in the general case. A heuristic solution will be outlined below.
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The general idea to solve the problem heuristically is as follows: at each rou-
tine control point ¢, we observe the remaining network project G, and the ac-
tual project output '’ (tg) (on the basis of values p, ). Decision variable s, is de-
termined as the minimal speed satisfying (4.2.9). Its calculation is carried out by
means of simulation: graph G, has to be repeatedly simulated with different pro-

ject speeds in order to determine

s, =1nh1{k:h%%3%,k}2pﬂn (4.2.10)

1<k<m

The algorithm to determine s, is outlined in 4.2.5.

+1

The next control point ¢ is determined as follows. If s, >k", then

t,. =t, +A. Otherwise, in case 1<s, <k* -1, the next control point ¢ is deter-

1

mined by solving stochastic optimization problem

max {t,., | (4.2.11)
subject to (4.2.4) and
Pr{Vf (t)>v " (I)} >p Viit, <t<t,,, (4.2.12)

where 77'(¢) denotes the planned trajectory between two adjacent control points
t,and ¢ .
If point [tg 7, )} is above the straight line connecting points [0,0] and

pl

[D,V"’} namely, Vf(tg)>VD

-t, holds, then the planned trajectory is that

straight line, satisfying equation
pl

Vi) = %. (dx). (4.2.13)

. y
Otherwise, in case V'’ (tg)s
D

-t,, the planned trajectory is determined as the

straight line connecting points [zg V7 (tg )} and [D,V"’} namely

ol 1/ S .D_pP.
:VI vV (tg)-t+V (tg) D-V"-t, i<t
D—t D—t,

g

vo(c) (4.2.14)

pl

v
Case v/ (tg)> 5

-t, means that the project is carried out under favorable cir-

cumstances, and it is therefore reasonable to bring the state variable closer to the
planned trajectory (4.2.13) by introducing slower speeds, and then to capture the

last moment before the project output drops below the trajectory curve. Case
pl

"
()<Y

-t, means that there is danger the project will not meet its deadline.

Thus, higher speeds have to be implemented to keep the state variable »/(¢)
above the new trajectory (4.2.14).
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Objective (4.2.11) is obvious, since minimizing the number of control points
results in maximizing the time span between two adjacent control points. Thus,
both objectives (4.2.2) and (4.2.3) of the general problem (4.2.2-4.2.9) are im-
plemented in the heuristic solution via (4.2.9) and (4.2.11). The solution of prob-
lem (4.2.4,4.2.11-4.2.12) is outlined in 4.2.6.

4.2.4 Heuristic algorithm
The algorithm outlined below determines at each control point ¢, the minimal

speed s, that, with pregiven probability ,, guarantees completion of the project

on time. The next control point ¢ ., is determined by maximizing the time span

1

between two adjacent control points ¢_,, and ¢ , honoring restriction (4.2.12), on

1

condition that s, does not correspond to a surplus speed. It can be well-

recognized that chance constraint (4.2.12) is, in essence, stricter than (4.2.10).
The latter only ensures that the project will meet its deadline with probability
not less than ,, while chance constraint (4.2.12) enables the state variable 1/ (¢)

to exceed the planned trajectory »”(t) at any moment ; within the interval

ot |

The step-wise procedure of the algorithm is as follows:

Step 1. Start with g =0, ¢, =0, 7/ (,)=0.

Step 2. Determine the project’s speed:
find s, satisfying constraint (4.2.10). The corresponding algorithm,
which we will henceforth call Algorithm I, is outlined in 4.2.5.
If chance constraint (4.2.10) does not hold for all s, 1<s, <m, set
s, =m and go to Step 6.

Step 3. Determine the next control point ¢, . The corresponding Algorithm IT
is outlined in 4.2.6.

Step 4. Monitor closeness to the due date and to the next control point:
If D-¢,,, <A, thenset s =D and go to Step 6.
If¢,, -t,<a,thenset ¢ =¢, +A and apply the next step.

Step 5. Observe v/ (tg+1), set g = g +1 and return to Step 2.

Step 6. Observe ¥/ (D). The algorithm terminates.

The algorithm is implemented in real time; namely, each iteration of the al-
gorithm can be performed only after the project’s output 1/ (tg) is actually real-

ized. The control points and the corresponding speeds to be introduced cannot
be predetermined. However, if we want to evaluate the efficiency of the control
model, that is the probability of completing the total project on time, we can
simulate the project’s realization by randomly sampling the actual duration of
each activity. In such a case, Steps 5 and 6 of the algorithm have to be modified
as follows:
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Step 5. Simulate durations of activities (i,j) that belong to the interval

[tg ,zgﬂ] Single out all the activities entering the remaining project

G, which will be accomplished (according to their simulated dura-

Ig

tions) up to the moment ¢, . If, at that moment, an activity is under-
way but has not yet been accomplished, calculate the ratio of the time
the activity has already been in progress, and the entire simulated ac-
tivity duration. Note, that in the course of operation, no activity can
change its speed (even at a control point). Thus, being simulated at
the beginning of the activity’s realization, its duration remains un-
changed. Calculate the summarized amount of values p, for the sin-

gled-out activities. For the partially operated activities include the
corresponding ratio of their p, values. Denote the partially accom-

plished amount of the project within the time period [zg ,tgﬂ} by

AV[zg ,ng] Calculate the simulated project’s output ¥/ (tg+1) as fol-

lows:
)= 7 a7t | (4.2.15)
Note that value Vf(tg) has been determined before, at the previous
control point ¢, . Afterwards set g = g +1 and return to Step 2.

Step 6  is implemented in a way similar to Step 5, with the exception that af-

ter determining ¥/ (D) step 2 is not applied, and the simulation run

terminates.
By simulating the development of the project many times, the probability of
meeting its due date on time, the average number of control points and the aver-
age index of the project’s speeds within the planning horizon may be evaluated.

4.2.5 Algorithm I to determine the minimal speed subject to the chance con-
Straint
The problem is to determine the minimal index of the speed s, to be imple-

mented at each routine control point ¢, (see objective (4.2.10)). The step-wise

procedure of the algorithm is as follows:
Step 0.Given at time =1, :

e the remaining network project G, ;

e the project’s due date p;
e minimal confidence probability , ;
o values p, for activities (i, j)e G, ;
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e upper and lower bounds o', b}, 1<k <m, (i.j)€G, .

ij
Step 1.For all activities (;, /) G\G, , which have been already completed, set
their duration values ¢, obtained by means of simulation at previous

control points. These values remain fixed and unchanged within the
planning horizon.

Step 2.Set £ =1.

Step 3.Simulate random durations ¢ for all activities (i, j)e G, (besides ac-

tivities which are underway and have been already simulated) using
beta-distribution (4.2.1) or alternative density distributions.

Step 4.Calculate the critical path length L., [ti(/k)] of network G with activity du-
rations determined at Steps 1 and 3.

Step 5.If L. [ti(/'k)]g D counter 0 +1=0 works and afterwards proceed to Step 6.

If L. [t¥']> D apply the next step.

Step 6.Repeat Steps 3-5 R times to obtain representative statistics.

Step 7.Calculate ratio p* =Q/R; if p*>p go to Step 11. Otherwise apply the
next step.

Step 8.Counter & +1=k works.

Step 9.1f k <m clear counter ¢ and return to Step 3. Otherwise apply the next
step.

Step 10. Applying this step means that even implementing the maximal speed
cannot guarantee for the project to meet its deadline honoring chance
constraint (4.2.9). An emergency is declared, and the highest speed v,
is enforced for all activities up to moment , i.e., without intermediate
control points.

Step 11.Set s, = k. The algorithm terminates.

Note that the simulated values ¢, (i, j)e G, , will be used later on to deter-

mine the next control point (see Algorithm II in 4.2.6).

4.2.6 Algorithm Il to determine the next control point
According to the general idea of on-line control outlined in §4.1 [64,68],

value ¢, is determined as the maximal value satisfying
tg+1 :t?li)é{t[(b(Tt)Z p]} 4 (4216)
low =ty 2 A,
where
1 5 u’
¢(Tt):E£exp{_7}dua (4217)
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=S (4.2.18)
Here

()= %ZR:H(’)(t), (4.2.19)

[0 = ﬁg[H(’)(t)—ﬁ(t)T , (42.20)

H()=V"(t)-V"(z), (4.2.21)

where is the number of simulation runs (equal to that used in Algorithm I out-

lined in 4.2.5) and H")(t) denotes value H(¢) obtained by the r-th simulation.
Control point ¢, is calculated by means of simulation with a constant step of

length A. The procedure of consecutively increasing value ¢ >+, step-by-step is

followed until restriction (4.2.16) ceases to hold. Value 1/ (¢) is evaluated by us-

ing Step 5 of the heuristic algorithm outlined in 4.2.4; consecutive points
t, +A,t, +2A,.. are considered, in order to capture the last moment before the

project deviates from its trajectory.
The step-wise procedure of Algorithm II is as follows:
Step 0. Given at time ¢ =¢, :

e the remaining network project G, ;

e the project output v/ (tg) observed by inspection at control point ¢ ;

e the project’s planned trajectory »¥”(t) determined by (4.2.13) or
(4.2.14);

e the project’s due date p;

e minimal confidence probability ,;

e the index of speed s, =k to carry out the project up to the next con-
trol point;

o values p, for activities (i, /)€ G, ;

o simulated values ¢, (i. /)€ G, , obtained at Steps 3-5 of Algorithm I

outlined in 4.2.5.

Ste If s, > k™ apply the next step. Otherwise go to Step 3.

Step 2. Set ¢,,, =¢, + A. Proceed to Step 4 of the heuristic algorithm outlined
in4.24.
pl

s 4
Ifr (tg)< 5

A

Ste
St

-t, g0 to Step 5. Otherwise apply the next step.

:

Determine the planned trajectory 77 (¢) by (4.2.14). Proceed to Step 6.
Determine the planned trajectory 77 (¢) by (4.2.13). Proceed to Step 6.
Determine the minimal value of the next control point ¢

P
o [0 [@
SN

g+1"°

Loy =1, +A.
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If D-1;,, <A go to Step 16. Otherwise apply the next step.

}Om}c‘:)
— —
¢} ¢}
> I3

Calculate for the r-th simulation run, 1<r< &, value AV, 12, +A]

according to Step 6 of the heuristic algorithm outlined in 4.2.4.
Calculate value

HOW +A) =V, )+ AV O, e, +Al-v 7 (e, +A).
Step 10. Repeat Steps 8-9 R times to obtain representative statistics.
Step 11. Calculate value
ﬁk( t o+ A)
R Ay |
where

Hk(g+1 ):%ZR:H (g+1 )

r=

Sl - 3 - )l )]

Step 12. If inequality ¢lr, . ., J> p holds, apply the next step. Otherwise go to
Step 15.

Step 13. If ¢;,, + A> D—A go to Step 16. Otherwise apply the next step.

Step 14. Increase value ¢, by A, namely ¢, + A=, . Return to Step 8.

Step 15. Set ¢,,, =1.,,. The algorithm terminates.

Step 16. Set D =1,,,. The algorithm terminates.

After determining the next control point we apply either Step 5 (in case
# D) or Step 6 (z,,, = D) of the heuristic algorithm outlined in 4.2.4.

}:
A
@
o

g+1

g+1

4.2.7 Experimentation and conclusions

Extensive experimentation has been undertaken to check the fitness of the
on-line control model outlined in this Chapter. Several distribution laws (beta,
normal, uniform) together with different confidence probability , values have
been examined. The following conclusions have been drawn from the Chapter
[66]:

1) It can be clearly recognized that for all examples examined, the simulated
probability p of meeting the due date on time exceeds the pregiven confi-
dence probability ,. This is because in order to carry out the on-line con-
trol, we implement chance constraint (4.2.12) which is stricter than the
initial chance constraint (4.2.10).

2) Introducing beta-distribution results in realizing the project in time with
slowest speeds and the least number of control points, that is for the case
of beta-distribution the control algorithm is more efficient than in other
cases. This is because the mean value of beta-distribution (4.2.1)

E[t"]=0.6a" +0.4p is smaller than the mean value 0.5[a% +5%] for the
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normal and the uniform distributions. For the case of a uniform distribu-
tion the average expenses of carrying out the project are higher than for
other probability distributions, namely, the project becomes the most
costly one.

3) Removing constraint (4.2.5), namely, assuming ‘=4, results for all
distributions both in minimizing the number of control points and
maximizing the average index of the speeds. Decreasing number k*
results in decreasing the average speed together with increasing the num-
ber of inspection points. Thus, a trade-off between the number of control
points and the average index of speeds can be achieved by varying &*.

4) The developed on-line control algorithm can be implemented for activity-
on-arc network projects where each activity can be operated at several
possible speeds subject to random disturbances and the activity’s
accomplishment is measured as a part of the entire project. Such projects
include construction projects, various R&D projects, etc.

5) The control algorithm is implemented by means of simulation and can be
easily programmed on PC, mainly for projects of medium size.

6) On-line control models subject to a chance constraint can be used for other
types of PERT network projects, for example, PERT-COST projects
comprising budget reallocation problems. Thus, the idea of on-line control
has the potential of becoming a general one.

7) The developed on-line control model is a decision-making model that is
employed in inspection points only. The model does not revise any
existing techniques in project management, e.g., resource reallocation,
project scheduling, etc. It is an additional support tool that helps the
project manager to determine inspection points and to choose the proper
project speed after evaluating the progress of the project at a routine
inspection point. Such control actions enhance the prospects of the project
to meet its deadline on time, subject to a chance constraint.

8) As outlined above, the average expenses to carry out the project cannot be
used directly in the model. However, the developed algorithm enables
calculation of those expenses, by means of simulation, for each combina-
tion of , and &*. One has only to attach the processing costs to all speeds
per time unit for each activity, together with the cost of performing a sin-
gle control of the project, with the penalty cost for non-accomplishing the
project at the due date. Thus, a wise choice of parameter values , and &*
can be determined to minimize the expenses of carrying out the project.
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||| Chapter 5. Control Models Based on Risk Averse Decision-Making

§5.1 On-line control model

5.1.1 Introduction

We will consider an activity-on-arc network project of PERT type with ran-
dom activity durations. It is assumed that the progress of the project can only be
inspected and measured at preset inspection points since it is impossible or too
costly to measure it continuously. The developed and outlined in the previous
Chapter on-line control models determine both control (inspection) points and
control actions to be introduced at those points in order to alter the progress of
the project in the desired direction. The timing of inspection points is carried out
by determining planned trajectories that must be repeatedly corrected in the
course of the project’s realization. On-line control is carried out by solving an
optimization problem to minimize the number of control points needed to meet
the planned trajectory, subject to the chance constraint. Stated another way, the
problem’s objective is to maximize the time span between two routine adjacent
control points, subject to the chance constraint. The solution of that problem,
1.e., determining the next inspection point, is carried out by means of extensive
simulation with a constant time step. To consecutively increase the time span
value step-by-step, the procedure is as follows. At each intermediate control
point, decision-making based on sequential statistical analysis has to be under-
taken, either

a) to proceed further and to examine the next control point; or

b) to determine the control point under consideration as the last moment be-

fore the project deviates from its target subject to the chance constraint.
Thus, the next routine control point is determined.

The main shortcoming of such step-by-step control algorithms is their long
computational time due to the need to make numerous decisions. In order to
speed up the model’s performance, we present an on-line heuristic control algo-
rithm in which the timing of inspection points does not comprise intermediate
control points and is based on the behavior of a risk averse decision-maker.
Given a routine inspection point ¢, the next point ¢, is determined so that even

in the case that the project develops most unfavorably in the interval [¢,,z,,,], in-
troducing proper control action at moment ¢,, enables the project to meet its tar-

get on time, subject to the chance constraint.

The outlined below control algorithm has been tested on several PERT pro-
jects of different types, e.g., on PERT-COST projects, construction projects with
random activity durations, etc. In all cases the algorithm’s computational time
has been essentially shortened (by a factor of some 25-30) in comparison to
step-by-step control procedures. The developed algorithm provides better solu-
tions than would be attained by using on-line sequential statistical analysis.
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5.1.2 Notation
Let us introduce the following terms:

G(N, A4) -

D

p

Q

N

~
0q

N

activity-on-arc network project (graph) of PERT type;
the due date of the project (pregiven);
-least permissible probability of meeting the project’s due date on
time (pregiven);
the project’s target, i.e., the planned total project volume (pre-
given);
the remaining project G(N, 4) at moment :>0; G, = G(N, 4);
the project’s output (project volume) observed at control point ¢ > 0;
-the ¢ -th inspection (control) point, g =0,1,..,N, ¢,=0, ¢, =D (opti-
mized variable);
-the project’s speed at moment >0 set by the control device (con-
trolled variable);
the number of control points within the planning horizon;

(i,j)e G, - the project’s activity, ¢>0;

t.

y

A

pij

S

i

- random duration of activity (i, j);

-the minimal time span between two consecutive control points ¢,

and ¢,,, in order to force convergence (pregiven);

1

-the weight (contribution) of activity (i, ) in the total project volume

(pregiven);
-the actual time activity (i, j) starts;

F, = S, +1, - the actual moment activity (i, /) is finished;

Cjj

C

ij min

C

ij max

C

t

CA(t,k)=

P(t,k)

m>1
w (k)

- budget assigned to activity (i, /) (for PERT-COST projects);

-minimal possible budget to operate activity (i, /) (pregiven);
-maximal possible budget to operate activity (i, ;) (for PERT-COST
projects, pregiven); in case ¢; > c;,,, additional budget is redundant;

Ij max

-available remaining budget to carry out a PERT-COST project G,
(observed at control point ¢);

v®- the k-th control action on project G introduced by the control

device at moment ; to alter the controlled variable v, in the desired

direction;
-confidence probability to accomplish project G on time after

introducing control action CA(t,k), 1<k <m

-the number of possible control actions;
-the p-quantile of the moment project G, will be finished, on condi-

tion that control action CA(,k) is introduced (time moment to be
met with preset probability p);

p™ > p® - probability value being very close to 1 (pregiven).
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Note that for some types of network projects, e.g., construction projects,
various R&D projects, etc., each activity can be operated at several possible
speeds. Introducing a control action results in choosing one of those speeds
which corresponds to one and the same resource capacity and depends only on
the degree of intensity of the project’s realization [66]. The speeds are sorted in
ascending order from 1 to m. At each routine control point ¢_, a control action

boils down to determining the index of the speed k, k e {I,m}, for all project ac-
tivities to be operated with that speed from point ¢_, up to the next control point

t,.- An additional constraint is introduced in the control model which enables

choosing the minimal index k, on condition that the chance constraint to meet
the project’s deadline on time must be honored [66]. Thus, for that type of pro-
ject

CA(t,k)=k=11};i<I’1n[q:P(tg,q)Zp*] (5.1.1)
For other stochastic network projects, e.g., of PERT-COST type, a control

action, if introduced, results in optimal budget reallocation as follows [62,64]: at
a routine control point ¢, >0 determine optimal budget values ¢;, (i,/)e G, ,to

maximize the probability of meeting the project’s due date on time,

P(tg,k):Pr{tg+T[G,g cl,j]s D}Zp*, (5.1.2)

subject to

Cijmin < Cij < Cijmax9 (513)
ci‘ = Ct >

<>Zc ‘ (5.1.4)

where T[th cij] denotes the random duration of project G, with reallocated

budget values c;,. Note that random durations ¢, have a density function which
depends parametrically on value c;. For practical cases [92], the project man-

agement can adopt any suitable distribution as long as its density function pre-
sents a linkage between time and cost, e.g., t; has a beta-distribution with

/

boundary values ; and ¢, where

* Ai/' *x Bi/'
ti/.:w and 7 :W, (5.1.5)
0.5<7z <1, and values 4, and B, are pregiven.
It can be well recognized that a PERT-COST project described above has

only two (m = 2) possible control actions, namely:
1. The project continues to function without changing budget values ¢

i

(i.j)e G, if at a routine control point ¢, it is anticipated that the project

meets its deadline on time under the chance constraint (£ =1). A decision

95



not to change values c; has to be taken if value Pr{tg +T [G,Y

cij]ﬁ D} 1S not

less than p*.
2. Otherwise, 1.e., if P(tg ,1)< p" holds, the project has to undergo budget real-
location in order to increase the confidence probability of meeting the due

date on time (k =2). The reallocation optimization problem (5.1.2-5.1.4)
has then to be solved.

5.1.3 The control model
On the basis of particular cases outlined above we will outline a generalized
on-line control model [72] as follows: determine optimal control points ¢, (to

inspect the project) and optimal project’s speeds uff) to proceed with until the
next control point ¢, , in order to minimize the average number of inspection
points

i, N (5.1.6)

_0)
&g

subject to (5.1.1) and

Pl b)=rele, o176, o ]< )= (5.1.7)
ton —t, 2 A, (5.1.8)
t, =0, (5.1.9)
ty=D, (5.1.10)
D-t, 2A, 1<k<m. (5.1.11)

Here, T [th ufff)] is the random duration of the remaining project G, after in-

troducing control action c4(r,,k) at moment /.

In order to avoid unnecessarily high speeds, an additional control action
(5.1.1) 1s introduced at each routine inspection point (see §4.2). This means that
at each control point ¢, the problem is to determine the minimal index of the pro-

ject’s speed which will enable meeting the project’s due date on time, subject to
the chance constraint.

Control model (5.1.6-5.1.11) is suitable for construction and R&D network
projects with different speeds. In the case of a PERT-COST project, the pro-

ject’s duration T[G[Y ufff’] is substituted for T[Gt c,.j]. Budget values ¢, are ob-

tained by solving the stochastic optimization problem (5.1.2-5.1.4).

Thus, two basic concepts are imbedded in the on-line control model (5.1.6-
5.1.11):

(a) the model comprises a chance constraint to meet the deadline;

(b) the number of control (inspection) points has to be minimized.

Note that the model’s solutions are, in essence, on-line control algorithms. 1f

96



an algorithm enables the project to be completed by the due date with a prob-
ability less than p*, the algorithm is unfeasible and cannot be accepted. An opfi-
mal solution is a control algorithm which
e is a feasible algorithm, i.e., enables the project to be completed on time
with a probability not less than p*, subject to the chance constraint, and

e offers the minimal average number of control points in comparison with

any other feasible control algorithm.

Thus, when comparing two different on-line control algorithms with respect
to the model’s objective, the first algorithm is considered to be better than the
second one if they are both feasible, and if less inspection points are required in
the first algorithm than the second.

It has to be pointed out that since the general model incorporates an addi-
tional control action (5.1.1), a second objective is, in essence, imbedded in this
model, namely, to minimize the average index of the project’s speed within the
planning horizon. Thus, the developed generalized control model comprises
both control models outlined in Chapter 4 [62,64] as specific cases.

The control algorithm comprises two main parts:

Subalgorithm I determines the project’s speed v*) at moment ¢_, i.e., formal-

izes the control action caf,,k). The subalgorithm is carried out by means of
simulation, by determining the minimal speed index & for which restriction

(5.1.1) holds. Value p(;,,k), 1<k<m, is calculated by simulating zg+T[Gtv uff“)],

on condition that speed v*) is used throughout [66].

Subalgorithm II determines the next inspection point ¢, on the basis of the
routine control point ¢ , the project’s output ¥, observed at that point, and the
project’s speed v’ is implemented as a control action. The subalgorithm devel-

ops a heuristic solution of the stochastic optimization problem as follows: de-
termine the next inspection point ¢, to maximize the time span between two ad-

jacent control points:
max (5.1.12)

subject to (5.1.8) and
Pry, >V |2 p" Vi, <t<t (5.1.13)
where v° is the straight line (trajectory curve) connecting two points (tg,V,g) and
(D,v").
Subalgorithm I determines value ¢, by means of simulation with a constant

g+1?

time step A. The procedure of consecutively increasing the time span value is
carried out by means of sequential statistical analysis at each intermediate con-
trol point [66,68,150]. Due to the need to make numerous decisions, carrying out
Subalgorithm II takes much computational time, more than is needed to imple-
ment Subalgorithm I.
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Thus, the problem to speed up the on-line control algorithm centers on de-
veloping a faster subalgorithm for determining routine inspection points. The
developed heuristic algorithm is outlined below.

5.1.4 Determining next inspection points
Let us consider the general case of an activity-on-arc network project G(N, 4)
observed at a routine control point ¢,. Given:

e remaining network project G, ;
e routine control point ¢, to inspect the project;

e the project’s output ¥, observed at moment ¢_; and

e control action c4(r,,k) to be introduced at moment ¢, up to the next inspec-
tion point,
the problem is to determine that next point ¢, . The general approach to solving

the problem is presented in Fig. 5.1 and is as follows [72]:
Since control action c4(r,,k) is determined by realizing Subalgorithm I sub-

ject to restriction (5.1.1), the project’s speed index # satisfies P(tg ,k)z p". There-
fore (see Fig. 5.1) relation W, (¢,.k)< D holds. Assume that after introducing

speed v® the project will be carried out under the most unfavorable circum-

g

stances. That means that the actual moment the project is accomplished is close
to the upper bound of the density distribution of the project’s duration (see Fig.
5.1), i.e., the project’s target will be reached at .. (¢,. %) with probability p™ be-

ing close to one. To illustrate the heuristic Subalgorithm I we will assume a
number of such probabilities, e.g., p™ =0.90,0.93,0.95,0.97, etc. Thus, the straight
line HF connecting two points (¥, ) and (Wp,,,, (tg,k),V*) can be regarded as the

g2 t,
most unfavorable direction of the project’s progress (we will henceforth call it
the pessimistic line), while the straight line HE connecting two points [¢,,V, )

g2t
and (Wp,, (¢ k),V*) enables the deadline to be met on time under the chance con-

g
straint (we will henceforth call it the optimistic line). Let us draw a line through
the target point (D,V*) parallel to the optimistic line HE, until the intersection
with the pessimistic line at point H” (see Fig. 5.1). It can be clearly recognized
that, on condition that control action c4(s,,k) on the project is introduced and,
due to random disturbances, the project advances to its target, until the intersec-
tion point H’, with the minimal speed, then, from that point on, the project can

meet its target on time under the chance constraint Pr{tg +T[G,Y|u,(f€)]s D}z P

Thus, the abscissa of the intersection point is determined as the next inspection
point ¢

g+l °

Note that such a heuristic procedure enables the project to meet its the due
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date on time with a probability which exceeds the pregiven lower boundary p*.
If, indeed, the project will be realized between two adjacent control point ¢, and

t.., under most unfavorable circumstances, i.e., with the minimal rate, then, be-

g+l

ginning from the control point ¢, , the project will meet its target on time under

g+l
the chance constraint. But actual completion of the project with the minimal rate
is extremely rare since the probability, 1-p™, of such an occurrence is close to

zero. Thus, with probability p™ close to one, the project has a higher chance
than it would have had with p*, of meeting its deadline on time.

Vi
Density distribution of the project's du-
ration tg + T[6, ]vtg(k)] in the case
of dintroducing control action CA(tg,k)
%%
1-p =0
. /// B(D,V") /
v E F
A
v H(t .V, )
ty 9ty
e tg HF*(tg,k) 1:g+1 D wp**(tg,k) t

Figure 5.1. The general idea of determining the next inspection point by risk
averse decision-making
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The heuristic algorithm outlined below fits the assumption of a risk averse
decision maker. Although it is designed to honor the chance constraint which
practically enables completion on time, it does not trust the random circum-
stances and assumes the worst until the next inspection point.

The step-by-step heuristic algorithm is as follows:

Step 1.

Simulate random durations ¢,

(i.j)e G, , according to the speed v to
be engaged at moment ¢, .

Simulate (on the basis of calculating the critical path length) the pro-
Ut(f)].

Repeat Steps 1-2 M times to obtain representative statistics.

Calculate values W (¢,.k) and . (¢,.%) on the basis of statistics ob-

ject’s duration value ¢ +T [G[Y

tained on Step 3.
Determine the optimistic line drawn between two points H and E (see
Fig. 5.1)

Ve-v, VW -tV

t

N et et (5.1.14)

Determine a straight line through the point B (D,V*) parallel to the op-
timistic
line (see Fig. 5.1)

V*—V, V*—V, i1
= tx+V" =D £,
7 W, —t W . —t (5.1.15)
P g P g

Determine the pessimistic line connecting points H and F (see Fig.
5.1)

Ve-v, VW .=t V"
W = W.—t, (5.1.16)
Determine the point of intersection H of lines (5.1.15) and (5.1.16)
and denote it (X,Y). If x -/, <A, set ¢,,, =¢, + A. Otherwise X is ac-

cepted as the next inspection point ¢, .

In the case of a PERT-COST project (see §4.1) Step 1 has to be modified by
simulating random values ¢, on the basis of budget values ¢, according to time-

cost functions (5.1.5). Values ¢; are determined in the course of budget realloca-

tion, by solving optimization problem (5.1.2-5.1.4).

5.1.5 Heuristic algorithm of the on-line control model

The algorithm outlined below is performed in real time, by introducing con-
trol actions and inspecting the project’s output periodically. We will present the
algorithm in a general form that can be “tuned” for practically all cases of con-
trolling network projects.

Assume that m >1 different control actions may be introduced at any inspec-
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tion point to control the project. The step-by-step heuristic control algorithm is
as follows:

Step 1
Ste

:

:

Step 3

:

g
,,
@
b

Start with g =0, 7, =0, 1, =0.

Set k=1.
Consider control action ca4(,,k). For different types of network pro-

jects facilitating Step 3 results in carrying out different procedures. For
example, for network projects with different speeds, control action
cAle,.k) results in introducing the k-th speed for all activities begin-

ning from ¢ =+, [72]. For PERT-COST projects, c4(,,1) means assign-
ing to all activities (i, j)e G, values ¢, which have been previously de-
termined at =+, ,, while c4 (zg,z) means optimal budget reallocation,
which will be outlined later, in Chapters 14-15.

Simulate random durations ¢, (i, j)e G, , on the basis of control action
cAle, k).

Calculate the critical path length of network G, , L. [ti/]’ with activity
durations

determined at Step 4.

Calculate the project’s duration 7, + L., [ti/']‘

Repeat Steps 4-6 M times to obtain representative statistics.
Calculate p(;,,k) by examining the statistical data obtained at Step 7.

If P(tg ,k)z p" go to Step 13. Otherwise apply the next step.

. Counter & =1= k works.
. If k <m return to Step 3. Otherwise apply the next step.
. Applying this step means that even by introducing control action

cA4lr,,m) the project cannot meet its due date on time subject to the

chance constraint (5.1.7).
An emergency is declared and the project management is faced with
introducing additional control actions, e.g., set k =m and ¢, =D. Go

to Step 19.

. Calculate values W (¢,.k) and . (¢,.%) on the basis of statistical data

obtained at Step 7.

. Determine straight lines (5.1.15) and (5.1.16).

. Determine the next inspection point ¢,

as the abscissa of the intersec-

1

tion point of lines (5.1.15) and (5.1.16).

. Monitor closeness to the due date and to the next control point:

If D-¢,,, <A, thenset s =D and go to Step 19.
If¢,, -t,<a,thenset s =¢, +A and apply the next step.
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Step 17. Observe project G, =~ at the next inspection point ¢,,, and determine the
project’s output ¥, . Various techniques to calculate the project’s out-

put at an inspection point by simulating the on-line control algorithm
are outlined in Chapter 4. These techniques, in essence, calculate the

partially accomplished amount of the project AV[tg ,tgﬂ} within the

time period [zg e } , as follows:

AV[tg NI EDIEDINE DI DITH

where
I
Z] = Z PU - £ )
S,/»<tg tlj
1 <Fy<ty,
zz = z P s
SijZl‘g

t,.,—t
24 = Z l:pij - £ :l )
Sj<ty t.

J
Fl/'>tg+l

where ¢, are simulated durations of activities (i) that start before in-

spection point ¢, and are not finished before ¢ . Thus, value

g+l

v, =V, +AV[zg ,tgH]

Step 18. Set g = g +1 and return to Step 2.
Step 19. Observe the project at the due date p. The algorithm terminates.

§5.2 Experimentation

5.2.1 The experimental design

The comparative efficiency of the developed control algorithm can be illus-
trated by a numerical example. A construction project where partial accom-
plishments are usually measured in percentages of the total project, is presented.
The project’s initial data is given in [72]. Each activity can be operated at three
possible speeds that are subject to random disturbances and correspond to dif-
ferent hours a day per worker. Thus, a control action, introduced at the inspec-
tion point, results in determining the index of the speed. It is assumed that for all
construction teams working simultaneously, the shift has to be of equal length;
thus, activities being operated simultaneously have to apply speeds of one and
the same index. The index & of the speed to be introduced at moment : actually
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determines the speed v*) of the project’s realization. Two heuristic algorithms to
solve on-line control problem (5.1.6-5.1.11) for the construction network project
have been examined:

e the control algorithm based on risk-averse decision making (we will hence-

forth call it RADM), and

e the former algorithm outlined in Chapter 4, based on decision making via

sequential analysis (we will henceforth call it SADM).

To verify the comparative efficiency of the developed algorithm various ex-
amples were run. The experimental design is presented in Tab. 5.1. Three pa-
rameters were varied: distribution of ¢; for all project’s activities, the least per-
missible probability p* of meeting the project’s due date on time, and the ver-
sions of the control algorithm:

1. RADM with p* =0.90;

2. RADM with p* =0.93;

3. RADM with p* =0.95;

4. RADM with p* =0.97;

5. SADM.
Table 5.1. The experimental design
Values given in the ex-  Number of combina-
Parameters . .
periment tions
Due date D 262 1
Minimal time span 10 1
Number of speeds m 3 1
Distribution of ¢, Uniform, normal, beta 3
Desired probability p* 0.60; 0.75 2
Versions of the control algorithm RADM with p™ =0.90; 5

RADM with p™ =0.93;
RADM with p™ =0.95;
RADM with p™ =0.97;
SADM.

Three alternative distributions are considered:
1. Beta distribution with density function

f,(t)= b i2 " (t—aij)(bij _t)2§

ij ij

2. Uniform distribution in the interval [aij ,by];

3. Normal distribution with average (a, + 5, )/2 and variance [(b, - a, )/6]".

Thus, a total of 30 combinations have been considered. For each combina-
tion, 100 simulation runs were carried out. The number M of statistical trials in
Step 7 of the algorithm is 100. Several measures were considered, as follows:
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- the average number of control points;
- the average actual probability of meeting the due date on time;
- the average index of the project’s speeds within the planning horizon;
- average computational time of a simulation run (in seconds).
Value & has been calculated as follows: denote k.; the index of the speed to

s LR SEIS

operate activity (i,j) and ¢, its simulated duration, for the --th simulation run,
(i,j)e G(N,4), 1<r<100 . Value k is evaluated by

100 Z kVUtVﬁ

k=001 |Gk
r=1

=, rij

(i,/)eG(N,4)

The summary of results is presented in Tab. 5.2.

5.2.2 Conclusions

The following conclusions can be drawn from the summary:

1. Both control algorithms are feasible since their average actual probabilities
p exceed the least permissible level p*. This complies with the reasons
outlined in 5./.4 and in §4.2.

2. Introducing beta distribution results in carrying out the project with slow-
est speeds for both algorithms RADM and SADM. Since using slower
speeds results in decreasing processing costs per time unit, introducing
beta distribution means realizing the project with the smallest expenses.
Introducing uniform distribution leads, on the contrary, to the highest av-
erage speeds and, thus, increases the expenses in comparison with other
distributions.

3. It can be clearly recognized that for any combination of distribution of ¢,

and value p' there exists at least one algorithm RADM with value N less

than the value of N obtained by using SADM. Thus, a conclusion can be
drawn that the newly developed algorithm RADM is better than SADM.
In the case of the uniform distribution, we recommend to use RADM with
p™ =0.90, while for the normal and for beta distributions, we suggest

P =097.

4. It can be clearly recognized that, for practically all examples, using algo-
rithm SADM results in a higher value of p than when using control algo-
rithm RADM, but at the expense of introducing higher speeds. Thus, a
conclusion can be drawn that although both control algorithms enable the
project’s deadline to be met on time, subject to the chance constraint, us-
ing RADM results in a cheaper realization, than by using SADM.

5. The computational time of realizing algorithm RADM is essentially
smaller than for SADM. For a project of small size (36 activities), using
RADM results in speeding up the on-line control by a factor of about 25
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in comparison with SADM. This is because most computational time in
SADM is utilized for carrying out decision making at numerous interme-
diate check points. In RADM these complicated and lengthy techniques
have been removed.

Table 5.2. The summary of results
Versions of the Outcome values

Distribution P control algorithm N p k T

UNIFORM p"=0.60 RADM, p™ =0.90 2.88 0.68 2.64 10.2

RADM, p™ =0.93 3.35 0.72 2.57 10.1
RADM, p™ =0.95 3.51 0.73 2.53 10.1
RADM, p™ =0.97 3.87 0.70 2.45 10.0
SADM 5.01 0.84 2.83 254
p =075 RADM, p™ =0.90 2.87 0.76 2.71 10.2
RADM, p™ =0.93 3.13 0.79 2.71 10.2
RADM, p™ =0.95 3.09 0.80 2.73 10.2
RADM, p™ =0.97 3.24 0.75 2.78 10.3

SADM 4.95 0.93 2.95 252

NORMAL p"=0.60 RADM, p™ =0.90 6.48 0.77 2.22 10.4
RADM, p™ =0.93 591 0.78 2.27 10.3
RADM, p™ =0.95 5.55 0.79 2.30 10.3
RADM, p™ =0.97 3.93 0.85 2.55 10.1

SADM 5.08 0.91 2.75 255

p =075 RADM, p™ =0.90 8.95 0.80 2.26 10.5
RADM, p™ =0.93 7.89 0.86 2.32 10.4
RADM, p™ =0.95 7.48 0.89 2.33 10.4
RADM, p™ =0.97 4.67 0.91 2.57 10.3
SADM 5.12 0.96 2.97 253
BETA p =060 RADM, p™ =0.90 3.39 0.67 2.01 10.2
RADM, p™ =0.93 3.38 0.73 2.01 10.2
RADM, p™ =0.95 3.51 0.68 2.02 10.2
RADM, p™ =0.97 3.57 0.73 2.07 10.2

SADM 5.10 0.89 2.22 256

p' =075 RADM, p™ =0.90 5.47 0.83 2.07 10.3
RADM, p™ =0.93 5.33 0.85 2.16 10.3
RADM, p™ =0.95 4.82 0.87 2.16 10.3
RADM, p™ =0.97 4.03 0.86 2.26 20.2
SADM 4.98 0.89 2.21 256

5.2.3 Applications
1. The developed on-line control algorithm is high-speed and can be used for

controlling stochastic network projects of practically any size.
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2. The algorithm is based on the risk averse decision-making approach. Such
an approach has been used successfully in other areas of operations man-
agement, e.g., in on-line production control [63]. Simulation results ob-
tained for a practical control problem in project management show that
such an approach is also a very effective procedure in controlling stochas-
tic network projects [68,72].

3. Within the last two decades extensive research has been undertaken to de-
velop on-line control models for various organization systems under ran-
dom disturbances, e.g., [54,68,72,92]. It is obvious that controlling a pro-
duction unit (activity) with several possible speeds under random distur-
bances requires, on average, 2.5-3 inspections [72], while controlling a
flexible manufacturing cell comprising two production units will require
4.3-4.8 inspections [63]. Since a section comprising two activities is es-
sentially less complicated than a network project with 36 activities, the
latter needs, at a minimum, the same number of inspection points as the
system outlined in [63]. Taking into account that the best RADM algo-
rithms require only 3-4.6 inspection points, on average, the conclusion
which can be drawn is that the RADM algorithm developed here is close
to the best solutions of the general on-line control model. (Since our con-
trol algorithm is a heuristic one, we prefer to avoid the term “optimal so-
lution”).
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||| Chapter 6. Control Models Based on Chance Constraint Principle

§6.1 The chance constraint principle

6.1.1 Introduction

In our publications in the recent decade [54,73,77,83-84] we have developed
a new class of on-line control models based on the chance constraint principle
and applied to solving cost-optimization problems. The previously developed
and outlined in Chapters 4-5 on-line control models are not suitable for solving
those problems.

Let us take an overview of the general idea of the chance constraint principle,
since otherwise it might be not easy to implement on-line chance constraint con-
cepts for control models in stochastic network projecting.

6.1.2 The system’s description

The system under consideration produces a single product or a production
program that can be measured by a single value, e.g., in percentages of the
planned total volume. Such an approach is often used for R&D projects, in min-
ing, etc. The system is subject to a chance constraint, i.e., the least permissible
probability of meeting the due date on time is pre-set. The system utilizes non-
consumable resources that remain unchanged throughout the planning horizon.
There are several alternative processing speeds to realize the program, corre-
sponding to the same given levels of resources and depending only on the de-
gree of intensity of the production process. However, for different speeds, the
average processing costs per time unit vary. The evaluation of advancing to the
goal, i.e., observing the product’s actual output, can be carried out only via
timely inspections at pre-set control points. At every inspection (control) point,
the decision-maker observes the amount produced and has to determine both, the
proper advancement speed and the next control point. Assume that it is prohib-
ited to use unnecessarily high speeds (especially at the beginning of manufactur-
ing the products), unless there is an emergency situation, i.e., a tendency to de-
viate from the target which may cause delay of the completion time. This is be-
cause lengthy work at higher speeds when utilizing restricted resources (e.g.,
manpower employed in two or three shifts, etc.) can prematurely wear out the
regarded system. Assume, further, that the inspection and the speed-reset times
equal zero. The costs of all processing speeds per time unit, as well as cost of
performing a single inspection at the control point, are pregiven.

6.1.3 Notation
Let us introduce the following terms:
14 - the system’s plan (target amount);
D - the due date (planning horizon);
V/(t) - the actual output observed at moment ¢, 0<r<D; V/(0)=0;

C’/(¢) - the actual accumulated processing and control costs calculated at
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moment s, 0<t<D; V/(0)=0;

t, - the i-th inspection moment (control point), i =0,1,.., N ;

N - the number of control points (a random value);

v, - the j-th speed, 1< ;j<m (a random value with pregiven probability
density function £,(v));

v; - the average speed v;; it is assumed that speeds v, are sorted in as-
cending order of the average values and are independent of «;

m - the number of possible speeds;

s - index of the speed chosen by the decision-maker at control point ¢,;

¢ - the average processing cost per time unit of speed v;, 1< j<m (pre-
given); note that j, < j, results in ¢, <c),;

Cins - the average cost of carrying out a single inspection (pregiven);

A - the minimal value of the closeness of the inspection moment to the
due date (pregiven);

d - the minimal given time span between two consecutive control points

(in order to force convergence);
the least permissible probability of meeting the due date on time

P " (pregiven);

a, - lower bound of random speed v;;

b, - upper bound of random speed v;;

W,(¢j)- the p-quantile of the moment when production program » will be

accomplished on condition that speed v, is introduced at moment ¢

and will be used throughout, and the actual observed output at that
moment is ¥/ (¢) (time moment to be met with pre-set probability p);

in other words, W,(r,j) is the p-quantile of random value

[z‘+(V—Vf(t))/vj]
Values 7/(¢), as well as the parameters of the probability density functions

f,(v), 1< j<m, are given in percentages of the planned target . We will, hence-
forth, implement the beta-distribution with density function

pj(V)=ﬁy(v—aj)(bj—v)2- 6.1.1)

J

6.1.4 The problem
Let us consider the cost-optimization control problem. The problem is to de-

termine both, control points {,} and production speeds {s,} to minimize the sys-
tem’s expenses

N-1
J = min ey (i =2)]+ N ey (6.1.2)
i =0
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such that:

Pr{Vf(D)ZV}Zp, (6.1.3)
t, =0, (6.1.4)
ty=D, (6.1.5)
t,—t;>d, 0<i<N-1, (6.1.6)
D-t;>A, 0<i<N-1, (6.1.7)
s, <k =1r<ni<n[q:Wp(ti,q)SD] (6.1.8)

Objective (6.1.2) enables minimization of all system’s expenses, while objec-
tive (6.1.3) reflects the chance constraint. Relation (6.1.4) implies that the first
control point to undertake decision-making is zero, namely, the starting moment
to process the production program. Relation (6.1.5) implies that the last inspec-
tion point is the due date D. Restriction (6.1.6) ensures the time span between
each two consecutive control points, while (6.1.7) provides the means of ensur-
ing the closeness of the inspection moment to the due date. Relation (6.1.8)
means that the production speed to be chosen at any routine control point must
not exceed the minimal speed which guarantees meeting the deadline on time,
subject to the chance constraint. Thus, as outlined above, unnecessary surplus
speeds are not implemented.

The problem defined in (6.1.2-6.1.8) is a very complicated stochastic optimi-
zation problem which cannot be solved in the general case; it allows only a heu-
ristic solution. The algorithm outlined below, in 6./.6, determines at each con-
trol point 7 both, the next control point ¢, and the speed v, at which to proceed

until that control point.

6.1.5 The chance constraint principle
The chance constraint principle is the basic approach for determining the
next control point ¢,, on the basis of the routine control point ¢ and the actual

output ¥/ (z,) observed at that moment. Note that such an approach has been suc-

cessfully implemented in [83-84] for controlling stochastic network projects.
Consider a routine control point ¢, together with the actual output observed

at that point, ¥/ (¢,). For each production speed v,, 1< j <m, calculate by means

of simulation a representative statistical sample {T"'}, where 7 is the simulated

value of the completion time of the production program obtained by using speed
v, throughout. It can be well-recognized that the value of 7' can be determined

from
V-Vt
ro - T() ) (6.1.9)

J

where +\*) stands for the simulated production speed v, at control point ¢,.
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After obtaining samples {T“)}, 1<j<m, calculate the corresponding p-
quantiles and single out the subset of speeds for which:
w,(¢,j)<D (6.1.10)
holds. Note that if, for a certain speed ;, (6.1.10) holds, then all speeds with
higher indices also satisfy (6.1.10). Consider one of the speeds entering the sub-
set, e.g., speed v,. It can be well-recognized (see Fig. 6.1) that, being introduced
from point 4ls,,V/ (¢,)) throughout, speed v, enables the deadline to be met on

time, subject to the chance constraint. Moreover, even if no processing at all
takes place within the period of length At=D-W, (¢,,q) (see the straight line AF)

and afterwards speed v, is introduced at point F, this speed v, still enables the
deadline to be met on time, under the chance constraint (7.1.3). This can be
well-recognized by examining two parallel straight lines: line 4E, which en-
ables accomplishing the production program with a probability exceeding p
(henceforth, call this line 4£“) and line BF which enables the deadline to be
met on time with confidence probability equal to p (call this line Br). Note
that, if the production process proceeds with speed v, from any point on line

Br'9 | the target will be met on time subject to the chance constraint. This basic
principle has been implemented in the heuristic algorithm.

6.1.6 The heuristic algorithm
Referring to [54,73], the heuristic control algorithm at each routine control
point ¢, enables minimization of the system’s expenses (6.1.2) during the re-

maining time (D-t,). Thus, the objective function for optimizing decision-
making at point ¢, includes only future expenses, while past expenses, as well as

past decision-makings, are considered to be irrelevant for the on-line control
procedure. At each control point ¢, decision-making centers around the assump-

tion (see [54,73]) that there is no more than one additional control point before
the due date.

It can be well-recognized that the backbone of the heuristic control algorithm
1s Subalgorithm I which, at each routine control point ¢, determines both index
s, of the speed to be introduced and the next control point ¢, , . Following the as-
sumption outlined above, two speeds have to be chosen at point ¢,:
1.Speed v,, j, =s,, which has to be actually introduced at point t, up to the

next control point t,, ;
2.Speed v, , j, =s,,, which is forecast to be introduced at control point t,,,
D].
Note that, if speed v, 1is forecast to be the last processing speed before the

i+l

within the remaining period [t

i+l
due date D, control point ¢,, has to be necessarily on straight line sr V:)(see Fig,
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6.1), otherwise chance constraint (6.1.3) might not be met. We suggest singling
out, at each routine control point ¢, all possible couples (j,,,) satisfying restric-
tion (6.1.8), with subsequent choosing the one delivering the minimum of fore-
casted production and control expenses, namely

v A
Drensity distribution of the completion tims
when introducing speed v, 2t moment ¢; from
point A, V(1)) , lzq<m
==
P
Vi
BF\‘J:]
AE“”
C
a I
Vil |
|
|
Vi) A F
|
|
I
|
|
|
|
|
|
|
|
|
|
|
|
[ >
0 £ Witgq) ta Dt
Figure 6.1. The general idea of the chance constraint principle
{I}l}n}{ch (ti+l - ti)+cjz (D _ti+l)+ Cins} (6.1.11)
such that:
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7 Sk=11}(11i<1’1n[q:Wp(ti,q)SD}, (6.1.12)
J, 2k if j, <k, (6.1.13)
J, <k if j =k. (6.1.14)

Restriction (6.1.12) is embedded in the algorithm to satisfy restriction (6.1.8).

Restriction (6.1.13) holds, since case j, <k, j, <k contradicts chance constraint

(6.1.3). Case j, =k, j, >k is a pointless one since, for both couples (k,k) and
(k,j, > k), chance constraint (6.1.3) will be met, but the second possibility

proves to be more costly.

As to value ¢,,, we suggest calculating the latter on the assumption that, be-

i+1 9

ing introduced at ¢, the actual processing speed is v;. Thus, ¢, may be deter-

mined as the abscissa of the intersection point ¢ (see Fig. 6.1) of two straight
lines:

AC: v=V"(t,)+v,(t-1,); (6.1.15)
S 1S
By o L)y VIV (6.1.16)
VVp(tisz)_ti VVp(tisz)_ti

Note that case j, = j, =k is possible if using speed v, throughout, until the

due date D, results in the cheapest realization. In such a case, value ¢, has to be

excluded from (6.1.11).

Further on, we will show the possibility of implementing the chance con-
straint principle in on-line control models for stochastic network projects. Such
an implementation has to be made with certain modifications as compared to the
control model outlined above, in §6.1.

§6.2 Case of a single project

6.2.1 The system’s description

An activity-on-arc network project G(V, 4) of PERT type, with random activ-
ity durations, is considered. The accomplishment of each activity is measured in
percentages of the total project. Since evaluating the project’s accomplishment
continuously is difficult and costly, periodic inspections are preferred. Non-
consumable, i.e., renewable, resources, such as machines and manpower, are
utilized to carry out the project.

It is assumed [53,83-84,151] that any activity comprised in the project has to
be operated by a standardized set of various resource capacities which we will
henceforth refer to as “a Generalized Resource Unit” (GRU). All the non-
consumable resources assigned to the project, are subdivided into several identi-
cal GRU, with the following properties:

e each activity (i, /) entering the project G(N,4) has to be operated, from be-

ginning to the end, by only one GRU;

e different activities cannot be operated simultaneously by one and the same
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GRU;

¢ in the course of processing an activity a GRU may use several possible
speeds that are subject to random disturbances. The number of possible
speeds is common to all activities.

For each activity, speeds are sorted in ascending order of their average ca-
pacities - namely, speeds are indexed. All GRU are indexed in arbitrary order
too. Since all GRU are identical the operational speed for each activity does not
depend on the index of the GRU which is involved in processing that activity. It
1s assumed that at any moment ¢ >0 activities that are operated at that moment,
have to apply speeds of one and the same index. Assume, further, that any speed
can be changed only at a control (inspection) point, that is, all the project’s ac-
tivities being carried out between two adjacent control points, have to be oper-
ated with speeds of one and the same index. There exists only one exception: if
an activity must continue in operation through a control point, the activity speed
cannot be changed.

The project’s due date and the minimal permissible probability (chance con-
straint) of accomplishing the project at the due date are pregiven.

It can be well-recognized that the outlined above stochastic network project
covers a broad spectrum of possibilities, including innovative R&D projects and
especially construction projects and similar projects with variable speeds. For
those projects a GRU is nothing else but a standard building team comprising
both machines and personnel while possible speeds correspond to different
hours a day per worker. Thus, those speeds depend only on the degree of inten-
sity of the project’s realization.

An on-line cost-optimization model is outlined, that at each control point
faces a stochastic optimization problem. Given the average processing costs per
time unit for each activity to be operated under each speed, together with the av-
erage cost of performing a single inspection at the routine control point ¢ , the

problem is to determine the next control point ¢, and the new index of the

speeds (for all activities to be operated) to be employed up to that point.

The problem’s solution is based on the combination of the chance constraint
principle which has been outlined in [73] for production systems and in [54] for
other organization systems, and a resource constrained simulation model for
non-consumable limited resources [70]. A heuristic algorithm is outlined; its ef-
ficiency is evaluated by means of simulation.

Note that certain refinements which made the chance constraint model more
applicable for stochastic network projects (in comparison with the model out-
lined in §6.1 and aimed at production systems) have been implemented [83-84]
in the algorithm (see §6.2).

6.2.2 Notation
Let us introduce the following terms:
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G(N,4) - activity-on-arc network project of PERT type;

i, j)e G(N, 4)- activity leaving node i and entering node ;;

_—~

G, -the project observed at moment >0, G, = G(N, 4);

ol -the k-th speed to process activity (i, /), 1<k <m;

m - number of possible speeds common to all activities (pregiven);

n - number of identical GRUs (pregiven);

n, - number of free available GRUs at moment >0, n, =n;

e -random duration of activity (i, ) using speed v{*) throughout;

alt) -lower bound of random activity duration %) (pregiven);

piH) -upper bound of random activity duration %) (pregiven);

Py - percentage of activity (i, ) in the entire project (pregiven);

D - the due date of the project (pregiven);

p -least permissible probability (chance constraint) of meeting the pro-
ject’s due date on time (pregiven);

N -number of control points (a random value);

, -the g -th control point, g =0,1,..,N; ¢, =0, t, = D;

Se -the index of the project’s speed (identical for all activities) to be im-
plemented within interval [zg ,zgﬂ} 1<s, <m;

A, - the minimal value of the closeness of the inspection moment to the
due date (pregiven);

A, - the minimal time span between two consecutive control points ¢,
and ¢,,, in order to force convergence (pregiven);

v/(¢)  -actual project output (in percentages of the entire project) observed
at moment >0, V/(0)=0;

C’(t)  -the actual accumulated processing and control costs calculated at
moment >0, C/(0)=0;

) -the average processing cost per time unit for activity (i, /) to be op-
erated with speed v*! (pregiven);

Cins -the average cost of undertaking the project’s inspection (pregiven);

14 -the planned entire project volume (pregiven).

W, [t,k,Vf (t)] - the p-quantile of the moment the project will be accomplished

on condition that the k-th speed for all activities will be imple-
mented at control point ; and will be used throughout, and the ac-
tual observed output at that moment is ¥/ (¢);

S, -the actual moment activity (i, j) starts (a random value);
F, =S, +t{" - the actual moment activity (i, /) is completed (a random value);

C(t,t,) -processing and control costs calculated within the time interval
(¢.1,), 0<t, <t, <D (arandom value).
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6.2.3 The problem
Let us consider the cost-optimization on-line control problem. The problem

is to determine both control points {, } and activity speeds {v!*'} to minimize the
average project’s expenses

J =, min }E{ 3 (e .z;k>)+zv.cm} (6.2.1)
o Lij »Sg (i,j)eG
subject to
k=s, V(i,j)it,<S, <t,,, 0<Sg<N, (6.2.2)
Pr{ ggggﬂ F, < D} z2p, (6.2.3)
t, =0, (6.2.4)
ty=D, (6.2.5)
D-t,2A, 0<g<N, (6.2.6)
ten —t,2A,, 0Sg<N, (6.2.7)
5, <5% = llgig’ln{q W[V (1)< D} . (6.2.8)

Objective (6.2.1) enables minimization of all operating costs and control ex-
penses. However, referring to [73], the heuristic control algorithm facilitates de-
cision-making at each control point ¢, on the basis of future expenses only, i.e.,

during the remaining time p-¢, . Past expenses, as well as past decision-

makings, are not relevant for the on-line control model. Relation (6.2.2) honors
the chance constraint while relations (6.2.3-6.2.7) are obvious.

Let us analyze (6.2.8) in greater detail. Relation (6.2.8) means that the speed
to be chosen at any routine control point ¢, should not exceed the minimal speed

s. that enables meeting the deadline on time, subject to the chance constraint. It
can be well-recognized that operating an activity at a higher speed always results
in higher costs to accomplish the activity than by using a lower speed. Thus,

(6.2.8) prohibits using unnecessary high speeds. Note that after introducing
speed s, at control point ;, all the activities (i, j) starting from ¢,, have to be op-

erated at that speed throughout, i.e., until the due date D, in order to determine

values W, [t,k,Vf (t)] and, later on, to choose the minimal index s!. However,
since the number of GRUs is limited, at certain moments ¢ > 0 the number of ac-
tivities ready to be processed may exceed the amount n, of free available GRU.
Thus, if in the course of the project’s realization there is a lack of resources, a
competition among those activities has to be arranged to single out a subset of
activities that will start to be operated at moment : and can be provided with re-
sources. The corresponding decision-making auxiliary algorithm [70-71] which
determines values s, in the course of carrying out the project, is outlined in

Chapter 11. The competition among the activities seeking for resources is facili-
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tated by solving a zero-one integer programming problem to maximize the total
contribution of the accepted activities to the expected project duration. For each
activity (i, /) its contribution equals the product of the average duration of the

activity E,(f) and its probability p of being on the critical path in the course of

the project’s realization. Those probability values may be determined by means
of simulation. The algorithm outlined in Chapter 11 has to be implemented in

order to undertake numerous simulation runs to calculate values W, [t,k,Vf (t)]

6.2.4 The general idea of the problem’s solution
Several main concepts are imbedded in the model:

1.

At each control point ¢,, decision-making centers around the assumption

[73] that there is no more than one additional control point before the due
date. Thus, two speeds have to be chosen at each routine control point ¢, :

a) speed v which has to be actually introduced at point ;, up to the
next control point ¢, ;
b) speed o) which is forecast to be introduced at control point ¢

within the period [tgﬂ ,D} .

Couple (*),0%*)) provides the minimal processing and control costs

among all possible couples subject to (6.2.8). After meeting control point
t,., the on-line problem has to be resolved anew.

2. At any control point ¢, the past operational and control expenses are ir-

relevant to the on-line control problem and are not taken into account
whatsoever.

3. If speed v is actually introduced at control point ;, subject to (6.3.8), the

project possesses time reserves D-W, [tg,kl,Vf (tg )] (see interval AF on

Fig. 6.2 where AE and BF are parallel straight lines). Since speed v'*) is
forecast to be the last processing speed before the project’s due date b,
control point ¢, has to be on the straight line BG which is parallel to the

straight line connecting points [tg N (tg )} and [Wp [tg,kz,Vf (tg )]V} Such a

concept which has been outlined in §6.1 is, in fact, implementation of the
chance constraint principle [73].

4. As to value ¢, , we suggest calculating the latter on the assumption that

the length of interval [tg ,tgﬂ} is essentially smaller than the remaining

part of the planning horizon [tgﬂ ,D] In order to determine ¢, via a
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short-term forecasting we suggest replacing for all activities (i, /) satisfy-
ing ¢, <5, <t,,, their random durations ¢! by the corresponding average

- (k) . ..
values #; . Such an assumption enables determining moment ¢, as a de-

1
terministic value since the straight line BG") has a precise model while
simulating the project’s realization between points A and G (see Fig. 6.2)
can be carried out in deterministic terms. Thus, determining speeds v*)
and o™ is carried out via a long-term forecasting on the basis of p-
is facili-

quantile estimations, while calculating the next control point ¢,

tated by using a short-term forecast based on substituting random values
for their average ones. This is actually the main principal contribution of
the results outlined in §6.2 when compared to the general chance con-
straint approach presented in §6.1.

5. Simulating the project’s realization in order:

e to obtain ,-quantile parameters W, [tg,kl,Vf (tg )] to forecast the optimal
speed couple (v*),0%)), as well as

¢ to undertake project’s simulation within the interval [tg ,tgﬂ} ,

is carried out by a combination of a simulation model and a heuristic re-
source constrained decision-making algorithm [68,70]. Decision-making,
ie., determining values S, by feeding-in free available GRU, is carried

out at decision points s, when at least one activity is ready to be operated.
If the number of such activities at a certain moment s exceeds the amount
n, of free available GRU at >0, a zero-one integer programming prob-
lem to single out the optimal subset of activities to be supplied with re-
sources is solved. For those chosen activities (i, j) their starting moments
S, are equal ¢. Note that the integer programming problem outlined in

[68,70] provides the exact solution.

6.2.5 The heuristic on-line control algorithm to determine the next control
point and the project’s speed
The algorithm outlined below determines at each control point ¢, for project

G, the next control point +,,, and the index of the speed for all activities (i, )

1
starting from moment ¢_. Givenat ¢ =1, :
® project G, ;
e the project’s due date D;
e the project’s chance constraint p;

e the project’s planned volume ¥ =100%;
o lower and upper bounds o and 5", (i. /)€ G, , 1<k <m, for all random ac-
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tivity durations ¢%;

i

e number m of possible speeds;

A\
B
// B(D,V) —
¥ E
G
Vf(tg) A F
0 tg Wp[tg,kpvf(tg)] tg+l D

Figure 6.2. Determining the next control point

e number » of identical GRUs;
e number n, of free available GRUs at moment ¢ =+, ;

® percentages p, of activities (i, /)e G, 1n the entire project;
e the project’s accumulated output '/ (tg) observed at point ¢ =¢_;
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e the project’s accumulated processing and control costs C’ (tg) calculated at
point ¢ =1¢;
e average processing costs ¢{"’, (i, /)€ G, , 1<k <m, per time unit;

e average cost of carrying out a single inspection c,

ins *

The step-by-step procedure of the algorithm is as follows:
Step 1. For each speed v™®, 1<k <m, determine by means of simulation values

W, [tg,k,Vf (tg )] (a forecasting procedure). Step 1 comprises, in essence,

four subalgorithms as follows:
Subalgorithm I actually governs most of the procedures to be under-
taken in the course of the project’s realization, namely:

1.1 Determines all activities (i, /)€ G, being operated at moment ¢ =, .
1.2 Simulates their finishing times F;.

1.3 Determines sequentially decision points  when at least one activ-
ity 1s ready to be operated; let o, be the amount of those activities.

1.4 In case n,>a, supplies activities with resources and updates the

number of free remaining GRUs. Otherwise go to Substep 1.6.
Introduces speed v® and simulates the corresponding activities’
1.5 durations.
Subalgorithm II takes over when », <4, and comprises the following

substeps:

1.6 Determines all the activities that have not yet started to be oper-
ated. Simulate their random durations with speed v.

1.7 Calculates the critical path of the remaining graph G .

Repeats Substeps 1.6-1.7 M times to obtain representative statis-

tics.

1.9 Calculates the frequency p(i,;), for each activity (,/),, 1<A<a,,
seeking for resources and ready to be operated, to be on the critical
path.

Subalgorithm IIT undertakes the competition in case », <a, to single

1.8

out the optimal subset from ¢ activities seeking for resources by solv-

ing the appropriate optimization problem. The zero-one integer pro-
gramming problem is as follows: determine integer values &,, 1<A<a,,

to maximize the objective
n{%a}x{z:[;(i,j)l 'P(iaj)x 51]} (6.2.9)
A A=1

subject to
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Step 4.

Step S.

S, <n, (6.2.10)
A=1

1 if activity (i, ), is provided with resources

where ¢, ={

0 otherwise.

After solving problem (6.2.9-6.2.10), i.e., carrying out the competition,
Substep 1.5 of Subalgorithm I is applied. Thus, the simulation proceeds
until the project’s completion at moment F = max F,. After determining

value F in the course of a simulation run, Subalgorithm IV calculates

values W, [tg,k,Vf (tg )] for each k, 1<k <m, separately. Determining W,

is carried out by implementing numerous simulation runs to obtain rep-
resentative statistics.

Note that in the course of one simulation run Subalgorithms I-1II are
applied with the project converging to the target at constant speed v

which has been introduced at control point ¢ =¢, and is used throughout,

i.e., until p, without any additional control points. Thus, Step 1 results
in determining predictive values. Simulation of activity durations at that
step is carried out not to simulate actual activity realizations, but to fa-
cilitate forecasting in order to calculate the p-quantiles for each speed

U(k) .

1<k<m

Determine s, =min{k:Wp[tg,k,Vf(tg )]S D}. If s; cannot be determined

problem (6.2.1-6.2.8) has no solution. Otherwise apply the next step.

. Consider the list of possible couples (u(k'),u(kz)) in accordance with
restrictions
ky <s%, (6.2.11)
kyzs, if k <s?, (6.2.12)
ky<s, if k, = Sy (6.2.13)

Restriction (6.2.11) is imbedded in the algorithm to satisfy (6.2.8). Re-
striction (6.2.12) is true since k, <s, and k, <s; contradict chance con-

straint (6.2.3). Case k =s., k,>s, is a pointless one since for both

cases (k.,k) and (k,k, >k ) chance constraint (6.2.3) will be met, but

the second case proves to be a costlier one.
Check each possible couple by applying the below Steps 4-13.
Determine equation of straight line BG (see Fig. 6.2) as follows

V(t): V_Vf(tg) V_Vf(tg)

t+V -

‘ ‘ 2.14
w, [tg,kz,Vf(tg )]—t © )

g

Wp[tg,kz,Vf(tg)]—tg
This step determines the next control point ¢,,, by implementing a

predictive model. All activities (i,j) starting after ¢, obtain a

deterministic duration ") = i(ké)’ S,>t,. Subalgorithm V which
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duration /) =7\, S, >t,. Subalgorithm V which determines routine

ij [}
decision nodes : when at last one activity (i, j),, 1< <aq,, has to be pro-
vided with resources, is imbedded in the model. All those activities
(i, /), have to be determined. Note that calculating moments : is in this

case a deterministic technique.
Step 6. Quasi-optimal resource reallocation among activities (i,j),, 1<A<a,,

which at a routine decision node : are ready to be operated and seeking

for resources, is carried out. A simplified reallocation model is sug-

gested:

6.1 After determining activities (i,j),, 1<A<a,, all the competitive
activities are sorted in descending order of their average durations

(i, ), =1y

6.2 All the sorted activities are examined one after another, in the de-
scending order of their average values, to check the possibility that
the activity can be provided with remaining available resources. If
for a certain activity (i, j), relation » >1 holds, the GRU is passed

to the activity.
6.3 The free, available GRU are updated, n, —1= n, .

6.4 The next activity (;,;),,, is examined. Subalgorithm V terminates

A+l

either when all the free available GRU are reallocated, i.e., n, be-
comes zero, or all the 4, activities have been examined.
Step 7. Set to each one of the chosen at Step 6 activities (i, /), the starting time

S, =t and introduce its corresponding time duration ") —h Al

ij)

other activities (i, /), which have not been supplied with resources pro-

A
ceed waiting in the line until the next routine decision node ¢* > .
At node ¢* the activities which proceed seeking for resources in the line
Step 8. obtain additional average time duration amounted as ¢* —¢. Afterwards
Step 6 is re-applied. Note that additional average time duration is used
at Substep 6.2 for competition purposes only. At Step 7 regular average
(k)
L]

duration values ") =1, are introduced.

Step 9. Steps 5-8 are undertaken until a decision node : coincides with line
(6.2.14) with a pregiven accuracy ¢ >0. Value ¢ is taken as the next

control point ¢,,,. As outlined above, determining value ¢,,, is carried

out by using deterministic techniques and, thus, no simulation runs are
necessary to calculate ¢,,,. Note that Steps 5-9 are predictive ones and

are implemented to determine the next control point ¢,,,. These steps

are not intended to simulate actual activity realizations.
Step 10. For each combination of couples (k,,k,) check if /, -, > A, holds. If
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not, calculate ¢, =¢, +4A,.

Step 11. For each combination of couples (k,,k,) check if 1, >D or p—1,, <A,.
If one of those relations hold, set ¢, =D .

Step 12. This step is somewhat similar to Step 1. The purpose of the step is to
carry out for each couple (v*),0*)) under consideration numerous simu-

lation runs within the remaining planning horizon [zg ,D} with an addi-

tional control point z_,, in order to:

g+l

e simulate the outcome product /(D) and calculate statistical frequen-
cies % , Where M 1s the entire number of simulation runs in order to
obtain representative statistics, while M, stands for the number of
simulation runs satisfying v/ (D)>V ;

e simulate the average total operating and control costs within the in-

terval [zg ,D} .

Thus, Step 12 carries out predictive evaluations in order to choose the
optimal couple (k,,%,). The main difference between Steps 1 and 12 cen-

ters on the following:
a. Subalgorithms I, IT and III of Step 1 are implemented for a constant

speed v within the entire period | ¢ [ } while at Step 12 for all ac-

tivities (i,j) starting after ¢,,,, i.e., satisfying S, >7,,,, speed v is

introduced.

b. Subalgorithm IV of Step 1 calculates values W,,[tg,kl,Vf (tg) for a
constant speed used throughout the period [zg ,D} while Subalgo-

rithm IV of Step 12 calculates, in essence, p-quantiles

Wp[l‘g,kl,l‘gJ,pkzan(tg)]‘

c. In the course of carrying out M simulation runs Step 12 calculates
the average forecasted processing and control costs within the period

[tg ,D} , 1.€., determines the average value E[tg,D] where

cl. ]Z[ ,,')]+Z[cf,-"”-tf,-"”]+2-c,-m»ifklikz»and (6.2.15)
cle,.n]- Z[U ]+cm»1fkl=kz- (6.2.16)

Here (i, ])* denotes activities satisfying ¢, <S, <t,,, while (i)
stands for activities with S, >¢,.,. Note that in case k, #k, there are
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two remaining inspections (at points ¢,,, and D), while for & =k,

there is only one inspection left (at point D).
Step 13 singles out from all couples with indices (k,,k,) under consideration fea-

sible couples (k,,k,) satisfying %z p (see Step 12), to honor restric-

tion (6.2.3).

Step 14 determines from all feasible couples which have been singled out at
Step 13, the optimal couple (kl*,k;) which results in the minimal value
cl,.n]-

Step 15. Introduce speed o) at point ¢, and start carrying out the project with

that speed. Thus, Step 15 is the first step comprised into the algorithm
which actually operates activities (i,j) starting from t,, with new speeds

ul.g."'*). Activity durations tlg.k'*) are performed either in real time, or they

may be based on simulation modeling. Similar to Steps 1 and 12, Step
15 implements Subalgorithms I, II and III in order to reallocate free
available resources among activities which at decision nodes are ready
to start being processed.

Step 16. When the progress of the project meets control point ¢,,,, the project

has to be inspected at that point, including the output product v’ (tg+1)

and the costs c(¢,,z,.,). Thus, the accumulated value C’ (t,.) is deter-

mined by

c’ (tg+1)= c’ (tg)+ C(tg,tg+1). (6.2.17)
Step 17.1f ¢, = D, the project is inspected at the due date and the control algo-

rithm terminates. In case ¢,

7 +1

< D, the input information is updated and
Step 1 is re-applied. Thus, at the next control point ¢, the heuristic on-
line control algorithm has to be implemented anew.

§6.3 Case of several projects

6.3.1 Introduction

The system under consideration [84] comprises several simultaneously real-
ized activity-on-arc network projects of PERT type with random activity dura-
tions. The accomplishment of each project’s activity is measured in percentage
of the whole project. All the activities are to be operated by one of the identical
GRU which may use several possible speeds subject to random disturbances.

Similar to §6.2, it is assumed that the progress of any project can be evalu-
ated only via periodical inspection in control points. At any moment ¢ > 0 activi-
ties that start to operate at that moment for one and the same project, have to use
speeds with similar indices (ordinal numbers). Speeds can be changed only at a
control point. Within the projects’ realization a GRU can be transferred from
one project to another only at an emergency moment common to all projects.
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The projects’ due dates and their chance constraints, i.e., their minimal per-
missible probabilities of accomplishing the project on time, are pregiven. All
GRU have to be delivered to the company store at the projects’ starting time and
are released when the last project is accomplished. The cost of hiring and main-
taining a GRU, together with the average processing costs per time unit for op-
erating each activity under each speed, the average cost of performing a single
inspection at a control point (common to all projects) and the average cost of re-
allocating GRU among non-finished projects at each emergency moment, are
pregiven.

In §6.2 we have outlined a cost-simulation problem for a single project as
follows: given the fixed number of GRU, at each routine control point ¢, deter-

mine the next control point ¢, , and the new index of the speeds for all the activi-

ties to be operated at that point. The objective is to minimize the project’s total
expenses. This basic problem (we will henceforth call it Problem Al) will be
used in order to develop a much more complicated realistic cost-optimization
model as follows: determine the optimal number of GRU to minimize the total
value of all projects’ expenses subject to their chance constraints.

The problem’s solution is as follows:

e at the company level a combination of a search procedure to determine the
number of GRU together with a resource reallocation model among the
projects is considered,

e at the project level a basic cost-optimization on-line control Model Al is
applied for each project independently.

Both resource reallocation model and Model Al are implemented into a
simulation model in order to obtain representative statistics to check the fitness
of the problem’s solution.

It is assumed that all non-accomplished projects have to be carried out at any
moment ¢ >0 with a speed exceeding zero. Thus, at least one GRU unit has to be
assigned to each project. At any moment each GRU can operate only one activ-

1ty.

6.3.2 Notation
Let us introduce the following terms:

G,(N,4) - the e-th network project of PERT type, 1<e< f;

f -number of network projects;

/, -number of network projects which at moment : are not completed,
t>0;

(i,j), € G (N, 4)- activity (i, /) entering the e-th project;

G, -project G,(N, ) observed at moment t>0; G, = G,(N, 4);

W) -the k-th speed to process activity (i,/), 1<k <m;
- number of possible speeds common to all activities (pregiven);

o -number of identical generalized resource units GRU assigned to

S

124



project G,(N,4) at emergency moment t>0; n, =n,,;

n -total number of GRU to be hired and maintained throughout the
planning horizon by the company (optimized variable, to be deter-
mined beforehand);

Pije - percentage of activity (i, j), in project G, (N, 4) (pregiven), /<e< f;

D, -due date of project G,(N, 4) (pregiven);

P. -chance constraint to meet the deadline D, on time (pregiven);

240! -actual project’s G, output in percentages of the total project (ob-
served at moment ¢, >0 );

c/(t)  -the actual accumulated processing and control costs of project G,

calculated at moment ¢, >0

W[tk v/ (t)] - the ,-quantile of the moment project G, (N, 4) will be accom-
plished on condition that the x-th speed for all activities will be in-
troduced at control point s and will be used throughout, and the ac-
tual observed output at that moment is v/ (¢);

Lee -the g-th control point of the e-th project, ¢=0,1..,N,, ¢, =0,
ty,.e=D.s

t -the system’s emergency moment, ¢, =0, r=0,1,...,N*;

N, -number of control points of the e-th project (a random value);

N* -number of emergency moments (a random value);

A, - the minimal value of the closeness of the inspection moment to the
due date D, (pregiven);

A, - the minimal time span between two adjacent control points of the e-
th project (pregiven);

e -random duration of activity (; /), using speed ¥’ throughout;

) -the average processing cost per time unit for activity (i j), to be op-
erated with speed v/ (pregiven);

Cins -the average cost of undertaking a routine project’s inspection (com-
mon to all projects, pregiven);

¢ -the average cost of the GRU reallocation among the projects at a
routine moment ¢’;

v, -the planned volume of project G (N, 4) (pregiven);

Ve -the actual non-accomplished volume of project G, (N, 4) at moment
¢ (a random value);

S -the actual moment activity (; j), starts (a random value);

Eye -the actual moment activity (i), is completed (a random value);
Eje = Sije +ty(‘1;);

Cory -the average cost of hiring and maintaining a GRU unit per time unit
(pregiven);
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F, -the actual moment project G,(N,4) is completed (a random value);
F,= Max F,,;

{(1.))ecGy} ¥
S ge -the index of the speed to be introduced for all activities (;,j), starting

n the interval [tg t }, I<s, <m.

e 2" g+le

It can be well-recognized that two kinds of control points are imbedded in the
model:
1. Regular control (inspection) points t, to introduce proper speeds in order

to alter the project’s speed in the desired direction.

2. Emergency control points ¢ to reallocate all GRU at the company level
among the non-accomplished network projects, beginning from r=0.
Emergency moments ¢ are as follows:
® =0,

e ; 1s the moment of one of the project’s completion;

e ; is the control moment for one of the projects when it is anticipated
that with the previously assigned for that project GRU units the project
cannot meet its deadline on time.

6.3.3 The problem’s formulation

The cost-optimization on-line control problem for several stochastic network
projects is as follows: determine the optimal value »'»” of GRU units (a deter-
ministic value to be determined beforehand, i.e., before the projects start to be
realized) together with values n, assigned to all projects, all control points ¢,

the speeds to be introduced at that points for all projects’ activities v\*), x =

ije 2

and the actual moments s, activities (), start (random values conditioned on

ge?

decision-making of the control model), in order to minimize all operational, con-
trol, resource reallocation, hiring and maintenance expenses subject to the pro-
jects’ chance constraints

J= Jmn(%E{i 3 Qﬁ”ﬁﬂ+;@0qﬁ+W%fMﬁﬂ+N“f}(63D

bt S5 =1 (i),

S/

ije S ger Vije

subject to

k,=54, V(i j), : S, =t, 0Sg<N I<e<f, (6.3.2)
Pr{F,<D,}>p, 1<e<f, (6.3.3)
ty=0,1<e<f, (6.3.4)
ty =D,, [<e<f, (6.3.5)
D,~t,24,, 0<g<N,, I<e<f, (6.3.6)
tyroe—to24,, 0Sg<N,, I<e<f, (6.3.7)
o <55 = Minlq W, 1,007/ ). (63.8)
zﬁ:ne, =n for any emergency moment >0, n, > 1. (6.3.9)

e=]
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Note that the on-line control model undertakes decision-making either at
regular routine control point ¢, (determining s,,, v¥, k=s,), or at emergency
points ¢7 (determining »,, t=¢"), on the basis of future expenses only, i.e., dur-
ing the remaining time D, —¢,, (for a single project), or by taking into account
values D, and p,, 1<e< f. Past expenses and past decision-makings, are not

relevant for the on-line control model. Relation (6.3.3) honors the chance con-
straints. As to (6.3.8), it refers to the on-line cost-optimization algorithm for a
single project (see §6.2). Restriction (6.3.8) means that the speed to be chosen
at any routine control point ¢, must not exceed the minimal speed s;, that en-

ables meeting deadline D, on time, subject to be chance constraint p,. It can be

well- recognized that operating an activity at a higher speed always results in
higher costs to accomplish the activity than by using a lower speed. Thus,
(6.3.8) prohibits using unnecessary high speeds. Relation (6.3.9) ensures reallo-
cation of » GRU units at the company’s disposal among the non-accomplished
projects at any emergency moment ¢>(0. Relations (6.3.4-6.3.7) are obvious
while (6.3.2) ensures assignment of one and the same speed index k, to all ac-

tivities which start processing at a routine control point (. Note that an activity
cannot start at the moment between two adjacent control points ¢, and ¢_,, . .

6.3.4 Subsidiary models

Consider several important subsidiary models which will be used henceforth.

I. Subsidiary Model A1

The basic subsidiary Model Al centers on controlling a single project, with-
out taking into account any resource hiring and maintaining costs. The number
of GRU is taken as a fixed and pregiven value. Model Al is an on-line cost-
optimization model and is based on the chance constraint principle. The model
and its optimization are outlined in §6.2.

II. Subsidiary Model A2

The model differs from Model Al by implementing the cost of hiring and
maintaining GRU resources within the planning horizon. Thus, objective (6.2.1)
is substituted by

= Mi (k) , (k) ) )
J= Min E {(i%;‘c (cij t )+[{l\/j[)c:)cc;Fy) nc,, +N cim} (6.3.10)

{r s, | !

subject to (6.2.2-6.2.8),

while the on-line heuristic algorithm remains unchanged.

III. Subsidiary Model A3

Determine the minimal number of GRU #»»” for a single project in order to
meet the given chance constraint, i.e.,

Min n (6.3.11)

subject to (6.2.2-6.2.8).

The Solution

Start ascending value », beginning from 1. For each » solve Problem A1l tak-
ing into account for each activity (i, ) its highest speed v\, i.e., 1, refers to one

127



speed only. Value #, for which relation

Pr{]\(/{qic F, <D} <p, (6.3.12)
ij

i =

ceases to hold, is taken as the solution. Cost parameters are, thus, not taken into
account. Denote the optimal number »" by n(43).

IV. Subsidiary Model A4

Determine the minimal number of GRU units in order to minimize the objec-
tive (6.3.10) for the Model A2 subject to the chance constraint. Thus, two objec-
tives are imbedded in the model

Min n, (6.3.13)
J=, Min E< > (cfk) -tl,(k))+[Max Fi)-ncm, +N-c,, (6.3.14)
{n,tg ,v,/‘),sg} n=e v v (kG Y
subject to (6.2.2-6.2.8).
The Solution

Solve Problem A3 in order to determine value n(43). Afterwards proceed as-
cending value n, beginning from n(43), and for each value » > n(43) solve Prob-
lem A2. Value n(44) which delivers the minimum to (6.3.14) is taken as the so-
lution of Problem A4.

6.3.5 The general idea of the problem’s solution

Problem (6.3.1-6.3.9) to be considered is a very complicated problem and al-
lows a heuristic solution only. Denote the optimal solution of problem (6.3.1-
6.3.9) by n(4). A basic assertion can be formulated as follows:
Assertion. Let n,(44) be the solution of problem A4 for each project G, (N, 4),

I1<e< f, independently. Relation

n(4)< Zf:ne(/M) =n, (6.3.15)
holds.
Proof. Any additional GRU unit which results in exceeding value ine (44), has

e=]

to be assigned to one of the projects G,(N,4). For that project, as it turns from

Model A4, the unit becomes redundant. [
Thus, the general idea of determining n(4) is based on the following con-

cepts:

Concept 1

At the company level the search for an optimal solution is based on examin-
ing all feasible solutions {r}, by decreasing » by one, at each search step, begin-
ning from »__ .

Concept 2

Examining a feasible solution centers on simulating the system. Multiple
simulation runs have to be undertaken in order to obtain a representative statis-
tics to check the fitness of the model.
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Concept 3

A simulation model comprises two-levels. At the higher level — the company
level — Subalgorithm I reallocates » GRU units among f non-completed pro-
jects at all emergency moments , beginning from ¢=0. At the lower level (the
project level) Subalgorithm II undertakes on-line control for each project inde-
pendently between two adjacent emergency points ¢* and ¢’,, by the use of a
single-project algorithm of problem A2.
Concept 4

Each value » is examined via » simulation runs to provide a representative
statistics to calculate values Pr{F, <D,}, 1<e< f, and objective (6.3.14).
Concept 5

The search process proceeds by decreasing » by one, i.e., substituting » by
n—-1, if

e all relations Pr{F, <D,}>p,, 1<e< f, hold;

e value (6.3.14) decreases monotonously.
Concept 6

If even for one project G,(N,4) relation Pr{F,<D,}>p, ceases to hold, or
value (6.3.14) ceases to decrease, the last successful feasible solution » has to be
taken as an optimal solution 7(4).

*
r+l 2

6.3.6 The enlarged procedure of resource reallocation (Subalgorithm I)
At each emergency point >0 (each emergency point is a control point for
all projects as well) reassign » GRU unit among f non-accomplished projects

as follows:
Step 1. At moment ¢ inspect values V,, 1<e< f. Note that for already accom-

plished projects their corresponding values v, =0.
Step 2. By any means reassign » GRU units among £ projects subject to:

¢ 2my=n;
e

must be whole numbers;

L}

et

e »_ must be not less than 1;

et

v
“«_|, V,>0, I<e< f, hold, where [x] denotes

2.7

the maximum whole number being less than x.
Thus, Step 2 delivers a non-optimal, feasible solution.
Step 3. Take value z =10", 1.e., an extremely large positive value.
Step 4. For all non-accomplished projects G, solve Problem A2, independ-

ently for each project, with due dates D, -¢, chance constraints p,, re-
source units », and non-accomplished volumes 7, . Denote the actual
probability of meeting the due date on time by p,. Values p,, 1<e<f,
are obtained via m simulation runs.

e relations n, >|n-

129



Step 5. Calculate values y, _ PP ,1<e<f.

e

Step 6. Calculate values y, =Maxy,, y. =Miny,.

Step 7. Calculate A=y, -y, .
Step 8. If A < z, go to the next step. Otherwise apply Step 12.
Step 9. Set z = 4.

Step 10. Transfer one GRU unit from project 6., to G, i.€., n., is diminished

o
by one, and »,_, is increased by one.

Step 11 is similar to Step 4, with the exception of solving Problem A2 for pro-
jects G, and G,, only. Return to Step 5.

Step 12. Values n,, 1<e< f, which refer to the last successful iteration, are
taken as the optimal solution of Subalgorithm I.

6.3.7 The enlarged two-level heuristic algorithm of simulating the system

The enlarged step-by-step procedure of the problem’s algorithm is based on
simulating the system. The input of the simulation model is as follows:

e value » > f of GRU units (to be examined by simulation);

e pregiven values D,, p,, 1<e< f;

e speeds’ parameters v, (i, /), € G,(N,4), 1<k <m;

ije 2

e cost parameters ¢\, ¢, ., Copu» €3

e
e target parameters V,, 1<e< f .
A simulation run comprises the following steps:
Step 1. Set r=1, ' =0.
t Reallocate at +=:- » GRU units among projects G,(N,4), I<e<f,
according to Subalgorithm I.
. Reassign values », obtained at Step 2, to projects G, (N, 4).
Each project G,(N,4) is carried out independently according to the

Problem A2 (see 6.3.4). In the course of realizing each project any
routine control point ¢, is examined as follows:

i

Ste

1

e is moment ¢, the moment project G (N, 4) is completed? If yes,
go to Step 9. Otherwise proceed examining inspection point ¢, .
e is moment ¢, the moment when it is anticipated that project

G,(N,4) cannot meet its deadline on time even by introducing the
highest speed with index m? If yes, go to the next step. Other-
wise proceed realizing the project until the next routine control
point ¢, ,.

Counter r+ 1= r works.

Set 1) =1¢,,.

Ste
Ste

Ste

i

d

Inspect all non-finished projects G,(N,4) at the routine emergency
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point ¢'. Calculate values v/ (¢), i1<e<f, t=t.
Step 8. Update all remaining targets v, - v/ ()= V., 1<e< f. Return to Step 2

to undertake resource reallocation among non-accomplished projects.
Step 9. Are there at moment ¢ =¢_ other, non-accomplished projects? If yes,

go to Step 5. Otherwise apply the next step.
Step 10. The simulation run terminates.
In the course of carrying out Steps 2 and 4 the cost-accumulated value J of
objective (6.3.1) has to be calculated.
The problem’s solution is, thus, based on implementing procedures described
in 6.3.5-6.3.7.

§6.4 Conclusions
The following conclusions can be drawn from the Chapter:

1. The developed cost-optimization simulation algorithms for solving prob-
lems (6.1.1-6.1.8), (6.2.1-6.2.8) and (6.3.1-6.3.9) can be applied to a wide
range of both production and project management systems. The outlined
models enable managing complicated building and construction systems,
various R&D systems with different speeds and inspection points, etc.

2. The developed on-line control model is a generalized model: it satisfies a
variety of chance constraints and develops cost-minimization for a broad
spectrum of expenses in the course of the system’s functioning.

3. The structure of the multilevel algorithm for solving project management
problems is as follows: at the system’s level (the higher level) a search of
the optimal number of GRU units is undertaken. At the project’s level a ba-
sic cost-optimization model for a single project is implemented in the
simulation model.

4. The main connection between those two levels is carried out via a devel-
oped resource reallocation subalgorithm. The latter is carried out by under-
taking probability control to be as close as possible to the projects’ chance
constraints.

5. Extensive simulation described in [54,73-74,151] for real industrial plants
has proved the fitness of the on-line cost-optimization models outlined in
the Chapter.

6. The on-line control algorithms perform well and are mostly effective for
projects of medium size. In cases of large projects, we suggest aggregating
the initial model in order to transfer the latter to an equivalent one, but of
medium- or small-size. After observing the project’s output at a routine
control point and introducing proper control actions, i.e., determining a
new processing speed and the next control point, the aggregated network is
transformed back to the initial one, and the project’s realization proceeds.
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PART Il
ALTERNATIVE STOCHASTIC NETWORK MODELS

||| Chapter 7. The Models’ Description and Structure

§7.1 Introduction

As outlined above, alternative stochastic network models are characterized
by two main features:

a) very high level of indeterminacy;

b) various types of branching nodes in key events.

Examine both properties in greater detail. In case of an innovative “brain-
storming” the researchers examine the results which, at the outset, are basically
indeterminate, and very often it is impossible to determine the ultimate project’s
goal. For such kind of an R&D project the control system should be inherently
adaptable and flexible, seeking step-by-step the best route to meet the target. In
cases of such an R&D it is impossible either to determine the initial network
leading to the goal, or even to initiate the structure of such a network. At the ini-
tial stage of the project’s realization, the network may be restricted to a source
node and several alternative terminal (sink) nodes. In certain cases the network
may contain several milestones (a decision-tree model) which are usually linked
to extensive experimentation with alternative and unpredictable results. Such a
stochastic alternative network is renewed permanently over time, including
changes of the ultimate goals [54]. At each decision node, in the course of carry-
ing out the project, the project’s manager has to choose the optimal outcome.
Decision-making is repeatedly introduced at every sequentially reached decision
node.

Note that an R&D innovative project as mentioned above usually possesses
both features a)-b) altogether. However, in certain cases the project’s goals are
ultimated beforehand, but carrying out the project meets in the course of its pro-
gress a variety of milestones boiling down to undertaking complicated geologi-
cal surveys, pioneering high-tech experiments with alternative unpredictable
outcomes, etc. Those projects, being innovative as well, refer usually to long-
term construction projects, e.g., constructing a major Arctic pipeline [26,54],
etc. Such projects are characterized with various types of branching nodes in key
events.

Thus, it can be well-recognized that nowadays alternative stochastic network
models occupy the main seat in R&D innovative projecting where indetermi-
nacy and alternativity often meet. In our opinion, such models should become
must items in the methodological portfolio of any modern high-tech company.

Note that while the literature on PERT and CPM network techniques is quite
vast, the number of publications on alfernative networks remains very scanty.
The first significant development in that area was the pioneering work of Eisner
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[37] in which a “decision box” with both random and alternative outcomes and
PERT nodes was introduced. An example of such a network is represented on
Fig. 7.1. Numbers above and below the arcs denote the corresponding time and
probability, respectively. Eisner used the term decision box (pB) to refer to
nodes that lead to alternatives (corresponding to the term probabilistic branch-
ing used in scientific literature). The realization of terminal events 4 and B de-
pends not only on the outcome of DB3 but also on the outcome of ps2. This il-
lustrates Eisner’s concept of conjunctive path dependency, which arises when
the planned work on one path depends on the answer to a particular pg on a dif-
ferent path. It led him to the duplication of Node 2 and the introduction of
dummy Node 2,, with the understanding that the two nodes represent, in fact, a
single one. Thus, event 4 will be realized if the outcome at pDB3 is NO and the
outcome at pp2 1s also NO, while event B will be realized if the outcome at
DB3 18 NO and the outcome at pa2 1s YES.

The logical relationships governing the outcomes were given by Eisner [37]
as follows:

outcomes ={[(A U B)U X]ﬂ(YUE)}U {(G UH)U F},

where (x Ny)=(cUD).

Here, “U* represents the disjunction operation and “n“ stands for the con-
junction operation. Note a special logical relationship between branches x and
y and pB4; Node 4 will be realized if both activities are realized. This is
equivalent to AND relationship in Eisner’s terminology.

Given the above structure, it is easy to calculate the possible final outcomes:

4 and E (0.0840)
B and Yy > B  (0.1260); since 4 cannot be realized
C (0.0882)
D (0.2058)
Eand X > E  (0.1960); since 4 cannot be realized
F (0.1500)
G (0.0600)
H (0.0900)

The compound outcomes may be explained as follows. The outcome “4 and
E“ occurs if DB3 yields NO and ps2 yields NO also; the outcome “B and
Y — B“ occurs if DB3 yields NO and pp2 yields YES, in which case activity x
will not be realized and, consequently, node 4 cannot be reached; finally, the
outcome “£ and X — E* occurs if DB3 yields YES and pB2 yields NO, in
which case activity v will not be realized and, consequently, node 4 cannot be
reached.

However, Eisner did not develop algorithms to implement decision-making
in R&D projects comprising decision nodes. Elmaghraby [38] introduced addi-
tional logic and algebra in network techniques. His representation of the same
logic is different, as demonstrated in Fig. 7.2. It differs from Eisner’s representa-
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tion in two major aspects. First, Elmaghraby managed to avoid duplication of
pB s by adding dummy nodes and arcs, which can always be done to represent
any desired relationship among the outcomes of pa s. Second, the implied logi-
cal relationships are brought into sharper focus.

Figure 7.1. An example of Eisner’s network with a priori probabilities

Pritsker, Happ and Whitehouse [131-133] developed the GERT techniques
for alternative network models with stochastic outcomes in key nodes. When all
the nodes of an alternative network are of the “exclusive-or” type on their re-
ceiving side, we obtain a GERT (Graphical Evaluation and Review Technique)
model. Other nodes can be reduced to “exclusive-or” nodes; thus, the GERT
model is quite general.

The GERT network is in fact the representation of a semi-Markov process
(SMP). The network itself, after a simple transformation of variables, is a signal

134



flow graph (SFG). Both objects (SMPs and SFGs) have rich mathematical struc-
tures.

Xespos and Strassman [166] introduced the concept of a stochastic decision
tree, while Crowston and Thompson [28-30] and more recently Hastings and
Mello [99] introduced the concept of multiple choices at alternative nodes, when
decision-making is of deterministic nature (Decision-CPM models). These net-
works are characterized by discrete multiple choices at some of their nodes.
They may represent either a choice among activities to be undertaken next or a
choice among sets of resources to be utilized by the activity itself. In the former
case, one or more of the prospective activities must be undertaken. Those activi-
ties which were not selected should “disappear” from the network in the sense
that all their precedence relations must be eliminated. In the latter case it is evi-
dent that allocation planning of resources is intimately related to the scheduling
of activities, since the very duration of these activities is dependent on the re-
sources allocated to them.

No

O

Figure 7.2. Elmaghraby’s network for Eisner’s project

Lee, Moeller and Digman [111,123] developed the VERT model that enables
the analyst to simulate various decisions with alternative technology choices
within the stochastic decision tree network. In the VERT model, two basic sym-
bols are used to represent the structure of the network model:
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a) nodes represent milestones or direction points, and

b) arcs represent activities which are basically characterized by three parame-
ters, namely:

1) time,
2) cost, and
3) performance factor of executing this activity.

In the VERT model, the network is nothing but a schematic flow device in
which the nodes (decision points) channel or gate the flow into arcs (activities)
which carry the flow from an input node to an output node. The flow throughout
the network represents an actual execution of these activities and milestones
which the flow has traversed.

VERT has two types of nodes, which either start, stop or channel the network
flow. The most commonly used type is called the split logic node. It has separate
input and output logics describing specific types of input and output operations.
The second, more specialized and less frequently used type of nodes, has a sin-
gle-unit logic which covers both input and output operations, simultaneously.
There are four basic input logics available for the split-logic nodes:

1) INITIAL;

2) AND;

3) PARTIAL AND; and

4) OR.

They are described as follows [111]:

1. INITIAL input logic serves as a starting point for the network flow. Multi-
ple initial nodes may be used. All initial nodes are assigned with the same
time, cost and performance values by the user.

2. AND input logic requires all the input arcs to be successfully completed.

3. PARTIAL AND input logic is nearly the same as AND input logic except
that it requires a minimum of one input arc to be successfully completed.

4. OR input logic is similar to the PARTIAL AND logic. It also requires just
a minimum of one input arc to be successfully completed. The logic,
however, will not wait for all the input arcs to come in.

There are six basic split-node output logics available to distribute the net-
work flow to the appropriate output arc. The cumulative time, cost and perform-
ance values computed for the active output arcs consist of the sum of the time,
cost and performance factors carried by the input node of the arc.

Moeller and Digman applied the VERT model to an operational planning
problem - the evaluation of electric power generation methods [123]. Three al-
ternative methods have been considered: nuclear fusion, nuclear fission and coal
gasification. The overall time required and the cost incurred for completing the
entire project are the objective function and the constraint, respectively. Also,
various confidence probability levels were incorporated into the regarded re-
search. Based on examining optimal values of the objective function with re-
spect to the confidence probabilities for the compared technologies to success-
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fully put through certain tests, the USA Federal Power Commission selected the
winning technology (the fusion process) over the alternatives. The VERT model
has also been successfully applied to weapon system developments, including
tanks, helicopters, fighter planes, artillery, self-propelled howitzers, electronic
sensors, air defense systems, and others [123].

Thus, it can be well-recognized that the VERT model has excellent software
and a good application area. However, similar to the GERT model, on-line deci-
sion-making, as well as introducing control actions in decision-nodes, does not
take place.

The next step has been made by Golenko-Ginzburg [49-57] who developed
the novel controlled alternative activity network (CAAN model) for projects
with both random and deterministic alternative outcomes at key nodes. At each
routine decision-making node, the developed algorithm, based on lexicographic
scanning, singles out all the sub-networks (the so-called joint variants) that cor-
respond to all possible outcomes from that node. The joint variants of the CAAN
model are enumerated by introducing a lexicographic order to the set of maxi-
mal paths in the CAAN graph. The corresponding lookover algorithm is very
simple in usage. Decision-making results in determining the optimal joint vari-
ant and following the optimal direction up to the next decision-making node.

§7.2 Alternative stochastic model’s description
The alternative CAAN network model [49,51,54] is a finite connected, ori-
ented acyclic graph G(U,Y) with the following properties:

(1)Graph G has one initial event, y, (the network entry), for which r'y, = o
and Iy, #0.

(2)Graph G contains a set v © of events ) ‘ (called terminal events, or network
exits), where 1y'=0, I'''y'#0 and |Y|>2.

(3)The set of events v of graph G is not uniform and consists of events of
type 7 eX (classical PERT model) and of more complex logical types,
ded, peB,and 7 T, being represented in the below Tab. 7.1:

Table 7.1. Logical possibilities of alternative network model events
Designation of an event  Logical relations at the Logical relations at the

in the model event’s receiver event’s emitter
x and and
a and exclusive “or”
B exclusive “or” and
Y exclusive “or” exclusive “or”

(4)The set of arcs U of graph G is split into a subset U ' of arcs corresponding
to the actual functioning of the alternative network, and subset U'" of arcs
representing the logical interconnections between actual and imaginary
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functions.

(5)Vector w, of values characterizing actual work is constructed preliminary
for every arc, U, eU"', representing an actual activity. Among such values
are the time of the activity duration ¢,; the required cost C,; and other
components of this vector. The vector’s components »'?) (p =1-k, k being

the vector’ dimension) can be represented, depending on the degree of in-
determinacy, either by determined estimations or by random values with a

given distribution function, f(w{’), on the interval [a(a),(dp)), ﬁ(co,(j))} , where

a(0)) and B(w(') are boundary estimations of the , -th component of vec-
tor w,,.

(6)For the stochastic alternative model of a combined type, the set of alterna-
tive events, AUT, is split into subsets 4 - alternative events that show the
branching of determined variants, and 4 - alternative events that represent

the situations of branching stochastic variants, where 4UT = AUA4.

(7)When the network event is of alternative nature, it is assigned a set of esti-
mations of corresponding local variant probabilities. In other words, a non-

negative number, ;.j <1, such that Z;/ =1 (where ;.j is the a priori
j=1

probability of transferring from ; to ; and », stands for the number of local
variants appearing in event ;), is related to each alternative path starting

from event ; of type & ed or y e 4 and leading to outcome ;.
(8)If event ; is related to an alternative event of class 4, the corresponding
conditional transfer probability, p,, is usually assumed to be equal one.

This means that the process of choosing the direction in which the system
has to move towards its target is of a determined character; it is the pre-
rogative of the system’s controlling device.

Problems of alternative network model analysis and synthesis are solved by
applying the principle of network enlarging and obtaining a special graph - the
outcome tree [49-57], which is usually designated as D(4,7) and represents a
graph that can be constructed by modifying the original model, G(Y,U), as fol-
lows:

(a) The set, which consists of the initial event, finite events, and events that are
branching points of alternative paths of graph G, is taken as the set of
events of graph p. The initial event, o, =y,, 1s called a hanging event.

(b)The set of arcs ¥ ={»,} of graph » is obtained through an equivalent trans-

ij
formation of a set of sub-graphs, {G, |, extracted from network G according
to the following procedure:
e any event «,, except for the finite ones, «', can be the initial event of
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sub-graph G, =(z,,U, ), where a'ey, and T'a, NY, =0;
® ¥, cTa,, where Ta, stands for the transitive closure of mapping o, ;

e only an «-event of graph G, except for the initial event, o, =y,, can be a
finite event of sub-graph ¢, and

® 10 (a,,.,a,)-type paths that connect the initial event, «,, with sub-graph
finite event o, in G, , contain other « -events of graph G.

(c)every arc, v,, of outcome tree p is obtained by reducing fragment G, of
network G(Y,U) to one arc beginning at «, and ending at « . In addition,
realization probability p, , fulfilment time ¢ , and other parameters equiva-
lent to the corresponding characteristic values for initial fragment G, are
brought into correspondence with the enlarged arc v, .

If different fragments, G, of the model do not intersect, the alternative net-

work is called entirely divisible; all events of the corresponding outcome tree
prove to be y-type events.

We will require a supplementary definition. A partial variant is a variant of
the network model’s realization; it corresponds to a definite direction of its de-
velopment at an individual stage, characterizes one of the possible ways of
reaching the intermediate target, and does not contain alternative situations. The
variant of realization of the whole project, which does not contain alternative
branchings and is formed by a sequence of partial variants, is called a full vari-
ant. On the outcome tree, D(4,V), a certain arc, v,, corresponds to the partial

variant, while some path connecting root event o, with one of the hanging

events, corresponds to the full variant.
The combined outcome tree, D(4,V), can be regarded as a union of purely

stochastic outcome trees that reflects some homogenous alternative stochastic
network models. The latter are obtained by choosing different directions in the
controlled devices. Such stochastic outcome trees, which are all part of the com-
bined outcome tree, D(4,V), are called joint variants of realizing the stochastic
network model.

The joint variant can be extracted from the original graph, D(4,V), by “fix-

ing” certain directions in interconnected events of type a and excluding unfixed
directions. In other words, every joint variant can be regarded as a realization
variant of the network model. Such a variant has a determined topology, but it
contains probability situations and has certain possible stochastic finite states.

§7.3 Logical operations in alternative networks

Let us single out three main logical operations which can be realized at both
receiver and emitter in different nodes of an alternative network. The logical op-
erations are as follows [157]:
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1. Operation “And” has a “must follow” emitter for all activities leaving a
certain node and the “And” receiver for all operations entering a node;
thus, all activities entering the node or leaving the node are realized.

2. Operation “Exclusive Or” enables only one activity to be realized from a
set of activities entering a node or leaving a node. Operation “Exclusive
Or” is, in turn, subdivided into two classes:

a) Operation “Stochastic Exclusive Or” which we will henceforth denote
by “Or”. Each alternative activity entering a set corresponds to a cer-
tain probability value while a set of activities is a full group of events.
The choice of an alternative activity at the node’s receiver or emitter is
carried out by a random trial in accordance with the activities’ prob-
ability values. Each set comprises not less than two alternative activi-
ties.

b) Operation “Deterministic Exclusive Or” which we will henceforth de-
note by “Or" . The choice of an alternative activity from a set of ac-
tivities at the receiver or at the emitter is carried out by the project
manager. Each set, like in case a), comprises not less than two activi-
ties.

Besides the outlined above three logical operations, alternative networks may
comprise nodes with additional logical operations, namely, various combina-
tions of those operations:

e Operation “And + Or . Two different sets of activities are either entering

a certain node or leaving a node. All activities entering the first set have to

be realized while only one activity has to be chosen from the second set

on the basis of a random trial.

e Operation “And + Or ”. The difference between this operation and the
previous one is that the choice of an activity from the second set is carried
out by the project manager.

e Operation “Or + Or . Two alternative sets of activities are either enter-
ing a node or leaving a node. The choice of an alternative activity from
the first set 1s of random nature and is uncontrolled, while for the second
set, choosing an alternative activity is a control action.

e Operation “And + Or + Or . Three sets of activities are entering or leav-
ing a certain node. All activities entering the first set have to be realized
while the choice of an alternative activity from the second and the third
sets are carried out by means of random trials and control actions, corre-
spondingly.

Thus, our classification of different alternative networks is based on the
combinations of different logical operations at the nodes’ receivers and emitters,
as it is shown on Tab. 7.2. Note that in operations 4-7 “together with” may be
substituted for “Or” either at the receiver, or at the emitter (but not for both out-
comes simultaneously).

In conclusion, we will outline the logical operations of several alternative
networks.
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1. From the practical point of view, PERT and CPM networks comprise ac-
tivities (7, /) with the logical “must follow” emitter at node i and the
“And” receiver at node ;. This means that:

a) an event may occur only at the moment the last activity entering the
event 1s finished;
b) all activities leaving any event of the network have to be operated.

2. In Decision-CPM network models [28-30] all events have an “And” re-
ceiver, while certain events have controlled deterministic alternative out-
comes. Thus, the choice of an alternative network is supervised by the
project management.

3. Network models GERT (Graphical Evaluation and Review Techniques)
[131-133] besides the logical “And” receiver and “must follow” emitter,
comprise certain events with “Stochastic Exclusive Or” either at the emit-
ter or at the receiver, or both at the emitter and the receiver together. The
choice of an alternative activity is realized by a random trial of a full
group of events with fixed probabilities.

4. Model CAAN (Controlled Alternative Activity Network) [49-57] com-
prises, besides events with the logical “must follow” emitter and the logi-
cal “And” receiver, certain events with “Exclusive Or ” of stochastic na-
ture at the receiver or at the emitter. Certain other events entering the
model have an “Exclusive Or  receiver or emitter. But there are no
events which comprise simultaneously two types of alternative sets of ac-
tivities of “Exclusive Or ” and “Exclusive Or ” entering or leaving one
and the same node.

5. The GAAN (General Alternative Activity Network) model [9,53-54,67]
has been already mentioned above, in §1.1, and will be outlined in depth
below, in Chapter 9.

The class of GAAN models is the most general one from the point of its
alternative structure.

The GAAN and CAAN models have been successfully used for planning
and controlling highly complicated R&D projects [67] where decision-
making has to be introduced with incomplete or inadequate information
about the alternatives. Such models are especially effective for R&D pro-
jects with multiple alternative technology choices, e.g., in opto-
electronics, aerospace, defense related industries, in developing an artifi-
cial heart [67], in projecting new software (Information Technology Pro-
jects), etc.

6. Model SATM (Stochastic Alternative Time-Oriented Network) [53,157] is
a further extension of the generalized network models GNM and GAAN.
SATM differs from GNM by:

e implementing various types of alternative relations (stochastic or de-
terministic alternatives);
e implementing a broad spectrum of stochastic values.
Note, in conclusion, that stochastic alternative network models CAAN,
GAAN and SATM comprise alternative deterministic branching nodes and,
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thus, refer to the class of controllable network models. However, there is an es-
sential difference between CAAN and GAAN, on one side, and SATM, on the
other one. Both CAAN and GAAN models, independently from their structure,
enable obtaining feasible solutions and, thus, can be optimized, as outlined be-
low, in Chapters 8 and 9. In the case of SATM models certain combinations of
parameters do not provide feasible solutions, i.e., the project cannot be carried
out. We have to implement a new concept - the project’s availability, i.e., the
probability to ever meet the target. Thus, we determine a new definition of the
project’s p-availability which reflects the probability for the project to be real-

ized. In our opinion, value p can be determined by means of extensive simula-
tion. If p is close to unity, e.g., p =0.99, the regarded SATM model may be ac-
cepted for future analysis. In case p=1, we suggest optimizing SATM on condi-
tion that the project will be accomplished. Such a logical analysis is necessary
since SATM incorporates the GNM model with its complicated logical relations
and links. If p deviates from unity essentially, we have to overlook the structure
of SATM, i.e., to amend the network’s structure. This by itself is an extremely
complicated problem which remains unsolved as yet.

Table 7.2. Logical operations in alternative networks

Event’s receiver L"glc?l Event’s emitter
operation
“And” I: “And” “Must follow”
“And” or “Stochastic Exclusive Or” 2 “Or™ “Must follow” or “Stochastic Exclu-

sive Or”

“And” or ‘“Deterministic Exclusive “Must follow” or “Deterministic

Or” 3:70r Exclusive Or”

“And” together with “Stochastic Ex-4: “And + “Must follow” together with “Sto-

clusive Or” Or” chastic Exclusive Or”

“And” together with “Deterministic5: “And + “Must follow” together with “De-

Exclusive Or” or ™ terministic Exclusive Or”

“Stochastic Exclusive Or” together 6 “Or + “Stochastic Exclusive Or” to-

with “Deterministic Exclusive Or” O'r**,, gether with “Deterministic Ex-
clusive Or”

“And” together with “Stochastic “Must follow” together with

Exclusive Or”, together with “De- 7: “And + “Stochastic Exclusive Or”, to-

terministic Exclusive Or” Or'+Or ” gether with “Deterministic Ex-
clusive Or”

Types 1-7 together with “General- 8: “And +
ized  Time-Oriented Network Or +Or Types 1-7 together with GNM
Model” (GNM) + GNM”

In the next chapter we will outline the most frequently used nowadays con-
trolled alternative activity network - the CAAN model [49-57].

142



||| Chapter 8. Controlled Alternative Activity Network (CAAN)

§8.1 The model’s description

8.1.1 Structure of a CAAN model

A CAAN model is a finite, connected, oriented, activity-on-arc network
G(N, A) with the following properties:

I. Network G(N, 4) has one source node », and not less than two sink nodes »".

II. The set of nodes of network G(N, 4) includes four types of nodes:
Type I: with the logical “And” receiver and the ““must follow” emitter;
Type 2: with the logical “And” receiver and the “exclusive or” emitter;
Type 3: with the “exclusive or” receiver and the “must follow” emitter;
Type 4: with the “exclusive or” receiver and the “exclusive or” emitter.
III. The set of alternative nodes (types 2 and 4) for a CAAN model is subdi-
vided into subsets:
(a) NcN - alternative nodes which show the branching of stochastic
variants;
(b) Nc N - alternative nodes which show the branching of deterministic
variants.
When a network node i refers to class N, it is assigned a set of correspond-
ing outcome probabilities p, <1, > p, =1, i € B(j), where B(j) denotes the set of
J

nodes that connects ; to ;. When a network node ; refers to class N, the corre-
sponding transfer probabilities p  are assumed to equal unity. This means that
the process of choosing the alternative direction is of deterministic nature; it is

the sole prerogative of the project’s decision-maker.
According to [49-57], we will henceforth designate the branching nodes, be-

ing included in classes N and N, as o and o, respectively. Note that o and o
differ from ; only by a special mark which points out their belonging to differ-

ent sets N and N.

8.1.2 Qutcome graph

To analyze the CAAN type model we use a special network which we will
call the outcome graph. The latter is designated as G*(N*,A*) and can be ob-
tained by reducing the initial network G(N,4). Relation N*=n,U{" JUNUN
holds, i.e., the set of nodes of the outcome graph includes the source node, the
sink nodes and all the branching nodes. Every arc (;, j)e 4" of the outcome graph
is equivalent to a certain fragment G, of the initial network G(~,4). If different
fragments G, c G(N, 4) do not intersect, both G(N, 4) and G*(N*,4") are called

entirely divisible. An example of a CAAN type entirely divisible outcome graph
with both connecting and diverging paths is shown in Fig. 8.1.
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Figure 8.1. The outcome graph

Definition. We will introduce the concept of the direction of the arc leaving
an o-type branching node. All arcs (i, ;) leaving node « or « are indexed
clockwise as n, =1,2....,n,, Where n, is the number of outcomes in node «,. Thus,
the direction of arc (i, ;) is equal to the corresponding index #, .

For example, in Fig. 8.1, arcs leaving node 1 have directions as follows:
h,=1, h, =2, h, =3; arcs leaving node 3: hy; =1, hy =2, hyy =3, h,,, = 4, €tC.

An algorithm described in [49] transforms an initial activity network to its
outcome graph. The algorithm’s output information about every arc (i, j)e 4°
(Array I) consists of records: a,, a,, &,, p,» t;» c,-

Here:

® o, and o, are the source and terminal nodes of arc (i, /);

e 1, is the direction of arc (i, /);
® p, is the arc’s probability; p, =1if a, e N.

e, and ¢, are the time duration and cost values of the activity represented

ij
by arc (i, ).

If necessary, other parameters can be added to the record data (resource or re-
liability values, etc.).

Definitions. A partial (local) variant is a variant of the node’s realization. It
corresponds to a definite direction of the project’s development at a particular
stage. The variant of realization of the whole project, which does not contain al-
ternative branchings and is formed by a sequence of local variants, is called a
full (overall) variant. On the outcome graph G*(N*,4°), a certain arc (i, /) corre-
sponds to the local variant, and a path connecting source node n, with one of the

sink nodes corresponds to the full variant. An outcome graph can be regarded as
an ensemble of purely stochastic networks with branching nodes of « -type only.
These networks are obtained by choosing different directions in the o -type con-
trolled nodes. Such stochastic networks which are part of the outcome graph, are
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called joint variants of the CAAN model.
Thus, the joint variant can be extracted from the graph G*(N *,A*) by fixing

certain non-contradictory directions in interconnected nodes of type a and ex-
cluding unfixed directions. For example, in Fig. 8.1, one of the joint variants is
determined by fixing non-contradictory directions 12, 24, 6—10, and

712 in a-nodes 1, 2, 6 and 7. This is presented in Fig. 8.2.
6

Py 10=1 L

2z
P12= P24=1
8

P47=0.2

-
7 712 12

Figure 8.2. The joint variant

§8.2 Decision-making in CAAN type models

8.2.1 Optimization problem

To control a project, such as any production process, it is necessary to intro-
duce decision-making in order to reach the goal while optimizing a given objec-
tive function subject to certain restrictions, e.g., minimizing the cost of the pro-
ject or the time duration. For a project represented by a CAAN type model, deci-
sion-making means choosing the directions of the project’s development in con-
trolled nodes of a-type, since « -type nodes are uncontrollable. This means that
the optimization problem resolves on choosing a joint variant optimizing the
value of the objective function, subject to introduced restrictions.

Let N = [El,az,...,am] be the set of a-nodes of outcome graph G*(N*,4").
Every joint variant is defined by a choice of certain directions in some of these
nodes o, ..., o, (non-contradictive ones), i.e., by set

veloi.h, b, |. (8.2.1)

Definition. A set which indicates the set of m-nodes and the directions in
them, and uniquely defines the joint variant, is called an admissible plan. The set
of joint variants is in one-to-one correspondence with the set of admissible
plans. Thus, the optimization problem consists of three steps:

Step 1. To determine and to single out from the outcome graph all the joint
variants, together with the corresponding admissible plans.

Step 2. To calculate the values of the objective function and the restrictions
(usually in the form of average values) for each variant.

Step 3. To determine the optimal joint variant and to follow the optimal direc-
tion up to the nearest deterministic branching node. The problem must
be repeatedly solved for the reduced network in every sequentially en-
countered controlled event of type «.

Let us consider, for example, that the joint variant in Fig. 8.2 is determined as
an optimal one for the initial outcome graph in Fig. 8.1. Beginning the project
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from node 1, we have to follow direction 1 — 2 and reject all other alternative di-
rections, namely 1— 3 and 1 - 9, with all the following arcs (3, 5), (3, 9), (3, 8),
(3, 16), (9, 16), (9, 17).

However, when the project reaches node 2, we have to resolve the optimiza-
tion for the remaining part of the network (see Fig. 8.3). In the course of devel-
oping the project there may be changes in the parameters of some activities
(time duration, cost, outcome probability, etc.) since an activity network is usu-
ally revised over time. Perhaps, later on, we may choose 2 — 5 as an optimal di-

rection at node 2 instead of direction 2 — 4, which was determined at node 1.
10

P8,15=1
15

Figure 8.3. The reduced network

8.2.2 Mathematical formulation
The mathematical formulation of the problem is as follows: Determine the
joint variant s* optimizing the mean value of the objective function
E[F(s" ]=Min (Max) 3. Flr.) (8.2.2)

seVcG \N 4 7 €Q

subject to
Bl )= Bop e, )< (8.2.3)

Here:
Q - set of full variants entering the s-th joint variant;
% - set of joint variants entering the C44N type model;
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Pi - probability of realizing the ;-th full variant =, in the s-th joint vari-

ant;

F(r,) - value of the objective function for the ;-th full variant in the s-th
joint one;

H (ﬂ) - value of the restriction for the ;-th full variant z . e Q .;

H - pre-set restriction level. When F is the time duration, restriction # is
usually the project’s cost, and vice-versa. If necessary, several restric-
tions can be used.

When all the joint variants are determined (Step 1), one has to examine each
of them to look through all the full variants entering the joint variant under ex-
amination (Step 2). But since any joint variant contains only alternative nodes of
type «, the problem reduces to an analysis of a pure stochastic network, which
can be performed with the help of various approaches. Burt, Garman, Gaver and
Perlas [18-19] as well as Golenko (Ginzburg) [49-50, etc.] presented various al-
gorithms to solve this problem. Thus, carrying out Step 2 causes no principal
difficulties. The main problem is to single out all the joint variants, especially in
the case of large initial networks with many branching nodes of both types «
and « .

8.2.3 Determining joint variants

The procedure of performing Step 1 (see 8.2.7) boils down to sequential use
of the following three algorithms:
Algorithm I.  Constructing an a-frame for the outcome graph G*(N*, 4").

Algorithm II. Determining maximal paths in the o -frame.
Algorithm III. Determining admissible plans and joint variants.

The algorithms are organized so that the outcome information of each algo-
rithm serves as the initial data for the next one. The initial data for Algorithm I
is the information about the outcome graph G*(N *,A*) (Array 1). Note that the
procedure can be applied only to a fully divisible network.

§8.3 Algorithm I for constructing an o -frame

8.3.1 Definitions

Definition 1. We will call a certain path (a,,a,,....a,,a, ) in the outcome graph
an o -simple path if source and terminal nodes «,, o, en, U {n*}Uﬁ and all other
nodes a,,....,a, € N. For example, in Fig. 8.1, path (1, 3, 5, 7) is an a-simple path
since a,,a, e N and a,,a, € N . Direction h. of the first arc of the « -simple path

is called the direction of the path.
Definition 2. Node o, will be called a -achievable from node «, if there is an

a -simple path leading from ¢, to o, .

Definition 3. Call an «-frame of outcome graph G*(N *,A*) a directed graph
G (N, 4™) for which the following conditions hold:
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1) N* =NUn, U{n*}, i.e., the set of nodes of the «-frame does not include

random branching nodes.

2) Each arc of the o -frame is determined by a quadruple (a,,4,,a ,, p,, ) and is

included in G* if and only if there exists an o-simple path leading from
o, t0 o, in direction 7.

Value p, is the probability for an a-simple path (q,..... ;) with direction #,
to be realized. Note that since there can be more than one «-simple path be-
tween two terminal nodes, G* can be a multigraph. For example, the « -frame of
the outcome graph in Fig. 8.1 is a multigraph since there are two «-simple paths
between nodes 2 and 7, namely (2,4, =1,7,0.2) and (2,4, =2,7,0.5), two a-simple
paths between nodes 1 and 16, etc.

From the definition of an « -frame, it can be well-recognized that there exists
one for any outcome graph and is unique.

8.3.2 The algorithm

The algorithm described in [51,57] determines the «-frame on the basis of
the outcome graph. Let outcome graph G* have a set of arcs (i, /) with data in-
formation from Array L. In the algorithm process, all the a-nodes together with
sink nodes are sorted and each node o, of type o is followed in the opposite di-

rection of all the paths entering it, until the appearance of a-node «,, or the
source node n,. Obviously, any path will sooner or later lead to one of the nodes
of such a type. This path is made to correspond with set («,, 7, ,«, ), Where o, and
a, are, respectively, the source and the terminal nodes of the o -simple path ob-
tained, and #, is the direction of the path in node ¢,. Thus, some set (a,,4,,a,)
will correspond to any node o, which is a-achievable from an a-node «, or
from the source node #, .

By this process, select all sets (a,,4,,a,) corresponding to o -simple paths
leading from o, to «,. In the process of finding each path of this kind, calculate
its probability.

We then obtain the set of quadruples (a,,%,,a,,p, ), some of them possibly
being quadruples with similar o,,4,,a,, corresponding to different independent
o -simple paths from «, to o, in direction #,. For example, in Fig. 8.1, there are
two a-simple paths leading from 1 to 8 in one and the same direction 4, =3,
namely, (1,4, =3,8,0.05) via nodes 3 and 5, and (1,4, = 3,8,0.40) via node 3. Each
set of quadruples with similar «,,,«, is replaced by a single quadruple
(@, .0 ,, By )» Where a,h,,a, are the values common to all quadruples in the
set, and p, is the probability of achieving node «, from ¢, in direction #,.
When calculating 3, it should be taken into account that the outcome graph ex-
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amined is fully divisible. Various paths in the outcome graph are therefore inde-
pendent, and the probability p, of reaching «, from ¢, in direction %, equals

the sum of probabilities p,, of all paths (a,.4,.a,,p, )

As a result of such a transformation, we obtain the a-frame desired, in the
form of a set of different quadruples (,,5,,a ,, 5, )-

The a-frame for the CAAN type outcome graph in Fig. 8.1 (Array II) is
given in Tab. 8.1.

Table 8.1. The o -frame (Array II)

l hik ] iijk
1 1 2 1

1 2 16 0.4
1 2 17 0.6
1 3 7 0.05
1 3 8 0.45
1 3 16 0.32
1 3 17 0.18
2 1 6 0.8
2 1 7 0.2
2 2 7 0.5
2 2 8 0.5
6 1 10 1

6 1 11 1

7 1 12 1

7 2 13 1

8 1 14 1

8 2 15 1

§8.4 Algorithm II for determining maximal paths
8.4.1 Maximal path
Each arc of the o-frame is identified by a triad («,, 4, ,« ;). Triads correspond-

ing to different arcs must differ in at least one element. Triads with only the sec-
ond element differing correspond to arcs connecting one and the same pair of
nodes in different directions; triads with only the third element differing corre-
spond to arcs connecting one and the same node in the same direction with dif-
fering nodes.

Definition 1. A sequence of arcs

(al,hlkl,az), (az,hz,{z,o%), ey (ar,h,,{v,am), (8.4.1)
in which the terminal node of one arc, excluding the last, is the start node of the
next one, is called a path in the «-frame and is written:

(ocl,hlkI ,az,h2k2,a3,...,a,,h,k’v,ar+1). (8.4.2)

Definition 2. A path in the «-frame will be called maximal if it does not be-
long to any other path. Obviously, any maximal path leads from the source node
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n, to some sink node »".

8.4.2 Lexicographical order
Let all nodes in the «-frame be enumerated with different numbers, for ex-
ample, «,,a,,... are the node numbers required. Also determine all the different

directions leading from every node «,. Consider two different maximal paths
X, = (aa,hah,ac,...,ae) and x, = (am ,hmn,ap,...,az).
Compare by pair the elements of these paths: «, and «,, 4, and #,, «, and

a,, etc. Since the paths are different and maximal, a pair of differing elements
a, and a, (or 1, and 4, ) must be found while all the other previous pairs coin-

cide. If in this case o, <a, (or 1, <, ), the first lexicographically ordered path

f
precedes the second. Thus, the first path precedes the second if its sequence
lexicographically precedes the sequence of the second path. Similarly, a lexico-
graphical order is introduced in the set of all («,, %, )-type arcs.

8.4.3 The algorithm

The algorithm described in [57] determines all the maximal paths in lexico-
graphical order. It consists of two main parts: the procedure for choosing the
first maximal path and the procedure for transferring from one arbitrary maxi-
mal path to the next one in lexicographical order. By using the first procedure
and then, repeatedly, the second one, we obtain all the maximal paths in the o-
frame.

The set of maximal paths (Array III) for the outcome graph in Fig. 8.1 is pre-
sented in Tab. 8.2 (the number in braces denotes the arc’s direction).

Table 8.2. Maximal paths (Array I11)

X, = (1,{1},2,{1},6,{1},10) X, =(1,{2},16)
X, =(1,{1},2,{1}6,{2},11) X, =(1,{2}417)
X, = (L2, 7. fih12) X, =(L3}7.{1}12)
X, =1L {15:2.{1.7.42).13) X, =(1.13}7.{2413)
X =(1.{1}2.{2),7. 1312) X5 =(1.{3).8.{1}.14)
X, =(1L{1}2.{2).7.{2}13) X,y =(1.13}8.{2}15)
Xo=(.{12,{2}8.1}.14) X5 =(1.{3}16)
Xy = (1,132, {2}8.{2)15) X, =(1.3}17)

§8.5 Algorithm III for determining admissible plans and joint variants

The algorithm includes, in turn, three sequentially used subalgorithms.
Subalgorithm IITA transforms the information obtained from Algorithm II since
the latter may provide redundant data. Subalgorithm I1IB determines consecu-
tively all the admissible plans while Subalgorithm IIIC singles out the corre-
sponding joint variants.

150



8.5.1 Subalgorithm IllA to obtain auxiliary Array IV
Subalgorithm ITIA transforms Array Il to an auxiliary Array IV by the fol-
lowing procedure:
Step 1. Remove the corresponding sink nodes from all the maximal paths and
thus form the set of “truncated” paths.
Step 2. Remove all the truncated paths which are parts of other truncated paths
(for example, paths X, or X, in Tab. 8.2 after removing the sink

nodes are parts of path X,,).

Step 3. If some of the truncated paths coincide after Step 1 leave only one of
them (paths X,- X, in Tab. 8.2).

Array IV obtained after transforming Array III in Tab. 8.2 is presented in
Tab. 8.3.

Table 8.3. Array 1V for determining admissible plans

8.5.2 Subalgorithm IIIB to determine admissible plans
Definition. Two different truncated maximal paths
ok Lan,h

1270 py

a; ..,(Xi,,,h

irpy° ip,

s hjlql &z hizqz e X hj.\-q.\-

are called contradictory ones if they each possess at least one common alternative
node o, of o -type with mutually exclusive alternative directions h, and n, .

The work of Subalgorithm IIIB is based on lexicographical scanning and re-
sembles Algorithm II (see §8.4). It consists, like the latter one, of two parts: the
procedure for determining the first admissible plan, and the procedure for trans-
ferring from a routine admissible plan to the next one.

Determine the first admissible plan as follows: choose the first truncated
maximal path from Array IV (maximal paths being initially ordered lexico-
graphically). This is the basis for determining the first admissible plan. Then ex-
amine the next maximal path and determine, if it is contradictory to the basic
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admissible plan or not. If so, examine the next routine maximal path. If not, add
to the admissible plan all the links (either of type [a,,k,,a,,,] or of type [a,,h,])
from the maximal path under examination which are absent in the basic admis-
sible plan. For example, in Tab. 8.3, the first truncated maximal plan is:

L, h,=1,2, h,=1,6, b, =1.

The second one is contradictory to the first, but from the third non-

6,10

contradictory maximal path we add the link [7,h7,12 :l], thus enlarging the admis-
sible plan to
1, h,=1,2, hy,=1,6, h,,=1,7, h

The procedure thus boils down to scanning the maximal paths in Array IV,
each time comparing the next maximal path with the “growing” admissible plan
already obtained.

6,10 712 = L.

Now let W:[&il,hl.lql,Eiz,hizqz,...,ai,,,hirqr] be an arbitrary admissible plan. The
procedure for determining the next one is as follows: exclude the last
link [al?-’hi,.q,.] and find out whether it is possible to determine a new admissible
plan (which does not coincide with those obtained before) while applying the
first of the algorithms. If there is no such admissible plan, exclude the
link [&i,,,l,hikm], and again apply the procedure of determining an admissible

plan, and so on. Stop working the algorithm, when the consequently truncated
admissible plan becomes empty.

Admissible plans for the outcome graph in Fig. 8.1 (Array V) are presented
in Tab. 8.4.

Table 8.4. The set of admissible plans (Array V)

W, =1{13.2.{1:6.4117. 1}

W, =1{1)2.41}6. {147, 12} W, = 1.41}2,{2)7.{2)8. (2}
W, =1,{1},2,{1}4,6,{2},7,{1} W, =1,{2

W, =1 {12 {146, 27,2} Wy =1L 3K, f118.41)

W, =1, {12, 217, 8.0} W, = 1347, {118.2)

w, =1 {h2 207,18, 2} W, = 13K, 258,41

w, =1 {2 2)7.2)8.01) W, =13}7. 218, 2}

8.5.3 Subalgorithm IIIC to determine joint variants

The initial information for the subalgorithm is the set of admissible plans
(Array V, see Tab. 8.4) and the outcome graph (see Fig. 8.1). Note that a joint
variant is a subgraph of the outcome graph containing all the full variants ob-
tained through a definite selection of directions in the «-nodes. Therefore, the
joint variant, corresponding to a routine admissible plan w, should be a stochas-
tic network s, satisfying the following conditions:

1) s is a subgraph of the outcome graph;
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2) s contains all the nodes of set », but no «-nodes besides them;

3) Only sink nodes of the outcome graph can serve as sink nodes of s;

4) Any subgraph of the outcome graph satisfying properties 1)-3) is a sub-
graph of joint variant s (i.e., s is the maximal subgraph satisfying those
properties).

Using these properties, Subalgorithm IIIC to determine the joint variant for
the routine admissible plan, w, was presented in [53,57]. The idea of the subal-
gorithm is as follows: for every a; €W, a subgraph of the outcome graph is de-
termined containing all the maximal «-simple paths leaving « in direction

h, e W . Obviously, a combination of all such subgraphs contains s within itself.

To determine s, it is now sufficient to cast off part of the arcs in such a way that
any maximal path in the remaining subgraph will finish with a node from w or
with a sink node »".

§8.6 Numerical example

The management is faced with development an R&D project represented by
a CAAN type network, its outcome graph given in Fig. 8.1. The time duration
and cost values (measured in months and dollars, respectively) of each activity
are presented in Tab. 8.5. The expected duration of the project has to be mini-
mized subject to the cost restriction: the mean cost of the project must not ex-
ceed $23,000. The management has to determine an optimal decision policy,
1.e., to choose optimal outcome directions from every decision-making node
which is reached in the course of the project’s development. This is based on
singling out all the joint variants of the CAAN network under examination, cal-
culating the mean time and cost values of each joint variant and finally deter-
mining the optimal one. Decision-making at node 1 has to be carried out before
starting the project’s implementation.

Table 8.5. The initial data

.. Activity dura-| Activity cost . Activity dura-| Activity cost
ACIVIY 1 ionin | (in1,0008) | ASUVIY | ton(in | (in 1,000 8)
(i.j) months) ¢, ¢, (i.j) months) ¢, ¢,
(1,2) 1 5 (5,7) 1 4
(1,3) 1 6 (5,8) 2 10
(1,9) 4 16 (6,10) 2 9
(2,4) 2 7 (6,11) 2 7
(2,5) 1 6 (7,12) 1 5
(3.,5) 1 7 (7,13) 2 8
(3,8) 2 8 (8,14) 2 7
(3,9) 2 10 (8,15) 3 12
(3,16) 4 15 (9,16) 3 11
(4,6) 1 6 (9,17) 2 5
(4,7) 1 8
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The results of sequential use of Algorithms I, IT and Subalgorithms IITA and
IIIB are presented in Tab. 8.1-8.4, respectively. Applying Subalgorithm IIIC to
the data in Tab. 8.4, the management determines all the joint variants s (the
joint variant for the first admissible plan is demonstrated in Fig. 8.2). Afterwards
their average time durations 7, and cost values C, are calculated, the results
given in Tab. 8.6. According to the cost restriction the optimal joint variant (see
Fig. 8.4) has the expected time duration of 5.12 months and the average cost of

$22,220.

Table 8.6. The parameters of the joint variants

The joint variant

The expected time

The expected cost

duration (in months) (in 1,000 $) Feasibility
s T, C,
1 5.8 26.6 No
2 6 27.2 No
3 5.8 25 No
4 6 25.6 No
5 5 24 No
6 5.5 26.5 No
7 5.5 25.5 No
8 6 28 No
9 6.4 23.4 No
10 5.12 22.22 Yes*
11 5.57 24.47 No
12 5.17 22.37 Yes
13 5.62 24.62 No

%) _ optimal joint variant

Figure 8.4. The optimal joint variant
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Thus the management has to introduce optimal decision-making as follows:

a) At the beginning of the project (at node 1) activity (1,3) has to be chosen.

b) If in the course of the project’s development node 7 will be reached and

the network will not be revised, activity (7,12) has to be chosen.

c) If node 8 will be reached, activity (8,14) has to be chosen. Nodes 3, 5 and

9 of the joint variant are uncontrollable.

Note that calculating average values (7, and C,) in the optimization problem
can be easily replaced by calculating the ,-quantiles at a given confidence level
1- p in order to raise the project’s reliability. These estimates can be obtained
both for deterministic and probabilistic time durations ¢, and cost values ¢, . In

the latter case Monte Carlo simulation technique has to be implemented [43].

§8.7 Conclusions

In our opinion, CAAN type models are typical innovative models which can

be used in several areas, namely:

1. In large and highly complex R&D projects with long-term goals, espe-
cially when an entirely new device is designed with no similar prototypes
in the past. Such projects occur often in aerospace and other defense re-
lated industries. They are usually faced with a great deal of uncertainty in
their progress as well as with alternative outcome directions in key events.

2. Long-term projects in construction industry, when creating and building
unique installations (various defense systems, undersea tunnels, major
pipelines, etc.).

3. Long-term projects when designing or developing new industrial or popu-
lated areas. In the activity network the branching nodes of « -type may re-
flect the alternative results of future geological survey or the influence of
climatic factors, while the a-type nodes may reflect alternative decision-
making as follows: to build or not to build a new plant in a certain place,
to build a railroad or a motor road between two settlements, etc. The ob-
jective function for this type of projects reflects usually capital invest-
ments to be minimized.

4. For the case of deterministic alternative networks we recommend using
the results obtained by E. Dinic [34] in combination with simulation ap-
proaches.

5. As outlined in the previous Chapter, CAAN models cannot be used for op-
timizing non-divisible alternative networks which cover a variety of ex-
ceptionally complicated R&D projects. The latter have to be controlled by
a more general model - namely, the GAAN model, which will be outlined
in Chapter 9.
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Chapter 9. Generalized Alternative Activity Network (GAAN
Model)

§9.1 Formal description of GAAN model
As mentioned above, in §1.1, the GAAN model is a finite, oriented, acyclic
activity-on-arc network G(v,4) with the following properties [67]:
I. G(n, 4) has one source node », and no less than two sink nodes »'.
II. Each activity (;, j)e 4 refers to one of the following three different types:
Type 1: activity (;, ;) is a PERT activity (PA) with the logical “must fol-
low” emitter in node ; and the “and” receiver in node ;;
Type 2: activity (;, ;) 1s an alternative stochastic activity (ASA) with the
logical “exclusive or” emitter in node ;. Each (;, j)e 4 of ASA
type corresponds to a probability 0< p, <1, while node ; com-

prises a set of at least two probabilities p,, Y p, =1;
J

Type 3: activity (i, j) is an alternative deterministic activity (ADA) with
the logical “exclusive or” emitter in node ;. Node ; is a decision-
making node, and the sum of the corresponding transfer prob-
abilities (at least two of them) is assumed to be unity.

III. Activities of all types may come out of the same node i< N . Thus, unlike
the CAAN model, the GAAN model is not a fully-divisible network.
IV. Activities of all types may enter the same node.

An example of GAAN type graph is shown in Fig. 9.1. Here, activities (1,2)
and (3,4), (2,7) and (2,8), (4,9) and (4,10) are of ADA type. Activities (1,4) and (1,5),
(3,7) and (3.8) are of ASA type, while activities (1,9), (2,6), (3.9), (5,10), (5,11) are of
PA type. Note that such a network is a more universal model than the Eisner
model, which comprises only activities of Types 1 and 2.

Definitions

Following [67], introduce the concept of a joint variant for a GAAN model.
Call a joint variant of the GAAN model G(N,4) a subgraph (subnetwork)
G*(N *,A*) satisfying the following conditions:

1. G*(N",4") has one source node coincident with that of graph G(v, 4).

2. If G*(N*,A*) comprises a certain node ;, 1.e., ie N, then G*(N*,A*) com-

prises all activities (i, j) of types PA and ASA leaving node ;.

3. If G*(N*,A*) comprises a certain node ; having alternative outcomes of
ADA type in the GAAN model G(n,4), then G*(N*,A*) comprises only
one activity of this type leaving that node.

Call a full variant of joint variant G*(N *,A*) a subnetwork of PERT type

G"(N",4")cG"(N",4") which can be extracted from the latter by simulating
non-contradictory outcomes of ASA type in interconnected nodes and excluding
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alternative non-simulated outcomes.
Call a full variant G* realization probability the product of all values p for

all activities of ASA type entering the full variant.
We shall show that for any joint variant G* < G the sum of full variant reali-

zation probabilities over all full variants entering G* is equal to unity.
6

5

PA 11
Figure 9.1. The GAAN type graph

Lemma 9.1. The sum of probabilities of realization of all full variants enter-
ing a joint variant equals unity.

Proof. First, demonstrate that in the GAAN network, there does exist a node
which is connected by arcs leaving it only with sinks.

Consider a set of network paths from the source to all sink nodes. The num-
ber of arcs entering a path will be called the path length. Since the number of
paths is finite, a path of maximum length does exist. Consider the last but one
node of this path, i.e., the node connected to the sink by the arc leaving this
node. All the arcs incident to this node enter sink nodes. Actually, if an arc en-
tering an internal node exists, then the path under discussion is not a path of
maximal length as agreed.

We shall prove the lemma by induction over the number of network nodes,
assuming, without loss of generality, that only one arc enters any sink node.

Also without loss of proof generality, assume that arcs of only one type leave
each node.

The lemma obviously holds for x =3. Suppose that it is true for all # <, and
consider a network with (n+1) nodes. The network contains an internal node x
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such that for any arc (x,y), » is a sink.

Consider the following three cases.

1. Node x is of PA type (PA-node).

From the initial network, remove the arcs leaving node x, and the sinks con-
nected with these arcs. We obtain a network with the number of nodes less or
equal to ». For this network, according to the assumption, the lemma holds.

All the joint variants of the initial network are obtained from the variants of
the “smaller” network by completing those containing the node x with the arcs
leaving this node, and the corresponding sinks. However, arcs leaving the PA-
nodes and entering the sinks cannot change the corresponding full variant reali-
zation probabilities. Therefore, in this case, the lemma asserts.

2. Node x is of ADA type (ADA-node).

This case is similar to the previous one.

3. Node x is of ASA type (ASA-node).

Arcs  (x,y,).(x,,)...(x,¥,) leaving node x have probabilities o,,a,,....c,,

r

Zai=1.

i=l1

Consider any joint variant comprising node x. From this joint variant, re-
move the arcs leaving node x, and the sinks connected with these arcs. We ob-
tain a joint variant with the number of nodes less or equal to ». Let the full vari-
ants of this “smaller” joint variant have probabilities B,,B,...., 8,, and the first ¢

full variants comprise node x. By assumption, z B, =1. The full variants of the

s=1

“larger” joint variant have probabilities
Bo, Bia,,.. 7ﬁ1araﬁ2a17ﬁ2 20 Pol s By, Bt e 7ﬁ/ar7ﬁ/+l7ﬁ/+27 By Further,

we obtain ZZﬂa +Z[3 Zﬁ Za +Z[3 Zﬁ +Z[3 =1, and, hence,

j=1 i=l j=l+1 i= j=r+1 J=r+1
the lemma 1s true.

For joint variants not containing x the lemma is also true. Actually, these
joint variants may be considered as those of the network with the number of
nodes less or equal to ».

The lemma is proven. [ |

§9.2 Optimization problem on GAAN

9.2.1 Mathematical formulation

The mathematical formulation of the problem is as follows: determine the
optimal joint variant G**' < G(N, 4) that optimizes the objective function

E[F(G™) =Min{g]}/}[ax){cﬂ%c* [F(G** )-pr{G™ }} 9.2.1)
subject to
Elo. (6 ))- {GH%G[QV(G**)-Pr{G**}}SHv» 1<vew. 9.2.2)
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Here, F(G™) is the objective function of full variant G*, Pr{G™} is the G" re-
alization probability, ,(G™) is the v-th constraint criterion, and #, is the pre-
set constraint level for that criterion. Note that for certain particular cases, the
value of w may be zero, i.e., the optimization problem is unconstrained, or the
problem comprises only one constraint (9.2.2) without objective function
(9.2.1). When r refers to the project’s duration, the first constraint #H, is usually
the project’s cost, and vice versa.

9.2.2 NP-completeness

Show that problem (9.2.1-9.2.2) is NP-complete. Consider a particular case
of the GAAN model, in which each activity (i, /)= G(v, 4) 1s either a PERT ac-
tivity (PA) or an alternative deterministic activity (ADA). Only one parameter,
namely, the cost ¢, is assigned to each activity (i, /). The values of ¢, are fixed

and pregiven. Each joint variant G* is characterized by its cost value C{G*}
which is equal to the sum of the cost values of all activities entering this joint
variant.

The problem called “minimum weight AND/OR graph solution” [47] boils
down to determining the joint variant with the minimal cost value. Sahni [140]
proved that this problem is NP-complete. Since the problem is unconstrained
and 1s applied to a particular case of the GAAN model, it can be regarded as a
particular case of the general problem (9.2.1-9.2.2). If a particular problem is
NP-complete, then the general problem is also NP-complete. Thus, to obtain a
precise solution, one has to develop a lookover algorithm to single out all the
joint variants. Note the techniques for the fully divisible CAAN model [57]
cannot be applied straightforwardly to the GAAN network.

§9.3 The general approach to the optimization problem’s solution

The idea to enumerate the joint variants of the CAAN model [57] is based on
introducing lexicographical order to the set of maximal paths in the CAAN
graph. In the case of GAAN network the order on the set of paths has to be sub-
stituted for the order on the set of subgraphs. To develop the enumeration algo-
rithm, one may use the ideas of enumerating the so-called trajectories for as-
signment problems, or special matrices for traveling salesman problems [10-11].
Note that singling out the maximal trajectory for an assignment problem is simi-
lar to determining the joint variant with the maximal objective value. Since a tra-
jectory can be regarded as a vector and the latter, in turn, can be mapped onto a
set of integer numbers, the trajectories can be enumerated. Similar ideas may be
implemented in analyzing a GAAN network in order to enumerate and single
out all the joint variants.

To implement algorithms for the GAAN model analysis, one has to carry out
consecutively the following three procedures:

Procedure 1

Modify the GAAN model so that each node (except the sink nodes) would be
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the source of only one type of activity; i.e., only activities of either PA type, or
ASA type, or ADA type have to leave the node.

Procedure 2

Modify the GAAN model to satisfy the following conditions:

1. For each activity (i, j), the indices satisfy i < ;.

2. Any sink node number is greater than that of any internal node, i.e., the

one that is not a sink node.

After implementing Procedures 1 and 2 for the graph represented in Fig. 9.1,
we obtain the graph shown in Fig. 9.2. The modified graph comprises » =12 in-
ternal nodes.

Figure 9.2. The GAAN graph after implementing Procedures 1 and 2

Procedure 3

Examine all the nodes with alternative outcomes of ADA and ASA types and
enumerate separately, for each of these nodes, all the activities leaving the node.
If m, alternative outcomes (i, j,),(i, j, ).... (. jm,) leave alternative node ;, each ac-

tivity receives a different ordinal number from 1 to m,. The assignment idea is as

follows: in case j, > j, activity (i, j,) receives a number greater than (, j,). Thus,
we have to set values j,j,..., j, 1n ascending order and assign values 1,2,...,m, to

the corresponding activities. Let , be the number of alternative activities (i, ),
1<k, <m,.

The input information on each activity (i,j)c 4 entering the GAAN model
G(N, A) (after implementing Procedures 1 to 3) comprises the following records:
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i j P, ADA | PA g |26y
I<Sv<w
Starting | Terminal | Outcome | Set 1 if | Set 1if |(i, j)objec-| (i, j)con-| No. of
node node | probabil- | (i, /) is of| (i, /) is of| tive func- | straints | (i,)activi-
ity (ASA |ADA type| PERT |tion value ties for
type) type ADA or
ASA types

Consider a GAAN type graph G(N, 4) after the implementation of Procedures
1 and 2. Let » be the number exceeding by 1 the maximal number of alterna-
tive outcomes (ASA or ADA types) leaving a node entering the graph. Let » be
the number of internal nodes (see Procedure 2). Consider the mapping of the set
of joint variants G*(N *,A*)c G(N, 4), onto the set of n-dimensional vectors with
coordinates (f,, f,,..., f,), where f,, 1<i<n, 0< f, <M, are integers. Each coordi-
nate f, corresponds to node ;. The correspondence rules are as follows:

1. f, =0, 1fand only if node ; does not enter the joint variant.

2. f,=M ,ifnode ; enters the joint variant and is the source of either ASA or

PA outcome activities.
3. f, =k,,if node ; enters the joint variant that comprises an alternative ac-

tivity (i, /) of ADA type leaving that node. Note that only one activity of
ADA type may leave a node in a joint variant (stems from the definition
of a joint variant).
In order for all the joint variants to be singled out, they must be enumerated.
It can be well-recognized that two different joint variants correspond to different
vectors. The number of the joint variant is, essentially, the number of the corre-
sponding vector. Thus, to enumerate the joint variants, their corresponding vec-
tors have to be arranged in a certain order. We shall use the lexicographical or-
der as follows:
If two joint variants G (N *,A*), G, (N *,A*) are mapped onto vectors

Fi=(A0,r0 L), 7= (1%, 19, ), correspondingly, then G; precedes
G; if the first s coordinates, 0 <s <n -1, in both vectors coincide, but the (s+1)-
th coordinate satisfies 1) < s . Such an order enables the enumeration of all
the joint variants to be done.

§9.4 Algorithms for enumerating and determining the joint variants

The procedure for enumerating and determining the joint variants consists of
the following algorithms [9,67]:

Algorithm I. Determination of the Minimal Number Vector from the GAAN
Model G(N,A).

Specify the algorithm for constructing the vector as follows:
Step 1. Consider the node with the minimal number 1 entering the graph
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G(N, A). If this node has outcomes of PA or ASA types, set f, =M. In
the case of ADA outcomes, set f, =1. Set j=1.
Step 2. Set j=+1.
Step 3. Examine all the activities entering node . Let them be
(s /)Gy j)hen (i, j). TWo cases are considered:
3.1 Among nodes i,i,...,i, there is at least one node i, 1<s <k, with 7, =0,

If node ; has outcomes of PA or ASA types, set f, = i . If outcomes of
ADA type leave node ;, set f, =1; go to Step 4.
3.2 All the coordinates f,, 1<s<k, are equal 0. Set r, =o0.

Step 4. If j < » return to Step 2.
Step 5. The algorithm terminates.
It can be proven that there is no vector that would correspond to a joint vari-

ant and lexicographically precede the vector constructed according to Algorithm
L.

Lemma 9.2. The number obtained by implementing Algorithm I corresponds
to the minimal joint variant, i1.e., there is no joint variant with a number less than
that obtained using Algorithm I.

Proof. Obviously, Algorithm I develops a joint variant. Let 1 =(f,, f,..... f,)
be the joint variant number obtained according to Algorithm I, and
h=(h,h,,.,h, ) is an arbitrary joint variant of the network. Show that 7 <#x. To
do this, demonstrate that if the first ¥ coordinates of the vectors 7 and » are
equal, then, for the (k+1)-th coordinate, £, <#,,,.

Consider the first coordinate. If node 1 is of ASA- or PA-type, then f, =M,
h =M ,and f, <h.Ifnode 1 is of ADA-type, then f, =1, i >1.1f 4 >1, Lemma
9.2 holds. Otherwise, 1.e., if 4, =1, assume that the first ¥ coordinates of vectors
f and h are equal, and consider the (k+1)-th coordinate.

The following situations are possible.

1. Node k+1 does not belong to the joint variant f, i.e., f,,, =0. But in this
case node k+1 does not belong to the joint variant » as well, since in
these joint variants, the first # coordinates are equal; therefore, £, =0
and fk+1 < hk+1 *

2. Node x+1 belongs to the joint variant s and is of PA- or ASA-type. Then,
fo., =M. But node k+1 belongs to the joint variant » as well, and
Mo =M, ie., S S hy

3. Node k+1 belongs to the joint variant f and is alternative. Then, accord-
ing to Algorithm I, £, , =1. But node & +1 belongs to the joint variant # as
well, and #,, >1. Hence, £, <#h,.,.

Thus, in all possible situations f <#, i.e., the Lemma holds. [ |
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Algorithm Il. Determination of the Minimal Number Vector with q<n Co-

ordinates Given.
Assume that there is a subset of vectors with known ¢<n coordinates

fis fowes f, - Let g +1=j. Go to Step 3 of Algorithm I and proceed with that algo-

rithm from node ; until the end. Join the known coordinates f, f,...., 7, together

.....

with 7 7. obtained using Algorithm I. Thus, implementation of Algo-

=q+1>J j+l2°
rithm II results in creating vector ? = (fl, Saseoos s S yat oo fn). Note that the algo-
rithm cannot be applied to the case of any arbitrary given coordinates f,, f,...., £,

but only when the latter entity actually belongs to a subset of corresponding vec-
tors.

Lemma 9.3. Given ¢ coordinates, the joint variant obtained using Algorithm
IT is the minimal one.

Proof. Since the first ;-1 coordinates correspond to a joint variant, and Al-
gorithm [ provides coordinates that correspond to the joint variant, then the
number obtained using Algorithm I is a joint variant.

Let £ =(f,, foes £,25f;> f1uis £, ) e the joint variant number obtained accord-
ing to Algorithm Il and % = (n,, ... h,,,h,,h,., ..., h,) b the number (joint variant)
with &, = f,, h,=f,,..., h;, = f,,. Show that s <n.

The first ;-1 coordinates of vectors f and » are equal. Consider the ;-th
coordinate.

The following situations are possible.

1. Node ; does not belong to the joint variant f, i.e., f, = 0. But in this case
node ; does not belong to the joint variant # as well, since in these joint
variants, the first ;-1 coordinates are equal; therefore, 7, =0 and f, <#,.

2. Node ; belongs to the joint variant f and is of PA- or ASA-type. Then,
f, =M . But node ; belongs to the joint variant » as well, and », = m , 1.e.,
fi<h,.

3. Node ; belongs to the joint variant s and is alternative. Then, f =1. But
node ; belongs to the joint variant » as well, and #, >1. Hence, £, <#,.

Thus, r <n,. If f,<h,, then f<h and the Lemma is proved. If f, = , then
fi=h, fy=hy,..., £, =h_, f,=h,, and, according to the algorithm, r  <n .
But this means that 7 <7, and the Lemma is proved. [ |

Algorithm II1. Determination of the Next Lexicographically Ordered Vector.
f.), define the

.....

steps of the algorithm as follows:

Step 1.Set j=».
Step 2.In cases f, =0, f,=M or f, =m, (see Procedure 3) apply Step 4. Oth-

J
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erwise, proceed to the next step.
Step 3.Set g, = f,, 1<i<j-1, g, =m,+1 and apply Algorithm IT to obtain the
minimal lexicographically ordered vector with given coordinates
2.8, g, GO to Step 7.
Step 4.Set j=j+1.
Step 5.If j > 1, return to Step 2. Otherwise, proceed to the next step.
Step 6. Applying the step means that vector 7 is the maximal one. The algo-
rithm terminates.
Step 7.Vector g ,g,...g,,8,...-. g, determined by implementing Algorithm IT
is the next lexicographically ordered vector. The algorithm terminates.
Given the f-th lexicographically ordered vector f=(f,f,...f,), the algo-
rithm determines a new vector g = / adjacent to f. It can be proven that there is
no other vector # = / that lexicographically exceeds vector f but precedes g.
Lemma 9.4. Let 1 be the number of a joint variant and ¢ be the number de-

termined according to Algorithm III. Then, a joint variant corresponds to num-
ber ¢, and no joint variant does exist with a number # such that f<r<g.

Proof. Let f=(f.f,...f,) be a joint variant of the network and
g=(g,.g,....g,) be a joint variant determined according to Algorithm III.

If £ =m, where 0<m <M and m is not equal the maximal number of arc
leaving n, then g =(f,, f,.... f, +1), and, hence, the Lemma is true.

Let the last & coordinates of vector f be equal either 0, or u , or the maxi-
mal number of arc, while the (n—k)-th coordinate equals m, where 0<m <M
and m is not equal the maximal number of arc leaving node » -k .

In compliance with Algorithm II1, the first n—% -1 coordinates of vectors f
and g coincide, while g _, =m+1.

Consider an arbitrary variant % = (h,,4,,...k,) and show that either n<f, or
g<h.

If any of the first n—k -1 coordinates of /# does not coincide with the corre-
sponding coordinates of vectors g and £, then either 1</, or h>g.

Suppose that the first n-k -1 coordinates of vectors /, f, and g coincide.
Then, n,_, =m or h,_, =m+1. Otherwise, we would have either < f,or 1> g.

If h ,=m,ie, h_, =f_,,then h<f, since vector f is the maximum over
vectors whose first »—4 coordinates are equal f,, f,...., f,_. , respectively. In fact,
the last £ non-vanishing coordinates take the maximal values.

Ifn ,=m+1,then =g, h,=g,,..., h,_, =g, ,. But g is the minimal number
within the first »-& coordinates g,,g,....g, , and, hence, g <#h. |

Therefore, either 1< f,0r h>g.

164



Algorithm 1V. Determination of a Joint Variant Corresponding to Vector f .
The initial information of this algorithm is the input information on graph

G(N,4) and vector /. The step-by-step procedure of the algorithm is as follows:

Step 1.Set i =1.

Step 2.Examine f,. If f, =0, node i does not enter the joint variant; proceed to
Step 5. Otherwise, apply the next step.

Step 3.If 7, satisfies 1< f, =m< M, node ; enters the joint variant; select for
the joint variant activity (i, j) satisfying &, = m ; proceed to Step 5. Oth-
erwise, apply the next step.

Step 4.If £, =0, node ; enters the joint variant; select for the joint variant all
the activities (i, /) leaving node ;.

Step 5.Set i=i+1.

Step 6.1f i < », return to Step 2. Otherwise, proceed to the next step.

Step 7.Activities being selected at Steps 3 and 4 form the corresponding joint
variant G*. The algorithm terminates.

Thus, all the joint variants entering the GAAN model G(N,A4) can be deter-

mined by repeatedly implementing Algorithms I, III (until the maximal vector f
is obtained) and IV. Algorithm II is auxiliary.
Algorithm V. Determination of Full Variants G* (N **,A**) Entering a Routine
Joint Variant G*(N*, 4" )< G(N, 4).
After obtaining a routine joint variant G*(N*,A*) (see Algorithm IV) define
the step-by-step procedure to determine its full variants:
Step 1.For certain activities (i, /)e G*(N*, 4”) change their type as follows:
1.1 Stochastic outcomes of ASA type - change their type to ADA: their
probability outcomes p  are temporarily suspended and substituted by
15
1.2 Alternative outcomes of ADA type (note that in a joint variant, no more
than one activity of ADA type leaves a node) are amended to a new
type that from this time on we will refer to as a “deterministic activity”
with the ADA type mark and outcome probabilities 1;
1.3 Activities of PA type remain unchanged.
Step 2.Introduce the following changes in Algorithm I:
2.1 When considering the node with number 1 (Step 1 of Algorithm I) set
f; =M 1n the case of PA-type outcomes. If the outcome is of ASA type
set f, =k,, where k, is the number of activity (i, ) in the joint variant
G*(N*,A*). In case of ADA outcome activities, set f, =1. Set j=1.
2.2 Introduce the same amendments in Step 3.1 of Algorithm 1.
Step 3.Apply repeatedly Algorithms I (in its amended version - see Step 2), 11,
IIT and IV (to single out all full variants G* entering the joint variant
G"). Note that each full variant is a subnetwork of PERT type without
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any alternative nodes.
Step 4.For each full variant G* e G*(N*, 4"):
4.1 Calculate objective F(G™);
4.2 Calculate the product of all probabilities p, for all activities (i, )e G*

(previously removed at Step 1) to determine Pr{G** }
4.3 Calculate constraint value 0, (G™), 1<v<w.

Step S.Calculate objective (9.2.1) together with constraint values (9.2.2) for
the routine joint variant G*(N *,A*).
Step 6.Implement repeatedly Steps 1 to 5 for each joint variant G* € G(N, 4) to
choose the optimal joint variant.
Algorithm VI. Determination of Initial Joint and Full Variants.
Note that the implementation of inverse transformation from modified graphs
G'(N*,4") to initial ones does not result in changing values F{G"}, Pr{G"} and
H,{G"}, 1<v<w, for full variants as well as values (9.2.1-9.2.2) for joint vari-

ants. But in order to introduce proper control actions, it is preferable to deal with
initial graphs.

Algorithm VI can be easily developed on the basis of examining Procedures
1 and 2 and introducing opposite actions.

Since implementation of Algorithms I and III results in determining the
minimal number joint variant, and the joint variant with the next number, then
the use of Algorithms I, III, IV and V enables the enumeration lookover of all
joint variants, as well as full variants for each joint variant.

One of the basic advantages of enumeration algorithms boils down to the
possibility of presenting the algorithm in the form of parallel computations
[9,15,127]. 1t is readily seen that the exact algorithm of solving the problem of
optimizing GAAN model can be presented in this form. For example, let ; be
the ADA-type node with the minimal number. Then the set of joint variants with
f, =1 and that with £, =2 can be treated independently.

§9.5 Numerical example

The management is faced with the development of an R&D project repre-
sented by the GAAN type network in Fig. 9.1. The objective to be optimized is
the project’s duration with two upper boundary constraints, the project’s cost
and the project’s entropy. The initial data of each activity is presented in Tab.
9.1 (values ¢, and ¢, are constant). The mean cost of the project should not ex-
ceed $55,000, while the entropy of the project should not exceed 1. The man-
agement has to determine the optimal decision policy, i.e., to find the optimal
joint variant together with determination of optimal alternative outcomes of
ADA type from every decision-making node reached during the realization of
the project. Note that the entropy value of a joint variant G* € G(N, 4) may be
calculated as
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Ent{G'} = g ; [Pr{G**}ln(Pr{G** Il 9.5.1)
G" jcG” .
Table 9.1. Initial data for the GAAN type network
No. (i, j) ASA (p,) ADA PA t, (months)| ¢, ($1,000)
1 (12) - 1 - 4 6
2 (13) - 1 - 2 5
3 (1,4) 0.3 - —~ 8 12
4 (1,5) 0.7 - - 6 10
5 (19) - - 1 4 15
6 (2,6) - - 1 11 9
7 (2,7) —~ 1 - 15 6
8 (2.8) — 1 — 4 7
9 (37) 0.6 - - 3 14
10 (3.8) 0.4 - - 6 10
11 (39) - - 1 8 12
12 (3.10) —~ 1 - 16 9
13 (49) - 1 - 18 7
14 (4,10) - - 1 1 4
15 (5,11) - - 1 7 3

The results of implementing Procedures 1 and 2 are given in Tab. 9.2. It can
be well-recognized that this is in fact the input information for Algorithm I. Note
that n =12 and M =3.

The results of sequential application of Algorithms I to V are presented in
Tab. 9.3. Applying Algorithm I provides the minimal vector (3, 1, 3, 3, 3, 0, 1,
3,3, 1, 0, 0) that corresponds to the first joint variant comprising two full vari-
ants. Their corresponding vectors are shown in Tab. 9.3. Implementing algo-
rithms III to V results in calculating the parameters 7 =20.5 and C=54.2 of the
joint variant G;. The parameters of other joint variants are shown in Table 9.3.
Three of the joint variants, namely, G;, G; and G, satisfy both the cost con-
straint C{G*}s $55,000 and the entropy constraint Enz{G*}<1, while the other
three variants G,, G; and G; exceed these constraint levels. Choosing the joint
variant with the minimal expected time and giving due consideration to both
constraints results in choosing joint variant G; with parameters T =18.3months ,
C =$54,600 and Ent = 0.61. The optimal joint variant (for the initial graph) is
demonstrated in Fig. 9.3.

Thus, the decision-making process of controlling the regarded project boils
down to the following:

a) at the beginning of the project (node 1), we choose activity (1,2) from two

alternative outcomes, (1,2) and (1,3), of ADA type;

b) if, in the course of the project realization, node 4 is reached, direction

(4,10) has to be chosen;
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¢) when node 2 is reached, we choose direction (2.8).

Table 9.2. Input information for Algorithm [

No. (i, 7) ASA ADA PA t @ ;
1 (1,2) — — 1 0 0 _
2 (1,3) - - 1 0 0 -
3 (1,4) - - 1 0 0 -
4 (2,5) - 1 - 4 6 1
5 (2,6) - 1 - 2 5 2
6 (3,16) - - 1 4 15 -
7 4,7) 0.3 - - 8 12 1
8 (4,8) 0.7 - - 6 10 2
9 (5,9) - - 1 0 0 _

10 (5,10) - - 1 0 0 _

11 (6,11) - - 1 0 0 -

12 (6,12) - - 1 0 0 -

13 (7,16) - 1 - 16 9 1

14 (7,17) - 1 - 18 7 2

15 (8,17) - - 1 1 4 -

16 (8,18) - - 1 7 3 _

17 (9,13) - - 1 11 9 -

18 (10,14) - 1 - 5 6 1

19 (10,15) - 1 - 4 7 2

20 (11,14) 0.6 - - 3 14 1

21 (11,15) 0.4 - - 6 10 2

22 (12,16) - - 1 8 12 -

It can be well-recognized that if time durations ¢, have random values, the

determination of the optimal joint variant can be carried out by simulation [49-

57].

§9.

6 Conclusions

The following conclusions can be drawn from the Chapter:

1.

It can be well-recognized that the GAAN model covers a very broad spec-
trum of R&D projects. Note that the Eisner’s R&D projects [37] are
merely a particular case of the GAAN model: to obtain the Eisner’s net-
work, one has to remove from the GAAN model alternative outcomes of
ADA type. Decision-CPM models can be obtained by removing stochas-
tic alternative outcomes of ASA type from the GAAN model. Note that
the GERT model is in fact also a particular case of the GAAN network.
The GAAN model fully comprises the CAAN network. In order to obtain
the latter one has only to withdraw Property III from specifications out-
lined in §9.1.

. The GAAN model is essentially more complicated than the CAAN model.

But GAAN models cover unique innovative projects which cannot be
monitored by CAAN techniques (see, e.g., [67]).
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Table 9.3. Determining parameters of joint and full variants

No. [1]2]3]4[5]6]7][8]9]10[11]12]13]14]|15]16]17[18]19]20]21]22
Joint var. # 1 2 3 4 5 6
Fullvar. # - |12 -[1]2]-J1]2]-[1]2]-[1]2]3]4]-]1]2]3]4
fil P4 3[3[3]3[3[3]3[3[3]3]3[3[3]3]3][3]3]3][3][3]3]3
Hlabalt[a[ofafaffafufjra]2]2]2]2]2]2][2]2]2]2
fil P4 |3[3[3]3[3[3]3[3[3]3]3[3[3]3]3[3]3]3][3[3]3]3
fulasa 3123123123t ]2]3]t]1[2]2]3][1]1]2]2
fsil P4 3[3][3]3[3][3]3]3][3]3]3][3]0]o]o]o]o]o]o[0]0]0O
fs| Pa]ofololo]o]o]o]o]ojolo]o[3]3]3][3]3]3][3[3]3]3
frlaba|1[1]o]1[1]o]2]2]o|2]2]of1]1]1]0]0]2]2][2]0]0
fil P4 [3][0[3]3]0][3]3]0]3]3]0[3[3]0]0[3]3]3]0][0]3]3
fol P4 [3[3[3]3[3]3]3]3][3]3][3][3]0]o]o]o]o]o]o[0]0]0O
fuldaba 1112221 ][1]1]2][2]2]o][o]o]o]o]o]o]0]0]0O
ful4salololof[o]o]ojojofololofo]3[1][2]1]2]3]1]2][1]2
fizl P4 JoJo]ofoJolo]ofo]o]ofo]o[3[3][3]3]3][3]3]3][3]3
C{G* | 542 55.2 53.6 54.6 62.7 62.0
T{G* | 205 17.7 21.1 18.3 16.3 16.9
Ent{G*} | 0.61 0.61 0.61 0.61 1.28 1.28

O AN | O 0 AN AN | O
PG} 2|3 3| =|S|S|°|3|s|°|8|8|°|3 |2 |22 o3| 2| g| 2
C{G**) | |57|53] |58]54| [55|53] 56|54 [67]64]63]59] |65|61]63]59
T/G**} | |24]19] |24]15] [26]19] [26|15] [24]24]13[13] [26]26]13]13

11

Figure 9.3. The optimal joint variant G for the initial graph
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Chapter 10. Optimization of a Large-Size Alternative CAAN Model
by Approximate Methods

§10.1 The CAAN model optimization problem and its complexity
Recall some notions associated with the CAAN model.
A CAAN model is finite, single-source oriented activity-on-arc network
G(N, 4) with the following properties:
1. Network G(~,4) has one source node and at least two sink nodes.
2. The set of nodes N (excluding the sink nodes) is split into two non-
intersecting subsets N and N :

a) Type N comprises nodes with the “exclusive or” emitter with stochas-
tic alternatives. Thus, each node ie N corresponds to several (more
than one) probability values p, such that 0<p, <1 and Y p =1. These

J

values are assigned to alternative stochastic activities (i,j) leaving
node ; and entering node ;. Thus, choosing activity (i, /) results in the
realization of a random choice from a full group of events.

b) Type N comprises nodes also with the “exclusive or” emitter, but with
deterministic alternative outcomes. Choosing an alternative activity is
the sole prerogative of the project management.

In what follows, we shall call nodes ne N stochastic nodes and ne N deci-
sion nodes.

A joint variant of graph G is subgraph ¢, satisfying the following conditions:

1) G, has a single source coincident with that of graph G;

2)if ie G, and ie N, then G, contains all the arcs leaving node ;;

3)if ie G, and ie N, then, in G, only one arc leaves node ;.

The realization (full variant) of a joint variant is a subgraph with a single
source coincident with that of the joint variant and with a single arc leaving each
node. In other words, the realization of the joint variant is a path connecting the
source with one of the sink nodes.

The probability of realization is the product of probabilities p, of stochastic
alternative arcs (i, /) belonging to this realization.

To each arc (i, j/)e G, two non-negative deterministic values are assigned: ¢,

(cost) and ¢, (time).
Let ¢(s) be the sum of costs ¢, of all arcs of realization s, «(s) the sum of

time values of all arcs of realization s, and p(s) the probability of realization .

The average sum ¢(G,)= Y c(s)p(s) over all realizations of a joint variant G, is
seG,

called the cost of the joint variant.

The average sum #(G,)= Y #(s)p(s) over all realizations of a joint variant G, is
seG,
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called the time of the joint variant.

The problem of choosing an optimal joint variant results in choosing the pro-
ject’s optimal direction to the target. The problem is as follows:

Determine the optimal joint variant F* € {G, } such that

c(F*)ang}g}[c(F)] (10.1.1)
subject to
(F*)<n. (10.1.2)

Theorem 10.1. Problem (10.1.1-10.1.2) is NP-complete [75].
Proof. Transform the Knapsack problem [47] which is NP-complete, into
problem (10.1.1-10.1.2). Consider a finite enumerated set of pairs (c,,z,), 1<i<r,

with given non-negative real values ¢, and ¢, together with two pregiven posi-

tive values ¢ and 7. The Knapsack problem [47] boils down to determining a
subset W c {.2,...,r} such that

Zci <C
g .r (10.1.3)

ieW
Let w ={1,2,...r)\w and D =Zr:zl, . It can be well-recognized that the Knap-
i=1
sack problem is equivalent to that of determining a set W c {1,2,...,r} such that

{Zci <C

€ o (10.1.4)

On the other hand, problem (10.1.4) is equivalent to the following particular
case of problem (10.1.1-10.1.2). Let G(~v,4) be CAAN model with

}9 A:UAi , where 4, :{ai,maazm}: & and o
i=l

i,i+1

N ={n,ny,,n being parallel

r+l

arcs with source node », and terminal node »_,. Let N = N, i.e., the subset of sto-

i+l °
chastic nodes is empty. For all i=1,2,..,r, set the cost of arc «,,,, (respectively,
a;.,) equal to ¢, (respectively, 0), while the time values of both parallel arcs are
0 and ¢,. Set also » =D -1 . Thus, the NP-complete Knapsack problem is clearly

equivalent to a particular case of problem (10.1.1-10.1.2), namely: in each node
n, 1<i<r, choose an outcome direction, i.e., determine subset w, to satisfy

Y ¢, <C, > t,<h. Thus, the above particular case of problem (10.1.1-10.1.2) is
an NP-complete problem. That means, in turn, that the general problem (10.1.1-
10.1.2) is also NP-complete. [ |

Since problem (10.1.1-10.1.2) is NP-complete, the optimal solution can be
obtained only by means of a lookover algorithm. Such an algorithm was devel-
oped in [57]. But for large-size alternative networks a scanning lookover, to-
gether with calculating for each joint variant its cost and time values, might re-
quire enormous computational time. To overcome this obstacle, we will outline
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an approximate method based on general ideas of two-parameter combinatorial
optimization [9-12,75,110].

It can be well-recognized that problem (10.1.1-10.1.2) relates to a broad vari-
ety of two-parameter combinatorial optimization problems. The latter include
various assignment problems, minimum spanning tree problems [12], etc.

To be consistent with the general theory outlined in [9-12], we will call a
two-parameter combinatorial optimization (TPCO) problem any problem that
has a finite set P, a finite family s of subsets of p, a non-negative threshold #,
and two non-negative real-valued functions y:P — R, (e.g., cost) and x: P —> R,

(e.g., time). One seeks a solution F* e S with y(F*)=min{y(F): F e S, x(F)< h},

where, for any FeS, relations x(F)= S x(f)s v(F)=D »(1) hold, 7 being an
feF feF

element entering F.

An important assumption is implied in the problem, namely: there exists a
precise algorithm (it is called Algorithm A) which delivers the optimal solution
to the following one-parameter optimization problem:

Determine separately F'eS with y(F')=min{y(F):FeS}, and F'es with
x(F") = min{x(F) :Fe S}.

It goes without saying that solving a one-parameter optimization problem re-
quires less computational time and is essentially easier than solving the TPCO
problem.

It can be well-recognized that problem (10.1.1-10.1.2) is nothing but a par-
ticular case of the general problem outlined in [9-12]: the set of activities 4 of
the CAAN model G(n,4) is set P, and real-valued functions x(F) and y(F) are

the time and cost values assigned to activity s entering a routine joint variant

FeS, where s is the set of joint variants. One has to determine the possibility
of solving the one-parameter optimization problem, i.e., to develop Algorithm A
applicable to CAAN models. The corresponding algorithm will be outlined be-
low.

§10.2 Approximate algorithm for the CAAN model optimization problem
If only one parameter w, is assigned to each activity (i, /)e G(N, 4), the opti-
mal joint variant F* e G(N, 4), w(F*)=min{w(F): F e {G,}} can be obtained using
Theorem 10.2. The optimal joint variant 7* can be determined by recurrent

relations

v, =min{w, +v,) (10.2.1)
for decision nodes and

Vi Z;pij(wfj +Vj) (10.2.2)

for stochastic alternative nodes, with initial conditions v =0 for sink nodes.
Proof. In what follows, call values w(s) and w(G,) the weights of realization

s and joint variant G, respectively. First, show that the theorem holds for a joint
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variant, i.e., that the sum Z p(sw(s) is equal to v, for a source node obtained

through the use of recurrent relations. Note that for any variant, the above for-
mulae take the form v, = w, +v, for decision nodes and » =% pU(wU + vj) for sto-
J

chastic nodes. This is because in a joint variant, only one deterministic alterna-
tive leaves a decision node.

Carry out the proof by induction on the number » of internal nodes of a joint
variant.

For »n =1, the assertion is obviously true. Assume that it holds for any »<k.
Let a variant G, have & +1 internal nodes. Consider two cases.

1. The source is a decision node. Examine the subnetwork G, of variant G,

including all the arcs and nodes of that joint variant, except the source
node and the arc leaving that node. For G, the theorem is true, since the

number of internal nodes entering G, equals k. This implies that
Z p(s"w(s'), where s' is a realization of subnetwork G,, p(s') and w(s')

are the probability and the weight of that realization, respectively, and v,
is determined by means of the recurrent relation and equals the weighted
sum. Note that since (l, 2) is a deterministic activity and s =(1,2)Us", rela-

tions p(s)= p(s') and Z p(s)=1 hold. Then
Vi =wy ty, = W12+Zp zp )W12+Zp
= zp le + W zp

2. The source is a stochastlc node. Assume that two arcs (1,2) and (1,3) are
leaving that node. Consider subnetworks G, and G,, where G, is the
maximal subnetwork with node 2, and G, is the maximal subnetwork
with a source in node 3. Then, v, = Z p(sm(s') and v, = Z p(s"w(s"). Note

that since G, and G, are maximal Subnetworks they 1nc1ude all possible

realizations which form a full group of events for both subnetworks.
Thus, relations > p(s')=1 and )’ p(s")=1 hold. Further, we obtain

b= Pl 2 o +03)= o+ 5l ls) s + ) -
= Zpup Mowra + wls')]+ Zplgp "o +wls")].

It can be Well—recogmzed that since {s}=[(1,2)U{s'}]U[(1L3)U{s"}] and two arbi-
trary realizations s* € [(1,2)U{s'}] and s €[(1,3)U {s }] are always different, relation

Zpup )[W12+W ] Zp13p ")[W13 +W "] Zp )hOldS

The case of more than two arcs can be easﬂy examined by induction.

173



Let us now prove that the weight of the joint variant obtained by means of
recurrent relations (10.2.1-10.2.2) is the minimal one. For the proof, we shall use
induction on the number , of internal nodes of the initial network G(n,4). For
n=1 the assertion holds. Assume that it holds for any » < k. Suppose that two
arcs (1,2) and (1,3) are leaving the source node, and consider two cases.

1. The source is a decision node. Examine two maximal subnetworks with
sources in nodes 2 and 3. Let v, and v, be the weights of optimal joint
variants of those subnetworks. Show that v, = min{w, +v,;w; +v,} is the
weight of the optimal joint variant. It has been demonstrated earlier that v,

is a weighted path function. Suppose that the Weight v of the optimal joint
variant is less than v,. Note that relation v = Z p(sw(s) holds over all reali-

zations of the joint variant. Let arc (1,2) belong to the optimal joint vari-
ant. Then

V—ZP ZP )(W12+W ZP )W12+Zp W12+ZP(S)W(S)

Note that since (1 2) is a determmlstlc activity and {s } [(1,2)U{s'}], relation
Z pls = Z p(sm(s')  holds. Since, by induction assumption,

Zp =v,, v=w, +v,. [f v<y,, then wl2+v2<v1—mln{wl2+v2,w13+v3}

and we obtain an obvious contradiction. Therefore, v=v,.

2. The source node is an alternative stochastic node. Examine two maximal
subnetworks with sources in nodes 2 and 3. Let v, and v, be the weights
of optimal joint variants of these subnetworks. Show that
v, = p,(wy, +v, )+ pis(w, +v,) 1s the weight of the optimal joint variant. It
has been demonstrated earlier that v, is the path-weighted average. Sup-
pose that the weight v of the optimal joint variant is less than v,. As was
shown above,

"—ZP p12(W12 +Zp )j+p13(w13+2p " )j Since
ZP )2v,, and Z pls"mw(s") = v,, relation

v> p12(w12 +v,)+ pis(w, +v,)=v, holds. The evident contradiction proves

that v=v, holds. The case of more than two subnetworks can be easily ex-

amined by induction. [ |

Thus, to obtain the joint variant with the minimal w(F), the corresponding
Algorithm A singles out all the optimal outcome sat each decision node.

Several basic assumptions are implied by the algorithm, which carries out the
transformation of the initial graph G(~,4) into the optimal joint variant:

1. The optimal joint variant comprises the source node.
2. If a decision node belongs to the optimal joint variant, then the node for
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which recurrent relation (10.2.2) delivers the minimum, also belongs to
the optimal joint variant.

3. If a stochastic alternative node belongs to the optimal joint variant, then
all the nodes participating in recurrent relation (10.2.2) also belong to the
optimal joint variant.

Obviously, the subnetwork obtained by using recurrent relations (10.2.1-
10.2.2) is a joint variant, and the applications of these relations to the initial
network G(n,4) results in determining just this joint variant. We have proven
that the weight of this joint variant is the minimal.

Theorem 10.2 enables developing a one-parameter algorithm which will be
further considered on the basis of a numerical example. Developing the algo-
rithm enables, in turn, establishing a two-parameter algorithm for solving the
optimization problem of the CAAN model. The algorithm outlined below is, es-
sentially, a transformation of TPCO algorithm for the case of the CAAN model.
The step-wise procedure of the algorithm is as follows:

Ste

:

Step 2

:

Step 3

:

Step 4

:

Ste

:

Ste

:

Ste

= |
o |0
O oo I3

Step 10

Step 11

Step 14
Step 15

Assign two parameters, cost ¢, and time ¢, to each activity
(i,7) e G(N, 4).

Determine  the  minimal cost joint variant F, 1i.e.,
c(F)=min{c(G,): G, € G}.

If the number of such joint variants is more than one, select the vari-
ant with the minimal time.

If the time of the chosen joint variant does not exceed #, i.e., #{F)<h,
then this joint variant is the optimal one. Go to Step 15.

Determine  the minimal time joint variant #H, 1i.e.,
t(H)=min{t(G,): G, e G}.

If «F)>h, then the problem has no solution. The algorithm imple-
ments an emergency stop.

Set a=c(H)-c(F), b=tF)-t(H), d = (F)c(H)-t(H)c(F).

For each arc (i, j)e G calculate w, =a-1, +b-c,

For the network G with parameters w, assigned to each activity
(i, /)€ G(N,4) determine the minimal weight joint variant S, i.e.,
w(S)=min{w(G,): G, € G}.

If d=a-t(S)+b-c(S) and #(S)< %, then § is an appropriate solution. Set
H=S.Go to Step 14.

If d=a-(S)+b-c(S) and #S)>#%, then # is an appropriate solution.
Set F =5. Go to Step 14.

Afd>a-t(S)+b-c(S) and #(S)> h, then set F = 5. Return to Step 7.

alculate the relative error A = (c(H )= (F )N~ (H)) .
Caloulate the Telative error &= i XF) 1)+ olFXh a1

The algorithm terminates.
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It can be well-recognized that relative error A represents, in fact, the per-
formance ratio of the algorithm when applied to a particular CAAN optimization
problem. Note that it can be proved [12] that 4 can never become less than
a-t(S)+b-c(S).

§10.3 Numerical example
Tab. 10.1 [82] presents the initial data for a CAAN model G(wv, ). In the Ta-

ble, column p designates probabilities of arcs leaving alternative stochastic
nodes; column ¢, indicates arcs leaving decision nodes, by marking them with

“1*. The optimization problem boils down to determining the minimal cost joint
variant with the time constrained by the upper boundary 26 . In other words, one
has to determine the optimal joint variant 7 - satisfying

c(F*)=min{c(G,): G, = G(N, 4)}

and «(F*)<26.

Table 10.1. Initial data for the CAAN type network

No. (i, j) P q,; t, (months) | ¢, ($1,000)
1 1,2) - 1 2 8
2 (1,3) - 1 4 6
3 (1,4) - 1 3 9
4 (2,5) - 1 5 7
5 (2,6) - 1 8 2
6 (3,6) 0.4 - 7 3
7 (3,7) 0.6 - 6 5
8 (4,7) - 1 9 1
9 (4.8) - 1 4 3

10 (5.9) 0.5 - 10 4

11 (5,10) 0.5 - 12 2

12 (6,10) - 1 14 8

13 (6,11) _ 1 15 5

14 (7,11) - 1 13 6

15 (7.12) - 1 16 1

16 (8.12) 0.8 - 14 2

17 (8.13) 0.2 - 11 7

To solve the optimization problem, we shall use the two-parameter approxi-
mate algorithm outlined in the previous section. For the sake of simplicity, in the
following calculations certain obvious steps from the algorithm procedure are
being omitted.

Step 2. Determine the minimum cost joint variant. The initial conditions for the
recurrence formulae are v, =v,, =v,, =v,, =v,, =0. For the rest, we obtain
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Step 7.

Step 8.

p313(cxl3 +V13)+ p312(0312 +V12) 0-2'(7+0)+0-8'(2+0):3;

= Pero(Csro #vig )+ Psolesy +v5)=05-(2+0)+0.5-(4+0)=3;

= min

Vs, C712+V11,C711+V11}=min{ﬂ;6+0}=1;

= min

Cora TVi15C610 +"10} =min{ﬂ;8+0}=5§

v, =MIN3C,q + V43¢, , +v7} :min{3+3;1+1}: 2,

Vi = pyslcss +v2 )+ pagless +v5)=0.6-(5+1)+0.4-(3+5)=7.8;

v, = min{cl6 +V6:Cys +v5} =min{2+5;7+3}=7;

v, = min{ch4 +V, 505 Ve, +v2} = min{w;6+7;8+7}= 11.

The minimal cost joint variant is therefore F={(1,4);(4,7);(7,12)} with pa-
rameters c(F)=11, {(F)=28.

Determine the minimal time joint variant. The initial conditions are the
same: v, =v,, =v,, =v,, =v,, = 0. For the rest, we obtain

Ve = Pas(tsrs + Vi3 )+ Pyraltsrn +v12)=0.2-(11+0)+0.8-(14 +0)=13.2;

v, = min{zm + Vi st +v11} =min{l6+0;13+0}=13;
v = min{z611 + V158610 +v10} =min {I5+0;14 + 0} =14 ;

Vs = Dsroltsio + V1o )+ Psoltsy +vy)=0.5-(12+0)+0.5-(10 +0) =

Vv, = min{t4 + Vgt +v7} =min{4+13.2;9+13}=17.2;
Ve = Dyaltss + v, )+ pagltse +ve)=0.6-(6+13)+0.4-(7+14)=19.8;

v, = min{tu +Veitys +v5} =min{8+14;5+11}=16;

v, = min{tm +V, sty Vst +v2} = min{3+17;4+19.8;ﬂ}: 18.

The minimal time joint variant is therefore H = {(1,2);(2,5);(5,9);(5,10)} with
parameters ¢(H)=18, #{(H)=10.
Calculate values
a=c(H)-c(F)=18-11=7,
b=t(F)-t(H)=28-18=10,
d =t(F)c(H)-t(H)c(F)=28-18-18-11=306.
For each arc (i, j) calculate w, =a-1,+b-c, =7-1,+10-¢c,:
b =7-2+10-8=094; Wy =7-10410-4=110;
W, =7-4+10-6=88; Wy =7-12+10-2 =104 ;
Wy =7-3+10-9 =111
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Step 9.

Wy =7-5+10
Wy =7-8+10
Wy =7-7T+10
Wy, =7-6+10
w, =7-9+10-
Wy =7-4+10

7=105;
2=176;
3=79;
5=92;
1=73;
3=58;

Weio =714 +10-8 =178 ;
wen =7-15+410-5=155
woy =7-13410-6 =151
Wi =7-164+10-1=122;
Wy =7-14410-2 =118
Wy =7-11410-7 = 147 .

Determine the minimal weight joint variant with the initial conditions
for the recurrence formulae v, =v,, =v,, =v,, =v; =0:

= Pers Wers +vi3 )+ pyis (W +v1,)=0.2-(147 +0)+0.8- (118 +0)=123.8;

v, = mm{w712 VW +v11} =min {122 + 0;151 +0}=122;

= mm{w612 + V113 We o +v10} = min {155 + 0;178 + 0} = 155 ;

= PoroWero + 10 )+ Pso (W +v,)=0.5-(104 +0)+0.5-(110 + 0) = 107 ;

p=Mminw, o + Vg w, o+,

} min {58

+123.8;73 +122}=181.8;

= Py (W + vy )+ Py oy g +ve)=0.6-(92+122)+0.4-(79 +155) = 222 ;

= mm{w26 + Vg3 Was +v5} min {76 +155;105 +107 } = 212 ;

vV, = I’l’]lIl{WL4 +V, ;W1,3 +V3;W1ﬂ2 +V2}

= min {111 +181.8;88 + 222;94 + 212} =292.8 .

The minimum weight joint variant is therefore S = {(1,4);(4,8);(8,12);(8,13)}
with parameters ¢(S)=15, #(S)=20.4.

Step 12.We have
h =26 . Since in our case d >a-#(S)+b-c(S) and #S)<h, set H=5 and as
a result of this ¢(H)=15, #(H)=204. Return to Step 7.

Step 7. We have ¢(F)=11, {(F)=28, ¢(H)=15, {(H)=204. Calculate new values

d =306,

a-{(S)+b-c(S)=7-204+10-15=292.8,

1(S)=204,

a=c(H)-c(F)=15-11=4,

b=t(F)-t(H)=28-204=176,
d=tF)(H)-t(H)c(F)=28-15-204-11=1956.

Step 8. For each arc (i, j) calculate w, =a -1, +b-c, =4-1,+7.6-¢c,:

W, =4-2+7.6-8=068.8; Wy =4-10+7.6-4=70.4;
3 =44+7.6:6=61.6; W =4-12+7.6-2=63.2;
W =4347.6:9=80.4; Woro =414+7.6-8=116.8;
Wys =4:5+7.6-7=73.2; Wen =4-15+7.6-5=98.0;
Wy =4-8+7.6-2=47.2; Wy =4-13+7.6:6=97.6;

Wio =4-7+7.6:3=30.8; Wy =4-16+7.6-1=71.6;

wy, =4-6+7.6-5=62.0;
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Wy, =4-94+7.6-1=43.6; Wey =4-114+7.6-7=97.2.
Wy =4-4+7.6-3=38.8;

Step 9. Determine the minimal weight joint variant with the initial conditions
for the recurrence formulae v, =v,, =v,, =v,, =v; =0:

= Pers Wers + Vi3 )+ poia(Wg 1o +v1,)=02-(97.240)+0.8-(71.2+0)=76.4;

v, = mln{w712 VW +v11} =min{71.6+0;97.6 +0}=71.6;

= mln{w612 + V1 Weo +v10} =min {98 + 0;116.8 + 0} = 98 ;
= ParoWaro #vi0 )+ Pso(Wsy +v5)=0.5-(63.2+0)+0.5-(70.4+0)= 66.8;

—mln{w +v8,w47+v7} min {38.8 +76.4;43.6+ 71.6}=115.2;

= Py w4, )+ pyg(weg +v,)=06-(62+71.6)+0.4-(50.8+98)=139.68 ;

= mm{w26 + VW, 5 +v5} min{47.2 +98;73.2 + 66.8} = 140 ;

v, = min{wM VW VW, +v2} =min{80.4 +115.2;61.6 +139.68;68.8 + 140} =

=195.6.
The minimum weight joint variant is therefore S ={(1,4);(4,7);(7,12)} with
parameters ¢(S)=11, #(S)=28.

Step 11.We have 4 =195.6, a-t(S)+b-c(S)=4-28+7.6-11=195.6, £(S)=28, h=26.
Since this time d =a-#(S)+b-c(S) and #S)>h, then H is the required ap-
proximate solution, with ¢(H)=15, #(H)=204. Further, set F=5, and
c(F)=11, (F)=28.

Step 14.We have c(F)=11, (F)=28, ¢(H)=15, {(H)=204. Calculate the relative

error A = (c(t) —e(F)h—1(H)) ___ (5-11)26-204) 0.2445 .
(HN(F)=h)+c(FXh—1(H)) 15-(28-26)+11-(26-20.4)
Step 15.The algorithm terminates.
We have thus determined joint variant H = {(1,4);(4,8);(8,12);(8,13)} representing
the required approximate solution for the given CAAN model optimization
problem with a relative error of 0.2445 .

§10.4 Experimentation

In order to verify the performance of the algorithm for large-size alternative
networks, an extensive experimentation was carried out [9]. Alternative net-
works with 100, 200, ..., 1,000 nodes have been considered. For each dimension,

50 initial graphs G(n,4) of CAAN type were simulated using a special program.
Cost and time parameters were set by random numbers uniformly distributed be-
tween 0 and 99. Value » was simulated by # = max {201;0.32u}, Where ; stands

for a random integer uniformly distributed in interval [1,99]. For each simulated
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CAAN model, the two-parameter algorithm (outlined in §10.2) determined the
optimal joint variant together with its relative error A. The computational results
are represented in Tab. 10.2. In this Table, column % displays the maximal

number of iterations in each simulated sample.

Table 10.2. Computational results illustrating the efficiency of the algorithm

Al A <00l 0.01<A |[0.05<A | 0.I<A | 02<A | 03<A Averag_e

N T <005 |<0.1 <0.2 <0.3 <1 value A
100 7 15 8 9 4 7 0.162 5
200 8 12 9 10 5 6 0.125 6
300 6 16 7 11 3 7 0.145 6
400 16 11 9 8 2 4 0.121 6
500 15 13 4 10 5 3 0.105 6
600 9 15 6 11 4 5 0.122 6
700 13 14 10 7 3 3 0.104 7
800 11 21 7 9 1 1 0.110 7
900 10 16 9 8 3 4 0.113 7
1,000 19 12 4 6 7 2 0.096 8

The following conclusions can be drawn from Tab. 10.2:

1. The developed two-parameter approximate algorithm can be applied to
large-size CAAN models without any restrictions on the model size.

2. Increasing the model size results in decreasing the relative error a, i.e., in
increasing the accuracy of the algorithm.

3. Increasing the model size results in a very slow increase of the number of
iterations, i.e., the number of iterations realizing the one-parameter algo-
rithm giving the approximate solution.

§10.5 Conclusions

The following conclusions can be drawn from the Chapter:

1. We have developed an iterative approximate algorithm which determines
a quasi-optimal solution of the CAAN model optimization problem with
two parameters: Or (cost) and RV (time). Also, a relative error determin-
ing the accuracy of the solution obtained, is calculated.

2. Extensive experimentation has shown that the algorithm performs well,
requires little computational time and provides a very high accuracy.
Moreover, increasing the network size results in decreasing the relative
error of or determined by using the approximate algorithms, from the
optimal or. Establishing a quasi-optimal joint variant requires only a
small number of iterations.
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PART IV
RESOURCE CONSTRAINED PROJECT SCHEDULING
FOR STOCHASTIC NETWORK PROJECTS

||| Chapter 11. Random Resource Delivery Schedules

§11.1 Case of fixed resource capacities

11.1.1 Introduction

It can be clearly recognized that there is no shortage of literature on resource
constrained project scheduling (see, e.g., [5-6,33,97,109,113,124,155-
156,165,167 etc.]). So far all published resource constrained project scheduling
algorithms assume fixed activity durations and do not consider stochastic pro-
jects of random duration. This is because those algorithms are usually very sen-
sitive and cannot be applied to scheduling procedures based on substituting ran-
dom activity durations for their average values. Such project schedules with bi-
ased estimates usually underestimate the project’s duration and, when used in
resource constrained project scheduling, provide resource profiles with essential
errors. However, a very broad spectrum of innovative R&D projects, including
PERT, GERT or VERT type network projects with random activity durations
[105], are carried out with limited resources. The need for high quality resource
constrained scheduling models for such complicated projects becomes more and
more important. Thus, undertaking research in this area is useful for innovative
projecting.

We will henceforth consider an activity-on-arc  network project of PERT
type where each activity requires non-consumable resources of various types
with fixed capacities. Each type of resource is in limited supply with a resource
limit that 1s fixed at the same level throughout the project duration. For each ac-
tivity, its duration is a random variable with given density function. Several al-
ternative density distributions - normal, uniform and beta distribution - will be
considered. The problem is to determine starting time values s, for each activity

(i, /) entering the project, i.e., the timing of feeding-in of resources for that activ-
ity. Values s, are not calculated beforehand and are random variables condi-

tional on our future decisions. The model’s objective is to minimize the ex-
pected project duration. Determination of values s, is carried out at decision

points when at least one activity is ready to be operated and there are free avail-
able resources. If, at a certain point of time, a set of more than one activity is
ready to be operated but the available amount of resources is insufficient, a
competition among the activities is carried out in order to choose a subset of
those activities which has to be operated first and can be supplied by the avail-
able resources. We decide the competition by solving a zero-one integer pro-
gramming problem to maximize the total contribution of the accepted activities
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to the expected project duration. For each activity its contribution is the product
of the average duration of the activity and its probability of being on the critical
path in the course of the project’s realization. Those probability values are cal-
culated via simulation. Solving a zero-one integer programming problem at each
decision point results in the following policy: the project management takes all
measures to first operate those activities that, being realized, have the greatest
effect of decreasing the expected project duration. Only afterwards, does the
management take care of other activities. The model is a stochastic optimization
problem which cannot be solved in the general case and allows only a heuristic
solution.

11.1.2 Notation

Let us introduce the following terms:
G(N,4) - stochastic network project (graph) of PERT type;
(i, /)€ 4 - the project’s activity;

t, - random duration of activity (i, );

a; - lower bound of value 7, (pregiven);
b, - upper bound of value 7, (pregiven);
Iy - average value of 7, ;

- capacity of the k-th type resource(s) allocated to activity (i, /),
1<k <n (fixed and pregiven);
n - number of different resources;
R, - total available resources of type k at the project’s management dis-
posal (pregiven and fixed throughout the planning horizon);
R,(t)< R, - free available resources of type k at moment ¢>0;

S, - the time that resources 7, are fed in and activity (i,) starts (a ran-

ijk
dom value conditional on our decisions);
7(G/s,) - random project’s duration, on condition that feeding-in of resources

1, 1s carried out at moments s, ;

R; (t/Sj) - maximal value of the k-th resource profile at moment : on condition
that activities (i, /) G(N, 4) start at moments s, ;

F, - the actual moment activity (i, ;) is finished (F, = 5, +1,);

7(7) - earliest possible time of realization of node i;

pli,j) - conditional probability of activity (i,j) to be on the critical path in
the course of the project’s realization (dependent on the decisions

already taken).
Similar to (4.1.1) and (4.2.1), assume random activity duration ¢, distributed

by the beta-law with p.d.f.

f,(x)=ﬁ[x—ay][by—x]2- (11.1.1)

i~y
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Besides beta distribution (11.1.1), the regarded model may adopt other distri-
butions. Three alternative distributions will be considered:
1. ¢+, has a beta distribution with density function (11.1.1) in the inter-

)

val |a,,b, |;

i

2. ¢, has a uniform distribution in the same interval,

3. ¢, has a normal distribution with average u, =0.5-(a,+5,) and variance

Vy= [(b,.j - a,.j)/6]2.
The initial data of the model for each activity (i, /) includes:

L, j: al‘ja bl‘ja ’/;jla"'al/;jn‘

It goes without saying that relations
maxr, <R, 1<k<n, (11.1.2)
L]

ijk —

hold, otherwise the project cannot be operated.

11.1.3 The model
The problem is to determine values s, to minimize the expected project dura-

tion

min E{T(G/Sij )} (11.1.3)
subject to

R(¢/S,)<R, Vi=20, 1<k<n. (11.1.4)

We have chosen this objective because various authors, (e.g. [143,156,165])
consider the problem of decreasing the project duration as one of the most ur-
gent ones, especially for stochastic projects of PERT type. The latter usually do
not meet their due dates on time [101,143] (see also Chapters 2-3).

Model (11.1.3-11.1.4) is a stochastic optimization problem which cannot be
solved in the general case; the problem allows a heuristic solution only.

The basic idea of the heuristic solution is as follows. Decision-making, i.e.,
determining values s,, is carried out at essential moments £, and 7(i) (decision

points), either when one of the activities (i, ;) is finished and additional resources

r., 1<k<n, become available, or when all activities (i, /) leaving node i are

ijk °
ready to be processed. If one or more activities (i, ,),..., (i,,j, ), m>1, are ready
to be processed at moment : and all of them can be provided with available re-
sources, the required resources are fed in and activities (z'q, jq), 1< ¢ <m,begin to

be operated at moment ¢, i.e., S,, =¢, 1<¢ <m. If at least for one type & of re-

sources, relation Zrl.q > Ry () holds, i.e., there is a lack of available resources at
q=1

moment ¢, a competition among the activities has to be arranged to choose a
subset of activities that will start to be operated at moment ; and can be supplied
by resources.

183



Let us analyze in greater detail the problem of determining values s, i.e., the

problem of choosing activities to be operated. Problem (11.1.3-11.1.4) refers to
a decision-making optimization model to minimize the expected project dura-
tion. Thus, supplying the chosen activities with available resources at each deci-
sion point centers on reducing the remaining project’s duration as much as pos-
sible. This means, in turn, that to carry out the competition the project manage-
ment has to choose and to operate first the subset of activities that provides the
maximal total contribution to the expected project duration.

We will assume that in a stochastic network project with random activity du-
rations each activity (i,j) contributes to the expected project duration value

0, =u, pli,j). Here p, is the given average value of the activity duration while

pli, j) is the conditional probability for the activity to be on the critical path.
Note that at each decision point ¢ values p(i, ;) for all remaining activities (i, )
cannot be calculated beforehand: they are not only dependent on the decisions
already taken but are random variables conditional on our future decisions. We
suggest a heuristic procedure (see //.1.4 further on) to determine those values
by means of simulation. At each decision point ¢, all the activities that have not
yet started to be operated are simulated using one of the alternative density func-
tions, e.g., (11.1.1). Later on, the critical path of the remaining graph (with
simulated activity durations) is determined. By repeating this procedure many
times, we obtain frequencies for each activity (i,j) to be on the critical path.
Such frequencies are taken as p(i, /). Note that such a simulation approach has
been used successfully in other areas of project management, e.g., in budget re-
allocation models for stochastic network projects [64,66,68].

After obtaining values p(l'q, jq), 1< ¢ <m, for all competitive activities at mo-

ment ¢, decision-making boils down to choosing the optimal subset of activities
that can be supplied by available resources. The objective is to maximize the
sum of values o, for all chosen activities. We suggest solving this problem by

using the zero-one programming approach which has been successfully used in
similar resource scheduling problems, e.g., in [154-156].

The zero-one programming problem can be formulated as follows: determine
integer values &, , , 1<¢ <m, to maximize the objective

I%é/[a { : [51;,/;, 'P(iqajq)'.uz;,jq ]} (11.1.5)

iqiq

subject to

Z(éiqjq.r;'qjqk)SRk(t)’ 1<k<n, (11.1.6)
q=1
where

gijz

9749

0 if activity (z' o) q) will not obtainresources,
1 otherwise.
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Problem (11.1.5-11.1.6) is a classical zero-one integer programming prob-
lem. Its solution is outlined in many books on operations research, e.g., in [153].
Note that maximizing objective (11.1.5) results in the policy as follows: the pro-
ject management takes all measures to operate first activities which being real-
ized, decrease more essentially the expected project duration. Only afterwards,
does the management take care of other activities.

After feeding-in of resources for the chosen activities, the next earliest “es-
sential” moment is determined and the project’s realization proceeds until the
sink node cannot be reached. The corresponding heuristic algorithm to schedule
the project is outlined below.

11.1.4 The heuristic algorithm

The algorithm [70] to solve problem (11.1.3-11.1.4) is performed in real
time; namely, all activities can be operated only after obtaining necessary re-
sources. Essential moments £, and 7(i) cannot be predetermined. However, if

we want to evaluate the efficiency of the resource allocation model, we can
simulate the algorithm’s work by random sampling of the actual duration of ac-
tivities. By simulating the algorithm’s work many times, the average project’s
duration as well as the probability of accomplishing the project by a given due
date (if necessary) can be evaluated.

The heuristic algorithm comprises three subalgorithms as follows:

Subalgorithm I actually governs most of the procedures to be undertaken in
the course of the project’s realization, namely:

e determines decision points £, and 7(i);

e singles out (at a routine decision point) all the activities that are ready to be
operated;

e checks the possibility of supplying these activities with available resources
(without undertaking a competition);

e supplies the chosen activities with resources and later on simulates the cor-
responding activities’ durations;

e returns the utilized non-consumable resources to the project management
store (at the moment an activity is finished);

e updates the remaining project at each routine decision point.

Subalgorithm II calculates values p(i,j) for all activities entering the re-
maining project, at a routine decision point. Note that the subalgorithm works
only in the case when, due to restricted available resources, a competition among
the activities waiting to be operated, has to be undertaken. The subalgorithm is
implemented by means of simulation as follows:

1. At any routine decision point ¢, determine all the activities that have not
yet started to be operated. Simulate their random durations using one of
the alternative density functions.

2. For activities (i, j) entering the remaining project and being under opera-
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tion at moment ¢, calculate their remaining durations F, .

3. Calculate the critical path length of the remaining graph where activity du-
rations are determined at Steps 1 and 2. Determine all activities that be-
long to the critical path.

4. Repeat Steps 1-3 M times in order to obtain representative statistics.

5. Calculate the frequency for each activity (i, j) to be on the critical path. For

a large M, such frequencies are taken as p(i, ).

Note that simulation of activity durations at Step 1 of Subalgorithm II is car-
ried out to determine values p(i, /), i.e., to solve an auxiliary problem, but not to

simulate actual activity realizations. The latter are carried out by Subalgorithm I.
As outlined above, values p(i, /) are random variables conditional on our future

decisions. When we use Subalgorithm II, we do not take future decisions into
account. Moreover, the convergence of the frequency values obtained at Step 5,
to optimal values p(i, ;) is not evident. We see very little chance that these
drawbacks can be avoided. However, for practical applications such an approach
is effective [62,64,66,68].

Subalgorithm III solves, at a routine decision point ¢, the multi-dimensional
knapsack problem (11.1.5-11.1.6), to choose the subset of activities to be oper-
ated and supplied with available resources. Since the initial data for that problem
(values g, and p(;,.j,), 1<q<m) have already been obtained by using Subal-

gorithms I and I, solving the problem is not difficult. Similar integer program-
ming models have been successfully used for solving various resource-
constrained project scheduling problems (see, e.g., [154]). However, several
other heuristics might also turn out to be applicable. We have undertaken a
comparison between two procedures:

Procedure A is based on solving a zero-one programming problem (11.1.5-
11.1.6).

Procedure B is simpler in usage and boils down to the following:

1. After determining values p(;,, /), 1<g<m, all the competitive activities

are sorted in descending order of values o, , =y, , - p(iq, jq). In case
pli,.j,)=0, the corresponding activities are sorted in descending order of
values y, ;. Activities with higher values ¢, , are assumed to be of higher

priority.

2. All the sorted activities are examined one after another, in the descending
order of their priorities, to check, for each activity, the possibility that it
can be provided with remaining available resources. If, for a certain activ-
ity (,./,), 1<q<m, relations r,_ <R,(t), 1<k<n, hold, the required re-
sources r, , are passed to the activity while the remaining resources R, (¢)
are updated, R, (s)-r,,, = R,(t), 1<k <n. Then, the next activity (; ) is

q+1° Jq+1

examined. The procedure terminates either when all the available re-
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sources are reallocated among activities or all the m activities have been
examined.

We have compared both procedures for the numerical example outlined in
11.1.5. Tt turns out that the first procedure provides better results. This can be
easily explained: both procedures use one and the same objective and are based
on the same initial data. However, Procedure A provides an exact solution while
Procedure B is a heuristic.

11.1.5 Numerical example

The company is faced with realizing a stochastic network project with non-
consumable limited resources. The initial data of the project are given in [70].
The project requires resources of one type, i.e., n =1, with resource limit value
R =50. In order to check the algorithm, 100 simulation runs were undertaken.
Three alternative distributions were considered - normal, uniform and beta dis-
tributions. For each distribution, on the basis of 100 simulation runs, the p-

deciles W(p) for p= 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, together with the
project’s average duration 7{G(N,4)} were calculated. We have implemented the

zero-one programming model in the heuristic algorithm. The summary of results
is presented in Tab. 11.1.

Table 11.1. The summary of results

- Distributions

Probability terms Normal Uniform Beta
w(0.9) 461 465 448
w(0.8) 457 458 443
w(0.7) 454 453 440
w(0.6) 451 451 437
w(0.5) 449 448 434
w(0.4) 447 445 431
w(0.3) 445 442 428
w(0.2) 440 439 424
w(0.1) 436 434 419
T{G(N,4)} 448.85 448.49 433.88

Using Procedure B (see /1.1.4) results in the following values 7{G(N, 4)}:

a) Normal distribution: 7 = 461.58.

b) Uniform distribution: T =461.35.

c¢) Beta-distribution: 7 =447.98.

Thus, using a simplified heuristic solution versus a more complicated exact
solution of problem (11.1.5-11.1.6) results in increasing the expected project du-
ration by 3% only. This seems to be worth paying the price and unavoidable.

Other conclusions can be drawn from the summary:

1. Introducing beta distribution results in carrying out projects with smaller
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durations in comparison to normal and uniform distributions.

2. For both normal and uniform distributions, the average project duration is
practically the same. But using normal distribution enables random pro-
ject duration to be obtained with smaller variance than with uniform dis-
tribution.

3. It can be clearly recognized that the heuristic algorithm outlined above en-
ables the solution of several important problems in resource constrained
project scheduling, namely:

Problem 1. Given resource limit value R and confidence probability p, de-

termine the due date D which can be met with probability not less than p.

The solution of the problem is obtained by means of linear interpolation:
¢ Determine integer numbers ¢ and g¢+1, 0<¢<9, satisfying

q/10< p <(g+1)/10.

% Calculate the due date D =w(q/10)+ {W((q+1)/10)-W(g/10){10p —¢q).

Problem 2. Given value R and due date D, determine confidence probability p.

The solution is similar to that of Problem 1 and is based on applying interpo-
lation methods to statistical data presented in Tab. 11.1.

Problem 3. Given due date D and confidence probability p, determine the
minimal value R which enables meeting the deadline on time.

Problem 3 can be solved by varying value R, undertaking numerous simula-
tion runs for each value and applying interpolation methods to the corresponding
statistical data. Note that if the number » of different resources is more than one,
Problems 1 and 2 remain as easy as before and can be solved by using Tab. 11.1.
Problem 3, however, becomes a multi-objective problem with a more difficult
solution (see, e.g., [153]).

11.1.6 Conclusions

1. The heuristic algorithm presented here has some advantages. First, it is
very simple to use and intuitive. The general idea of the algorithm is to
reallocate resources among the project’s activities on the basis of priority
levels assigned to these activities. Those priority levels are, in essence, the
activities’ contributions to the project’s average duration; they depend
both on the activity’s average duration and the probability of the activity
to be on the critical path in the course of the project’s realization. Those
probability values can be easily obtained by means of simulation. They
have been successfully used for other optimization problems in network
planning and control, e.g., in optimal budget redistribution problems for
PERT type projects [62,64].

2. The algorithm can be used for practically all activity-on-arc network pro-
jects with independent activities of random duration. To be realized each
activity requires non-consumable resources of several different types. The
resource capacities are fixed and pregiven. The algorithm can be easily
implemented on a PC, especially for projects with a medium number of
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activities.

3. The algorithm can be used for any probability distribution of activity dura-
tions. Moreover, each activity may have its individual density function.
With minor modifications, the algorithm can be applied to projects com-
prising activities that may change its probability distribution within the
project’s realization. For certain activities, as a result of appropriate ac-
tions, such changes may be adopted several times. Since the project is
usually revised over time, the management’s sole requirement is to intro-
duce any alterations in the initial data of the remaining project. This in-
cludes implementing additional activities, changing the number of non-
consumable resources together with their total available capacities R, , and

capacities r, , etc. If, for example, a project becomes late and the activi-

ties’ durations depend on the assignment of manpower of varying qualifi-
cations the management may hire additional workers or may reallocate
the most qualified personnel to the most critical activities, etc. The corre-
sponding alterations result in changing the project’s initial data; they can
be undertaken at any decision point + within the project’s realization. The
heuristic algorithm can adopt these alterations when being performed in
real time as well as when being simulated.

4. For certain sets of activities the corresponding durations may be depend-
ent. That means, e.g., that increasing the duration of a certain activity may
result in decreasing the durations of other activities. In such cases, multi-
dimensional probability distributions have to be introduced. The heuristic
algorithm outlined in //.1.4 can be easily modified to simulate these cor-
related activities.

5. The main shortcoming of the outlined above model is its applicability for
the case of resources with fixed capacities only, which obviously restricts
the model’s flexibility.

§11.2 Case of variable resource capacities

11.2.1 Introduction

We will consider a network project of PERT type with random activity dura-
tions and several non-consumable limited resources. For each type of resource
k, its limit is fixed throughout the project duration. Each project’s activity (i, )
requires resources of various types with variable capacities and is operated at a
random speed which depends linearly on the resource amounts r;, assigned to
that activity. The problem is to determine for each activity (i, j) the starting time
s, 1.e., the timing of feeding-in resources, and the assigned resource capacities

1 - The objective is to minimize the expected project duration [71].

The outlined below research is a further development of the previous §11.1,
in which a particular resource constrained scheduling model with fixed resource
capacities 7, was considered. Thus, only starting times s, are determined. It can
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be well recognized that such a model is not generalized and fits only certain pro-
ject management scenarios. It does not cover most cases, when various resource
capacities assigned to project activities may vary, e.g., may be utilized within
pregiven upper and lower bounds. An activity cannot be operated with even one
resource capacity beneath its lower bound, while resources above their upper
bounds are redundant. Moreover, since all the resource capacities in the model
developed in §11.1 are fixed and remain constant throughout the planning hori-
zon, they have no influence on the activities’ random durations, and the corre-
sponding probability density functions do not incorporate them as parameters.
In practice, this scenario is often unrealistic, since changing the resource capac-
ity assigned to any activity results in changing the density function of the activ-
ity’s duration. Where several resources are involved, such an influence becomes
more complicated and has to be taken into account. Thus, the model presented in
§11.1 requires further development and generalization.

In order to solve the resource constrained project scheduling problem with
variable capacities we have formulated the general stochastic optimization prob-
lem with decision variables s, and 7, (call it henceforth Problem A). Values s,

and r, are not calculated beforehand and are random variables conditioned on

ijk
our future decisions. The problem is too complicated to be solved in the general
case. To simplify the problem, we replace it by another one, namely, by the
knapsack nonlinear resource reallocation problem (call it Problem B). Such a re-
placement is based on various heuristic assumptions, e.g., that minimizing the
average project duration results in reallocating available resources at a routine
decision point among those activities (ready to be operated) which deliver the
maximal total contribution to the expected project duration. Thus, a stochastic
optimization problem is substituted for a deterministic one. Decision variables
of problem B are the chosen activities to be supplied by resources and the re-
source capacities assigned to those activities.

However, even such a simplified model is essentially more complicated than
the zero-one integer programming model which was presented in §11.1 for net-
work project scheduling with fixed resource capacities (call it Problem C). The
classical zero-one integer programming algorithm, which delivers an optimal so-
lution to that problem, cannot be applied to Problem B. Since Problem B is NP-
complete, its optimal solution can be obtained only by realizing a lookover algo-
rithm to single out all the feasible solutions. We have developed such an algo-
rithm and we suggest using the latter for cases of small and medium size pro-
jects.

For the case where the number of possible feasible solutions becomes very
high and much computational time is needed to carry out a lookover, we have
developed a heuristic algorithm to solve Problem B.

Thus, the knapsack resource reallocation Problem B, together with both op-
timization and heuristic algorithms, are the main contributions of §11.2.
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Problem B has to be solved at each decision point, when at least more than
one activity is ready to be operated but the available amount of resources is lim-
ited.

11.2.2 Notation
Let us introduce the following terms:

G(N,4) - stochastic network project (graph) of PERT type;

(i, /)€ 4 - the project’s activity;

0, - the amount of activity (i, /) to be operated (pregiven); note that value
O, can be set in percentages of the total project as well as in other
measures;

” - an integer amount of the «-th type resource(s) allocated to activity
(i,7), 1<k <n, (a decision variable);

By - vector of resource capacities (7, s{ri/.,{ });
- lower bound of value r;, (pregiven);

- upper bound of value r;, (pregiven);

rik - the average value of r, (ru =0.5- (7" +r));

n - number of different resources;

R, - total available resources of type k at the project’s management dis-
posal (pregiven and fixed throughout the planning horizon);

R(t) - free available resources of type & at moment ¢>0;

v,lr;) - the speed of operating activity (;, ) in terms of @, . Speeds v,(r,) are
subject
to disturbances and are random values. It is assumed that they de-

pend on resource capacities 7, linearly, e.g., v, (rl,j)= Z(aijk -rljk) hold.

k=1
Coefficients 4, , 1<k <n, are pregiven random values;

Qi - average values of 4, ;

L (",-,-) - random duration of activity (i, j), on condition that resource capaci-
ties 7, , 1<k <n, are assigned to that activity (z, (rij)z 0, v, (rij));

u,lr,) - the average value of 6, )

7 - additional value by which g () can be diminished by adding
Ar,

.« =1, on condition that all other resource capacities 7, 1<v<n,

v

v # k , are fixed and equal to r;. Thus, values v, satisfy
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., N (11.2.1)
Vik =5 e )
" (;ijr I_’yr) (5’7’ ';”’)Jr;ijk

r=1 r=l

Qij A jjk

2 .
n o, _ _ n_o/ —
{Z(ay‘r Vi )} + Qi 'Z(ay‘r 'I"ijr)

r=1 r=1

S, - the time that resources 7, are fed in and activity (i, /) starts (a deci-

ik
sion variable);

7(G/s,,r,) - random project’s duration, on condition that feeding-in of re-
sources 7, 1<k <n, is carried out at moments s, ;

R; (t/Sl,j ,rl,j) - maximal value of the x-th resource profile at moment s on condi-
tion that activities (i, /) G(N, 4) start at moments s, and feeding-in
of resources 7,

F, - the actual moment activity (i, ;) is finished (F, = 5, +1,(r,));

1< k<n,Iis carried out also at moments s, ;

7(7) - earliest possible time of realization of node i;
pli,j) - conditional probability of activity (i,j) to be on the critical path in
the course of the project’s realization.
Let us examine the nature of production speed v, (r,) in greater detail. In prac-

tice, it is usually not clear exactly how this tempo behaves over time and what is
the nature of its random disturbances. What actually happens falls somewhere
between two extreme cases:

1. Disturbance occurs only once while adjusting the speed at time point s, .

Then, in the course of processing the activity, the speed remains constant
[150];

2. There are continuous stochastic changes in the speed between time points
s, and £, [150].

In practice, the second case is more realistic, since there are usually various
disturbances while processing a project activity. However, from a mathematical
viewpoint, it is easier to deal with and to simulate a processing speed that un-
dergoes a random “jump” only once, at moment s, . Thus, in the course of simu-

lating the project, we simulate the random speed v |r,) to process each activity
(i,/)e G(N,A) only once, at moment s,. The activity’s random duration is ob-
tained by dividing Q, by v,(r,).

As to coefficients «, , required to determine v, (), they are random values

with a density function in the interval [a;k N ], with pregiven values «;, and b5, .
As in §11.1, we shall examine three different cases:
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1. Values 4, have a beta-distribution in the interval [a;,{,b;,{] with a density

function

ﬁ(x)=ﬁ[x—a;k][b;k " (11.2.2)

. o —A..
ijk ijk
2. Values 4, have a uniform distribution in the same interval.

L+

3. Values 4, have a normal distribution with average O.5-(aljk ljk) and vari-

ance [(b;, —a;, )/6] -

ijk
To simulate the processing speed v, (r,) with assigned resource capacities r,,
we need to simulate random values 4, and to apply the linear relation

n

Uz)‘(’”y‘):z‘,(ay‘k "”ka)-

k=1

The initial data for each activity (i, /) includes:

LI . * . * * * . min . max . min . max
Iy Js Qij) s bijl)"‘) Ay 5 bijn) Fip s Tyt s wees Ty s Ty -

Values v, , 1<k <n, are calculated on the basis of the initial data by using
(11.2.1) with au =05-(a}, +5;

ijk ijk
aw =0.6-a;, +04-b’ for the beta-distribution.

Note, in conclusion, that obvious relations maxr;" <R,, 1<k <n, hold, other-
2y ’

) for the uniform and the normal distributions and

wise the project cannot be carried out.

11.2.3 The general model (Problem A)
The problem is to determine values s, and 7, 1<k <n, to minimize the aver-

age project’s duration

min £{7(6/5, 1) (11.2.3)
subject to

ryf}f" <ry <rgt V(i, j)e G(N,A), (11.2.4)
R(¢/S,)<R() V120, 1<k<n. (11.2.5)

Model (11.2.3-11.2.5) refers to a stochastic optimization problem that cannot
be solved in the general case; the problem allows a heuristic solution only. Deci-
sion-making, i.e., determining values s, and 7, is carried out at essential mo-

ments F, and 7(), either when one of the activities (i, /) is finished and addi-

tional resources become available, or when all activities (i, j) leaving node i are
ready to be processed. If one or more activities (i, ,), ..., (i,,/,), m>1, are ready

to be processed at moment : and all of them can be supplied by all types of
available resources of maximal capacity, the required resources are fed in and
activities (z'q,jq), 1<g<m, begin to be operated at moment ¢, i.e., S, =t

r..=r"™, 1<k<n. Otherwise a competition has to be arranged to choose the

igjgk T Tigj k2
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optimal subset of activities that can be supplied by available resources.

As shown above, in §11.1, an important auxiliary procedure precedes holding
the competition, namely, calculating, for all the competitive activities (z'q, jq),
their conditional probabilities p(l'q, jq) to be on the critical path in the course of
the project’s realization. For the case of fixed resource capacities r,, calculating
values p(l'q, jq) 1s carried out by means of simulation: at each decision point, all
the activities that have not yet started to be operated are simulated using the cor-
responding probability density functions. These functions do not depend on val-
ues 7, and, thus, remain unchanged in the course of the project’s realization.
Later on, the critical path of the remaining graph with simulated activity dura-
tions is determined. By repeating this procedure many times, frequencies for
each activity (z'q, J q) to be on the critical path are calculated and taken as p(l'q, jq).

Values p(l'q, jq) enter the zero-one integer programming model to carry out the

competition.
We will use the same approach, i.e., calculate values p(l'q, jq) by means of

simulation, for the case of variable resource capacities r,. However, we do not
know beforehand the resource capacity values r, , that will be assigned to the

activities under competition, as well as to all other activities in the remaining
project. Thus, we are unable to simulate the activities’ durations, that depend pa-
rametrically on values r, . In order to overcome these difficulties, several alter-

native heuristics may be suggested to simulate activities in the remaining pro-
ject:

1. Take an integer value r, =0.5-7;" +0.5-r;™ for all activities that have not
yet started and simulate values ¢, (-, ) to calculate the conditional probabili-
ties which we shall henceforth denote p,(i, f).

2. Take r, =r;" to simulate the probability values which we shall denote
pli,j)™; take r, =™ to simulate the probability values which we shall
denote p(i, /)™ ; calculate final values p,(i,)=0.5- p(i, ;)™ +0.5- p(i, j}™.

3. Calculate final probability values
p3(i.j)=0.25- pli. j)™ +0.25 p(i. j)™ +0.5- p, (i./)=0.5-[p, (0. )+ p, (0. /)]

4. Each value 7, is a simulated integer value uniformly distributed in the in-

terval [m ;™ ]. These values are used later on to simulate random speeds

ik o Tk
u,j(;_f,-,-) and random activity durations t,.j(?,-,-). Denote the conditional prob-
ability values p,(i, j).

The four alternative heuristics outlined above will be compared below to ob-
tain the most effective one. It goes without saying that others may be suggested
as well.

After calculating conditional probabilities p(i, ;) the problem of optimal re-

source reallocation among the competitive activities has to be solved.
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11.2.4 Knapsack resource reallocation problem (Problem B)

We have assumed in §11.1 that in a stochastic network project with random
activity durations and fixed resource capacities, each activity (i, /) contributes to
the expected project duration value

o, =pli.j) 1. (11.2.6)

Using the same assumption for the case of variable resource capacities, we

have to calculate value o; depending on vector ;. Assume (see //.2.2) that the

average duration 4, () is calculated as follows:

Hjj (rij): My (r;ﬁ“ )+ an; [(rz‘jk —ry )"/’y‘k ]: {”ij (rym )_ Zn: (‘/’ijk T )} + an; (‘/’zyk ik )

k=1
Assume, further, that the constant value in braces is essentially smaller than
the value of the second term and can be neglected. Thus, value () satisfies

approximately

#a(ny)=i(wak 'rz‘jk)‘

k=1

Using (11.2.6) we finally obtain

n

Gg(’?j)ZZ(Wy‘k"ﬁjk)‘ (1127)

k=1
Thus Z(Wijk 'ng) is the value by which the average duration of activity (i, ;)
k=1
can be diminished by supplying the activity with resources r,, 1<k<n, and

pli, j)-zn:(wijk .r, ) is the value by which the average project duration can be di-

k=1
minished. Taking into account the fact that to carry out the competition among
activities (z'q, jq), 1< g <m, the project management has to choose the subset of

activities and to reallocate among them the available resources in order to
maximize the total contribution to the expected project duration, we suggest the
following knapsack resource reallocation problem (Problem B) to be solved at
each decision point ¢:

Determine optimal values §,,, and 7, 1<k<n, 1<g<m, to maximize ob-

qJ

jective

S = Max {i [51;,/;, P (iq=j g )] ) (riqjqk‘/’iqjqk )} (11.2.8)
subje(j‘z t: " -

o << Vi, )e GOV, 4), (11.2.9)

i(@l_m -rl.qjqk)SRk(t) Vi>0, 1<k<n, (11.2.10)
v&jlzllere
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gijz

9749

0 if activity (z' o) q) will not obtainresources,
1 otherwise.

Although Problem B is obtained by simplifying the general Problem A by
means of various heuristic assumptions, it is nevertheless a very complicated
nonlinear problem.

Theorem. Problem (11.2.8-11.2.10) is NP-complete.

Proof. Consider a particular case of the knapsack problem (11.2.8-11.2.10):

1. Set n=1, 1.e., the project utilizes resources of one type only.

2. Assume ;"' =r" =1, 1<¢<m, L., the resource capacities are fixed and

remain constant.
3.Set By, , =1forall 4.

Thus, problem (11.2.8-11.2.10) is transformed to a zero-one knapsack prob-
lem (Problem C)

gfx){z[ -g(iq,jq)]} (11.2.11)

subject to
Z[rim -g(iq,jq)] <R(r), (11.2.12)
&, 7,)=10,1}. (11.2.13)

We will show that problem (11.2.11-11.2.13) delivers a solution to the clas-
sical Partition Problem [24] as follows:
Given a set of positive integer numbers (w,,w,,...,w, ), determine the optimal

subset (w, ,w, o w, )» r<m, q, €{l,m}, 1<s<r, satisfying > w, =M, where M is

s=1
a pregiven integer value.
Set R(t)=M and r, =w, 1<g<m. If the optimized value of objective

(11.2.11) is equal to M, zero-one values {éiq,éiq jq} deliver the optimal solution to

the partition problem. Otherwise, i.e., if the objective is less than M, the parti-
tion problem has no solution.

Coffman [24] has proved that the partition problem is NP-complete. Thus,
problem (11.2.11-11.2.13) is NP-complete too. But if a particular problem is
NP-complete then the principal problem (11.2.8-11.2.10) is also NP-complete. B

Let us examine the results of the Theorem in greater detail. Both the knap-
sack reallocation Problem B and the zero-one integer programming Problem C
are NP-complete. A classical zero-one integer programming algorithm [153]
which delivers a precise solution to Problem C, cannot be applied to Problem B.

It can be well recognized that the set of feasible solutions of Problem B com-
prises that of Problem C. Thus, especially for wide ranges [mm" rm],

ik o Tk

(i, /)€ G(N,A), 1<k <n, the number of feasible solutions of Problem B may be-
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come very large.

To solve Problem B, two algorithms have been developed:

e a lookover algorithm which singles out all feasible solutions and, due to
the NP-completeness of problem (11.2.8-11.2.10), is the only algorithm
that provides a precise solution of that problem,

e a heuristic algorithm which delivers an approximate solution and offers
less computational time than a lookover algorithm.

Both algorithms are outlined in 77.2.5.

11.2.5 Optimal and heuristic solutions of the knapsack reallocation problem
The developed heuristic algorithm to solve problem (11.2.8-11.2.10) singles
out the subset of activities to be operated (among the competitive ones) and de-
termines resource capacities r, for each chosen activity and each type of re-

source. The algorithm comprises several subalgorithms as follows:
Subalgorithm I sorts m competitive activities (z'q, jq), 1<g<m, in descend-

ing order of the product
16,.7,)= pli,-7,) Z[w (G, s, k) 05( )] (11.2.14)

‘IJ‘I ‘IJ‘I
on condition that p(q, j,)>0. Thus, activities with greater contribution to the

project’s average duration are considered to be more significant and possess
smaller ordinal numbers. Note that values p(l'q, jq) are calculated preliminarily

by means of simulation, while other values in (11.2.14) are either pregiven or
calculated beforehand by (11.2.1). Activities with pli,,/,)=0 have to be re-
scheduled at the end of the schedule in decreasing order of values

ITVACRE RS |

Assume for simplicity that after rescheduling m competitive activities by us-
ing Subalgorithm I, the new schedule will start from (i, /) and finish with
(i,,j,). Thus, each activity obtains its ordinal number from 1 to m .

Subalgorithm II determines the basic set of the schedule. We will hence-
forth call the basic set the chain of consecutive activities of maximal length, be-
ginning from activity (i,,j,) which can be actually supplied by available re-

sources of maximal capacities for all types of resources. Thus, if the basic set
comprises f activities (i, jl),...,(z‘f, jf), relations

er‘}“ksR , 1<k<n, (11.2.15)

hold.

It goes without saying that the basic set may be empty, i.e., /=0, if relation
r™ >R, (¢) holds for at least one type of resource.

Subalgorithm III carries out the lexicographical scanning in the space of
feasible solutions. We will henceforth call a feasible solution of the resource re-
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allocation problem (11.2.8-11.2.10) a set of »<m activities satisfying the follow-
ing conditions:

1. The set comprises the basic set of the schedule: other activities may not be

consecutive.

2. The set can actually be supplied by available resources, i.e., each activity

(z'q, jq) entering the set has to obtain not less than "', resources of type &,
1<k <n. Thus, the former demand for the basic set to obtain only ", re-
sources is now withdrawn.

It can be well recognized that each feasible solution is defined by the se-
quence of ordinal numbers of the activities that enter the set of the solution.
Since all the activities are enumerated with different numbers, a lexicographical
order in the space of feasible solutions can be introduced. To compare two dif-
ferent solutions, one has to take the corresponding sequences and compare by
pair the elements of those sequences: a pair of differing elements must be found
while all the other previous pairs coincide. If, for that differing pair, the element
of the first sequence is less than that of the second, the first sequence (together
with the feasible solution) lexicographically precedes the second.

Subalgorithm Il consists of two main parts: the procedure for choosing the
first maximal feasible solution and the procedure for transferring from one arbi-
trary maximal feasible solution to the next one in lexicographical order. A feasi-
ble solution is called the maximal one if it cannot be enlarged by adding any
other activity entering the schedule. It can be well recognized that any part of
the maximal feasible solution which comprises the basic set, is also a feasible
solution.

Determine the first maximal feasible solution as follows: add the next activ-
ity (z‘fﬂ, jfﬂ) to the basic set and examine the possibility of supplying the set

(z'q,jq), 1<g < f+1, by resources of minimal capacities. If this is possible, then
the enlarged set is a new feasible solution that has to be stored in a special array.
Later on, we proceed to examine the next activity (z‘ raasd m), etc. If adding a cer-
tain activity (i,;.), f<c<m, does not result in obtaining a feasible solution,
omit that activity and turn to examining the next one, (i_,,,/.,,). The procedure
terminates after examining all the activities entering the schedule.

Now let (z‘l,jl),...,(z‘f,jf),(z‘g,jg),...,(ih,jh),(id,jd) be an arbitrary maximal feasi-
ble solution. The procedure for determining the next one is as follows: exclude
the last link (i,, j,) and find out whether it is possible to determine a new feasible

schedule (which does not coincide with those obtained before) while applying
the first procedure. If there is no such a possibility, exclude the link (;,, ;,) and
again apply the first procedure of determining a new feasible schedule, and so
on. This procedure terminates when the consequently truncated feasible solution
comprises only the basic set.

Subalgorithm IV determines, for each routine feasible solution, its optimal
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resource reallocation to maximize objective (11.2.8). Let (i, jl),...,(z'g, jg) be the

feasible solution comprising ¢ <m activities. The work of Subalgorithm IV is as
follows:
1. Supply all the activities (z'q, jq), 1<g<g, with all types of resources of

minimal capacity, i.e., assign » =", 1<k<n.
. g .
2. Update the available resources R, (1)-> ™" =R (t), 1<k<n.
q=1

3. Set counter w=1.
4. Reschedule activities (z'q, jq), 1<g<g, in descending order of the product

1,0i,.j,)=pli,. j,)wli,. j,.w). Activities with pli,j,)=0 have to be sorted at
the end of the schedule, in descending order of values I//(iq, jq,w). Let the
newly rescheduled sequence be (i, "), 1<g<g.

5. The newly sorted activities are examined one after another, in descending
order of their priorities, in order to check the possibility, for each activity,
that it can be supplied with additional available resources

Ar(i), ), w)= min{ri;":f;;m - r:m)j() ,Rw(t)} : (11.2.16)
Later on the remaining resources are updated

Rw(t)_Ar(l-‘gw)’j‘gw)’w): Rw(t)j (11.2.17)
and the next activity (i*}, ;")) is examined. The procedure terminates ei-

ther when all available resources of type w are reallocated among activi-
ties, or all the g activities have been examined.

6. Counter w works, w+1= w.

7. If w>n, apply the next step. Otherwise return to 4.

8. Subalgorithm IV terminates.

Thus, the idea of Subalgorithm IV is to reallocate all types of available re-
sources among the activities separately, one type after another. If, for a particu-
lar activity, the shortage of a certain type of resource adds more to the average
project duration than for another activity, the remaining available resources of
that type must obviously be assigned to the first activity rather than to the sec-
ond.

Note that Subalgorithm IV is an optimal procedure that is implemented in the
Algorithm.

Subalgorithm V calculates, for each feasible solution with optimal resource
reallocation, the objective function (11.2.8) and determines the solution that de-
livers the maximal value to that objective. This solution is taken as optimal.

Note, in conclusion, that the input information for the heuristic algorithm
outlined above is not precise: it cannot be calculated beforehand and is deter-
mined by means of simulation and on the basis of various assumptions and heu-
ristics. As to the algorithm itself, a conclusion can be drawn as follows: reducing
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the basic set results in increasing the number of feasible solutions. Thus, remov-
ing Subalgorithm II results in obtaining an optimal solution by means of a full
lexicographical lookover. If necessary, the basic set may be reduced in order to
organize a compromise between the amount of computations and the proximity
of the heuristic solution to the optimal one.

11.2.6 Decision-making algorithm
The decision-making algorithm determines at each essential moment ¢, when
at least one activity (i, ) is ready to be processed, both the starting moment S,

and the vector of resource capacities #; allocated to each of those activities. This

is carried out by solving resource reallocation problem (11.2.8-11.2.10). The al-
gorithm is carried out in real time; namely, each iteration of the algorithm can be
performed only after either one of the activities (i, ;) is finished and additional

resources become available (moment F}), or at the earliest possible time of reali-

zation of node i (moment 7(;i)). At that moment all activities (i, /) leaving node i
are ready to be processed. The actual duration of each activity is obtained in the
course of the project’s realization, on the basis of allocated values r;. Note that

before solving problem (11.2.8-11.2.10) an auxiliary problem to calculate condi-
tional probabilities p(;, ) for all remaining activities (i, j) has to be solved. We
suggest solving that problem by means of simulation (see §11.1) for all kinds of
resource constrained projects, including real-time projects.

However, if we want to evaluate the efficiency of the decision-making
model, e.g., to calculate the probability of meeting the project’s due date on
time, we can simulate the project’s realization by randomly sampling the actual
duration of each activity. In this case, after determining values r,, 1<k <n, the

random value ¢, (r,) can be simulated as follows:

tij(’”y‘)z#ﬂ
Z(ax ) (11.2.18)

ik Vi
=l

where 4, is the simulated value of random variable 4, with a given density

*

function in the interval a;,{,b;k] and pregiven lower and upper bounds «, and

b, .

ijk

ijk

By simulating the development of the project many times, the probability of
meeting the due date on time, as well as other parameters, can be evaluated. The
following /1.2.7 presents some experimentation based on evaluating the deci-
sion-making model’s performance with some widely used probability distribu-
tions for simulating production speeds v, .
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11.2.7 Experimentation

The efficiency of the decision-making algorithm can be illustrated by a nu-
merical example. The company is faced with carrying out a stochastic network
project where each activity utilizes five non-consumable resources with variable
capacities. The initial data of the project, as well as the calculated values v, ,

are outlined in [71]. The resource limit values R, 1<k<5, are R =50, R, =45,
R, =100, R, =155 and R, =270.

In order to validate the decision-making algorithm various examples were
run. The experimental design is presented in Tab. 11.2.

Table 11.2. The experimental design

Models Levels of variation Il e

of levels
Distribution of random values a,, Normal, uniform, beta 3
Heuristic to calculate p(i, /) 2 ), po(is )y i)y pu(i)) 4
Solution for the knapsack problem Optimal, quasi-optimal, heuristic 3
(11.2.8-11.2.10)

Three models were varied: distribution of g, , heuristic to simulate confi-

dence probabilities p(i, j), and the level of proximity to the optimal solution for
the knapsack problem (11.2.8-11.2.10).
Three alternative distributions of random values a, are considered:

1. a, has a normal distribution with average 0.5- (a, +b;

(6, - )l

2. a, has a uniform distribution in the interval [a;,{,b;k :

" ) and variance

3. a, has a beta distribution with density function (11.2.2) in the same inter-

val.
As to simulating confidence probabilities p(i, ), four different heuristics out-
lined in /7.2.3 have been considered:
1. pl(i,]) with », =0.5- (yk +rg )

ijk
2. p,(i,j) :0.5-[p @) +p(i,j)maX].

3. pii,7)=05:[p(i. )+ p,(0. /)]
4. p,(i,j) with 7, =a-rm™ +(1-a)-r5 , where a=U[0,1], and 7, is a simulated

integer value uniformly distributed in the interval [/‘}j re™ |

In order to obtain a representative statistics for calculating confidence prob-
abilities p(i,j), 150 simulations for each heuristic have been performed. The
number of simulations was determined by applying the classical estimation the-
ory outlined in Chapter 3. Given the error in estimating the probability p(, j),
the confidence coefficient and the sample standard deviation, we can determine
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the sample size of simulation runs.

Three different approaches to solve the knapsack problem (11.2.8-11.2.10)
are considered:

1. The basic set (see /7.2.5) is removed and the optimal solution for the

knapsack problem (11.2.8-11.2.10) is obtained.

2. A heuristic solution to problem (11.2.8-11.2.10) is obtained by using the
basic set (see 71.2.5).

3. A quasi-optimal solution to problem (11.2.8-11.2.10) is obtained by reduc-
ing the basic set. The idea is as follows: the basic set is consecutively,
step-by-step, reduced by one activity (see //.2.5). This, in turn, results
both in increasing the number of feasible solutions and in increasing the
value of the objective J of problem (11.2.8-11.2.10). At each step the
chosen activity to be removed is that one which, in comparison with other
activities from the remaining basic set, contributes the minimal weight to
the objective J. After removing the chosen activity the problem is re-
solved for the reduced basic set. The step-by-step procedure is followed
until objective J ceases to increase. It can be well recognized that such an
approach does not always lead to the optimal solution.

Thus, a total of 36 combinations (3 x 4 x 3) were considered. For each com-
bination 100 runs were performed. That number of statistical trials enables esti-
mating via simulation all the project’s parameters, as outlined in Chapter 3.

Two outcome values are considered, as follows:

e T, is the average duration of carrying out the project;

e T. is the average computational time of one simulation run.

The summary of the results obtained is presented in Tab. 11.3.

The following conclusions can be drawn from the summary:

1. It can be well recognized that introducing beta distribution for random
values 4, results in realizing projects with larger durations in comparison
with normal and uniform distributions. This is because average values
a =0.6-a; +0.4-b, for a beta distribution (11.2.2) are always smaller

ijk
C +b

" Uk) for normal and uniform distributions. This

than values aj =O.5-(a
results both in smaller production speeds v, (r,) and in higher activity du-
rations ¢,(r,) for each activity entering the project. As to normal and uni-
form distributions, introducing normally distributed 4, , results in produc-
tion speeds v, () with smaller variances than with uniform distribution.

This, in turn, results in smaller project duration in comparison with the
uniformly distributed values 4, . Thus, using normal distribution enables
meeting the due date with the highest confidence probability.

2. Substituting any distribution for another one does not result in any consid-
erable increase of the average computational time T..

3. For all methods of calculating conditional probabilities p(;, /) the average
project’s duration is practically the same. Conclusions can be drawn that:
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emethod p,(i, /) doubles the average computational time 7. in comparison
with p,(i, /) and is much more complicated than the latter approach;

emethod p,(i, ) practically trebles values 7. and is more complicated
than method p, (i, /).

Table 11.3. The summary of results

- Methods of calcu. Methods of solving the knapsack problem
Distribution of ; iy (11.2.8-11.2.10)
values lating COl’l.d.l i i) Optimal | Quasi-optimal | Heuristic
Ay prob?lfn%tles Outcome values
2 Tw | T. | Tw | T. | Tw | T
NORMAL (i, 7) 558.9 | 24.9 | 564.9 | 24.9 | 565.2 | 24.8
»,(i, ) 557.7 | 48.2 | 562.9 | 48.1 | 564.5 | 48.1
p3(l, 7) 560.1 | 71.8 | 562.0 | 71.8 | 564.4 | 71.7
2., j) 558.3 | 25.1 | 564.6 | 25.1 | 573.9 | 25.0
UNIFORM (i, 7) 561.8 | 22.1 | 574.9 | 22.1 | 575.7 | 22.0
»,(i, /) 563.3 | 42.6 | 5724 | 42.6 | 573.7 | 42.6
ps(i, /) 562.2 | 63.5 | 572.2 | 63.5 | 576.0 | 63.4
AN) 562.4 | 22.4 | 5747 | 22.4 | 577.1| 223
BETA (i, 7) 578.1 | 24.5 | 582.2 | 24.4 | 584.7 | 24.3
p,(i, ) 578.6 | 47.3 | 582.6 | 47.2 | 587.6 | 47.2
ps(i, /) 5774 | 70.5 | 586.3 | 70.4 | 586.8 | 70.4
2., j) 582.1 | 24.7 | 584.0 | 24.7 | 586.0 | 24.6

Example. For a normal distribution of values 4, , the optimal solution of the

knapsack problem (11.2.8-11.2.10), and for uniformly simulated resource ca-
pacities 7, to calculate conditional probabilities p,(i, /), we obtain the following
simulated outcome values:

e the average project’s duration T, =5583;

e the average computational time of one simulation run 7. =25.1 sec;

e for both methods p,(i,j) and p,(i, ;) the average project duration, as well as

the average computational time, are practically the same. But p,(i, ;) is
simpler since, unlike p,(i,j), values r, are deterministic ones and do not
require simulation.
Thus, using p,(i, 7) is simpler, offers less computational time and is not less
efficient than using methods p,(i, /) + p,(i,j). We recommend implement-
ing p,(i,j) by calculating conditional probabilities p(i, /) for project sched-
uling problems.

e [t can be well recognized that for our example the optimal method of solv-
ing the multidimensional knapsack problem (11.2.8-11.2.10) compares fa-
vorably with other heuristic algorithms and results in smaller project dura-
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tions. As to the computational time values 7., they do not depend, in prac-
tice, on the method of solving the resource reallocation problem (11.2.8-
11.2.10). This can be easily explained: the computational time 7. depends
mainly on calculating confidence probabilities p(i, ;) while solving prob-

lem (11.2.8-11.2.10) results in a very small contribution to value 7.

11.2.8 Conclusions

The following conclusions can be drawn from §11.2:

1. The resource constrained project scheduling model can be applied to all
kinds of PERT network projects under random disturbances that utilize
several non-consumable resources with variable capacities. Those projects
include various R&D projects, construction projects, etc.

2. The model determines, at each decision point, the subset of activities from
those ready to be operated and reallocates available resources among the
chosen activities. The optimal knapsack resource reallocation problem is a
NP-complete one. Several solutions to the problem - an optimal solution
based on a lexicographical lookover, and various approximate solutions
obtained by using heuristic procedures - are considered.

3. The presented resource reallocation model has been used for several PERT
network projects where activities require non-consumable resources of
variable capacities. A conclusion can be drawn that in cases of relatively
small projects (number of activities and number of different resources not
exceeding 30+40 and 3+5, correspondingly) the newly developed optimal
lookover algorithm is the most reasonable option in comparison with
other heuristic algorithms. For large size projects, heuristic solutions may
be preferable.

4. The presented resource constrained scheduling model is easy to handle; it
can be implemented on a PC. Simulating a project of medium size with
five different resources takes little computational time.

5. The results obtained are a further development of results outlined in §11.1,
in which a resource constrained project scheduling model with fixed ca-
pacities has been presented.

§11.3 Stochastic network project scheduling under chance constraints
11.3.1 Introduction
It can be clearly recognized that both resource supportability models outlined

in §§11.1-11.2 fit only certain project management scenarios. Those models do
not include cost objectives, i.e., the costs of hiring and maintaining resources
throughout the project’s realization. The models do not deal with projects’ due
dates as well as with chance constraints of meeting the projects’ deadlines on
time. Those models can be used for one project only.

The research outlined below refers to a more generalized resource support-

ability model in project management.

Several simultaneously realized stochastic network projects of PERT type are
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considered. The durations of all projects’ activities are random and the corre-
sponding probability density functions are pregiven. Each activity requires vari-
ous types of renewable resources with fixed capacities. Resources are stored and
maintained at one central warehouse; each type of resources is in limited supply
and 1s fixed at the same level throughout the projects’ realization. Resources are
to be hired and delivered to the central store before the moment the first project
starts to be carried out. They are released at the moment when the last project is
completed. Each activity starts at the moment when it is ready to be processed
and when free available resources can support it. The cost of hiring and monitor-
ing a resource unit per time unit (for each type of resources) is pregiven. Each
project has its due date and the least permissible probability of accomplishing
the project on time, i.e., its chance constraint. The problem is to determine:

e the earliest starting moment for each project’s realization;

e the limited resource levels for each type of resources to be stored during the

projects’ realization;

¢ the moments that resources are fed in and projects’ activities start, -
in order to minimize the average total expenses of hiring and maintaining re-
sources subject to the chance constraints.

Thus, the developed resource supportability model covers a flexible project
management system. The model minimizes the average operational expenses
subject to the chance constraints, for each project separately [77-79].

The problem is solved by means of simulation. Two optimization cycles are
imbedded in the model. The external cycle deals with optimizing both the pro-
jects’ earliest starting moments together with the resource levels. Those parame-
ters solve as the input values for the internal cycle. The latter uses heuristic deci-
sion-making rules to reallocate free available resources among the projects in
order to meet the projects’ chance constraints.

Note that models outlined in §§11.1-11.2 are based on solving knapsack re-
source reallocation problems which are applied at decision points when at least
one activity is ready to be operated and there are free available resources. If, at a
certain point of time, a set of more than one activity is ready to be operated but
the available amount of resources is insufficient, a competition among the activi-
ties takes place in order to choose a subset of those activities which has to be
operated first and can be supplied by the available resources. Determining such
an optimal subset of activities is carried out by means of solving a knapsack
problem. However, for several stochastic network projects the corresponding
knapsack problem becomes too complicated. We have substituted it by a heuris-
tic decision-making procedure. Note that the developed resource supportability
model is a very complicated stochastic optimization problem which cannot be
solved in the general case and allows a heuristic solution only.

11.3.2 Notation
Let us introduce the following terms:

G,(N,4) - the i-th stochastic network project (graph) of PERT type, 1</<m;
m - the number of network projects;
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(i, /), € G,(N, 4)-the project’s G,(N, 4) activity;

t

a..
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- random duration of activity (i, j), ;

- lower bound of value 7, (pregiven);

- upper bound of value 7, (pregiven);

- the average value of 7,,;

- variance of 7,

- capacity of the k-th type resource(s) allocated to activity (i, ), ,
1<k <n (pregiven);

- number of different resources;

- total available resources of type k¥ to be hired and maintained
throughout the planning horizon (to be determined);

- the due date for project G,(N,4), 1<1<m (pregiven);

- the minimal admissible probability of meeting the due date of pro-
ject G,(N,4) ontime, 1</<m (pregiven);

- the earliest starting moment for the project’s G,(N,4) realization,
1<1<m, ie., the earliest moment activities (i, j), can start to be op-
erated (to be determined);

- the moment for resources {R,} to be hired and delivered;

- the moment that resources r,, are fed in and activity (i, /), starts (a
random value conditioned on our decisions);

- the actual moment project G,(N,4) is accomplished (a random
value);

- the actual moment activity (i, j), is finished (a random value);

- available resources of the k-th type at moment ¢; note that relation
R,(0)= R, holds, where O is the earliest moment when the first pro-

ject starts to be carried out;

G,(N,4) - the remaining unfinished project G,(N,4) at moment >0,

G,(N,4)=G,(N,4), 1<1<m;

7(G,/S,,) - random duration of project G,(~N,4) on condition that feeding-in of

resources r, carried out at moments S, ;

- conditional probability of activity (i, /), to be on the critical path in
the course of the project’s G,(N,4) realization (dependent on the
decisions already taken);

- maximal value of the k-th resource profile at moment  on condi-

tion that activities (i, j), start at moments S, ;

- the cost of hiring and monitoring the k-th resource unit per time
unit, 1<k <n (pregiven);
- the expected total resource expenses (to be minimized).
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Each activity duration 7, follows either a normal probability density distribu-

tion with parameters (Hw,Vlﬂ) or a uniform distribution in the interval (aw,blﬂ)» or
a beta probability density function
fue) =2 (-, )b, -~ - (11.3.1)
( it~ aijl)
Note that obvious relations
max sy < R, 1<k <n, (11.3.2)

hold, otherwise the projects cannot be operated.

11.3.3 The problem

The problem is to determine values S,, 1</<m, and S, to minimize the ex-

pected total resource expenses

C= {s,r}z}j%,/,}E{; (R, -C, )}(mlax F,—min S,)} (11.3.3)
subject to

Pr{F, <D,}>p,, 1<I<m, (11.3.4)

R(t/S;)<R.(t)<R,, viz0, 1<k<n. (11.3.5)

Model (11.3.3-11.3.5) refers to a very complicated stochastic optimization
problem which cannot be solved in the general case; the problem allows a heu-
ristic solution only.

The basic idea of the heuristic solution is as follows. Two levels are incorpo-
rated in the model - the upper (external) level and the lower level. At the upper
level an approximate search algorithm is implemented to determine the optimal
values S, and R, 1<k<n, 1<I<m. We will apply the cyclic coordinate descent
method which is simple in usage and has been implemented for solving various
production control and project management problems (see, e.g.,
[7,54,92,151,153]. Parameters {S,,R,} serve as the input values for the lower
level where values S, are determined by means of simulation. Decision-making
is carried out at essential moments £}, either:

e when one of the activities (i, j), is finished and additional resources r,, ,
1<k <n, become available, or
e when all activities (;, j), belonging to one and the same project G,(N, 4) and
leaving node ; are ready to be processed, or
e when several subsets of activities ready to be processed belong to different
projects.
If one or more activities are ready to be processed at moment ; and all of
them can be supplied with available resources, the required resources are fed in
and the activities begin to be operated at moment ¢, i.e., S, =¢. If at least for

one type k of resources there is a lack of available resources at moment ¢, a
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competition among the activities has to be arranged to choose a subset of activi-
ties that will start to be operated at moment ¢ and can be supplied by resources.
The general idea of decision-making, i.e., the sub-problem of choosing activities
to be operated, will be outlined below.

11.3.4 Heuristic decision-making
Assume that at a certain moment ; a set of activities {(i, )} is ready to be op-

erated. Two cases will be considered:
A. Activities {(,;),} enter one and the same network graph (project) G,(N, 4),

i.e., for the set {(,),} value / remains constant.
B. Activities {(, /),} refer to more than one network graph G, (N, 4).

Let us examine both cases in greater detail.

Case A. To simplify the problem, cancel parameter / since the latter remains
unchanged in the course of decision-making. Assume, with respect to §11.1, that
at moment ¢ ¢ activities (i, ,),..., (z'q, jq), g >1, are ready to be processed, and at

least for one type k of resources there is a lack of available resources, i.e., rela-
tion

Z >R (t) (11.3.6)

holds. Here r, a simplified modification of r, for a fixed 7 (see 11.3.2). A

competition among the activities is arranged following the heuristic outlined in
§11.1. According to that heuristic, the subset, which provides the maximal total
contribution to the expected project duration subject to (11.3.6), has to be cho-
sen. Each activity (i) contributes to the expected project duration value

=, - pli,j), where pli, j), being a simplified version of p(;, j),, is the condi-

tlonal probability for activity (i) to be on the critical path. At any decision
point ¢ values p(i, j) are calculated by means of simulation (see §11.1). After de-
termining values p(l'é, jé), 1<& <q, for all competitive activities at moment ¢, the

optimal subset is chosen by solving a zero-one integer programming problem as
follows: determine integer values n, . , 1<& <gq, to maximize the objective

‘{b?jj‘}{Zhw Hig P lwé)]} (11.3.7)

subject to

q

>0, )< R, 1sksn, (11.3.8)

e=1
where

0 if activity \i.., j. ) will notobtainresources,
n., ={ i actviy i ;) (11.3.9)

1 otherwise.

Problem (11.3.7-11.3.9) is a classical zero-one integer programming prob-
lem, which provides a precise solution. However, the problem’s parameters,
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e.g., 9 , are obtained through heuristic assumptions.

Case B. This case makes unable decision-making (11.3.7-11.3.9) since the
latter does not take into account at moment  different projects G,(N, 4) with dif-
ferent due dates D, and different chance constraints p,. Assume that at moment

¢ a set of activities which are ready to be processed and which belong to v dif-
ferent projects G,p,(N, A), 1<p<v, is given. This set of activities can be subdi-

vided into v subsets {(igp , jgpj }, 1<£<gq,, each subset of volume ¢, entering
/

P

the project G,p,(N, A). Assume, that there is a lack of available resources, i.e., at

least for one type k of resources relation

>3 i > Rt (11.3.10)

p=1 &=1
holds.

In order to undertake a reasonable decision-making, i.e., to choose a quasi-
optimal subset of activities, we suggest a heuristic step-by-step procedure. The
procedure is carried out as follows:

Step 1. For each project G,p,(N,A) separately, reorder the activities entering

the subset {(igp , jgpj
I}

Values Siiﬂjio - ”iénjén ’ p(i‘:f’ ’jff’ )lp :
Step 2. An assumption is introduced that:
e project G, will not obtain at moment ¢ the required resources for

} in the descending order of their corresponding

P

any of the ¢, activities {(z’g_l , jélj } ready to be processed;
b

e the required resources will be fed in for all activities {(z’él , jélj } at
b

the next decision moment ¢*. Value ¢* can be calculated as the
minimal value of the average finishing times of all activities which
at moment s undergo processing;

e in future, i.e., at all decision-points ¢'>¢, all the remaining activi-
ties (i, j),l belonging to that projects will not wait for resources in

lines until the end of the project’s realization.
By means of simulation calculate the project’s random duration
7(G, /s,,) honoring the outlined above assumptions.
Step 3. Repeat Step 2 » times in order to obtain representative statistics. Call
the simulated random finishing times for project G, (v,4): F",

F@ ... F™,

b b
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Step 10.

Step 11.

Calculate the statistical frequency ¢, of completing project G, (v, 4)

on time:
S )

0, = ;l (11.3.11)

L M
where

0 if )< D,;

W(a) — A A

i {1 otherwise . (11.3.12)
Calculate the relative deviation

1

z,=(0,-p)— (11.3.13)

b

Repeat Steps 2 — 5 for all projects G, (N, 4), 1< p <v, participating in

the competition.
Choose the project with the lowest value Z . Let it be G, (v,4),

I<w=<v.
For project G, (N, 4), all the sorted activities (i, ., ) (see Step 1) are

u

examined one after another, in the descending order of their priorities,
from top to bottom, to determine the first activity, which can be sup-

plied with available resources. If, for such an activity (i,,;.,) -

1<é&é<gq,, relations r_, , <R(t), 1<k<n, hold, the required resources

Jeolok =
are passed to the activity while the available resources R, (¢) are up-

dated,
R()-r s = R(0), 1<k<n.

If such an activity can be determined, go to Step 10. Otherwise apply
the next step.
If no activity (i,,. /., ) can be chosen on Step 8, examine the next pro-

®

ject with the lowest value Z, (besides Z,) in order to examine that

project as well, etc., until a certain activity (;,,,/,,) will be deter-

mined. If no activity can be found by examining all the projects, go to
Step 11. Otherwise apply the next step.

Exclude the determined activity from the set of competitive activities;
update the available resources. Return to Step 1, i.e., carry out deci-
sion-making anew. It can be well-recognized that the procedure ter-
minates either when all the available resources are reallocated among
activities or all the competitive projects are examined in the order of
their emergency parameters Z,.

Calculate the next decision point ¢'>¢. Determine the set of activities
ready to be operated. Return to Step 1.

A conclusion can be drawn that in Case B decision-making centers on choos-
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ing and operating first the activities which enter the “weakest” projects, i.e., the
projects being late with meeting their corresponding due dates on time subject to
their chance constraints. As to Case A, the project management operates first the
optimal subset of activities that provides minimization to the expected project’s
duration.

11.3.5 The structure of the resource supportability model
The initial data of the model 1s as follows:

e at the company level: resource cost parameters C,, 1<k <n;

e at the project level: due dates D, and chance constraints p,, 1</<m;

e at the activity level: upper and lower bounds b, and q,

i > average values

H;; , TESOUrCE capacities 7, .

Decision variables R, 1<k<n, and S,, 1</<m, have to be determined be-
forehand, i.e., before the projects will actually start to be carried out. Note that
moment S, resources R, have to be hired, delivered and stored at the company’s
central warehouse satisfies S, =min, and coincides with the beginning of the

projects’ realization. However, certain projects may start to be carried out later
that at moment S, .

Thus, the resource supportability model is implemented at two stages:

e at the planning stage, 1.e., before the projects’ realization, when determin-
ing optimal planning parameters S, and R, 1</<m, 1<k<n. Those pa-
rameters are input values for the stage of monitoring which is performed in
the course of the projects’ realization;

e at the stage of monitoring the resource feeding-in moments S, are deter-

mined. Those parameters cannot be predetermined since they are random
values conditioned on our future decisions. At the stage of monitoring the
resource supportability model can be implemented in real time; namely, all
activities can be operated only after obtaining necessary resources. How-
ever, if we want to evaluate the efficiency of the resource supportability
model, we can simulate the algorithm’s work by random sampling of the
actual duration of activities. By simulating the algorithm’s work many
times, all the projects’ cost and probability parameters can be evaluated.
The structure of the resource supportability model and its algorithm is based
on the assertion, that the cost objective C is a complicated non-linear function of
decision variables S, and R, 1</<m, 1<k<n, and, by introducing the outlined

above decision-making rules for Cases A and B, is fully determined by those de-
cision variables. Thus, it is reasonable to arrange two optimization cycles for the
model:

e the external cycle to carry out an optimal search for values {s,} and {R,} by
applying the cyclic coordinate descent method, and
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e the internal cycle to carry out mutual simulation runs of the projects’ reali-
zation with input values {5,} and {R,} determined from the external cycles.
It goes without saying that decision-making rules for both Cases A and B
are incorporated in the simulation model at the internal cycle. At each
simulation run objective C is calculated.

The

combination {R,,S,} which provides the minimal average objective C

calculated by (11.3.3), subject to all chance constraints (11.3.4), is taken as the
optimal combination which has to be predetermined before the projects’ realiza-
tion. Required resources {R,} are hired at the moment S, = min§, , after which the

projects’ realization actually starts. Feeding-in resource moments S,, are deter-

ijl

mined either for real-time projects, or by simulating the projects’ realization.

11.3.6 The heuristic algorithm
The enlarged step-by-step procedure of the algorithm is as follows:
Step 1. Set the initial (minimal) values of {s,} and {R,}. Note that {Rr,} are re-

Step 2.

Step 3.

stricted from below:

R, zmaxr, , 1<k<n, (11.3.14)
otherwise the problem has no solution. For most practical cases values
S,, 1<1<m, can be set equal zero. Thus, the optimal search method has
to be arranged in the (n+m)-dimensional area. Denote the initial (n+m)-

dimensional search point by x.
Implement a cyclic coordinate search method with a positive search
step increment Ar (or AR, ), beginning from the initial search point X .

Undertaking a search means shifting one of the coordinates, beginning
from s, (the first group of m coordinates {s,} has to precede the second

group {R,}) to the right with step Ar or AR. If, e.g., from the search
point x@ the search x@ — x results in changing the ,-th coordi-
nate, 1<n <n+m, then all other coordinates remain unchanged. If in the

course of a search step objective C becomes less than it has been be-
fore, at point x, the search proceeds in the same direction, i.e., an
additional increment As (or AR,) is implemented. If the objective does

not decrease, then we examine the next, (¢+1)-th coordinate, while all
¢ preceding coordinates remain unchanged with the values they have

already received. The routine iteration of the search terminates when
all (n+m) coordinates {s,} and {R,} are examined. Thus, each decision

variable 1s optimized separately, while all the previous coordinates
have already been optimized.

At each routine search point x@ with decision variables {5\, R},
numerous simulation runs using the simulation model at the internal
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cycle have to be undertaken to obtain representative statistics for value
C. The simulation model comprises three submodels as follows:
Submodel I simulates most of the procedures to be undertaken in the
course of the projects’ realization, namely:

e determines decision points (essential moments) F,;

e singles out (at a routine decision point) all activities that are ready to
be operated;

o if possible, supplies all those activities with available resources and
later on simulates the corresponding activities’ durations;

e returns the utilized non-consumable resources to the company’s cen-
tral warehouse (at the moment an activity is finished);

e updates the remaining projects (if necessary) at each routine decision
point.

Submodel II calculates by means of simulation values p(i, j) to facili-

tate decision-making for the case of one project (Case A), as well as

values p(, ;) for the case of several projects (Case B). Submodel II

also calculates the forecasted value ¢ of the next adjacent decision
point (see Step 2 of the decision-making model outlined in /7.3.4). For
each activity p(;, /), which at moment : is being processed but has not

been completed as yet, the average finishing time F, is calculated.
Given the starting time S, , the probability density function of random

ijl >
value ¢, and decision point ¢ under consideration, a precise determina-

tion of value F,; can be obtained.
Note that simulation of activity durations by using Submodel II is car-
ried out to solve auxiliary forecasting problems, but not to simulate ac-
tual activity realizations. The latter is carried out by Submodel I only.
Submodel III solves, at a routine decision point ¢, the zero-one integer
programming problem (11.3.7-11.3.9) to undertake decision-making in
the case of one project. Submodel III also simulates Steps 3-9 of the
decision-making model in Case B of several projects (see /1.3.4).
The outcome value of the simulation model at Step 3 is calculated as
follows:
M n m

E:iZ{Z(Rk -Ck)[maxF,(‘S)—SO]}+Z(A-X1). (11.3.15)

M 6=1 k-1 ! 1=1
Here 4 is an essentially high value (for numerical examples we usually
set 4 equal 107), while X, satisfies

[ ok,
! 0 otherwise,

where @, is calculated by (11.3.11) and F©) is the simulated moment
project G,(N, 4) is finished in the & -th simulation run, 1<6 <M .

(11.3.16)
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Thus, relations (11.3.15-11.3.16) enable undertaking search for routine
(m+n)-dimensional points x“ honoring chance constraints (11.3.4). If

at least one value X, =1, the corresponding combination X9 ={s,,R,}

1s withdrawn from the cyclic coordinate search process.
Step 4. After optimizing all m+» coordinates {S,} and {R,}, i.e., carrying out a

routine search iteration, the search process is initiated anew, beginning

from the first coordinate S,. The search process terminates when, for

two adjacent iterations f and 1 +1, the relative difference between ¢V

and ¢ is less than the pregiven accuracy & >0.

Extensive experimentation for medium size network projects has illus-
trated the efficiency of the developed two-level algorithm. Two itera-
tions are usually enough to finalize the optimization process [151].

11.3.7 Conclusions

The following conclusions can be drawn from §11.3:

1. The developed resource supportability model can be used in project man-
agement as a decision support model for planning and monitoring several
stochastic network projects. The model has been successfully used for
small and medium size projects of PERT type.

2. The developed optimal planning parameters {S,,R,} result in minimizing

the resource average expenses for hiring and maintaining non-consumable
resources. For a medium size network project with random activity dura-
tions, two cycle iterations resulted in a decrease of more than 50% in the
initiated average expenses and were sufficient to finalize the optimization
process.

3. The developed resource supportability model is suitable for resource
scheduling in stochastic network projects, when the processing of certain
activities is based on delivering resources, e.g., in high technology pro-
jects, defense related industries, opto-electronics, aerospace, etc.

§11.4 Resource constrained project scheduling model for alternative

stochastic network projects

11.4.1 Introduction

In our previous §§11.1-11.3 we have outlined various algorithms in the area
of resource constrained project scheduling. However, the regarded research
deals with non-alternative network projects only, namely, of PERT type.

At the same time, it can be well-recognized that for a certain project its to-
pology may implement various alternative outcomes (deterministic and stochas-
tic), when there are several possible alternative ways for reaching the project’s
target. Such network projects usually occur when an entirely new device is de-
signed with no similar prototypes in the past (e.g., in chemical industries, aero-
space and in other defense related industries). They are faced with a great deal
of uncertainty in their progress as well as with alternative outcomes in key
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events. Since the importance of such projects is significant, practically all indus-
trial developed countries have to consider and to perform the so-called goal pro-
grams or goal projects as the basic trend of technological progress. The need for
high quality resource constrained scheduling models for such complicated pro-
jects becomes more and more important. Thus, undertaking research in this area
becomes imperative both from the theoretical and applied points of view.

The following resource constrained scheduling model for projects under ran-
dom disturbances and with alternative structure is a methodological extension of
our research results outlined in §§11.1-11.2, in which activity related resources
with fixed and variable capacities have been imbedded in a PERT type network
model without alternative branchings.

We will henceforth consider an activity-on-arc network project G(N,4) of
CAAN type outlined in Chapter 8, where the set of alternative nodes is subdi-
vided into subsets:

e N c N: alternative nodes with stochastic branchings;

e N c N: alternative deterministic nodes (decision nodes).

We have chosen the CAAN model since within the two recent decades it has
been used in various main types of alternative network projects [51-57,92,151].

Each activity (i, j)e 4 G(N, 4) requires renewable resources of various types
with fixed or variable capacities. In order to simplify the problem we will con-
sider the case of fixed capacities, although introducing variable capacities results
only in additional technical difficulties. Each type of resources is in limited sup-
ply with a resource limit that is fixed at the same level throughout the project
duration. The duration of each activity is a random variable with given density
function.

The problem is to determine starting time values s, for each activity (i, )

which will be actually processed in the course of the project’s development.
Note that due to the project’s alternative structure, not all the activities entering
the project will be carried out. Values s, are not calculated in advance and are

random variables conditioned on the model’s future decision. The model’s ob-
jective is to minimize the expected project’s duration. Such an objective is
mostly used in project management (see, e.g., [143,156,165,¢tc.]), and the prob-
lem of decreasing the project duration is considered as one of the most important
targets, especially for projects under random disturbances [109,143,156]. The
suggested heuristic algorithm is implemented in real time by means of simula-
tion. Decision-making in the course of monitoring the project is carried out:

e at alternative deterministic decision nodes to single out all alternative sub-
networks (the so-called joint variants) in order to choose the one with the
minimal average duration;

e at the project’s essential moments when at least one activity is ready to be
operated but the available amount of resources is limited. A competition
among those activities is carried out to determine the subset of activities,
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which have to be operated first and can be supplied by available resources.
Such a competition is realized by a combination of a knapsack resource re-
allocation model and a subsidiary simulation algorithm.

Note that those essential moments are as follows:

e when one of activities (i,/) is finished and additional resources become

available, or

e when a certain event (node) ; is realized and all activities leaving that node

are ready to be processed.

Since a joint variant of a CAAN model is a GERT type sub-network with
probabilistic outcomes in key events, the problem’s solution is based on devel-
oping a resource constrained scheduling model for GERT projects. The corre-
sponding algorithm [85] is, in essence, the backbone of the general resource
constrained model, and a further development of the models outlined in Chap-
ters 7-10. Thus, presenting the resource-constrained project scheduling model
for networks with purely stochastic alternatives is the main contribution of
§11.4.

There is no need to recall a description of the CAAN model since the latter
has been outlined in depth in Chapter 8, together with the definitions of the joint
variant and admissible plan. We will call henceforth AJV the CAAN algorithm
for determining joint variants.

11.4.2 Notation
Let us introduce the following terms:
G(N,4) - stochastic network project of CAAN type;

G, - the remaining network project at moment :>0; G, =G(N, 4);

i(e) - decision node with deterministic alternative outcomes;

i(; ) - alternative node with stochastic outcomes;

(4,j) - activity leaving node ; and entering node ;, (i, j)e 4 < G(N, 4);

t - random duration of activity (i, /), with density function £,(i, j);

a, - lower bound of value ¢, (pregiven);

b, - upper bound of value ¢, (pregiven);

My - average value of 1, (pregiven);

(,j) - activity (i, j) which will be actually realized in the course of the pro-

ject’s development (conditioned on the model’s decision). Note that
since G(N,4) is an alternative network, the set of actually realized

activities (i, j) is a subset of all activities {(i,7)} entering G(N,4).
Thus, (,;) < {G /)

S; - the moment resources are fed in and activity (i, j) starts (a random
value);
" - the actual moment activity (i, j) is finished, F; = S; +¢,;
J - the »-th joint variant of project G (a subnetwork of PERT or GERT
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type), 1<r<m,;
; - number of joint variants in project G,;

n - number of different resources;
pi,j) - conditional probability of activity (i, /) to be on the critical path in

the course
of the project’s realization;

Tk - capacity of the k-th type resources allocated to activity (i, /), 1<k <n
(pregiven and fixed);

R, - total available resources of type & at the project management dis-
posal (pregiven and fixed throughout the planning horizon);

R() - free available resources at moment ¢>0;

R™ (t S;,J;’,”’) - maximal value of the k-th resource profile at moment : on
condition that activities (i, ;) start at moments §; and at moment ¢
the optimal joint variant ' is chosen;

T(G S:.J ;’,”’) - random project’s duration, on condition that according to the re-

source constrained scheduling model the optimal joint variant Jo*
will be chosen and all activities (;, j)° start at moments S ;

ij 2

AJV - the algorithm for determining joint variants in the CAAN model.

11.4.3 The problem
The general resource constrained scheduling problem for a CAAN type

model G(N, 4) is to minimize the expected project’s duration

min E{7(G[s;, 77 )} (11.4.1)
subject to
R,f‘ax(ts;,J;’,”’)SRk(t) Vt>0, 1<k<n. (11.4.2)

Problem (11.4.1-11.4.2) is a complicated stochastic optimization model for
projects with an alternative structure and topology. The problem cannot be
solved in the general case and allows a heuristic solution only.

The general idea of the heuristic algorithm is as follows. Decision-making is
carried out in real time, at any routine essential moment ¢ (decision point), either
when one of the activities (i, ;) is finished and additional resources r,, 1<k <n,

become available, or when a certain non-alternative node ; is realized and all ac-
tivities leaving that node are ready to be processed, or when a decision node (a
node with deterministic alternative outcomes of type o and ) is reached. In the
latter case, by using algorithm AJV (see Chapter 8), all joint variants J _,
1<r<m,, are singled out and later on examined, to determine the optimal joint
variant with the minimal expected duration. The procedure of determining the
average duration of a joint variant (which is, in essence, a PERT or a GERT type
network with purely stochastic alternative outcomes at certain nodes) is carried
out by the resource constrained GERT project scheduling algorithm (RCGPS),
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which will be outlined below.
After examining all the joint variants J,,, 1<r<m,, the optimal joint variant

J: 1s chosen and future monitoring centers on carrying out resource constrained
scheduling for pregiven total available resources R,(¢), 1<k<n.

If a routine essential moment is a node with stochastic alternative outcomes,
the latter are simulated according to their outcome probabilities (in real time
projects as well); the simulated activity thus obtains its corresponding duration
by means of simulation.

If an essential moment centers on determining a subset of activities (from a
set of activities ready to be processed and waiting to be supplied by resources), a
competition among the activities has to be arranged. For the case of a PERT
network, the corresponding algorithm (call it henceforth RCPPS) is outlined
above in §§11.1-11.3. The general idea of the RCPPS algorithm is to reallocate
resources among the project’s competitive activities on the basis of priority lev-
els assigned to those activities. Those priority levels are the activities’ contribu-
tions to the project’s average duration. They depend both on the activity’s aver-
age duration and on the probability to be on the critical path in the course of the
project’s realization. Those probability values are also determined by means of
simulation.

The outlined below RCGPS algorithm is a modification of the RCPPS algo-
rithm since stochastic alternative outcomes have to be taken into account.

After singling out the subset and supplying the later by available resources,
activities begin to be processed. A new routine essential moment is determined,
etc. until the project is accomplished.

Note, in conclusion, that in the course of developing a real project there may
be changes in the parameters of some activities, e.g., probability density func-
tions of the activities’ durations, outcome probabilities, etc., since activity net-
works are revised over time. In such a case the problem of determining all the
joint variants J, has to be resolved at each sequentially encountered decision

node at moment ¢, since revising a project may result in changing its optimal
joint variant J*. If the network does not undergo revision the problem has to be

solved only once, at +=0.

11.4.4 The general resource constrained scheduling heuristic algorithm for
a CAAN type model
The outlined below algorithm incorporates two currently developed algo-
rithms, namely:

e the algorithm of determining all joint variants from the initial CAAN model
(algorithm AJV);

e the resource-constrained project scheduling algorithm RCPPS for non-
alternative PERT networks for cases of fixed and variable resource capaci-
ties (see §§11.1-11.2).
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The enlarged step-by-step procedure of the heuristic algorithm is as follows:

Step 1.

Step 2.

Step 4.

Step 6.

The routine essential moment ¢ of the project’s progress is determined
at the beginning of the project’s realization. An essential moment may
occur:

A. At a decision node () with alternative deterministic outcomes
(of @ and 4 types).

B. At an alternative node (& ) with stochastic outcomes (of o and
types).

C.  Atanon-alternative node ( ;) (of x and g types).

D. At the moment a certain activity (i) is finished, but event ; is
not realized as yet.

In Case A apply the next step; in Case B go to Step 8; in both Cases C
and D apply Step 11.

Determine the remaining network project G, +>0. Note that

G, =GN, A\ ) PG ), (11.4.3)
where {(z j)f} denotes the set of activities which have been already

sk
t

processed till moment ¢, and {(z 7) } denotes the set of activities which
have not been operated and, due to the alternative structure of G(N, 4)
and prior decision-making, will not be carried out in the future.

Apply algorithm AJV to single out all the joint variants J, from the
subnetwork G,. To apply the algorithm one has to implement sequen-
tially four subalgorithms as follows:

e determining the a-frame for the outcome graph;

e determining the maximal path in the outcome graph;

e determining the admissible plans;

e determining the joint variants which correspond to admissible plans.
Let the determined joint variants be J_, 1<r<m, (see 11.4.2).

For each joint variant J, determine its average duration 7, by using the
resource constrained scheduling model either for GERT or PERT pro-
jects. The total pregiven available resource capacities are R, 1<k<n.
For GERT projects, the regarded resource constrained project schedul-
ing algorithm RCGPS to determine the project’s average duration is
outlined in //.4.5. For PERT projects, the corresponding algorithm (see
§§11.1-11.2) enters the RCGPS as a basic part.

Choose the joint variant s, with the minimal average duration, i.e.,

Tz:r = min Trr‘ (1144)

1<r<m,

Thus, joint variant s, is considered as an optimal one, J;”'.

Choose the outcome direction (activity) leaving node a which corre-
sponds to the chosen optimal joint variant J**. Let it be (E, j).
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Step 9.

Step 10.

Step 11.

Step 12.

Step 13.

Step 14.

Step 15.

Cancel all other alternative outcome activities leaving node « .
Determine all the nodes i e G, with no activities entering those nodes. If

such nodes exist, cancel them together with all activities leaving those
nodes. Proceed carrying out Step 8, until only nodes with a receiver
(except the source node) will remain. Go to Step 11.

Applying this step means that we have reached an alternative node «
with stochastic outcomes and corresponding probabilities. Simulate the
set of full events in order to determine the outcome activity. Let it be
o)

Cancel all other non-simulated outcome activities leaving node « . Re-
turn to Step 8.

Applying this step means that there may be activities ready to be proc-
essed at moment ¢, e.g.,

e activity (E, j) (Step 6);

e activity (E, j) (Step 9);

e activity leaving node ; (Case C, Step 1), etc.

At Step 11 in Case D (see Step 1), return the utilized resources 1,

1<k <n, to the project management store.

Determine the set of activities (i, j,),..., (zq, jq), ¢ >1, which are ready to
be processed at moment r, together with all available resources R,(¢),

1<k<n.
If all activities (;,,/,), 1<v <g, can be supplied by available resources,

the required resources are fed-in and activities {(;i,,,)} begin to be op-
erated at moment ¢, i.e., 5, =¢, 1<v<gq. If there is a lack of available

resources, go to Step 15.

Simulate (according to the density function) the durations of all activi-
ties which have been supplied with resources and started to be realized
at moment ;. Return to Step 1 to determine the next routine essential
moment.

Applying this step means that, due to limited amount of resources, a
competition among activities (i, ), 1<v <q, has to be arranged in or-

der to single out the subset of activities which can be supplied with re-
sources and can start to be operated at moment . The competition is
facilitated by solving a knapsack resource reallocation problem to
maximize the total contribution of the chosen activities to the average
project’s duration. For each activity under competition, its contribution
is the product of the average duration of the activity and its probability
of being on the critical path. Those probability values are calculated by
means of simulation.

Since monitoring a CAAN type project results in monitoring a joint variant,
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1.e., a GERT type project, the algorithm outlined in §§11.1-11.2 requires modifi-
cation. The amended resource constrained project scheduling algorithm for a
GERT network model will be outlined in 77.4.5 (algorithm RCGPS).

After applying algorithm RCGPS and determining the subset of chosen ac-
tivities proceed to Step 14.

The general algorithm terminates when the project will reach its target, i.e.,
when the remaining graph G, becomes an empty set.

11.4.5 Resource constrained project scheduling algorithm for GERT models
(RCGPS)

As outlined above, the RCGPS algorithm is a further development of the re-
source constrained project scheduling algorithm for PERT projects presented in
§§11.1-11.3.

It is assumed that the project’s network is properly enumerated, i.e., for all
activities (i,7) entering the graph G(N, 4) relation ; < ; holds. The enlarged step-
by-step procedure of the algorithm is as follows:

Step 1.  Similar to the general algorithm in //.4.4, the routine essential mo-
ment ¢ is determined (for the monitored optimal joint variant J>*). An

essential moment occurs:

e at any alternative node (« ) with stochastic outcomes;

e at any non-alternative node (;);

e at the moment a certain activity (;, /) is finished, but event ; is not

realized as yet.
Step 2. The remaining monitored network project G, for the previously cho-

:

sen joint variant 7' is determined. In Case A (see Step 1) apply the
next step. In Cases B or C proceed to Step 6.

Step 3.  Similar to Step 9 of the general algorithm, simulate the corresponding
probabilistic outcome activity (E, j).
Step 4.  Is similar to Step 10 of the general algorithm (see /1/.4.4), and results

in canceling all non-simulated alternative stochastic outcomes leaving
node o .

Step 5.  Is similar to Step 8 of the general algorithm.

Step 6.  Is similar to Step 11 of the general algorithm and results in returning
the utilized resources r,, 1<k <n, in Case C (see Step 1) to the pro-
ject management store.

Steps 7-8. Steps 7 and 8 are similar to Steps 13 and 14 of the general algorithm,
with one exception: in the case of lack of resources Step 10 is applied.

Step 9. In order to arrange the competition among the activities (i,,J,),

1<v<gq, subnetwork G has to be simulated in order to be transformed

to a PERT network. The simulation algorithm at Step 9 comprises the
following operations:
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Step 10.

Step 11.
Step 12.

Step 13.

Step 14.

9.1 From the set of stochastic alternative «-nodes entering the re-
maining network project G, before carrying out Step 9, deter-

mine the node with the minimal number (call it henceforth o . ).
If the set of those nodes is empty, go to Step 10. Otherwise ap-
ply Substep 9.2.

9.2 Simulate the probability outcomes leaving node .. (similar to
Step 3).

9.3 Cancel all non-chosen outcome activities leaving node o i .

9.4 Determine all the nodes (alternative and non-alternative) with no
activities entering those nodes. If such nodes exist, cancel them
together with all activities leaving those nodes. Proceed with this
procedure until only nodes with receivers will remain. Return to
Substep 9.1.

Simulate the durations of all remaining activities according to their
density functions. Implementing that step means that we have simu-
lated all non-contradictory alternative stochastic nodes (this is pro-
vided by introducing proper enumeration) and only nodes of x-type
remain. Thus, simulating a GERT network at Step 9 results in obtain-
ing a PERT network.

Determine the critical path of the simulated network.

Repeat the procedure of Steps 9-11 m times in order to obtain repre-
sentative statistics.

Calculate the frequency of each activity (i,,/,), 1<v <g, to be on the

critical path. Denote them henceforth p(i , ;).

In accordance with [70], determine the subset of chosen activities by
solving a zero-one programming problem: determine integer values
& ., 1<v<gq,to maximize the objective

o

I{E}?ﬁ{i— I:giujU 'p(l‘uﬂju)'ui“j“ :I} (1 145)

subject to
q

Z(@i“j“ 'K-U_,-“k)ﬁ R(t), 1<k<n, (11.4.6)

v=1
where

_ 0 if activity (i,, j, ) will not obtain resources ;
S = {1 otherwise .
Note that solving problem (11.4.5-11.4.6) results in implementing a
heuristic approach to decrease the project’s duration as much as pos-
sible [70]. Model (11.4.5-11.4.6) is, in essence, the backbone of the
RCPPS algorithm, which has been successfully applied to many me-
dium-size PERT projects [71].
From Step 14, return to Step 8 in order to simulate the durations of
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the chosen activities and, later on, to determine the next routine es-

sential moment ;.
Note that simulating activity durations at Step 10 is an auxiliary procedure
(in order to determine probabilities p(i,,;, ) for problem (11.4.5-11.4.6)) while

simulating activity durations at Step 8 is an actual activity realization.

The outlined above algorithm RCGPS is performed in real time: namely, all
the activities can be operated only after obtaining necessary resources. However,
if we want to evaluate the average project’s duration 7, for the set of joint vari-

ants J, (see Step 4 of the general algorithm), we can obtain a representative sta-
tistics by simulating each joint variant J, many times to determine its average

duration. The minimal number of simulation runs can be estimated from the
classical sampling theory [27], outlined in Chapter 3.

11.4.6 Experimentation

In order to verify the efficiency of the developed algorithm, extensive ex-
perimentation has been undertaken. A GERT project with constrained renewable
resources is presented in [85]. The project requires resources of one type. The
initial given data for each activity (i,j) entering the GERT model is as follows:

i5 j3 ay by rys p,» where p. denotes the probability of realizing activity (i, /).

Thus, p, =1 means that node ; is of x-type, while 0< p, <1 corresponds to a sto-

chastic alternative outcome, 1.€., i=« .
Three alternative distributions are considered:

l. ¢, has a normal distribution in the interval [al./.,bl./.] with average

Y

: 1 .
u,; =0.5(a, +b5,) and variance 7, = %(bij —a,);

2. ¢, has a uniform distribution in the interval [al./.,bl./.];

3. 1, has a beta distribution with the density function

(x)= 12 x—a. \b. —x).

p,(x) m( Mo, = x) (11.4.7)

In order to check the developed RCJPS algorithm, 100 simulation runs were

undertaken. The histograms for the three considered density functions are pre-
sented in [85].

The following conclusions can be drawn from §11.4:

1. Introducing the beta distribution results in projects with shorter durations
in comparison to the normal and uniform distributions.

2. Introducing the normal distribution results in projects with shorter dura-
tions in comparison to the uniform distribution. Thus, the latter can be re-
garded as the least efficient distribution.

3. The heuristic algorithm presented here is, probably, the first one devel-
oped in the area of resource constrained project scheduling for alternative
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stochastic network projects. It can be successfully used for monitoring
complicated medium-size projects with alternative structure and topology,
and with limited activity related renewable resources. The algorithm can
be used for CAAN models which cover a broad spectrum of alternative
stochastic networks.

4. Since a CAAN model is structured from subnetworks of GERT type, the
developed resource constrained project scheduling algorithm is based on
multiple implementation of a standardized resource constrained algorithm
for GERT models. Such a basic algorithm is easy to apply and can be im-
plemented on a PC. The algorithm can be used for any probability distri-
bution of activity durations.

§11.5 Conclusions

The following conclusions can be drawn from the Chapter:

1. The outlined above resource supportability models do not comprise prede-
termined resource delivery schedules.

2. The models are implemented:

e at the planning stage, when determining optimal planning parameters
(the moments projects actually start and optimal resource capacities for
each type of resources), and

e at the stage of monitoring, i.e., at the stage of scheduling and feeding-
in resources.

3. At the scheduling stage all calculated parameters are random values condi-
tioned on our future decisions.

4. The backbone of all outlined in the Chapter resource supportability models
is the classical zero-one integer programming model which for the case of
restricted resources enables (at each decision-making moment) the opti-
mal choice of activities to be supplied by resources.

5. Thus, the models presented in the Chapter can be regarded as mixed type
models since they are utilized at several stages of the project’s life cycle.
Further models referring to the planning stage will be outlined in Chapter
13.
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Chapter 12. Resource Constrained Project Scheduling with
Deterministic Resource Delivery Model

§12.1 Case of aggregated projects with consecutive operations

12.1.1 Introduction

The method outlined below is a further development of our prior results re-
lated to job-shop manufacturing [69], and is probably the first successful attempt
to implement a deterministic resource delivery schedule in stochastic network
projecting. Various other attempts [2,21,31-32,97,142,147 ,etc.] do not deal with
problems of scheduling operations of random durations.

Unlike the previous Chapter, several additional developments are imbedded
in the model:

1. The outlined below reallocation model incorporates cost parameters rather

than the time-related models presented in Chapter 11.

2. The model enables a group of projects with random operations and re-
stricted resources to be controlled.

3. Several heuristic preference rules which enable redistribution of free
available resources among the operations which are ready to start, are
suggested.

The description of the system is as follows: several simultaneously realized
projects under random disturbances are considered. Each project comprises nu-
merous operations to be processed in a definite technological sequence. Each
operation utilizes several non-consumable related resources with fixed capaci-
ties, e.g., machines or manpower. Each type of resource at the management’s
disposal is in limited supply, with a resource limit that is fixed at the same level
throughout the projects’ duration, i.e., until the last project is actually completed.
For each operation, its duration is a random variable with given density function.
Processing costs per time unit to hire and to utilize all the total available re-
sources are pregiven. For any projects’ operation, its planned start moment has
to be determined. That means that an operation cannot start before the planned
moment. If an operation starts processing after its planned moment, a pregiven
cost penalty per time unit of the delay has to be paid by the management. A spe-
cial service discipline which, if necessary, reallocates free available resources
among operations ready to be carried out, is imbedded in the model.

The problem is to determine optimal planned start moments, in order to
minimize total management expenses. In order to simplify the problem, we will
assume that each project consists of a chain of consecutive operations. Each op-
eration is characterized by a vector of resource capacities to carry out the opera-
tion and by the density function of the operation’s random duration.

12.1.2 Notation
Let us introduce the following terms:
0, - the ¢-th operation of the ;-th project, 1<i<n, 1</<m;

1
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n - the number of projects;

m, - the number of operations entering the ;-th project;

R; - the total limit of the j-th type resources, 1< j<k (at the disposal of
the management, pregiven);

k - the number of resources;

By - the j-th type resource capacity, 1<i<n, 1<¢/<m, 1<;j<k, to carry
out operation O, (pregiven);

a, - lower bound of random duration of 0, (pregiven);

b, - upper bound of random duration of 0, (pregiven);

T, - planned moment to start operation O, (a deterministic value to be
predetermined);

Sy - the moment 0,, actually starts (a random value conditioned on our
decisions);

t - time duration of operation O, (a random value);

to - average value of ¢, (pregiven);

C, - cost penalty per time unit for the delay in starting operation 0O, , in
case S, >T, (pregiven);

C - processing cost per time unit of hiring and utilizing total resources
R |, 1< j<k (pregiven);

T - random time duration of accomplishing all the projects;

F, =S, +t,- actual finishing time of operation 0, (random value);

R, () - free (non-utilized) resources at moment ¢;

At, - positive search step for the operations entering the ;-th project,
1<i<n, (pregiven);

e>0 - pregiven search accuracy for the cyclic coordinate method.

It can be well recognized that relation
T= mlax{Fiml = min{s, | (12.1.1)
holds.
Note, in conclusion, that evident relations

Ryz max g, 1sjs<k, (12.1.2)

hold, otherwise not all the projects can be carried out.

12.1.3 The problem’s formulation
The general problem is to determine both optimal deterministic planned val-
ues 7, (beforehand) and random values S, (in the course of the projects’ realiza-

tion and conditioned on our decisions), 1<i<n, 1</<m, to minimize the aver-
age of the total expenses

{;nlsn}E{Zn:{ '"11 [(s,-1,)-C,]+C- [mf‘X(Fim, )— miin(Si1 )]H (12.1.3)

i=1 (/=
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subject to

S, 2T,, (12.1.4)
Fy=8,+t,, (1215)
Sie 280+ (12.1.6)

Z[rw-éﬂ(t)]sz—R_/.(t), 1<j<k, 0<¢<T, (12.1.7)

i=l /=1

(12.1.8)

1 if O, is processed at moment t;
where  6,(1)=

0 otherwise.
Restriction (12.1.4) ensures that O, cannot start before its planned moment
T,. Restriction (12.1.5) enables processing 0, without interruptions, while

(12.1.6) formalizes the consecutive chain order of processing operations in a
project. Restriction (12.1.7) means that at any moment /, 0<¢<7, for each ;-th

type of resource, 1< j <k, the summarized amount of utilized resources is less
than g, by the value of free resources R,(¢).

Problem (12.1.3-12.1.8) is a stochastic optimization problem with a large
number of optimized variables. The problem is too difficult to solve in the gen-
eral case. A heuristic solution will be outlined below.

The general approach to solving the problem is as follows: two levels - upper
and lower - are considered. At the upper level, a cyclic search by means of a co-
ordinate descent method [74,114] is organized to determine planned start mo-
ments 7,. At each search point, values {7, } are passed to the lower level in order

to manage the projects by determining actual start moments S, in the course of

the projects’ realization. This results in developing a simulation model which
comprises proper decision-making to carry out a simulation run. Decision-
making is based on implementing heuristic decision rules that can be regarded as
the service discipline [126]. By repeating, for a fixed vector {7, }, the simulation

procedure many times, we obtain representative statistics to evaluate the average
with pregiven accuracy. The set {7, }, which delivers the minimum to objective
(12.1.3), is taken as a quasi-optimal solution. Note that since heuristic decision-
making is introduced we shall avoid the term “optimal” from now on.

Note, in conclusion, that the suggested decision-making can be applied to

real-time projects as well.

12.1.4 Decision-making in the simulation model
The basic idea of imbedding decision-making in the simulation model is as
follows: decision-making is carried out at essential moments ; when either an

operation 0, is accomplished and the utilized resources {- } become free and

Fitj
available for other operations, or when a certain operation O, at moment =7,
is ready to be processed. At each essential moment ¢, the simulation model:

e returns the utilized non-consumable resources to the management store and
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evaluates the free available resources Rj(t), 1< j<k (in the case when, at

moment ¢, an operation is finished);

e singles out all the operations that are ready to be processed;

e checks the possibility of supplying all those chosen operations with avail-
able resources. If this is possible, the required resources are delivered to
the operations which start processing at moment ;. Later on, the corre-
sponding operations’ durations are simulated;

e determines the next routine decision point (essential moment) .

If it 1s impossible to provide all the operations with free resources, a competi-
tion has to be arranged to single out a subset of operations to be processed and
supplied with available resources. Note, that carrying out that competition is, in
essence, the decision-making which is imbedded in the model.

Assume that at moment ¢, ¢ different operations o,, ,0,, ....,0,, are ready to

be processed and at least one relation

S, >R (), jellkl, (12.1.9)

r=1

holds.
Decision-making A is a random version of the priority rule SRT (“shortest
remaining time”) outlined in [50,53,126]. The competitive operations are sorted

in the ascending order of their average processing durations 7., . All the sorted
operations are examined one after another, in the ascending order of values 7.._,
to check, for each operation, the possibility that it can be supplied with remain-
ing available resources. If, for a certain operation o, , 1<s<gq, relations
r,,<R,(t), 1<j<k, hold, the required resources are assigned to the operation

while the remaining resources are updated,

R()-r,,=R(), 1<j<k, (12.1.10)
and the next operation is examined. If a routine operation o, , , cannot be pro-
vided with available resources, we switch over to the next operation. The proce-

dure terminates either when all the available resources are allocated to opera-
tions or all the ¢ chosen operations have been examined.

Decision-making B is a random version of the equally famous priority rule
LRT (“longest remaining time” [50,53,126]). All competitive operations are
sorted in the descending order of their average remaining processing times

T, =Y, 15s5<q. (12.1.11)

All the sorted operations are examined in the descending order of values T,
one after another, similar to the procedure outlined above.

Note that additional and not less effective priority rules can be recommended
as well, e.g., the pairwise comparison rule [50,53,118,151], the FIFO rule [126],
etc.
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Introducing proper decision-making enables the projects’ realization to be
simulated from beginning to the end, i.e., enables average E in (12.1.3) to be
calculated on the basis of numerous simulation runs. Note that a simulation run
can be carried out only with preset planned values {7, }.

12.1.5 The heuristic algorithm
The heuristic search algorithm to determine quasi-optimal values {7, } is per-

formed in real time, i.e., all operations can be processed only after obtaining
necessary resources. Essential moments cannot be predetermined. However, if
we want to evaluate the efficiency of the algorithm, we can simulate its work
many times, including the cyclic coordinate descent subalgorithm at the upper
level and the simulation model with set values {7, } at the down level. Thus, the

heuristic algorithm comprises two subalgorithms as follows:
Subalgorithm I actually implements the cyclic search procedure, similar to
that outlined in §11.3. At the beginning of the search, values 7, are as follows:

/-1

t,=0, T,=>a,, 1sr<m, 1<i<n. (12.1.12)

r=1

Later on, each coordinate 7, has to undertake search steps of length As,.

Several concepts are embedded in the subalgorithm:

1. If a routine coordinate 7, changes its value in the course of a search pro-
cedure, all the preceding values 7, 1<s<i-1, 1<g<m, together with
values T,, g <¢, which have been determined before, are fixed and remain
unchanged.

2. If a routine coordinate 7,, 1</ <m,, increases its value by A, all the next
values T, ¢<s<m,, entering the same ;-th project, are automatically in-
creased by Ar,. If coordinate 7, decreases its value by Az, all consecutive
coordinates 7, are decreased as well. Values 7, i<s<n, 1<g<m , remain

A

unchanged.
3. A routine coordinate 7, increases in the course of the search procedure, if

realizing the previous step brings about a decrease of the objective value
(12.1.3), i.e., the average total expenses. Otherwise, an opposite search
step with values (- A¢,) has to be carried out honoring Concept 2.

4. After a routine coordinate 7, ceases to change its value in the course of the

search, the value is fixed and remains unchanged until all the coordinates
undergo the search procedure. The next coordinate 7;,,, (in case ¢(<m,) or

T, (incase ¢=m, and i<n) is processed by the search algorithm. Thus,
changes in a single routine coordinate 7, by means of the search proce-

dure implementing the cyclic coordinate descent method which operates
cyclically with respect to all coordinates, enable a quasi-optimal solution
to be obtained.
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5. After carrying out the search procedure through all the coordinates, the
process is then repeated, again starting with coordinate 7, (the next itera-

tion). However, the search increments A¢,, 1<i<n, have to be diminished

(usually by dividing by two). Another difference from the first iteration is
that a search procedure for any coordinate 7, has to be carried out in two

opposite directions 7, +A.. The search is undertaken along that direction

which delivers a decrease in the problem’s objective in (12.1.3). Note,
that in the course of implementing the ¢-th iteration, ¢ >1, Concept 2 be-

comes unnecessary. Only the evident relation 7,27, +a,,, has to be

1

honored in all cases.

6. The search terminates if, in the course of carrying out two adjacent itera-
tions, the relative difference between the two corresponding objective
values (12.1.3) becomes less than the pregiven accuracy ¢.

Subalgorithm II realizes the simulation model for each search point, i.e., for

each fixed vector {7, }. At each search point, a representative sample of simula-

tion runs has to be carried out. On the basis of the sample, the average value in
objective (12.1.3) is calculated. An illustration of a simulation run with fixed
{r,} will be outlined below.

12.1.6 Numerical example
The system comprises two projects with given planned start moments 7,. The

projects include two and three consecutive operations, correspondingly, with
pregiven random time durations. Both projects utilize one type of resource.
Thus, n=2, m; =2, m,=3 and k=1.

The projects’ parameters are as follows:

a, =31 b, =40; a,, =48, b, =55;
a,, =30; b, =38; a, =18 b,, =30;
a,, =28, b,, =39;

K =15 T =17, B =13 Ty = 20;
Ty =27.

All ¢, =40 while value ¢ =100 . The total limit of resources R =30. Pregiven
values T, are as follows:
T, =0; T, =33 T, =33 T, =34 I, =58.

Assume that all random time durations ¢, are normally distributed with aver-

age u, =0.5(q, +b,) and variance V,, = %(b/ ~a,).

1

In the course of carrying out a simulation run, we will use decision-making
B. Assume that in the course of project realization, the simulated random values
t;, are as follows:

t, =347, t, =52.8; 15, =36.2; 1y, =24.3; 1y, =35.6.
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At the first essential moment 7 =0, resources have to be redistributed among
two competitive operations O, and O,,. Since their corresponding planned mo-
ments 7;, =T,, =0, both those operations are ready to be processed. Note that de-

cision-making based on the longest average remaining time (Rule B) gives pref-
erence to Project 2 at moment ¢ =0 since relation
0.5-(30+38)+0.5-(18+30)+0.5-(28+39)=91.5>0.5-(31+40)+0.5-(48+55) =87

holds. But since the free available resources are enough to supply both opera-
tions (R,(0)=30=r,, +nr,,), the latter begin to be processed at moment ¢=0; thus,
S, =S, =0,and F, =347, F, =362.

The second essential moment ¢, = min{F,, F,, }=34.7. At moment ¢, =34.7, op-
eration O, terminates and released resources r,, =15 are returned to the man-
agement. However, since r,, =17>15, operation O,,, being ready to be processed
(t,=34.7>T, =33), has to wait for additional resources. The next essential mo-
ment would be ¢, =36.2.

At moment ¢ =362, operation O, terminates and the total value of free
available resources R (36.2)=30. However, two competitive operations, namely
0, and O,,, are ready to be processed (7;,=33<36.2, T,, =34<36.2). Those two

operations cannot be provided simultaneously with available resources since
R(36.2)=30<7,, +r, =37 holds. Thus, decision-making based on Rule B has to

be introduced. Due to relation
0.5-(48+55)=51.5<0.5-(18+30)+0.5-(28+39)=57.5,

operation O,, has to be preferred. Thus, S,=362 and F,,=36.2+243=60.5,
while operation O,, has to wait for resources. The next essential moment would
be 7, =605.

At moment 7, =60.5 operation O,, terminates, and r,,, =20 resources are re-
leased. It can be clearly recognized that operations O,, and 0,, are both ready to
be processed (7;,<60.5,T,, <60.5), but cannot be simultaneously supplied with
free available resources: R,(60.5)=30<r,, +r, =44. Thus, a competition based

on decision-making by implementing Rule B has to be introduced. Due to
0.5-(48+55)=51.5>0.5-(28+39)=33.5,

the preference is given to O,. Thus, S,=60.5 and F,=60.5+52.8=113.3. The
next essential moment is # =113.3.

At ¢, =113.3, only one operation, namely, O,,, is ready to be processed
(t=113.3>T, =58) and is waiting for resources. Since R,(113.3)=30>r,, =27, Op-
eration 0,, starts processing, and S, =113.3, while F,=113.3+34.7=148. At

moment ¢ =148, both projects are accomplished.

Let us calculate the projects’ expenses within the simulation run. The cost
penalties are
C,(36.2-33)+C,,-(60.5-34)+C,,-(113.3-58)=40-(3.2+26.5+55.3)=3,400 . The pro-
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cessing costs are C-(148—-0)=14,800. Thus, the total expenses for one simulation
run equal 3,400 +14,800 =18,200 .

12.1.7 Conclusions
The comparative efficiency of decision-making Rules A and B, together with
three alternative distributions (uniform, normal and beta) of values ¢,, can be il-

lustrated by extensive experimentation outlined in [53,74,151]. The following
conclusions can be drawn from examining the results of solving the general
problem (12.1.3-12.1.8):

1. For the case of uniform and normal distributions, using decision Rule B
results in obtaining lower average expenses of realizing the projects than
by using Rule A. In the case of beta-distribution, using Rule A is prefer-
able, i.e., it results in cheaper project realization.

2. Using Rule A usually results in an essential decrease of the average value
T in the course of implementing the search procedure, as distinct from
decision Rule B. Introducing the latter does not lead to diminishing value
T . Moreover, in several cases, final values T became even higher than at
the initial search point 7.

3. It can be well-recognized that for all examples, solving problem (12.1.3-
12.1.8) results in an essential decrease of the average penalty expenses (in
most cases by the factor of 50+100). This, in turn, has an influence on the
average fotal expenses (12.1.3) to be minimized. In the course of the
search procedure’s realization, the objective value has been diminished by
a half.

§12.2 Resource constrained model for a variety of non-consumable re-

sources

12.2.1 Introduction

This Section considers a certain elaboration of the research outlined in §12.1,
namely:

a) the simplified aggregated projects are substituted by PERT type projects;

b) various classes of resources are incorporated in the model.

The main goal of this Section is to outline a generalized resource constrained
model for a network project under random disturbances. All particular cases of
utilizing renewable resources will be imbedded in the model. The problem’s so-
lution results in:

e determining in advance, i.e., before the project starts to be realized, a de-
terministic delivery schedule for extremely costly and rare external re-
sources which are not at the project’s disposal. Note that due to random
disturbances, it is unknown beforehand when a certain activity will actu-
ally be ready to begin. However, the resources are to be delivered at a pre-
given date that must be determined in advance. It goes without saying that
an activity cannot start before its corresponding planned moment, i.e.,
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when activity resources are ready and delivered. In practice such a re-
source delivery schedule is required for a relatively small group of activi-
ties;

e determining both the starting times and the resource capacities to be util-
ized for activities which require limited renewable resources which are at
the project’s disposal. The corresponding feeding-in resource schedule is
random and is conditioned on control actions to reallocate available re-
sources among the activities which at a certain moment are ready to be
processed.

The problem’s objective is a cost value which comprises two components:

e the average cost penalties paid for the idle costly and rare resource which
was delivered at the planned moment, but not utilized since it had to wait
for the moment the corresponding activity was ready to be operated;

e the average cost expenses for hiring and maintaining non-consumable re-
sources which are at the project’s disposal. Those expenses depend on the
project’s duration.

Thus, we suggest using a cost objective to minimize the sum of the penalty
expenses for all delays of resource utilization and the cost of using constrained
resources within the period of the project’s realization. Note that decreasing the
first component results in increasing the second one, and vice versa. Therefore, a
trade-off between the two contradictive cost components is to be resolved.

12.2.2 Classification of non-consumable resources in project management

Non-consumable (renewable) resources used in projects can be classified in
several ways (see, e.g., [149]). Referring to [69,149], we will describe the ap-
proach based on resource availability.

1. The so-called non-constrained resources (C-category or C-resources) are
available in unlimited quantities for a cost throughout the project realiza-
tion (e.g., unskilled labor or general purpose equipment). C-resources do
not require monitoring although they might be expensive and might con-
tribute to the cost-effectiveness of the project. However, using those re-
sources does not result in changing the efficiency of any control policy in
project management. That is why C-resources will not be taken hence-
forth into account to outline the generalized cost-optimization problem.

2. Resources of the second class (B-category or B-resources) are usually in
limited supply for each type of resource. A resource limit may be either
independent on time, i.e., is fixed at the same level throughout the pro-
ject’s duration, or the limit is a function of time. Various B-resources,
e.g., skilled workers, special equipment, etc., for projects under random
disturbances require flexible, but not close, monitoring. Since each activ-
ity entering the project is of random duration, the corresponding feeding-
in resource moment to be determined is a random value too. The delivery
schedule for constrained B-resources is not determined in advance, since
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the delivery moments coincide with the feeding-in moments and are con-
ditioned on decision-making in the course of the project’s realization.

3. Extremely expensive and rare resources (A-resources) are usually external
and available for short periods within the time span of the project (e.g.,
technical experts, test-benches, special and unique facilities, heavy duty
equipment and cranes, etc.) A-resources should be strictly monitored be-
cause shortages might significantly affect the project schedule. Although
it 1s unknown in advance when a certain activity which utilizes A-
resources will actually be ready to begin, A-resources have to be delivered
at a pregiven date that has to be determined in advance. Thus, for activi-
ties which utilize A-resources, a deterministic schedule of delivering re-
sources is to be predetermined before the project starts to be realized.
Both A-and B-resources will be imbedded in the developed resource con-
strained project scheduling model under random disturbances.

12.2.3 Notation
Let us introduce the following terms:
G(N,4) -PERT type project (a network graph with random activity dura-

tions);
(4,7) -activity entering G(N, 4);
t -duration of (i, /) (a random value);
My -average value of 7;;
a; -lower bound of #, (pregiven);

b, -upper bound of #, (pregiven);
f;(t)  -density function of ¢, (pregiven);

7(7) -time moment event (node) i is realized, i.e., the earliest moment
when all activities entering i are completed (a random value);

n -the number of activities entering the project;

(i@ 2 Je, ) -activity which utilizes A-resources, 1<&<n, <n;

n, - number of activities which have to be supplied with A-resources;

(l'nB s Ty ) -activity which utilizes B-resources, 1<n<n, <n;

Ny - number of activities which have to be supplied with B-resources;

m -number of different B-resources;

R, -total capacity of the k-th type B-resources at the disposal of the pro-

ject management, 1<k <m;
¢ -capacity of the k-th type B-resources to be utilized by activity
(z‘ng, jnB) (pregiven for the case of fixed capacities and an optimized

variable for the case of variable capacities);
" -the maximal capacity of the k-th type B-resources to process activ-
ity (z‘nB, jnB) (pregiven for the case of variable capacities);

min

k -the minimal capacity of the k-th type B-resources to process activ-

bigJng
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ity (in3= jnB) (pregiven for the case of variable capacities);

S, -time moment activity (i,j) actually starts (a random value condi-
tioned on our
decisions);

F; =8, +1, - time moment activity (i, /) is completed (a random value);

T(z'éA, Je, )— time moment A-resources have to be delivered to process activity
(z'@, JEA) (a deterministic schedule to be determined in advance);

c(i@, j@) - cost penalty to be paid by the management per time unit of the A-

resources idling, i.e., S(i. ,j. )-Tli. ,j. ), which is the difference be-

tween delivering and feeding-in A-resources (pregiven);
Cy -cost of hiring and maintaining total {R,} B-resources per time unit

throughout the project’s realization (pregiven);

C -non-operational project’s expenses which comprise cost penalties
for idle A-resources and the cost of hiring and maintaining B-
resources during the project’s realization (a random value);

R.(¢)<R, - free (available for utilization) k-th type B-resources, at moment

t>0;

h. -the value of the search step of the &-th coordinate (pregiven);

£>0 -pregiven search accuracy for the cyclic coordinate method,;

D(i) -the subset of nodes, which directly precede node i, i.e., i € D(i) re-
sults in (i*,i)e 4 < G(N, 4);

p -a probability value close to zero which practically enables determi-

nation of the distribution’s lower bound by calculating the sample’s
p-quantile W, (p pregiven);
W T(i)} -the p-quantile of the random value 7(i), ie Nc G(N,4), with p
close to zero, i.e., a value of T(i) which practically cannot be dimin-
1shed;

W{T(z‘)/T(iéA, Je, )}, 1<&<g<n, - the conditional p-quantile of the random

p
value T7(i), on condition that for certain ¢ A-resource activities
(i. . j. ) their corresponding resource delivery moments 7(i. ,j. ) are
fixed and are deterministic values.

12.2.4 The problem
The general resource constrained scheduling problem for a stochastic net-

work project is to determine:
e a deterministic resource delivery schedule T(z‘@ o, ), 1<&<n,, for supplying

A-resources (to be determined in advance), and
e actual starting times S, for all activities (i, j)e G(N, 4)

- to minimize the average value of the non-operational expenses
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J= s in )}E{C}zmin E{ 3 [(S,; i —T(i§4,j§4))-c(i§4,j§4)]+ Cy |:Ifla))( F; —r(ni_r)l Si]}}, (1221)
i U0 Tey e ’ ’ ’ ’ ij iJ
subject to
S, 2Tl o di, ), 156 <n,, (12.2.2)
S, 2T() v(i j)e G(N,4), (12.2.3)
t=S, , = Zq:riymk <R(t), 1sn<q<n,, 1<k<m. (12.2.4)

n=1
Note that if some project activities require B-resources with variable capaci-
ties, value r, ., becomes an additional optimized variable. An additional restric-

tion
RS <™, 1Sn<q<ng, 1<k<m, (12.2.5)
is to be imbedded in the resource constrained project scheduling model.

Neither the costs of utilizing C-resources, nor the operational costs of proc-
essing project activities are implemented in cost objective (12.2.1). This is done
deliberately since all those expenses remain unchanged and do not depend on
the control model.

Restriction (12.2.2) means that an activity which utilizes A-resources, cannot
start before its corresponding delivery moment. Restriction (12.2.3) means that
any activity (i, ) entering G(N, 4), cannot start before the moment 77(;), i.e., that

S,z maxis, +1, | (12.2.6)

holds. Restriction (12.2.4) means that if at a certain decision point : B-

resources are reallocated among ¢ <n, activities, the summarized value of sup-

plied resources (for each k-th type of B-resources) should not exceed the corre-
sponding value R, (¢), i.e., the total capacity of free available «-th type resources

at moment ¢z, 1<k <m.

Problem (12.2.1-12.2.5) is a complicated stochastic optimization problem,
which cannot be solved by applying non-heuristic algorithms.

The problem’s solution is, in essence, a unification of a deterministic re-
source delivery schedule and a random schedule of activities’ starting times ob-
tained by using decision-making during the project’s realization. We suggest
solving the problem by means of simulation, in combination with a cyclic coor-
dinate search algorithm (see §§11.3, 12.1) and a heuristic resource reallocation
algorithm based on numerous applications of the knapsack resource reallocation
problem outlined in Chapter 11.

It can be well recognized that decreasing values T(z‘@ , j@) results both:

¢ in increasing the first additive in objective (12.2.1), i.e., the cost penalties

Z[(S B —T(ié  Je ))-c(ié_ J: )] for 1dle A-resources within the delay interval
el £4/c4 4 4 4 4

[le ,SJ, and
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¢ in decreasing the second additive, namely, the cost of hiring and utilizing
B-resources subject to decreasing the project’s duration, and vice versa.
Thus, a trade-off between both components is to be resolved to minimize
the cost objective (12.2.1).
Note, in addition, that due to (12.2.2) and (12.2.3), an evident relation
Tl . e, )2 Tli.,), 1<&<n,, (12.2.7)
holds, otherwise the A-resource idleness becomes pointless. Thus, (12.2.7) can
be regarded as the lower bound for the deterministic resource delivery schedule
to be predetermined.

12.2.5 The problem’s solution
It can be clearly recognized that determining a feasible schedule of delivering
A-resources, i.e., setting values T(i@ s, ), 1<&<n,, enables reducing problem

(12.2.1-12.2.4) to another problem, namely, to a modified version of a resource
constrained scheduling problem for stochastic network projects which has been
considered in [70-71]. The problem is to reallocate constrained B-resources
among the project’s activities which utilize those resources, to minimize the av-
erage project’s duration. Resource reallocation, i.e., feeding-in B-resources, is
carried out in every decision moment  when not less than one activity (z‘ng, o, ),

1<n<qg<n,, is ready to be processed but the available resources are limited.
Thus, decision-making centers on singling out optimal subsets of ¢ <¢ activi-

ties which are supplied with resources. It is suggested to solve problems (12.2.1-
12.2.4) or (12.2.1-12.2.5) by implementing a heuristic algorithm which com-
prises, in turn, two subalgorithms.

Subalgorithm I implements a cyclic coordinate descent search method in an
n,- dimensional space of optimized variables T(z'@, Je, ) In order to carry out the

search by avoiding pointless steps, a subsidiary simulation model is introduced

to calculate non-conditional and conditional W,{7(i)} and WP{T(z‘) /T(i@, Je, )} in

order to refine lower bounds (12.2.7) at each search point.
Subalgorithm II calculates for each feasible resource delivery sched-

ule {T(igA e, )} obtained from Subalgorithm I, the average objective value (12.2.1)

by simulating the project’s realization with limited B-resources. The number of
simulation runs should enable obtaining representative statistics. Decision-
making in order to reallocate limited B-resources among the corresponding pro-
ject’s activities 1s imbedded in this Subalgorithm as well.

Schedule T*(’@ s, ), 1<&<n,, which delivers the minimum to the average ob-

jective value (12.2.1), is taken as the optimal solution. Note, that values
T*(’@ : j@) are determined in advance, i.e., before the project starts. In the course

of the project’s realization the optimized resource delivery schedule T*(i@, j@)
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remains fixed and unchanged, while all starting values S, are determined by

means of Subalgorithm II. The structure of the heuristic algorithm is presented
in Fig. 12.1

12.2.6 Subsidiary simulation models
In order to carry out Subalgorithm I, two subsidiary simulation models SM1
and SM2 are implemented in the model. Assume that the graph G(N, 4) is prop-

erly enumerated, i.e., for each activity (i, /) relation i< ; holds. Assume further,
that a lexicographical order is introduced for all activities (i, /) entering the pro-
ject. Activity (i, ,) precedes lexicographically activity (i,,,) if either i <i, or
both i =i,, j, <j, hold.

Model SMI undertakes numerous simulation runs to calculate the W, -

quantile for values 7(i), ie N c G(N, 4). At each simulation run the random value
7(i) is calculated by

T() ln;lgig){S +1, } 1<i<n,

S, =T(), 1<i<n-1, 1< j<n, (12.2.8)

T(1)=0.

Note that since graph G(N, 4) is properly enumerated, using recurrent rela-
tions (12.2.8) in the course of a simulation run makes utilization of SMI very
simple.

For a representative sample obtained by means of SMI value W, {T(i)} is cal-
culated by using the classical sample theory (see, e.g., [27]). Simulation model

SM2 calculates conditional values WP{T(i) /T(igA, Je, )}, 1<&<g<n, and differs

from SMI by using recurrent relations

T() lrrelgfl(){S +i. } 1<i<n,
S,A:{ () ir e e 1<t<q. (12.2.9)
T max @7 g i G )

Note, that models SM1 and SM2 differ from each other only by implementing
different recurrent relations (12.2.8) and (12.2.9), correspondingly, in the course
of a simulation run. Both models will be used henceforth in Subalgorithms I and
1.
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Subalgorithm 1
E{C}for the current . Xﬂ .
1 search point 1 A cyclic coordinate descent | sMi
X =T(i,,,J;,) |method is realized for n , :
| coordinates {T(i,_.Js, )} W {T(@)}.1sE<n,;
1<E <n,, to determine an
-— . —
optimal resource delivery T(ig, » e, )-1= E=q SM2 -
’ schedule TG, ,j;,) — I
. W (T} .q+1=&<n,;

T(g, 4, ), 1SE<n,,]
(only when a coordinate]descent
method is used)

Subalgorithm | 11

General simulation model decision pointt
to simulate the { GSM { R, (), 1<k <m { knapsack
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for simulating the actual

{ project’s realization and for
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value C {fera checking{he nurnber

}

r. .
InpIng + 'ngngk

simulation] run of simdlation runs

L J

Numerous simulation runs by
using GSM and KBRRM

to calculate E{C} fora
representative statistics

Figure 12.1. The structure of the general resource constrained project schedul-
ing algorithm

12.2.7 A cyclic coordinate descent subalgorithm to determine A-resource de-
livery schedules

Coordinate descent methods are preferred [53-54,114,118,151] because of

their easy implementation for cases when the objective is a complicated non-
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linear function of optimized variables. Since setting n, deterministic values
(i, ,j. ), 1<&<n,, results in obtaining a non-variable objective value E{C}, the
latter can be regarded as a function f (xl,xz,...,xm) of n, coordinates x, zT(z‘éA, Je, ),
1<&<n,. Given a point X = {x,x,,...x, {={T(i ,j, }-.T(, .j, )}, descent with re-
spect to the coordinate x, (& fixed) means that one solves rriin f (xl,xz,...,xg,. x )

Thus changes in the single component x, result in seeking a new and better
vector descent in the direction x, or (-x;), where x, is the &£-th component. By

sequential minimizing with regard to different components, a minimum of f

might ultimately be determined.
We chose the cyclic coordinate descent algorithm which minimizes ¢ cycli-

cally with respect to coordinate variables. Thus, x is changed first, then x, with
fixed x, and so forth through x, . The process is then repeated starting with x,
again (second iteration), until the relative difference between two adjacent itera-
tions E{C}") and E{C}""" becomes less than the pregiven tolerance & > 0.

Note that in the course of changing the &-th coordinate, T(z'@, j@), with the
fixed first (£-1) coordinates T(i1A= lel...,T(z‘éfu, Jé—u)» all the next coordinates
T(z'ém, j§+1Al...,T(z'nA, an) have to be updated by using simulation models SM1 and
SM2. As outlined above, the cyclic coordinate descent method is imbedded in
Subalgorithm 1.

The extended step-by-step procedure of Subalgorithm I is as follows:
Step 1. Determine the initial search point x° = T(i@, j@)”, 1<&<n,, by means

of simulation model SMI by determining lower bounds of value x,
satisfying

7., 7., ) =W, {r(), 1s&<n,, (12.2.10)
where all T(i), ie Nc G(N, 4), satisfy (12.2.8).

Step 2. Apply Subalgorithm II to determine the objective E{C} for x°. De-
note the obtained value by C .

Step 3. Set counter v =1 for the number of cyclic iterations. Note that
Elc)=c".

Step 4.  Set counter & =1 for the number of the current coordinate.

Step 5. For each current coordinate x, = T(z‘@ : j@) arrange a local search with a

pregiven search increment #,, x. 4., where values x,x,,...,x, ; remain
fixed and unchanged, while lower bounds of values x.,,x.,,....x, are

ny

determined by using simulation model SM2, namely, by
x, =707, =W, {6, )76 .j, )}, 1<s<&, E+1<q<n,.  (12.2.11)

Note that in the course of carrying out the first iteration the search
algorithm uses only positive increments, i.e., only search of type
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Step 11.

Step 12.
Step 13.

Step 14.

x; +h. = x. 1s implemented. However, for next iterations, when in-
crements 4., 1<&<n,, are usually diminished, both directions
x; *h. = x, may be examined.

Apply Subalgorithm II to determine the objective value for the new
search point X=(xl,x2,...,xé4,xé J_rhé,xéﬂ,...,xm). Denote the average
value E{C} obtained by means of Subalgorithm II, by C(x, = .).

If C(x, +h,)<C(x,), undertake a new search step for the coordinate
value x, along the direction of the objective’s decrease. Return to Step
6. Otherwise, if C(x, +4,)> C(x, ), change the search to the opposite di-
rection and apply Step 6 again. If C(x,) cannot be decreased by
undertaking a search for coordinate x., apply the next step.

Counter & works, £+1=¢.

Check inequality & >n . If yes, proceed to the next step. Otherwise re-
turn to Step 5.

Applying this step means that we have undertaken a local search for
all coordinates 4., 1<&<n,, separately. Denote the final value of ob-

jective (12.2.1) by " where v is the current number of the cyclic it-
eration.

Calculate the relative closeness k") between two adjacent v-th and
-1 =)
(v—1)-th iterations, k(v):%. If k%) >¢, apply the next step.
C
Otherwise go to Step 14.
Counter v works, v +1=v .

Diminish values 4., 1<&<n,, (they are usually subdivided by 2), and
return to Step 4.

Subalgorithm I terminates and the results obtained at the last, v-th it-
eration, are taken as the optimal, 1.e.,

., ) =1, 1" (12.2.12)

Note, in conclusion, that all steps of Subalgorithm I are carried out in ad-
vance, 1.e., before the project starts. After determining the optimal resource de-
livery schedule (12.2.12) we apply Subalgorithm II only once, in the course of
the actual project’s realization (see Fig. 12.1).

12.2.8 Subalgorithm Il to simulate the project’s realization by supplying

constrained B-resources

The general idea of reallocating renewable constrained resources among the
project activities has been outlined in Chapter 11 for stochastic network projects.

Subalgorithm II comprises two important models (see Fig. 12.1):

e the knapsack resource constrained reallocation model to allocate B-
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resources among the project activities at decision points (see block
KBRRN on Fig. 12.1), and
e the general simulation model (GSM) to simulate the project’s realization.
The knapsack resource reallocation problem is realized at the so-called deci-
sion points : when at least one activity (z‘ng, jnB) utilizing B-resources is ready to

be operated but the available amount of resources is limited. A competition
among the activities has to be carried out in order to choose those activities
which can be supplied with resources and which have to be operated first. As-
sume that at a certain moment ¢, ¢<n,, activities (z‘ng, jnB), 1<n<gq, g>1, are

ready to be processed, but at least for one type of resources there is a lack of
available B-resources.
In case of fixed B-resource capacities 7, ., 1<k <m, we suggest (see §11.1)

to solve the zero-one integer programming problem by determining zero-one in-
teger values p,, 1<n <q, to maximize the objective

Iﬁai‘{z [pn 'p(im;’jng )':ui,,gj,m ]} (12213)
n n=
subject to
Z[p,,-ri,mj,mk]s R(t), 1<k<m, (12.2.14)
n=1

where pli ,j. ) is the probability for activity (i ./, ) to be on the critical path in

the course of a simulation run, and
0 if activity i, j)is provided with resources;
0 ={ (m’ m’) (12.2.15)

1 otherwise.

Thus, product , = pi,,.j, ) 1, , represents the value contributed by activity
(z‘ng, jnB) to the expected project’s duration. The subset of activities which when

supplied with resources, results in minimizing the project’s duration, has to be
chosen. All activities entering that subset start operating at moment ;.

Problem (12.2.13-12.2.15) is solved by a zero-one integer programming al-
gorithm with a precise solution (see, e.g., [153]). Values p(inB, jnB) are deter-

mined by means of simulation, by using (12.2.9) and taking into account val-

ues {T(igA e, )} obtained from Subalgorithm I.

In case of variable B-resources capacities r, 1<k <m, activity duration

l’)Bj')Bk b
depends on resource capacities to be allocated to that activity. A more compli-
cated problem has been solved in order to perform the optimal choice at decision
points ¢ (see §§11.1-11.2). We solve a knapsack resource reallocation problem
as follows:

e to determine p, and r,

'npJng

J:{ %ax }{Zq:|:pn 'p(ing’jm; )'kzm;[riy,gjymk 'W(ins’jng’k)ﬂ} (12216)

n P Vingingh ) | =1

. 1<k <m, 1<n<gq,to maximize the objective
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subject to
P << (12.2.17)

i'm j'73 i'm j'7B i'w j'7B

q
Soyr  JERA) V20, 1<k <m, (12.2.18)

n=1
where p, satisfies (12.2.15). Here value 1//(1',73, fn3=k) ensures the optimal choice
which results in minimizing the project’s duration. Problem (12.2.15-12.2.18) is
solved by means of heuristics similarly to outline in §11.2, as well as by a look-
over algorithm providing a precise solution.

The GSM model:

a) determines decision points ¢ to reallocate B-resources;

b) singles out activities which are ready to be processed;

c) reallocates B-resources among activities on the basis of solving problems

(12.2.13-12.2.15) or (12.2.15-12.2.18);
d) supplies activities with resources and determines values R, (¢);

e) simulates the actual time durations for activities which have been supplied
with A- or B-resources;

f) returns utilized B-resources to the project’s store at the moment an activity
was completed;

g) calculates values , for the knapsack reallocation problems (12.2.13-

12.2.15) or (12.2.15-12.2.18) at decision points ¢;
h) determines for activities utilizing A-resources their starting moments by
using relation (12.2.9).
Thus, Subalgorithm II is used both
e for forecasting purposes to optimize the A-resources delivery schedule, i.e.,
before the project starts, and
e in the course of the project’s realization (see Fig. 12.1), on the basis of the
optimized schedule T*(’@ JJs, ).

12.2.9 Experimentation
In order to check the efficiency of the presented resource constrained algo-
rithm, extensive experimentation has been undertaken. Various stochastic net-
work projects comprising 30+50 activities have been examined [53,93-94], each
of them including 3+5 activities utilizing A-resources, with all other activities
requiring B-resources. Numerous combinations of cost parameter values, as well
as three alternative probabilistic distribution laws (uniform, normal and beta)
have been considered.
The following conclusions can be drawn from the experimentation:
1. The uniform distribution is the most expensive to realize the project, while
the normal distribution proves to be the cheapest one.
2. The cyclic coordinate algorithm for determining resource delivery mo-
ments T(z'@ , j@) requires only two iterations to carry out the optimization

process. The decrease of expenses between the second iteration and the
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initial search point 7(;, /)’ showed approximately 45% cost improvement
for the uniform distribution, 58% for the beta-distribution and 67% for
the normal distribution. Thus, it can be well recognized that the coordi-
nate search algorithm performs well.

3. The comparative efficiency of the normal distribution can be illustrated by
analyzing the results of the first iteration. Implementing the latter results
in decreasing the average cost expenses C by 66% for the normal distribu-
tion versus only 23% for the uniform distribution and 29% for the beta-
distribution.

4. The outlined resource constrained project scheduling model can be applied
to a broad variety of stochastic network projects which utilize various
types of renewable resources, e.g., R&D projects.

5. The developed scheduling model covers both rare and expensive resources
which require strict monitoring and can be delivered from outside for
short periods only together with various types of renewable limited re-
sources at the project management’s disposal. Those resources do not re-
quire close monitoring. The model provides both a deterministic resource
delivery schedule for the rare and expensive resources and undertakes re-
source reallocation to obtain a feeding-in schedule for the second type of
resources.

6. Unlike the model outlined in §12.1 which is not aimed at PERT projects,
the model under consideration covers practically all types of stochastic
network projects independently of their structure.

7. The main drawback of the model considered in §12.2 is the absence of
chance constraint restrictions. The required model’s refinement will be
outlined below.

§12.3 A generalized resource project scheduling model for several
PERT projects under chance constraints
12.3.1 Introduction
In the preceding §12.2 we have outlined a resource supportability model
which deals with two different types of renewable resources to be consumed by
the project’s activities:

e rare and costly resources (A-resources) which have to be delivered from
outside for a relatively small group of project activities;

e restricted renewable resources which are feed in at random moments when
the resources are available and at least one project activity has to be sup-
ported with resources in order to start processing (B-resources). Those re-
sources are in limited supply at the project’s disposal throughout the plan-
ning horizon.

We have assumed before that the total B-resource capacities for the project

management store are fixed and pregiven externally. However, since the cost of
hiring and maintaining B-resources is an essential part of the total expenses in
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the course of the project’s realization, the problem of determining the optimal
restricted B-resource capacity limits is reasonable for many projects’ scenarios.

Minimizing the total project’s expenses to meet the target on time, i.e., at a
given due date, has not to be the only project management’s goal in the course
of a long-term cooperation with various customers. To honor the company’s
good name, an additional requirement has to be implemented in the model: the
project has to meet its due date on time with a pregiven confidence probability.
Thus, a chance constraint has to be introduced in the resource constrained
model.

The cost objective for all models outlined in the previous chapters was to
minimize the budget for the resource consumption within the planning horizon.
However, it would be reasonable to also take into account additional factors
connected with the project’s total expenses within the planning horizon, e.g.:

e the starting time of the project’s realization, which refers to the optimized

variables as well;

e various penalty costs for not meeting the project’s target on time and stor-

age costs for the project’s completion before the due date.

Thus, developing u generalized resource supportability model under a chance
constraint and comprising all the additional parameters outlined above results in
raising the model’s flexibility. Such a model covers a broader spectrum of pro-
ject management’s systems.

Note that A-resources should be strictly monitored: for operations which util-
ize A-resources, the corresponding resource delivery moments have to be prede-
termined and calculated beforehand, i.e., the resources have to be delivered at a
pregiven time. Although, due to random disturbances affecting the project, it is
impossible to forecast with a good accuracy, when a certain activity entering the
project will be ready to start, the resource delivery schedule has to be determi-
nistic.

B-resources should also be monitored, but not closely: for each activity
which consumes those resources its feeding-in resource moment has to be de-
termined. Those time values are not calculated beforehand and are random val-
ues conditioned on the model’s future decisions.

Let us formulate the essence of the modified resource supportability model.
Given:

¢ the projects due dates D,;

e the least permissible probability p of accomplishing each project on time;

e the cost per time unit for hiring and maintaining a B-resource unit (for

each type of resources);

e the penalty cost per time unit for the idleness of A-resources (for each ac-

tivity which utilizes those resources);

e the penalty cost for the projects’ delay (a single payment to the customer);
the penalty cost for each time unit of delay;
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e storage changes per time unit for the projects’ completion before the due
date.

The problem is to determine:

e the starting moment S, of the project’s realization, together with:

e the resource delivery schedule for A-resources, and

e the restricted resource levels for each type of B-resources,
in order to minimize the average total projects’ expenses subject to the chance
constraint.

12.3.2 The system’s description

Several stochastic network projects of PERT type are considered. The dura-
tions of each activity entering each project are random and the corresponding
probability density functions are pregiven. Certain activities entering the pro-
jects require extremely costly and rare resources (A-resources) which are usually
delivered externally and are available for short periods within the time span of
each project (e.g., technical experts, test-benches, special and unique facilities,
heavy duty equipment and cranes, etc.). A-resources should be strictly moni-
tored because shortages might significantly affect each project’s schedule. Al-
though it is unknown in advance when a certain activity which utilizes A-
resources, will actually be ready to begin, A-resources have to be delivered at a
pregiven date that has to be determined in advance. Thus, for activities, which
utilize A-resources, a deterministic schedule of delivering resources to all pro-
jects is to be predetermined before the projects start to be carried out.

Other activities require constrained renewable B-resources (see §12.2) which
are at the disposal of the project management and are in limited supply for each
type of resources. Assume that a resource limit is independent on time, i.e., is
fixed at the same level throughout each project’s duration. Various B-resources,
e.g., skilled workers, special equipment, etc., for projects under random distur-
bances require flexible, but not too close, monitoring. Since each activity enter-
ing any project is of random duration, the corresponding feeding-in resource
moments to be determined are random values either.

Note that B-resources have to be hired in advance, in order to be delivered to
the project’s store at the moment the project actually starts. B-resources are re-
leased at the moment when the corresponding project is completed. The B-
resource limits for each type of resources and for each project are problem’s
variables to be optimized as well as the moments the projects start to be carried
out.

Assume, for simplicity, that an activity may utilize several non-consumable
(renewable) B-resources of various types with fixed (pregiven) capacities.

The cost objective of the control model comprises the following expenses:

1. The costs of hiring and maintaining B-resources within the projects’ dura-

tion, i.e., between the moment the projects start to be realized and the
moment of the projects’ completion (for each project separately).
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2. The cost penalties paid for the A-resource idleness when an A-resource
was delivered at the planned moment but not utilized since it had to wait
for the moment the corresponding activity was actually ready to be oper-
ated.

3. Each project has its due date D, and the penalty cost C; (paid to the cus-

tomer) for not accomplishing the project on time. In addition a penalty
cost C;” has to be charged for each time unit of delay after the due date. If
the project is accomplished before D, it has to be stored until the due date
with a C;™ penalty charge for each time unit of storage.

Note that the operational costs of processing projects’ activities are not im-
plemented in the cost objective. This is done deliberately since all operational
expenses remain unchanged and do not depend on the control model.

12.3.3 Notation
Let us introduce the following terms:
G,(N,4) - the 1-th PERT type project, 1</<n;
n - the number of projects;
(i, ), € G,(N, A) - activity entering project G,(N,A);

t - duration of (i, j), (a random value);

il

i - average value of ¢, ;
a; - lower bound of ¢, (pregiven);
b, - upper bound of ¢, (pregiven);

fu(6) - density function of ¢, (pregiven);

n - the number of activities entering G (N, A4);

(i, J,), - activity entering G,(N,4) which utilizes A-resources, 1<&<n,, <n,;

ny - number of activities entering G,(N,4) which have to be supplied
with A-resources;

(4,,-Jn,); - activity entering G,(N, 4) which utilizes B-resources, 1<n <n, <n,;

Ny - number of activities entering G, (N,4) which have to be supplied

with B-resources;
m - number of different B-resources;
R - resource level of the ¢-th type B-resources at the disposal of

G,(N,A4), 1<q<m (an optimized variable to be determined);

S, - time moment project G,(N,A4) starts to be carried out (an optimized
variable to be determined);

D, - the project’s G,(N, 4) due date (pregiven);

A - least permissible probability of meeting the project’s due date on

time, 1.e., the model’s chance constraint;
- time moment activity (;, j), actually starts (a random value condi-

247



tioned on the
model’s decisions);

F, +1,,- the moment activity (i, j), is completed (a random value);

il

=S
ijl
T(igA, Je, )1' time moment A-resources have to be delivered to process activity

(’4 s, )1 (an optimal deterministic schedule to be determined in ad-

vance);
- capacity of the g¢-th type B-resources to be utilized by activity

(i’?B’jm; )1 (preglVen);
F, = MaxF, - the actual moment of project’s G,(N,4) completion (a random
LI :

V..
I Jnpd!

value);

C : - a single penalty cost of project’s G,(N,4) delay, i.e., in case D, <F,
(pregiven);

Cc - a penalty cost for each time unit of project’s G, (~,4) delay in case
D, < F, (pregiven);

c - storage charges per time unit for project’s G,(N,4) completion be-

fore the due date, in case F, < D, (pregiven);
clic,.j:,), - cost penalty to be paid by the management per time unit of the A-
resource idling, i.e., in case 7(;, . j,, ) <S, , , (pregiven);
- cost per time unit for hiring and maintaining the g¢-th type B-
resource unit throughout the project’s realization (pregiven);
G - non-operational project’s expenses comprising all kinds of cost
penalties, the cost of hiring and maintaining B-resources throughout
the project’s G,(N,4) realization and the cost of storage expenses (a
random value to be minimized);
R,)<r, - free (available for utilization) g¢-th type B-resources at moment
t>S,, for project G,(N,4) (a random value);

h. - the value of the search step of the &-th coordinate in the cyclic
coordinate search method (pregiven);
¢>0 - search accuracy for the cyclic coordinate method (pregiven);

—opt

Cr/ S,,{Rq,}, T(igA, Je, )1’ 1<g<m, 1<&<n, - the optimal conditional value de-
livering the minimum to project’s G (N,4) non-operational average

expenses, on condition that values {5}, {R,| and {T(iéA, Je, )1} are

fixed and externally pregiven;

S min - lower bound of the moment project G, (N,4) may actually start (de-
termined by the project management and externally pregiven);
S max - upper bound of the moment project G, (N,4) may actually start (de-

termined by the project management and externally pregiven);
- lower bound of the resource level R, 1<g<m, 1</<n (determined

ql/min
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by the project management and externally pregiven);

R - upper bound of the resource level R, 1<g<m, 1</<n (determined

qlmax
by the project management and externally pregiven);

C - non-operational expenses comprising all kinds of cost penalties, the

cost of hiring and maintaining B-resources and the cost of storage

expenses for the entire system comprising » projects (a random

value to be minimized);

12.3.4 The problem
The general problem is as follows [81]:

to determine in advance optimized deterministic variables Sl,{qu} and
T(iéA e, )l, 1<i<n,1<q<m, 1<&é<n,, and within the projects’ realization, ac-

tual starting times S,, for all activities (i, j),, 1</<n, in order to optimize the av-

ijl
erage system’s expenses

st © (12.3.1)
subject to
Pr{F,<D,}>p;, 1<i<n, (12.3.2)
SigAnglZT(i§A7j§A ),a 1<é<n,, (12.3.3)
Sy 2T(@) v J), = G(N,4), (12.3.4)
=S, ., 1<sn<d<n,= Zd;riww, <R,(¢) (12.3.5)
p

where random value ¢ satisfies

C= Z (Zf:iC(lé e )l | [Si“ e T(ié”’ e )' ]}+ ; [qu R (P =5, )]+ (12.3.6)
=1 X o ook

+[C1 +C1 (Fl _Dl)]'51 +[Cl '(Dl _F})'(l_él)]

and

1if F,>D,
5 =

! {O otherwise . (12.3.7)
Here 7(i) stands for the time moment when event ieG,(N,4) is carried out.

Restriction (12.3.3) means that an activity which utilizes A-resources, cannot
start before their corresponding delivery moment. Restriction (12.3.4) means
that any activity (i, j), entering G,(N,4) cannot start before moment 7(;). Restric-

tion (12.3.5) means that if at a certain decision-point ; B-resources are reallo-
cated among d <n, activities, the summarized value of supplied resources (for

each g-th type of B-resources) should not exceed the corresponding value r (¢),
1.e., the total capacity of free available ¢-th type resources at moment ¢,
I<g<m.
Problem (12.3.1-12.3.7) is a complicated stochastic optimization problem
which cannot be solved unless using heuristic methods.
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We assume [81] that all projects G,(N,4), 1<I/<n, are carried out independ-

ently each from the other, moreover, they are realized in different places. This
means, that one central resource storehouse for all projects cannot be used. We
decided to optimize each project independently and later on to summarize the
obtained optimal (minimal) values C; in order to determine the global solution C
of the target function (12.3.1). Thus, the general optimization problem boils
down to a simplified problem for a single project, which will be outlined below.
In this course, as we transit to a case with »=1, index / will be omitted in fur-
ther relations.

12.3.5 The simplified problem for a single project
The problem is as follows [80-81,151]:
to determine in advance optimized deterministic variables S, {Rq} and

T(i@,j@ ), 1<qg<m, 1<&<n,, and, within the project’s realization, actual starting
times S, for all activities (i, /)e G (random values) in order to minimize the aver-

age project’s expenses

Mi C
BRI (12.3.8)
subject to
Pr{F < D}> p* (12.3.9)
S, . 2T,/ ). 1<&<n, (12.3.10)
S,,ZT() v(i,j)c G (12.3.11)

t=S, . 1<n<d<nB:>z

Ing g

<R/(t), 1<q<m, (12.3.12)

IngJng4

where random value ¢ satlsﬁes

n Z{C(iéA’jéA)'[Si;A,j;A _T(iéA’jéA )]}*'i[cq'Rq'(F—S)]Jf

C=>"|lee) g=1 (12.3.13)
MNile+em (F-D)s+[c (D-F)-(1-6)]

and

5:{1 yoE>D (12.3.14)
0 otherwise.

12.3.6 The problem’s solution

We will solve the simplified problem (12.3.8-12.3.14) as follows [80-
81,151]. Two hierarchical optimization levels (cycles) are imbedded in the
model. At the external upper cycle the problem (call it henceforth problem PI)
is as follows:

Determine optimal values s, {Rq}, 1< ¢ <m, to minimize the average project’s

non—operational conditional costs subject to the chance constraint

?},%“;{ “Js. (R Jrr K (o P)} (12.3.15)
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and subject to restrictions

quin SRqSquaxﬁ lsqsmﬁ (12316)
S <S<S._. (12.3.17)
Here:

o C"/s,{r,} is calculated by means of simulation in order to obtain a repre-
sentative statistics and by solving the internal optimization problem PII
(see below);

e p is the simulated statistical frequency to meet the project’s due date on
time, 1.e., to satisfy F<D;

e K is a very large number (in the course of experimentation we took it to
be equal 10"7);

e y(x) is a zero-one function
y(x)={0 v p=p (12.3.18)

1 otherwise.

Thus, objective (12.3.15) automatically prohibits cases with p< p*, i.e., hon-
ors the chance constraint (12.3.9).

To solve problem PI, we use a cyclic coordinate descent algorithm which
minimizes (12.3.15) cyclically with respect to coordinate variables s, {Rq}.

Value s is optimized first, then R, with fixed new (optimized) s, and so forth
through R, (honoring (12.3.16-12.3.17)). The process is then repeated starting

with § again (second iteration) until the relative difference between two adja-
cent iterations becomes less than the pregiven tolerance ¢ > 0. Thus, implement-
ing the algorithm results in undertaking a search in a (m+1)-dimensional space

which i1s a combination of values § and {Rq}, 1<g<m, subject to restrictions
(12.3.16-12.3.17). After obtaining a routine search point (S,R,....R, )= X, the in-

ternal optimization problem PII at the lower level has to be applied. Thus, val-
ues S, {Rq}, 1< ¢ <m, are input values for problem PII [80-81].

Problem PII is, in essence, a non-essential modification of the problem out-
lined in §12.2. The problem boils down to determine the quasi-optimum re-
source delivery schedule T(z‘@, j@), 1<&<n,, in order to minimize the average

project duration by means of solving the resource constrained project scheduling
problem via the knapsack resource reallocation problem. The general idea of the
problem is as follows:

Given the due date D, the starting moment s of the project’s realization and
the resource levels {Rq}, 1< ¢ <m, determine resource delivery schedule T(i@ ) ),

in order to minimize the project’s duration by reallocating B-resources among
the project activities. Thus, the problem is as follows:

in )}{EOPI/T(Z'@,jéA),S,{Rq}+y-K-(z:—t*)} (12.3.19)

{Sij }’ T 16,4 ’-/6,4
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subject to (12.3.10-12.3.12).

The outlined below algorithm is, in essence, a unification of a coordinate
search subalgorithm to develop a deterministic A-resource delivery schedule
(outlined in §12.2) and a heuristic B-resource reallocation subalgorithm based
on numerous applications of the knapsack resource reallocation problem in order
to diminish the average project’s duration (see §§11.1-11.2).

The combination of (1+#,+m) optimized variables s, {Rq}, T(z'@, j@), which

results in the minimal average value of non-operational project’s costs

{E‘Opt/T(z‘éA Ji )-S.AR, }}, has to be taken as the solution of the simplified problem

(12.3.8-12.3.14). After determining beforehand (i.e., before the project starts at
moment §) all optimized variables, the project has to be monitored with fixed
and hired B-resources {Rq}, 1<¢<m, and with the A-resource delivery schedule

T(i@ JJs, ) Such a methodological approach can be used both for monitoring real-

time projects and by undertaking experimentation by means of simulation in or-
der to assess the efficiency of the problem’s solution.

Note that if solving problems PI and PII results in carrying out, in the aver-
age, M, and M, search steps, correspondingly, and obtaining representative sta-

tistics to calculate C results in undertaking A7, simulation runs to monitor the

project, then determining optimized parameters S, {Rq}, {T(igA, Je, )} requires in
the average (M,-M,-M,) simulation runs. Thus, we recommend applying the re-

garded control model for small- and medium-size network projects. In the case
of large projects we suggest to reduce the amount of the project’s activities by
means of aggregation.

12.3.7 Monitoring stochastic network projects via resource reallocation
simulation model

Values s, {Rq} and {T(igA e, )}, obtained by solving problems PI and PII, serve

as the input parameters for the simulation model at the lower level. The general
idea of such a simulation model has been outlined above, in §§11.1.-11.2.

The simulation model comprises two submodels:

e the knapsack resource constrained reallocation to allocate B-resources
among the project activities at decision points and to simulate the project’s
realization;

e the submodel to simulate the project’s realization.

The knapsack resource reallocation problem is solved at decision points ¢

when at least one activity (z‘ng, jnB) utilizing B-resources is ready to be operated

but the available amount of resources is limited. A competition among the ac-
tivities has to be carried out in order to choose those activities which can be
supplied with resources and which have to be operated first. Assume that at a
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certain moment ¢, d <n, activities (z‘ng, o, ), 1<n<d, d>1, are ready to be proc-

essed, but at least for one type of resource there is a lack of available B-
resources.
In case of fixed B-resources capacities 7, , ,, we solve the outlined in §11.1

zero-one integer programming problem by determining zero-one integer values
p,, 1<n<d, to maximize the objective

Iﬁ??{i[pn'p(im;’jng)"u(ing’jng)]}’ (12.3.20)
subject to

d

> lpy pliy, o, J<R,(0): 1< g <m., (123.21)

where pli, ,j. ) is the probability for activity (i ,/, ) to be on the critical path in

the course of a simulation run, and

1 if activity \i, ,j )is provided with resources ;
={ f activiy (i, ., )is p (12.3.22)

T 10 otherwise .

Thus, product W, = p(l'nB T, ) “(ing , jnB) is the value activity (z‘ng, jnB) contributes

to the expected project’s duration. The subset of activities which being supplied
with resources, results in minimizing the project’s duration, has to be chosen.
All activities entering that subset start operating at moment ;.

Problem (12.3.20-12.3.22) is solved by a zero-one integer programming al-
gorithm with a precise solution. Values p(inB, jnB) are determined by means of

simulation, by using (12.3.4) and taking into account values T(z‘@ Je, ).

The simulation submodel is similar to the GSM model outlined in 72.2.8 and
carries out the same operations (see §12.2).

12.3.8 Experimentation

In order to evaluate the performance of the algorithm, a medium-size net-
work project of PERT type has been considered. The project’s initial data is pre-
sented in Tab. 12.1. Two activities, namely, (4,6) and (7,10), utilize A-resources
from outside, while all other activities are operated by using two types of non-
consumable B-resources. Thus, m =2, and the externally pregiven lower and up-
per bounds of values R and R, are as follows:

R.. =30, R =80;

R,. =27, R,  =30.

The model’s chance constraint p*=0.9, while values 7,
(i, /)e G\(4,6)\(7,10), are presented in Tab. 12.1. Four parameters are varied,
namely c(i@, j@), ¢, ¢, and the distribution of ¢;. Penalty rates c(z'@, j@) are

1min

2 max

1<¢g<2,

similar for both activities (4,6) and (7,10). Two distributions of ¢, are consid-
ered:

253



a) ¢; is a random value uniformly distributed in the interval [al./.,bl./.];
b) ¢, is a random value normally distributed with average u, =O.5-(aij +bij)

and variance V, = % : (bj —a,
The experimental design is given in Tab. 12.2.

Table 12.1. The initial data

Activities I J a; bij h )
1 1 2 24 38 20 10
2 1 3 15 31 17 14
3 1 4 18 30 25 18
4 2 3 38 49 18 20
5 2 7 10 18 23 12
6 3 5 32 49 15 9
7 3 7 18 30 30 22
8 4 6 24 38 0 0
9 4 7 12 26 22 20

10 5 9 10 25 26 17
11 6 7 22 43 30 12
12 6 8 11 34 10 15
13 7 10 27 38 0 0
14 8 10 30 48 29 27
15 8 11 24 38 20 10
16 9 12 15 31 17 14
17 10 11 18 30 25 18
18 10 12 38 49 18 20
19 11 13 10 18 23 12
20 12 13 32 49 15 9

A total of 16 combinations (2x2x2x2) were considered. For each combina-
tion 500 simulation runs were carried out at each search step in the course of
solving problems PI and PII. The values of the search step for all (1+7r,+m) co-

ordinates have been set h, =2 for the first iteration and h. =1 for the next itera-

tions. The pregiven search accuracy ¢ >0 for the cyclic coordinate method has
been set ¢ =0.001 .
Several output measures have been considered as follows:
- the minimal average cost value of total expenses within one simula-
tion run;
- the average actual probability of meeting the due date on time;
- the predetermined moment the project actually starts;
- the total capacity of resources of type 1 to be hired at moment s ;
- the total capacity of resources of type 2 to be hired at moment s ;
4,6) - the planned moment for the A-resources to be delivered to process

al

Nmma sl
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activity (4,6);

T(7,10) - the planned resource delivery moment for activity (7,10).

Table 12.2. The experimental design

. Values set in the ex- Number
Variables .
periment of values

Penalty cost per time unit for A-resource idle- 1,000; 1,200 2
ness cl, ., )
Distribution of ¢, Uniform, Normal
Cost per time unit for hiring a R, -type unit c, 3; 5
Cost per time unit for hiring a R,-type unit c, 3; 5 2

The summary of the experimentation is presented in Tab. 12.3. Note that for
all combinations solving problems PI and PII requires 4 iterations, i.e., the

quasi-optimal solution {S,{Rq},T(iéA  Je, )} obtained at the fourth iteration results in

the output value C which practically coincides with that obtained at the third it-
eration. In the course of implementing the cyclic coordinate descent algorithm
the initial value of objective C has been reduced for all combinations by 85-90%

in the average.

Table 12.3. The summary of the experimentation

Input parameters Output parameters
L T, ,j B
Distribution c(igA,ng ) ¢ le,ls | R|R (4’6()@ ](?’10) z =
1,000 303 |15]50]42| 30 106 | 199,105 0.99
1,000 3 15 15144 38| 32 104 | 188,240 | 0.98
1,000 513 1145244 34 109 | 210,311 1
. 1,000 515 11154145 | 30 105 | 215,500 | 1
Uniform
1,200 3 13 |17]142 40| 28 100 | 180,902 | 0.97
1,200 3|5 | 13148 42| 27 98 1201,325| 0.99
1,200 513 110]52 48| 26 98 1208,850 | 1
1,200 515 11314640 30 100 | 192,220 | 0.98
1,000 3 |3 | 1852144 | 32 107 | 150,121 1
1,000 31511614043 | 31 105 | 140,953 | 1
1,000 513 ]116[48 |50 | 31 104 | 149,211 1
1,000 51511514946 | 34 109 |166,002 | 0.98
Normal
1,200 313 11915049 | 30 103 | 149,231 1
1,200 315 | 17147143 | 29 102 | 145,652 | 1
1,200 513116145148 29 102 | 151,653 | 0.99
1,200 51515143144 | 32 105 | 156,845 | 0.97

The following conclusions can be drawn from the summary:
1. The average probability 5 of meeting the due date on time exceeds (for all
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combinations considered in the experimental design) the pregiven chance
constraint p*. Thus, the algorithm minimizes objective C with respect to
(12.3.9).

2. It can be clearly recognized that the regarded model (12.3.8-12.3.14) is
very flexible. Increasing values ¢, and ¢, results either in shifting value s

to the left or (and) in decreasing values R, and R,. In other words, com-

pensating control actions are introduced to prevent increasing objective
C . As to cost penalties c(z'@, JEA)» increasing the latter results always in

shifting values T(z'@, j@) to the left. Thus, objective values C are protected

from drastic fluctuations.
3. Using the normal distribution yields lower total cost expenses C than by
using the uniform distribution.

§12.4 Conclusions

The following conclusions can be drawn from Chapter 12:

1. It can be well-recognized that model (12.3.1-12.3.7) covers and comprises
all local models outlined above, in §§12.1-12.2. Those local models ap-
pear to become nothing but particular cases of the generalized model.

2. Being a truly resource supportability model and comprising several local
predetermined resource delivery schedules (for individual projects),
model (12.3.1-12.3.7) functions simultaneously at the projects’ planning
stage when determining optimal projects’ starting moments S, and opti-

mal resource capacities R, subject to the chance constraints. Moreover,

this model unifies resource constrained project scheduling with both de-
terministic resource delivery schedules (for A-resources) and random de-
livery schedules (for B-resources).

3. As outlined above, the model’s optimization algorithm is based on the as-
sumption that projects are independent and the model can be subdivided
into non-intersecting and non-interacting fragments. In real life such an
assumption cannot sometimes be justified and has to be withdrawn. In the
latter case an additional hierarchical level has to be implemented in the
model, namely, the level of optimal resource reallocation among the pro-
jects. Being essentially more complicated than the previous model, this
refined model does not possess unavoidable drawbacks and can be opti-
mized as well. However, in most practical cases model (12.3.1-12.3.7) as
it stands now, provides sufficient accuracy [151].

4. Thus, model (12.3.1-12.3.7) can be regarded as one of the basic, universal
models, which can be successfully implemented in innovative projecting.
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Chapter 13. Stochastic Network Models for Determining Project’s
Planning Parameters

§13.1 Case of a group of aggregated projects in the form of consecutive

operations

13.1.1 Introduction

As outlined above, in Chapters 11-12, besides control and scheduling models
used at essential moments of the project’s life cycle, certain models are aimed at
determining planning characteristics, e.g., the project’s due date, total capacities
of various types of resources to be stored, etc. Those planning characteristics can
be changed overtime, especially at emergency moments (see Chapters 4-6). The
models under consideration can be regarded as models of mixed type, since they
are implemented both at the planning stage (see Chapter 3), i.e., before the pro-
ject’s realization, and at the stage of monitoring the project. Note that the pro-
jects may be of different structure. At the initial stage of any complicated project
with no similar prototype in the past, the model may be restricted to a source and
a sink nodes connected by a chain of several intermediate consecutive opera-
tions of random duration. Thus, at the initial stage, a detailed network model
does not exist.

We are considered with several simultaneously realized preliminarily pro-
jects (PP) [88] consisting of a chain of operations to be processed in a definite
technological sequence. Each project’s operation utilizes qualified manpower of
various specialties, i.e., several non-consumable resources, with fixed capacities.
Each type of resource at the management’s disposal is in limited supply, with a
resource limit that remains unchanged at the same level throughout the projects’
duration, i.e., until the last project is actually completed. Thus, due to the limited
resource levels, projects’ operations may have to wait in lines for resource sup-
ply, in order to start functioning. Since for each operation its duration is a ran-
dom variable with given density function, a deterministic schedule of the mo-
ments operations actually start cannot be determined.

The general problem is to determine:

e optimal deterministic total resource capacities for each type of resource at

the management’s disposal (beforehand), and

e random values of the moments operations actually start (in the course of

the projects’ realization and conditioned on our decisions),
- to minimize the average of the total expenses of hiring and utilizing all re-
sources subject to the chance constraints of meeting the projects’ due dates on
time.

The problem is solved by means of a heuristic algorithm by a combination of
the cyclic coordinate descent method (at the upper level) and a simulation model
(at the lower level). Resource reallocation between the projects waiting in lines
is carried out via decision rule based on a mini-max principle. The latter enables
support to “weaker” projects from the “stronger” ones in the course of the pro-
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jects’ realization.

13.1.2 Notation
Let us introduce the following terms:
n - number of projects of preliminarily type PP, 1<i<n, to be realized
simultaneously in a project system;
0, - the c-th operation of the i-th project in the form of a consecutive
chain, 1<c<m;

m, - number of operations in project PP,;

b - random duration of operation O, (a random value);

fie - average value of ¢, (pregiven);

Ve - variance of ¢, (pregiven);

R, - the total capacity of the k-th type of resources, 1<k <d, at the dis-

posal of the project system (a deterministic value to be optimized);
d - number of resources;

Tk - the k-th resource capacity to be assigned to operation O, (pregiven);
D, - the due date for project PP, (pregiven);

) - chance constraint to meet the due date D on time (pregiven);

Sie - the moment operation O, actually starts (a random value, to be de-

termined by the simulation model by means of a decision rule in the
course of carrying out the projects);

F, - the moment operation O, terminates (a random value);
F, - the moment project PP, terminates, F, =S, +¢, (arandom value);
F - the moment the last project terminates, F =MaxF,;

pAR,,D.} - actual probability of meeting D, on time on condition that g, total

resource capacities, 1<k <d, are hired by the project system,;

W, {S,..t} - the summarized capacity of the k-th resource assigned to operations

at moment ¢, on condition that operations O, start at moments S, ,
1<k<d;
R, (t)=R, -WS,,t)- free available resources of k-th type at moment ¢;

Si - the cost of hiring, maintaining and utilizing the k-th resource unit
at the time unit, 1<k <d (pregiven, a constant value);

AR, - the positive search step value to optimize variable R, 1<k <d (pre-
given);

€ - the relative accuracy value to obtain an optimal solution (pregiven);

R, - the minimal possible level for the total capacity R, 1<k<d (pre-
given);

R.... - the maximal possible level for value R, 1<k <d (pregiven);

Q - the system’s total resource expenses.
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Note that relations

kain Zm.axmaxr}ck’ (1311)

Rype <3 max iy | (13.1.2)

kainSRkSkaaxﬁlgignalgcsmiﬂlgkgda (1313)
hold.

Restriction (13.1.1) is evident since otherwise some of the projects cannot be
realized at all. If (13.1.2) does not hold a certain part of resources will not par-
ticipate in the projects’ realization.

13.1.3 The problem’s formulation
The general problem is to determine both optimal deterministic values R,

1<k <d, (before the projects’ realization) and random values S, (in the course
of the projects’ realization and conditioned on our decisions), 1<i<n, 1<c<m,,
to minimize the average of the total resource expenses

d
{%ni?}E{ZskRk-[maxFi—mm Sﬂ]} (13.1.4)
i k=1 ! !
subject to (13.1.3) and
W (St} <R, Vt:tzminS,, (13.1.5)
pAR,, D)2 p,1<i<n,1<k<d,1<c<m,. (13.1.6)

Note that problem (13.1.3-13.1.6) is a very complicated stochastic optimiza-
tion problem which does not provide an analytical solution. We suggest solving
the problem by using a two-level heuristic algorithm. The latter comprises a
simulation model and a subalgorithm to carry out the coordinate descent optimi-
zation method.

Note, in conclusion, that to simplify the problem, we will henceforth assume
that min S, =0 holds.

13.1.4 The simulation model
The input data of the simulation model is the vector of total resource capaci-
ties R, 1<k <d, which is determined in the course of the coordinate descent al-

gorithm’s work. Thus, in the course of a routine simulation run vector {R,} is
fixed and remains unchanged. It goes without saying that vector R, satisfies
(13.1.1-13.1.3).

The main task of the simulation model is to determine (in the course of a
simulation run) random starting moments S, of all operations O,, 1<i<n,
1< ¢ <m,, entering the projects, with respect to a mini-max objective

I:maxmjn{pi{Rk’Di}_p:} (13.1.7)

E A p;
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and subject to (13.1.5). Value p.{R D} can be evaluated by means of undertak-

ing numerous simulation runs in order to obtain representative statistics and,
later on, calculating frequencies for the probability value Pr{F, <D,}. As to the

mini-max objective, it is imbedded in the outlined below decision rule to reallo-
cate restricted resources among projects ready to be operated and waiting in
lines.

A routine simulation run starts functioning at =0 and terminates with the
completion of the last project. The simulation model comprises three submodels
as follows:

Submodel I actually governs most of the procedures to be undertaken in the
course of the projects’ realization, namely:

¢ determines essential moments (decision points) when projects may be sup-

plied with free available resources. A routine essential moment usually co-
incides either with the moment an operation is finished and additional re-
sources become available, or when a subset of new operations 0, becomes
ready to be processed;

e singles out (at a routine decision point) all the operations that are ready to

be processed;

e checks the possibility of supplying these operations with available re-

sources without undertaking a competition;

e supplies the chosen operations O, with resources and later on simulates the

corresponding durations ¢ ;

e returns the utilized non-consumable resources to the project system store
(at the moment an operation is finished);

¢ updates the remaining projects at each routine decision point;

¢ determines the completion moment for each projects,

together with several other, less important, procedures.

Submodel II calculates auxiliary decision rule values in case when there is a
lack of available resources and not all the operations ready to be processed and
waiting in line for resources at a routine decision point ¢, can start to be realized.
Assume that at moment s ¢ operations O, ,0, 0,., are ready to be processed

hep? Tiyey 2ttt T,

q
and at least for one type & of resources, relation » 7 _, >R,(r) holds. For each

v=1

PP, waiting in line, Submodel II calculates value

Di\r _t_ z‘!;jvr
= L, 1<v<gq, (13.1.8)
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2

d)(x)=ﬁ [ea. (13.1.9)

Thus, value (13.1.8) is an approximate probability estimate for project PP, to
meet its target on time on condition that the project will obtain needed resources
at moment ; and will not wait in lines henceforth. Such an assumption has been
successfully used for many control problems in project management and manu-
facturing systems [54,70,92-93,118].

After determining the values of deviation from the target by

pr{F, <D, |1
Y., = . e —, I<v<g, (13.1.10)
we sort the operations in ascending order. Denote the newly reordered opera-
tions

0,550,550,1,0 Vip <Vip» 158 5q-1. (13.1.11)
It can be well-recognized that the less value y, is, the more urgent becomes

the problem of supplying PP, with resources as soon as possible. Here we make
no difference between project PP, and operation O,, in (13.1.11) since only one

operation of any project may wait in line for resources at a certain decision mo-
ment ¢. Thus, priority value y, refers both to project PP, and to operation O, .

Submodel III undertakes reallocation of free available resources R, (r),
1<k <d, among project PP, 1<v<gq. All the sorted operations in (13.1.11) are

examined, one after another, in the ascending order of values y, to check, for
each operation, the possibility that it can be supplied with remaining available

resources. If, for a certain operation 0,,,1<&<q, relations P SR, (t), 1<k<d,

hold, the needed resources r, ,, are passed to the operation while the remaining

LSk

resources R,(r) are updated, R (t)-r, ,, = R,(t), 1<k <d . Then, the next opera-

tion O, is examined. If not all relations . ,, <R, (r) hold, we proceed straight-

Jestsfeu JeSek —
forward examining the next operation. The procedure terminates either when all
the available resources are reallocated among the operations or all the ¢ opera-
tions have been examined. The procedure is simple in usage and has been used
in various scheduling problems [70,88,92-93, etc.].

It can be well-recognized that since decision rule (13.1.10) is imbedded in
decision-making for resource reallocation, the outlined above simulation model
honors objective (13.1.7).

Note that the general idea of the mini-max approach is as follows. In the
course of projects’ realization the project system takes an urgent care of
“weaker” projects which deviate from their trajectories and their chance con-
straints more than other projects. Those projects have to be supplied with re-
sources 1in the first place at the expense of other, “stronger” projects. Thus, the
general idea of the mini-max objective (13.1.7) is to raise the weakest project as
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much as possible in order to balance all the projects under realization.

13.1.5 The cyclic coordinate descent subalgorithm

As mentioned above, the suggested heuristic algorithm to solve the problem
(13.1.3-13.1.6) comprises two levels. At the lower level the simulation model
undertakes numerous simulation runs in order to manage the projects’ realiza-
tion on the basis of the mini-max principle. At the upper level the heuristic
search subalgorithm undertakes cyclic coordinate optimization in order to obtain
the optimal vector R,. The procedure of the optimization is based on minimizing

objective (13.1.4) cyclically with respect to coordinate variables R, R,.,...,R,. Co-
ordinate R is optimized first, then R, and so forth through R,. The coordinate

descent method is outlined in [53-54,83,89], has been successfully implemented
in §§11.3, 12.1-12.2 and is incorporated in the procedure of the search subalgo-
rithm as follows:

Step 1. Determine the initial search point X° = {R,?} by taking deliberately over-

stating values, e.g., R/ =R, ., 1<k<d. It can be well-recognized that

setting X° = {kaax} results in

pi{ﬁf,Di}>p:, 1<i<n, (13.1.12)
and, thus, x° is a feasible solution. Note that for any initial search
point x° relation (13.1.12) can be checked by means of simulation, on
the basis of numerous simulation runs, by comparing the corresponding
statistical frequency rates with pre-given values p;, 1<i<n. If at least
for one index i relation (13.1.12) does not hold, problem (13.1.3-
13.1.6) has no solution. Otherwise apply the next step.

Step 2. Fix the initial values {R,}, R, = X°, and start diminishing value R by
AR, consecutively, i.e., R —r-AR, = R, r=1,2,..., while all other coordi-
nates R,,R,,..,R, are fixed and remain unchanged. Each newly deter-
mined search point (R, -r-AR,R,,...,R,) has to be examined by means

of simulation in order to verify the following statements:

A. Checking a new search point results in decreasing objective
(13.1.4);

B. Restrictions (13.1.6) remain valid.

In order to formalize the procedure of verification via a simulation

model, we suggest:

e to undertake M simulation runs in order to obtain representative statis-

tics (M +500-1000);
e to modify objective (13.1.4) on the basis of M simulation runs as fol-
lows:

%3 :(kzd:‘skRkj-{ﬁ”iF(”’) +lan:Ki -ﬂ({ﬁZa(Fi(”’) —Di)}—pfj}, (13.1.13)

m=1
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Step 3.

Step 4.

where
_lifoO _1ifx<0

()= {O otherwise ~ P = {O otherwise ~

F 1s the moment the last project terminates in the m-th simulation
run, 1<m<M,

£™ is the moment the i-th project terminates in the m -th simulation
run,

K, 1is a very large positive value (usually taken [53,118] close to 10'7)
in order to prohibit automatically cases pi{ﬁk,Di}< p; for any i,
I<i<n.

Thus, verifying the validity of statements A and B independently from

each other is substituted by checking the validity of the monotonous

decrease of one objective (13.1.13). Note that for the sake of simplicity

we have taken Min S, =0 in (13.1.13).

We proceed examining the monotonous decrease of estimate O in the
course of diminishing consecutively the first coordinate R , until either:
1. The diminished value R, reaches its lower bound R, , or
2. The monotonous decrease of objective (13.1.13) ceases to hold for
R_. <R <R
In any case value R, which corresponds to the minimal value of ¢, is
fixed, and we start diminishing the second coordinate, R,, by step AR,
(with fixed values R (newly obtained), R,,..., R,). The process pro-

1min 1max *

ceeds for other coordinates, etc., until the last coordinate, R,, is exam-

ined.

Note that in the course of undertaking a coordinate search each succes-
sive search results always in decreasing objective (13.1.13). Otherwise,
1.e., if a routine search step does not result in decreasing (13.1.13), the
corresponding routine coordinate R, is fixed and the next, the (k +1)-th

coordinate R, ., starts to be examined.

k+1 2
Obtaining a new search vector {Ek} in the course of optimizing all the
coordinates separately, results in realizing the first iteration to deter-
mine the quasi-optimal values {R }. All search steps AR, have to be
diminished (mostly by dividing by two), and we proceed to minimize
(13.1.13) cyclically with respect to the new coordinate variables, be-
ginning from R,.

For all next iterations in the course of the coordinate optimization, a
search is realized for each routine coordinate R,, 1<k<d, in two op-
posite directions, namely R, —AR, and R, +AR,, to determine the di-
rection of objective’s (13.1.13) decline. The direction which results in
the highest objective’s decrease, has to be chosen. The search process
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proceeds in that direction until the objective’s decrease ceases to hold.

Step 6. After undertaking a routine search iteration v, v=1,2,..., the objective
value (13.1.4), ¢, referring to that iteration, has to be compared with
the results of the previous, (v-1)-th iteration, by calculating
A _ Q(H) _Q(V)

ot (13.1.14)
Thus, at least two iterations have to be undertaken.

Step 7. If relation A™ <¢ holds, i.e., if the relative difference between two ad-
jacent iterations Q""" and Q" becomes less than the pregiven toler-
ance ¢ >0, the algorithm terminates. Otherwise, Step 2 has to be ap-
plied.

13.1.6 Numerical example

In order to check the fitness of the developed mini-max control model ex-
perimentation has been undertaken. Three simultaneously realized preliminarily
projects are considered. The first project comprises two consecutive operations,
while both the second and the third projects comprise three consecutively real-
ized operations. Two types of non-consumable resources participate in the sys-
tem. The projects’ parameters are as follows:

Project No. 1

hn=15; iy =17,

hi, =60; fip =51,

0,, =U(31,40); 0, =U(48,55).
Project No. 2

7y, =15; 7y, =20 Ty =27

i =13, Py =88 Ty =853

0,, =U(30,38); 0,, =U(18,30); 0,, =U(28,39).
Project No. 3

7y, =20, Ty =26, Ty =18

Ty, =64 Ty =78 Ty =80

0,, =U(30,45); 0,, =U(16,28); 0., =U(20,30).
Other system’s parameters are as follows:

Ry =273 Ry =503 5, =508;

Ry o =88; R, e =160 s, =308;

p,=0.75; p, =0.80; p,=0.85;

D, =127; D, =140; D, =150

The optimization process is presented in Tab. 13.1. A conclusion can be
drawn that the cyclic coordinate descent algorithm requires only two iterations
with 23 search steps. Thus, the two-level heuristic algorithm performs well
[90,118].
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Table 13.1. lllustrative performance of the algorithm

Search step R, R, No. o.f itera- Total resource Feasibility
number tion expenses
1 50 160 1 1,043,900 feasible
2 49 160 1 1,036,750 feasible
3 48 160 1 1,029,600 feasible
4 47 160 1 1,022,450 feasible
5 46 160 1 1,015,300 feasible
6 45 160 1 1,008,150 feasible
7 44 160 1 1,001,000 feasible
8 43 160 1 1,070,300 | non-feasible
9 44 159 1 996,710 feasible
10 44 158 1 992,420 feasible
11 44 157 1 988,130 feasible
12 44 156 1 983,840 feasible
13 44 155 1 979,550 feasible
14 44 154 1 975,260 feasible
15 44 153 1 970,970 feasible
16 44 152 1 966,680 feasible
17 44 151 1 962,390 feasible
18 44 150 1 958,100 feasible
19 44 149 1 953,810 feasible
20 44 148 1 949,520 optimal
21 44 147 2 945,230 | non-feasible
22 43 148 2 1,014,860 |non-feasible
23 45 148 2 956,670 feasible

13.1.7 Conclusions

1. The developed optimization problem covers a realistic situation in a pro-
ject system, at the stage of developing preliminary projects.

2. The problem can be solved by using a two-level algorithm. At the upper
level a heuristic cyclic optimization procedure is carried out. At the lower
level a simulation model is implemented.

3. The developed model undertakes cost-optimization and can be used both
in planning and monitoring several preliminary projects.

4. The backbone of the simulation model is the outlined above decision rule
which is based on the mini-max principle. The latter enables resource
support to the “weakest” projects which deviate essentially from their tar-
gets, at the expense of “stronger” projects, which are more successful in
the course of their realization.

5. The model can be modified for the case of PERT projects with different
priorities (see below). This is a perspective research since the objective is
based on analyzing the projects’ different importance.
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§13.2 Case of a group of PERT projects with different priorities

13.2.1 Introduction

The model described below resembles the one outlined in §11.3 with the ex-
ception of two important characteristics:

¢ unlike the model outlined in §§11.3 and 13.1, the projects are of different

priorities;

e the model is aimed at determining the minimal due date for all projects.

The problem [94] is to determine the generalized due date for all projects as
well as the moments that resources are fed in and projects’ activities start, in or-
der to maximize the heuristic objective taking into account both the projects’
priorities and the corresponding chance constraints. Thus, the model is imple-
mented mainly on the planning stage.

The problem is solved by means of simulation. Two optimization cycles are
imbedded in the model. The external cycle deals with determining the minimal
due date D for all projects. Thus, the due date serves as the input value for the
internal cycle. The latter uses heuristic decision-making rules to reallocate free
available resources among the projects in order to meet the projects’ chance
constraints.

13.2.2 Notation
Let us introduce the following terms:
G,(N,,4,) -the ¢-th network stochastic project, 1< /<n;

n - number of PERT type stochastic network projects;

(i,j), - activity (i, j) entering project G,(N,, 4,);

Ttk - capacity of the k-th type resources allocated to activity (i,j),,
I1<k<m (pregiven);

m - number of different resources;

R, - total available capacity of k-th type non-consumable resources (pre-
given);

D - the general due date for accomplishing all network projects (to be
determined);

D... - the minimal possible general due date (pregiven);

n - the priority index (level of importance) of project G,(N,,4,) (pre-
given);

P - the minimal admissible probability for project G, of meeting the due

date D on time (pregiven);

A - the moments activities (i, /), actually start (random variables to be
determined within the projects’ realization);

F, - the actual moment project G,(N,,4,) is completed (a random value

determined on the model’s decision-making rule);
AD - the time step in order to determine optimal value D.
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13.2.3 The problem’s formulation
Determine the total due date D for all projects and the random starting mo-

ments S, for all the activities for two contradictive objectives:
min D (13.2.1)
and
oy 3 2(0)] (13.22)
it (=1
subject to
D>D,., (13.2.3)
E(D)>P, (13.2.4)

where P,(D)=Pr{F, <D} is the simulated probability of project G, to meet the due
date D on time.

13.2.4 The problem’s solution

The solution is based on three following principles:

1. At the upper level a search for value D is carried out by means of increas-
ing D via consecutive steps by AD, i.e., D+ AD = D 1is realized.

2. At the lower level a simulation model sv is determined with input values

D, {rl/z}» {Rk}’ {”zﬂk}a {F}}
3. A decision rule is imbedded in the sm based on the idea of pairwise com-
parisons.
Two different cases will be examined at each essential moment >0 when
certain activities (i, j,), are ready to consume available resources R, (¢):

Case A: some activities may refer to the same project.
Case B: all activities refer to different projects.

13.2.5 Decision-making rule in Case A (DRA)
When activities (i, j,), refer to one and the same project G,(N,, 4,) the deci-

sion-making rule consists of three steps and boils down to the following:
Step 1. By means of simulation calculate values P(i,,,), (the probability of

14

the activity (i, ), to be on the critical path) for all activities seeking
for resources.

Step 2. Calculate for all activities under competition values ¢ ;, (average
duration) and &(,,j,), = P(i,./,), -7,

fd

14

Step 3.  Activity with maximal value ¢ is chosen as the winner.

Thus, practically speaking, rule DRA is based on the knapsack approach
[70]. Thus, after implementing DRA, only one winning activity from each pro-
ject will remain seeking for resources.

13.2.6 Decision-making rule in Case B (DRB)
DRB is based on the idea of pairwise comparison and is always used after
carrying out DRA. Thus, before applying DRB, it is assumed that a/l competing
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activities refer to different projects and present the corresponding winner by im-
plementing DRA.

The following steps enter the rule DRB:
Step 1. Sort all activities (i,, j,), in descending order of their priority indices.

Step 2. Consider the first two activities, namely, (i, ;,), and (i,, ,),. Two op-
tions are examined:

e the first activity is supplied with resources while the second one

waits in the line for time period ¢ ;,, and

e the second activity is supplied with resources while the first one

waits in the line for ¢, ,.

It is assumed that afterwards both projects do not wait in lines.

Step 3. Calculate (by means of simulation) values P(D) and E(D—t'izm) for
the first project and values P,(D) and E(D—f_i,j,l) for the second pro-
ject.

Step4. If n,-E(D)+n, B(D-i,,,)>n, B(D)+n,-R(D-7,,,), activity (i.j) is
the winner. Otherwise activity (i,, /,), wins the competition.

13.2.7 The compound decision-making algorithm
At any essential moment : where at least one activity (i,, /,)

is seeking for re-

14
sources to start operating, the compound decision-making algorithm has to be
implemented. The algorithm comprises the following steps:

Step 1. Arrange at any essential moment >0 all activities (i, j,), waiting for

14
resources, in a descending order of their projects’ priorities 7, .

Step 2. For all ready activities referring to the same project undertake competi-
tion by means of DRA (only one winner allowed for each project).

Step 3. For all projects with a single ready activity (seeking for resources)
carry out a competition by means of DRB. The winner competes with
the next competitive activity, until only one winner is left; let it be
(i 1), -

Step 4. If relation r(,,;,), <R,(t), 1<k<m, holds, activity (i,,J,)
with resources. Go to Step 5. Otherwise, activity (i,,/,), is excluded
from the competition. Go to Step 1.

Step 5. Update the free available resources R,(t)-r(i,,/,), = R,(t). Return to
Step 1.

Step 6. The process of free resource reallocation terminates when either all
free resources R, (¢) are allocated, or all competitive activities (i, /,), are

is provided

4

supplied with resources.

13.2.8 The enlarged procedure of solving the optimization problem
The solution of problem (13.2.1-13.2.4), thus, can be obtained by using the
enlarged stepwise procedure as follows:
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Step 1. Start examining the increasing value D, beginning from D__, by
means of a search procedure: D +AD = D, D>D

Step 2. For any value D obtained at Step 1 simulate the projects’ realization
on the basis of decision rules DRA and DRB. Those rules have to be
incorporated in the simulation model.

Step 3. Undertake M simulation runs in order to obtain representative statis-

tics. Calculate for all projects values B(D), 1</<n.
Step 4. If all values P(D) satisfy chance constraint (13.2.4), determine the

minimal D satisfying restriction (13.2.3-13.2.4). Thus, the optimal so-
lution of problem (13.2.1-13.2.4) is obtained. Otherwise return to Step
1.
As to objective (13.2.2), it is embedded in the algorithm through decision
rule DRB.

13.2.9 Conclusions

The following conclusions can be drawn from §13.2:

1. The presented resource constrained reallocation model can be used in pro-
ject management as a decision support model for planning and monitoring
several stochastic network projects. The model has been successfully used
for small and medium size projects of PERT type.

2. The outlined model is suitable for resource scheduling in stochastic net-
work projects, when the processing of certain activities is based on deliv-
ering resources, €.g., in high technology projects, defense related indus-
tries, opto-electronics, aerospace, etc.

§13.3 Stochastic network model with target amount rescheduling

13.3.1 Introduction

The problem associated with developing multilevel on-line production con-
trol models under random disturbances for flexible manufacturing systems has
been discussed in literature [50-54,61,63,73,83,87, etc.] and outlined in Chapters
6, 11 and 12. Most of those investigations deal with not fully automated plants
of ‘man-machine’ type where the output cannot be measured continuously on-
line, but only at preset control points. The main idea of the interaction problems
between different levels in hierarchical control systems is based on the concep-
tion of emergency introduced by the scientific school of Golenko-Ginzburg (see,
e.g., [63]). By using the idea that hierarchical levels can interact only in special
situations, the so-called emergency points, one can decompose a general and
complex multi-level problem of optimal production control into a sequence of
one-level problems. We will show below that this general idea can be applied to
stochastic network projects as well.

Two different optimization cases are usually considered:

1. Case with a conflicting two-criteria objective, namely, to maximize the
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probability of completing the production on the due date, and to minimize
the number of control points; but the first criterion is dominant.
2. The objective is to maximize the expected net profit.
A two-level system is considered to be composed of several different projects
U, 1<i<n, at the lower level and a control device at the upper one. The upper

system’s level is required to provide a given target amount ¥ by a given due
date D subject to a chance constraint, i.e. the least permissible probability p of

meeting the target on time is pregiven. Each project U has several possible

speeds v,, v,, ... , v, , which are subject to random disturbances. The project’s

output can be measured only at preset inspection (control) points. The target
amount is gauged by a single measure, e.g. in square meters, and may be re-
scheduled among the projects. For each project, the average costs per time unit
for each speed and the average cost of performing a single inspection at a con-
trol point to observe the actual output at that point, are given.

In Chapter 6 we have outlined a cost-optimization on-line control model
which for a single project determines both control points and speeds to be intro-
duced at those points, in order to minimize the project’s expenses within the
planning horizon, subject to the chance constraint. We present a two-level on-
line control model under random disturbances, which centers on minimizing the
system’s expenses subject to the chance constraint. The suggested two-level
heuristic algorithm is based on rescheduling the system’s target among the pro-
jects both at =0, when the system starts functioning, and at each emergency
point, when it is anticipated that a certain project is unable to meet its local tar-
get on time subject to a chance constraint. At any emergency point  the remain-
ing system’s target ¥, is rescheduled among the projects; thus, new local targets

Ve, 1<i<n, YV, =V,, are determined. New local chance constraint values p,
are determined too. Those values enable the system to meet its overall target at
the due date subject to the pregiven chance constraint p.

After reassigning to each project U, its new target ¥, and the chance con-
straint value p, , the projects first work independently and are controlled sepa-
rately. At each k-th control point ¢, of project U, given the actual amount al-

ready produced, decision-making centers on determining both the next control
point ¢, and the index ; of the new speed v, to proceed with up to that point,

ik+
1< j<m. The on-line control for each project proceeds either until the next
emergency point, or until the due date D.

Rescheduling the remaining system’s target amount ¥, among the projects is
carried out by using heuristic procedures. Determining chance constraint values
p, 1s carried out by using a cyclic coordinate descent method in combination

with a two-level simulation model.
The main principal differences between the problems outlined in §§6.2-6.3
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and the model under consideration is that:
¢ in models outlined in Chapter 6 resources (e.g., GRU units) may be re-
scheduled among the projects while in the case under consideration each
project may only vary the level of its intensity by changing the progress of
the project’s movement to achieve the target, and
e in the model under consideration the control device may reschedule the tar-
get amount among the projects. This results in raising the system’s flexi-
bility.

The model can be applied, e.g., to such important construction projects like
building several derricks (oil-wells) in a new oil-field to reach the oil-field’s to-
tal desired output (capacity). In the course of carrying out the project, a certain
oil-well being for some reasons less effective may get help by lowering its plan
target, at the expense of other and more powerful wells. Similar situations may
be encountered in the mining industry, e.g., by ore production, etc.

We refer the outlined below model to a mixed type since it combines control
actions at emergency moments (and is, in essence, a control model), and deter-
mines over time new planning target amounts in the course of monitoring the
projects. In our opinion, such a model may be a powerful facilitator for a variety
of large-scale innovation projects.

13.3.2 Notation
Let us introduce the following terms:

S - the two-level system composed of » projects U, 1<i<n;

D - the due date (pregiven);

D, - the length of the remaining planning horizon at moment ¢,

D =D-t;

F - the actual moment the target amount is completed (a random

value);

p - the chance constraint, i.e. the minimal permissible confidence prob-
ability of accomplishing the system’s plan on time (pregiven);

D - the chance constraint value for each project U, determined at the
emergency moment >0, /<i<n (to be determined as an optimized
variable);

Sik - the index of the speed chosen by the decision-maker at the control
point ¢, ;

Ly -the k-th inspection moment (control point) of project U,
k=01..N,;

" - the ¢-th emergency moment at the system level, 7<¢<nN,, (a ran-
dom value);

N, - the number of inspection moments for each project U,;

N.,, - the number of emergency moments (a random value);
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v, - the j-th speed of project U, to reach its target, /1< j<m (a random
value with pregiven density function f,(v));

v, - the average of speed v;. It is assumed that for each project U, speeds
Vs Vi, .. » v, are sorted in ascending order of their average values
and are independent of ;. Thus, value v, 1is the maximal average
speed for project U;

14 - the pregiven system target (planned program) gauged by a single

measure (target amount);

v/ (z):ZV/' (t) - the actual system’s output observed at moment ; (a random
i=1

value);

Vi - the target amount assigned to project U, at the emergency point ¢ (to
be determined); note that Y v, =V, ;

v/(t)  -the actual output of project U, observed at moment ¢, 0<:<D;
V/(0)=0 (a random value);

Vi - the system’s remaining target amount at moment ¢, V, =V ;

W [Vf(t),Vit, j} - the p-quantile of the moment target amount ¥, will be com-

pleted on conditions that: (a) speed v, is introduced for project U, at

moment ; and will be used throughout, and (b) the actual observed
output of project U, at moment ¢ is V7 (¢);

m - the number of possible speeds (common to all projects);

d - the minimal time span between two consecutive control points ¢,
and ¢,,, (pregiven); equal for all projects;

h - the search step for determining optimal values p, ;

A - the minimal value of the closeness of inspection moment ¢, to the

due date D (pregiven and equal for all projects);

a; - lower bound of random speed v, (pregiven);
. - upper bound of random speed v, (pregiven);

C - the total operational costs, penalties and charges accumulated for the
system in the course of accomplishing the target amount (a random
value);

C., - the average cost of rescheduling the remaining target amount 7,
among projects U, by the system at a routine emergency moment
t>0;

G - the average processing cost per time unit of speed v,, I/<i<n,

1< j<m (pregiven); note that for a fixed i relation j, <j, results in
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C. <C.:

i ij2?

Cis - the average cost of performing a single inspection of a project (pre-
given, equal for all projects);

C/(t) - the actual accumulated processing and inspection costs calculated at
moment ¢ for project U, 0<t<D, 1<i<n, C/(0)=0;

c” - the penalty paid to the customer by the system for not accomplishing
the target amount on time, i.e. when F > D (a single payment, pre-
given);

c” - the penalty cost for each time unit of delay F—-D (pregiven);

c™ - storage charges per time unit for the target amount’s completion be-

fore the due date (pregiven).

13.3.3 The control model

A two-level control model is considered where each level faces a stochastic
optimization problem [87].

The Problem at the System Level (Problem A)

At each emergency point 1=¢", 1<g<N,,, t/" =0, determine local production

plans V,, 1<i<n, together with local chance constraints p,, in order to minimize
the expected total expenses

jpin,C (13.3.1)
subject to the chance constraint
Pr{y/(D)>V}>p. (13.3.2)

Note that random value ¢ satisfies

n

=3 Ne, (oo -t S (V. ~1)C, 4 N.C
IZI;[ zsik(tz,k+ tzk)]+izl( i ) ms+ em em+ (1333)

tle e (F-D)s+Cc(D-F)1-0),
where
1 if F>D
8 ={ (13.3.4)

0 otherwise,
and values {s,} and {t,} are obtained by solving Problem B at the project level.
Values {/,} at each emergency point ¢, including =0, are determined ac-
cording to a widely used heuristic procedure [54,61-64,84,151], namely

V.
— V im R

t n

Vi
. (13.3.5)

i=l1
where v, is the maximal speed which can be introduced for project U..
As to values {p,}, they are determined by using a cyclic coordinate descent

algorithm. The search procedure is carried out by means of simulation, by un-
dertaking numerous realizations of a simulation model at the lower level in order
to obtain representative statistics. The simulation model represents the process
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of manufacturing for several projects U, with input values {,} and {p,}, be-
tween two adjacent emergency points " and 7, . In the case of a routine emer-
gency call the problem at the section level is resolved, new values {,} and {p,}

are determined, and the manufacturing process proceeds at the lower level, for
each project U, independently.

The Problem at the Project Level (Problem B)

The cost-optimization control model for a single project has been formulated
in Chapter 6. We have modified that problem for the case of several projects
with additional cost parameters C, , C*, C** and C*™.

For the case of an independent project U,, given the input values v,, p., d, A

em

and v,, 1< j<m, the problem is to determine both control points {z,} and speeds

i
{vm} to minimize the expenses

J = min }{i [ C— NC} (13.3.6)
ik >Visiy k=0
subject to
P/ (D)2V, {2 p,, (13.3.7)
Lo =1, (1338)
t, =min [T, :Pry/ ()27, |, (13.3.9)
ti,k+l_tik2d9 (13.3.10)
D-t,>A, 0<k<N,-1, (13.3.11)
sp=j=min g Vg, (0)V,.q]<D. (13.3.12)

1<g<m

Restriction (13.3.8) means that after reallocating target amounts at the routine
emergency point ¢, the starting moment to proceed constructing, i.e., the first
control point to undertake decision-making and to determine s, and ¢, is ¢.
Note that at all emergency points the remaining target amount, as well as the due
date, are updated, i.e., the ordinate =0 is shifted to the right. Restriction
(13.3.9) means that the last inspection point is the moment target amount V, is
reached. Restrictions (13.3.10) and (13.3.11) ensure the closeness between two
consecutive control points, as well as the closeness of the routine inspection
point to the due date. Restriction (13.3.12) means that the speed to be chosen at
any routine control point 7, should not exceed the minimal speed which guaran-
tees meeting the deadline D on time, subject to the chance constraint (13.3.7).

The general idea of solving the problem (13.3.6-13.3.12), which is a very
complicated stochastic optimization problem, is as follows. At each control
point ¢, decision-making centers on the assumption (see §6.1) that there is not
more than one additional control point before the due date. Two speeds have to
be chosen at point ¢, :

1. Speed v, , j, =s,, which has to be actually introduced at point 7, up to the
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next control poimt ;.

2. Speed v, , j, =s,,,,, which is forecast to be introduced at control point ¢,

within the period [fl-,ka]-

Thus, j, is determined in accordance to (13.3.12) and j, is determined by
honoring chance constraint (13.3.7). As outlined in Chapter 6, at each routine
control point ¢, all possible couples are singled out. The couple, which delivers
the minimum of forecasted manufacturing and control expenses, has to be cho-
sen. Since couple (j,, /,), together with the inspected value ¥/(z,) and values D
and 7,

., fully determines the next control point #,.,, speed v, is introduced
within the period [tl.,{,tl.,kﬂ]. At moment ¢,,,, decision-making has to be carried out

ancw.

13.3.4 The general idea of the two-level heuristic algorithm
The general idea of the regarded heuristic algorithm is as follows: at each
routine emergency point ", ¢=0,1,...,N,, , decision-making centers on minimiz-

ing the future costs from point " until F, including the penalty and the storage

costs. The costs representing the past (interval [0, tj’”]) are irrelevant for this on-

line control problem, and there is no need to remember the past decision [63].
The only relevant information to be stored is " and V/(t;'"). Thus, decision-

making at the system level is carried out only at emergency points " including

the moment =0 the system starts functioning.

Decision-making at the system level at each routine emergency moment
t=t" centers on determining both new chance constraint values {p,} and new
target amounts ¥, for the remaining planning horizon [t,D]. Values {p,} are ob-

tained by means of simulation, by a combination of a search algorithm and an
on-line one-level control algorithm for several projects. The latter work inde-
pendently and are controlled separately at inspection points. It is generally as-
sumed that at the beginning of the work all the available resources are previ-
ously allocated among the projects. Those resources remain unchanged within
the planning horizon, i.e. no resource reallocation is performed. Thus, the corre-
sponding speeds v, for each project U, remain unchanged too.

If for a certain project U, at a routine inspection point ¢, it is anticipated that
the project cannot meet its target ¥, on time subject to the previously determined
chance constraint p,, an emergency is declared, and decision-making is affected
at the system level. The remaining target v, at ¢ =¢, , together with the remaining
time D, =D-t,, is then updated. New quasi-optimal values {p,}, t=¢, , together
with new target amounts {,}, are then determined. The newly corrected plan is
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assigned to all projects, and the process proceeds further, until either the new
emergency point or until the moment the target amount is completed. Thus, de-
cision-making at the system level centers on numerous recalculations of the sys-
tem’s plan subject to the chance constraint. This is carried out by using a fore-
casting simulation model with input values {V,,p,}, t=¢,. The matrix Z={,,p,}

which delivers the minimum of total accumulated costs subject to the chance
constraint p, is taken as the optimal corrected plan. Afterwards, that corrected

plan is passed to the projects, and on-line decision-making is carried out at the
project level.

§13.4 Conclusions

The following conclusions can be drawn from the Chapter:

1. The models outlined in Chapter 13 are, in fact, the continuation of various
models presented in Chapter 11. The similarity between these two classes
of models results in operating both the planning and the monitoring
(scheduling) stages of the project’s life cycle. The difference stems from
the fact that scheduling models outlined in Chapter 11, unlike models of
Chapter 13, are focused on feeding-in resources. In the concluded Chapter
models are more concentrated on estimating truly planning parameters.

2. Model (13.3.1-13.3.5), unlike other models outlined in the concluded
Chapter, cannot be regarded as a scheduling model since it operates si-
multaneously as a control model and a planning model. In our opinion,
this model may benefit in future from a variety of fruitful applications,
especially for innovative projects.

3. Model (13.3.1-13.3.5) is a particular case of the general cost-optimization
model based on the chance constrained principle (see Chapter 6). The fit-
ness of the outlined algorithm has been checked by means of simulation
[87,94,118,151].

4. Although cost-optimization models presented in Chapters 6 and 13 refer to
one and the same class of control models, they can be used in different
situations. Implementing target amount rescheduling is an attempt to build
a bridge between planning and control models. In our opinion, such an at-
tempt is a positive one.
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PART V
HIERARCHICAL MODELS FOR PLANNING AND
CONTROLLING SEVERAL STOCHASTIC NETWORK
PROIJECTS

m Chapter 14. Hierarchical Model for PERT-COST Projects (Planning
Stage)

§14.1 The model’s structure

14.1.1 Introduction

We will outline a hierarchical on-line control model for several PERT type
projects being carried out simultaneously. On the project level, each project is
controlled separately in order to minimize the number of control points subject
to a chance constraint, which seeks to prevent deviation from the planned trajec-
tory within the planning horizon with pregiven probability. If at a certain control
point it is anticipated that the project will not be on target subject to the chance
constraint, then an emergency is called and the company level is faced with the
problem of reassigning the remaining budget among the projects so that the
faster ones may help the slower ones. Thus the model has two objectives: to
minimize the number of control points and to maximize the probability that the
slowest project can meet its due date on time.

The following realistic assumptions are introduced:

1. Time duration of each activity entering the project is approximately in-
versely proportional to the budget assigned to that activity [7,53-
54,64,68,92].

2. The time-cost curve for the activity with random duration and preset
budget assigned to that activity may be determined on the basis of beta or
alternative distributions (see Chapter 2).

Two basic concepts are implemented in the outlined model:

A. Decision-making at each control point is based on calculating and examin-
ing the probability of meeting the project’s due date on time;

B. The on-line control model determines the next control point by solving a
stochastic optimization problem: to minimize the number of control points
under a chance constraint not to deviate from the planned trajectory. Such
a constraint is, in essence, stricter than using confidence probabilities to
meet the due date on time.

We will consider a hierarchical control model and will describe the mathe-
matical formulations of all optimization problems that are imbedded in the
model. The solutions to the problems enable control actions to be taken on dif-
ferent levels to meet the projects’ due dates on time.
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14.1.2 Notation
Let us introduce the following terms:
The Company Level
the k-th stochastic network project (graph) of PERT-COST type,

G,(N. ) l<k<n:

n -the number of projects;

G, -the remaining k-th network project at moment >0; G,, = G, (N, 4);
D, -the due date for the «-th project (pregiven);

j2u -probability which practically guarantees completion of the k-th pro-

ject on time (pregiven);
pi <p. -the least permissible probability for the %-th project to be completed
on time (pregiven); both values p, and p;” have to be set by practi-

tioners using expert methods; it may be considered, if not otherwise
stated by the company management, that for two different projects
with equal priority indices their corresponding confidence probabili-
ties p, and p,” will be equal too;

Cy -the budget assigned by the company to the k-th project at moment
t>0;

C> Zn:Cko - the total budget for » projects at the company’s disposal;

k=1
C,(t)  -available remaining budget to carry out project G, which is ob-

served at control point > 0; C,(0)=C,,;
pilC,] -probability to accomplish the remaining project G, on time corre-
sponding to the allocated budget value C,,, t>0;

C, -budget value satisfying pk[C;t]z pr,120;

C; -budget value satisfying p, [C,jj ]= 2

7.[C,] -random duration of project G, corresponding to the budget value
C, . Note that obvious relation p,[C, |=Pr{t+7,[C, ]< D,} holds;

T,[C,(¢)] - random duration of project G, with the remaining budget C,(¢);

p. =Prit+T[C,(t)]< D, }- probability to accomplish project G, on time with
budget C,(¢);

C/(r)  -budget value satisfying p_ = p:;

Cr(¢r)  -budget value satisfying p, = p:;

sC -minimal budget unit value by which budget ¢, may be changed;

Ap -minimal probability unit value by which confidence probability may
be changed;

M -priority value of the k-th project (pregiven); note that if G, (N, 4) is

of higher importance than G, (N, 4), relation n, >n, holds.
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The Project Level

(G,7),  -activity leaving node i and entering node j, (i, /), €G, , t>0;

c(i,j), -budget assigned to activity (i, ), ;

c(i, j),... - minimal possible budget to carry out activity (i, /), (pregiven);

(i, j)o -maximal budget required to carry out activity (i, ), (pregiven); in
case c(i, j), >c(i, j),.., additional budget is redundant;

t(i,j),  -random duration of activity (i, j), ; it is assumed that (;, /), has a beta-

distribution with density function:
12

py(x) = 67 —aG T [x—ali, /) oG /), - x] ; (14.1.1)

A(i,j), -pregiven value to satisfy

Al j),

ali, j), = i which is the lower bound for random value (, /), ;
> J i

B(i,j), -pregiven value to satisfy
b(z‘,j)k _ B(Z:])k

which is the upper bound for random value «(;, j), ;

C(iaj)k

On-line Project Control Level

N, -the number of control points for project G, (N, 4) (on-line control);

N,(t)  -the number of future control points for project G,(N,4) beginning at
moment ¢;

lg -the g-th control point for the x-th project, g=01,..N,, 1<k<n,
to =0,

A, -the minimal pregiven time span between two adjacent control points
t, and ¢ (for practical reasons and in order to force conver-
gence);

v/(t)  -state variable of project G, observed at control point ¢;

v7(¢)? -planned trajectory curve between two adjacent control points (the ¢-
th iteration ) .

Assume that various projects G, (N,4) are of different importance. Thus, a
priority index (value) n, has to be set for each project by the management. The
management may use for this purpose various expert methods such as the Delphi
method [149], and take into consideration qualitative and quantitative properties,
e.g., profit expectations, cash flow advantages, international trends, innovation,
strategic issues, etc. After considering all the above mentioned issues, the com-
pany level has to define n,. The level of significance of each project can also
practically be specified by the project delivery performance. For projects with
random activity durations delivery performance is nothing else but the probabil-
ity of the project to meet its due date on time.

§14.2 Budget allocation among several projects with different priorities
Consider that the company management is faced with controlling » PERT-
COST type network projects G,(N,4), 1<k < n, which have to be carried out si-
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multaneously. Projects are of different importance and significance; for each
project the corresponding priority index n, is externally pregiven. The total

budget ¢ at the company’s disposal to carry out all the projects is limited. Thus,
the company is faced with the problem of optimal budget allocation among »
network projects under consideration. This problem is to be solved [7,53-
54,64,92]:
(a) once at the planning stage, at =0, i.e., before the projects’ realization, and
(b) repeatedly in the course of the projects’ realization, at >0, when an
emergency is called by one of the projects due to its deviation from the
planned trajectory. In the latter case the remaining budget of all the unac-
complished projects is to be reallocated.
Following is the solution of the general problem for the case ¢ > 0. Given for
each project G,,, 1<k<n,

(a) desirable and least permissible confidence probabilities p,” and p;,
(b) priority values n,,

e the problem is to determine optimal values C,, 1<k <n, to maximize the

kt >

objective
Jy= rrgx;pk[ck,]-m (14.2.1)
subject to
ZC’“ =§ck(¢), (14.2.2)
p_,: < pk[c:k,]= Prit+T[C, ]< D, }< p; . (14.2.3)

Note that maximizing objective (14.2.1) means that the management first
takes all measures to accomplish on time projects with higher priorities and af-
terwards handles less important projects.

Problem (14.2.1-14.2.3) is a stochastic optimization problem with very com-
plicated non-linear convolutions p,[C, ]. In order to simplify the problem we as-
sume that probability value p,[C, ]| depends on budget value ¢, linearly, i.e., for
each k-th project, relation

Py [th]_ Py [Cz;z]: Py [szz]_ Py [C,;,]z 14.2.4
ci-c. c-c, (1529
holds for any C,>C, >C,,, p, being a constant value at a fixed moment ¢. It

goes without saying that values p, may change from project to project; but

within the project at a fixed moment ¢ > 0 they remain unchanged.

To solve problem (14.2.1-14.2.3) we have to solve an auxiliary problem as
follows:

For each project G, , 1<k <n, separately, determine two budget values C;;

and C,,, to satisfy
pri+1[C; <D, J=pi, (14.2.5)
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prie+7[Cr )< D, J=pr (14.2.6)

The solution of this problem will be outlined below, at the project level.
After solving problem (14.2.5-14.2.6) and determining values C, and C,,

1<k<n, we solve at the company level the budget reallocation problem. The
procedure to solve this problem is as follows:

Compare values Zn:Ck(t) with Zn:CZt and Zn:C,ft* ;if Zn:Ck(t)<Zn:C,; problem
k=1 k=1 k=1 k=1 k=1

(14.2.1-14.2.3) has no solution. We have either to reduce the desired confidence
probabilities p;, or to cancel one of the least important projects, or to ask for ad-

ditional budget AC =Zn:C,ft —Zn:Ck(t). Such a trade-off is the sole prerogative of
k=1

k=1
the company management.

In case Y C; <Y C,(¢) the solution of the problem is C,=C; . Values C;

k=1 k=1
must be allocated to project G,, 1<k<n, while the remaining budget

> C,(t)-> Ci; may be used for other company activities.
k=1

k=1

Case D.C, <> .C(t)<> C;; means that, in addition to the minimal budget
k=1 k=1

k=1
values C;,, the remaining budget Zn:Ck (t)—zn:C,’; has to be reallocated among the
k=1 k=1
projects according to objective (14.2.1). The thus determined optimal solution is
as follows:
Since value p,[C, ] depends on C,, linearly, values p,[C, ], p; and p;" satisfy

Py [th]_ Ps _ C,—-C,

Hke * sk b 14.2.7
Py — Py th - th ( )
and
* C t C*[ *k *
pk[ckz]:pk+ﬁ'(pk _pk)‘ (1428)
kT Skt
Substituting p,|C, | in (14.2.1) for (14.2.8) we obtain
; Py =Py p.Cy =P G,
J = C | B Pk 4| Lhk Pk “ht .
: n}?:xkzl“{ i |:C]:[* _Cl:t nk:| |: Cljt* _Cl:t nk:|} (1429)
Taking into account that ¢ is fixed and denoting
pf* _pﬁ M =G> kaki*_pk*th Ny =by»
th _th th _th
we substitute objective (14.2.1) for
J, =rréax2(aka,+bk) (14.2.10)
ke k=1
subject to
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N AGR (14.2.11)

C,<C,<C;/,1<k<n. (14.2.12)
Since », does not depend on C,,, objective (14.2.10) can be simplified,

J, =rréax2aka, (14.2.13)

ko k=1
subject to (14.2.11-14.2.12) .
Taking into account a, >0, 1<k < n, the optimal analytical solution of the re-
garded problem can be obtained by means of a step-wise algorithm as follows:
Assign to all projects G, , 1<k <n, their minimal budget values C;;

}Om
—
(@]
[S—

denote the remaining budget Zn:Ck (t)- Zn:C,ft =AC.
k=1

k=1

Step 2. Reorder sequence {g,} in descending order; let their new ordinal num-
bers be £, f,,.... f, -

Step 3. Set j=1.

Step 4. Calculate y, = min {(C_’;‘, -C;, ),AC}.

}:
4
@
hd

Determine for project G, its final budget ¢, =C;, +v,.

Update the remaining budget AC-y, =AC. If AC=0 go to Step 9.

}:
A
@
a

Otherwise apply the next step.

Set j+1= ;.

If j <» return to Step 4. Otherwise apply the next step.
The algorithm terminates.

= [ [
o [0 [@
0 120 1N

It can be well-recognized that since sequence {af/} is a descending one de-
termining the optimal solution results in assigning to each routine project G, as
much additional budget from the remaining company budget AC as possible.
Thus, the algorithm develops the optimal solution under the assumptions of line-
arity of p, [Ck,]. It can be proven that in the course of optimal budget realloca-
tion all the projects, besides not more than one, will obtain either values C;, or

ok

k .
Assertion. There exists not more than one project G, for which C;, <C, <Cy

Q

holds. For all other projects G, g e {kj\ f, C,, is equal either to C;, orto C;;.

Proof. Assume that after optimal budget reallocation there are two different
projects G, and G, with intermediate values C, <C,<C; and C, <C, <C. .
Assume, further, that a, >q,. Calculate budget value &.=min [(Cj,* -C, (Cr, -C;, )]
and transfer value ¢. from project G, to project G,. It can be well-recognized
that in the course of such a reallocation:
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(a) objective (14.2.13) will increase;

(b) among the two projects under consideration no more than one will remain
with the intermediate budget value; the other one will obtain either value
C,,or C,.

Thus the former budget reallocation was not the optimal one. [ |

After undertaking budget reallocation among the projects the latter have to be

controlled at the project level.

§14.3 Projects of equal significance

In this paragraph the case of several stochastic PERT-COST projects of equal
importance, 1.e., with equal priority values, will be considered. The idea of op-
timal budget reallocation among those projects, unlike the case outlined in
§14.2, is based on the conceptions which have been outlined in [63] and are as
follows:

If a company operates PERT-COST projects with different importance, the
management takes all measures to raise the performance of projects with higher
priorities. This results in control policy to supply the maximal possible amount
of resources to projects of higher significance and to leave the minimal permis-
sible resources to be utilized for less important projects. But in the case of pro-
jects which have equal importance the performance of the slowest project will
determine the performance of the whole group of projects under consideration.
Thus, the conception is to maximize the ability of the slowest project at the ex-
pense of the faster ones.

Let us introduce for each stochastic network project G,, ¢>0, the term

which we will henceforth call “the project’s performance degree”. It can be cal-

culated at any routine control point ; and is equal to p, [Ck,], 1.e., it is the prob-
ability Pr{t+7,[C,]<D,} of completing the project on time. According to the

conception outlined above the slowest project’s performance degree determines
the possibility for the company to realize a group of projects within their due
dates. Thus, the objective to be maximized is as follows [64]:

Jzzrgixmkinpk[th], 120, (14.3.1)
subject to

> G = Clt), (14.3.2)

k=1 k=1

pr<plC,lspl, 1<k<n. (14.3.3)

The problem is to be solved at moment =0 or to be repeatedly resolved at
every emergency moment ¢ > 0. If for any project G,, at any control point ¢ it is

anticipated that the project will fail to reach its due date on time with probability
not less than p,, an emergency is called and at the company level the remaining

total budget is to be reassigned among the unaccomplished projects so that the
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faster one can contribute and speed up the slower one.
To solve optimization problem (14.3.1-14.3.3) the same assumption will be
introduced as for the case outlined in §14.2, i.e., that p, [Ck,] depends on C,

linearly.
Values C;, and C;; corresponding to confidence probabilities p, and p;", have

to be calculated for each project G,,, 1<k<n,t>0.

The heuristic procedure to obtain values C,, and C; will be presented in
§14.4.

The solution of problem (14.3.1-14.3.3) is outlined below.

Using (14.2.7) and (14.2.8) and substituting p,[c, ] in (14.3.1) for (14.2.8)
we obtain

| . C,-C o
J2=rréﬁx{mkm{pk+ﬁ-(pk —pk)}}. (14.3.4)
Denoting & ~Pi ., _ ) 2l PG , we obtain optimization
g cr_c; Ny =y cr_c; N = By p
problem as follows:
Maximize
Jzzrgax{mkin[akatJrﬁk]} (14.3.5)
subject to (14.3.2) and
C, <C,<C;. (14.3.6)
A substitution
mkin[aka,+Bk]=Z (14.3.7)
modifies problem (14.3.2, 14.3.5-14.3.6) to the following one:
max Z (14.3.8)
subject to (14.3.2), (14.3.6) and
Z<a,C,+B,,1<k<n. (14.3.9)

Problem (14.3.2, 14.3.6, 14.3.8-14.3.9) can be solved by using linear pro-
gramming. We rely on a standard software package, LINDO [144] as the com-
putational tool. With the algorithm outlined above and by using standard per-
sonal computers budget reallocation can be easily performed by any project
management.

In conclusion, it has to be pointed out that in case > C,(t)>>.C; the total

k=1

k=1

budget is to be decreased by value AC = Zn:Ck (t)—zn:C,;* which will be at the dis-
k=1

k=1
posal of the management for other purposes or projects .

Case Zn:Ck(t)< Zn:C,; is similar to that outlined in §14.2, i.e., problem (14.3.1-
k=1 k=1
14.3.3) has no solution.
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For projects of equal significance and with close due dates it is reasonable to
set equal confidence probabilities p, and p;". It is also recommended to increase

for projects with earlier due dates the least permissible confidence probabilities
p, relative to projects with tardy deadlines. Such a policy may prevent failures

to execute projects on time.

§14.4 Optimal budget reassignment for a PERT project
After obtaining budgets C,, 1<k <n, from the company (see §§14.2-14.3)

each project is carried out independently, until either the due date D,, or an

emergency call for reallocating the remaining budget among the unaccom-
plished projects. Several important standard problems are to be solved at the
project level.

The first problem deals with optimal budget reallocation among the project’s
activities to maximize the probability of meeting the project’s due date on time.
This problem is solved independently for each project and therefore in order to
simplify the problem’s terms we shall omit the project’s index.

The problem is as follows [7,53-54,64,92]:

Determine optimal values c(;, j) to maximize the objective

e p(C) (14.4.1)
subject to

< () Nl () R () N (14.4.2)
(U)E;(NS) i)=¢. (14.4.3)

Here C is the available budget assigned to project G(N,4) and p(C) is its
probability to be accomplished on time. Note that value ¢ may be either the
budget which has been allocated at the company level or the remaining budget
which has been observed at a control point.

Problem (14.4.1-14.4.3) is a complicated stochastic optimization problem
which can be solved only by using heuristic procedures. Various variants of the
heuristic to solve the problem are outlined in [7,53-54,62,64,92] and can be ap-
plied to PERT type projects only.

The step-by-step procedure is as follows:

Step 1. By any means reassign budget ¢ among the project’s activities
(4,/)e G(N, 4) subject to c(i, j),, <cli,j)<cli,j)m and (i, j)=C to

(i./)eG(N,4)
obtain a feasible solution of the problem. It is suggested to realize the
step by using the bisection method [153] as follows:
Start with a =0, g =1;
Determine two values:

zl_ ZC mm Z[l a 'min+a.c(i’j)max]9

(1./)eG(N,4)

[
[

[S—
(\9)
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(i./)eG(N,4) (i.7)
Calculate value

23 :%:Z{(l—a;ﬁ)'c(i’j)min +a+ﬁ .C(iﬂj)lnax:|'
(@.7)

2
Compare values >, and >,. If ¥, - <8C go to 1.8; otherwise pro-

ceed to 1.5. Note that sC is a pregiven budget unit value.
Examine relation > <c<X,. If it holds go to 1.6; otherwise apply

Substep 1.7.
Set
2=2,, l—a;ﬁ =1-B, a+ﬂ=[3. Return to Substep 1.3.

Applying 1.7 means that >, < C <3, holds. Set

PINED I l—a;ﬂ =l-a, #za, and return to Substep 1.3.
Value ¥, =C with

cli, j)= 2_0;_[3 i, ),y + 2 ; P -c(i, j),,. is the feasible solution.

Calculate  af(;, j)zA(i’j ) and 53, j)zB(i’j ) for all activities

c(i. j) c(i, j)

(i, /)€ G(N, A).

Simulate values #(;, /) with density function (14.1.1).

Calculate the critical path length L_[«(i,/)] and determine all activities
(i, /)e G(N, 4) which belong to the critical path.

Compare values D and L_[t(i,})]. If D>L,[t(i, /)] counter w +1=w
works; then go to Step 6. In case D <L_[t(i, j)] apply Step 6 directly.

If a routine activity (i, /) belongs to the critical path counter W, +1=W,
works. The step is implemented for all (i, j)e G(N, 4).

Repeat Steps 2-6 M times in order to obtain representative statistics.
Calculate the average value

p(C)” = % , where ¢ is the number of the current iteration.

Compare two adjacent average values p(C)? and p(c)". If

p(C)? > p(c)*" holds, proceed to the next step. Otherwise apply Step
16.

Step 10.Calculate the frequency of each activity (i,;) of being on the critical

path (on the basis of M simulations carried out on Step 7). Denote

those frequencies by p(i, j/L.), pli,j/ Lcr)=%-

Step 11.Reschedule all the activities (i, j) as follows:

. For activities (i,;) with p(i, j/L,)>0 reschedule them in de-
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scending order of the product

pli /L. )0y (14.4.4)
where
~34(,j)+2B(, ) (14.4.5)

Uij - SC(i, j)min .C(i’ j)max .

. Activities (i,7) with p(i, j/L,)=0 have to be rescheduled at the
end of the schedule in descending order of values v, only since the
product p(, j/L, )-v, equals zero.

Step 12.Determine activity (i.,j.) with the highest order for which relation
z,=cli.,j.) —cli.,j.)>0 holds. It goes without saying that activity
(z'é, jé) is placed at the beginning of the schedule and refers to the criti-
cal zone, p(i., /. /L, )>0.

Step 13.Determine activity (i,/,) with the lowest order for which relation
z,=cli,, j,)-cli,. j, )min >0 holds. Activity (i,/,) is at the end of the
schedule and is a non-critical activity, which has practically no influ-
ence on the project’s duration.

Step 14.Reassign cost values Z=min(Z,Z,) from activity (z‘n, jn) to activity
i:.J:)

Step 15.Clear counter w and return to Step 2.

Step 16.Introduce changes in the heuristic procedure as follows:

(a) in Step 9: for the case p(C)* < p(C)*" instead of Step 16, proceed
to Step 18;

(b)in Step 14: value Z to be transferred from activity (z‘n, jn) to (z'é, jé) 1s
to be set equal to 1. Afterwards apply Step 17.

Step 17.Take the rescheduled activities (i, j) arranged at Step 11 for the (¢—1)-
th iteration. Continue to Step 12.

Step 18.End of the heuristic procedure. Further application of the algorithm
will not lead to any increase of the confidence probability.

Values c(;, j) obtained in the course of the (¢—1)-th iteration are considered as
the optimal ones. The optimal value of the objective, i.e., the maximal confi-
dence probability, is value p(C)“" calculated on Step 8.

In conclusion, it can be well-recognized that in cases C< > c(i,),, and
(1./)eG(N,4)

C> Y cli,j).. the corresponding confidence probabilities are 0 and 1, i.e., the
(1./)eG(N,4)

problem obtains trivial solutions.

Incase > cli,j)u, <C< .cli,j). the heuristic procedure outlined above
(1,/)eG(N,4) (i,/)eG(N,4)

1s to be used. It will be henceforth referred to as Procedure 1.
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§14.5 The dual problem: Determining budget value corresponding to
preset confidence probability
The dual problem will be formulated and solved for PERT type projects. The
problem under consideration is as follows:
Given a PERT project G(N,4) together with confidence probability p to
meet the due date D on time, determine optimal values c(i, /), (i, /)e G(N, 4), to
minimize the objective

min{C = ZC(Z‘J)} o
{eli.j)} (i.j)eG(N.4)

subject to
p(C)=Pr{T(C)<D}=p, (14.5.2)
i, Juin <€l 7)< i ) » (14.5.3)

where T(C) is the random project’s duration with assigned budget C.

It can be well-recognized that problem (14.5.1-14.5.3) is, in essence, a dual
problem for the direct one, (14.4.1-14.4.3). The heuristic solution outlined below
is based on the heuristic procedure outlined in §14.4. Unfortunately, problem
(14.5.1-14.5.3) i1s a stochastic optimization problem which due to non-linear
constraints cannot be solved in the general case. Thus only heuristics can be ap-
plied to obtain an approximate solution.

The step-by-step heuristic procedure is as follows:

Step 1. Choose budget value
G = zc(i’j)min .
(1./)eG(N .4)

Step 2. Choose budget value
CZ = zc(i’ -])max °

(i,/)eG(N,4)
Step 3. Calculate
C3 = ﬁ =0.5- Z[C(Zﬂ j)min + C(i’j)I“aX] :
2 (i,/)eG(N,4)

Step 4. Solve optimization problem (14.4.1-14.4.3) for values C=C,, C=C,

and C =¢,. Denote the determined probability values by p, p and p,
correspondingly.

Step 5. Compare values p and ».If p—p<ap, go to Step 9. Otherwise apply
Step 6. Here Ap is the pregiven minimal value by which a confidence
probability can be increased or decreased.

Step 6. Examine relation p < psj If it holds, proceed to Step 7. Otherwise
apply Step 8. Note that relation p < p < p is an evident one since p and
» are the minimal and maximal confidence probabilities for the project

to meet its deadline, correspondingly.
Step 7. Set C, = C,,
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(i, J )i ;C(i’f)max = ¢(i, j),,, - Return to Step 3.

Step 8. Set C, = C,,

iy ) in ;c(i,j)max = ¢(i, ),,, - Return to Step 3.

Step 9. Value € =c, represents the minimal budget value to be determined

while values c(i, j) obtained at Step 4 when solving optimization prob-
lem (14.4.1-14.4.3) for C =c, are the optimal ones.
It can be well-recognized that problem (14.5.1-14.5.3) is solved by using the
bisection method [153] in combination with the heuristic Procedure I outlined in
14.4.
§ The outlined heuristic procedure delivering a solution to the inverse problem
(14.5.1-14.5.3) will be henceforth referred to as Procedure III.
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Chapter 15. Hierarchical On-Line Control Model for PERT-COST
Projects (Control Stage)

§15.1 The control model

In Chapter 14 we have developed planning and control technique<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>