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1. INTRODUCTION 

Decision trees persist among the most popular classification 

tools in machine learning, pattern recognition, fault detection, 

medical diagnostics, and situational control. Decision trees 

are widely used because of their simplicity, intuitiveness, 

ease to use and interpret. 

The idea behind decision trees is that a decision for a 

situation is made, or a class for a case is assigned, from a 

series of measurements (tests) of observable attributes of the 

situation while the next attribute to be tested depends on the 

results of the previous tests. The plan of testing forms a tree 

where leaves are labelled with decisions, internal nodes are 

labelled with attribute names, while edges leaving an internal 

node are labelled with splits – mutually exclusive conditions 

on the values of the attribute being tested at that node. 

Decision trees are learned from data. Typical decision tree 

growing algorithm takes an input of a learning set of labelled 

examples, i.e. vectors of attribute values accompanied with 

the class label, and builds a tree to classify correctly as much 

examples as possible. Quality of the tree is usually evaluated 

by misclassification rate on the testing set of examples.  

Most of the research on decision trees construction is 

concentrated on growing compact, in some sense, decision 

trees. Classifications based on small trees are commonly 

believed to better generalize to new data due to the famous 

“Occam’s razor principle” of simple hypotheses. Thus, 

decision tree building becomes an optimization problem. 

A number of decision tree optimization settings are known 

differing in permissible types of attribute values, plausible 

splits, and measures of the tree size. One of the classical 

measures is the expected length of the path in a tree.  

In many applications (e.g. medical diagnostics, fault 

detection, etc) tests differ in cost of measuring the value of 

the attribute. A general blood analysis is much cheaper than a 

computer tomography procedure. In such a cost-sensitive 

framework a compact tree has another important advantage 

besides its better generalisation characteristics – it is cheaper 

in operation as only required tests are performed in each case. 

The expected cost of classification seems to be a natural 

optimization criterion in this framework given the decision 

tree correctly classifies available examples (has zero 

misclassification rate on the learning set). Only cost of tests is 

used in this paper. Other types of costs relevant to decision 

tree growing (misclassification costs, costs of teaching, 

intervention costs, etc) are discussed in Turney (2000). 

Growing an optimal decision tree is a discrete optimization 

problem. Hyafil and Rivest (1976), and also Zantema and 

Bodlaender (2000) have shown this problem to be NP-hard. 

Moreover, Sieling (2008) has shown that the size of an 

optimal tree is hard to approximate up to any constant factor. 

For this reason numerous heuristic algorithms were suggested 

during several recent decades of finding near-optimal 

decision trees in different settings. Most of them employ 

greedy top-down tree induction. An attribute and a split for 

every tree node are chosen basing on the sort of information 

gain criterion originated to Quinlan (1979). Initially 

developed for equal test costs, the criterion based on 

information gain was then refined for cost-sensitive decision 

trees in a family of algorithms such as IDX (Norton, 1989), 

EG2 (Núñez, 1991), CS-ID3 (Tan, 1993), and many others. 

Numerous experiments show good performance of these 

heuristics, but in any real situation the question remains open 

of how much extra cost is due to imperfectness of a heuristic 

tree growing algorithm – is it worth improving the search by 

looking for more sophisticated search techniques, or losses 

are already admissible to stop. Check of that sort is most 

interesting for the problems where test costs are measured in 

money units and are high enough. 



 

 

     

 

As exact optimal tree cost is hard to compute, its cost should 

be approximated from below. If the lower-bound estimate 

exists for the cost of the optimal decision tree the answer to 

the above question can be obtained in the form “no more than 

$X can be economized by further improvement of a currently 

calculated decision tree”. Lower-bound estimates known 

from the literature have some limitations explained below 

and are hardly applicable to this problem. 

In this paper a new lower-bound estimate for the expected 

classification cost of the optimal tree is suggested. Its 

calculation reduces to the solution of a number of 

combinatorial set-covering problems (or their linear 

programming relaxations). Although being NP-hard, these 

problems are shown to be computed efficiently in a series of 

experiments over real classification tasks. 

The rest of the paper is organized as follows. Section 2 

describes the model. The literature is reviewed in Section 3. 

Section 4 introduces the lower-bound estimate and Section 5 

examines its computational complexity; Section 6 discusses 

some applications of the estimate, while Section 7 concludes. 

2. THE MODEL  

Consider a set of decisions (or classes) D = {1, …, d}, a 

typical class dented by f, and a set of attributes 

M = {1, …, m}. A typical attribute from M is denoted by q. 

Only categorical attributes are considered, and k(q) is the 

cardinality of the set of values of attribute q.  

The learning set of examples (also referred to as cases) N is 

also given, a typical example denoted by w. Example w  N 

is a unique vector (awq)q  M of attribute values, and a class 

label f(w)  D. No noise is expected in the learning set, i.e. 

f(w) represents a correct decision for all situations w. An 

example is also endowed with a positive number (w) – the 

probability, or frequency, of the example.  

Every attribute q gives rise to the test or the question of the 

form “what is the value of attribute q?”. Different answers 

partition the whole set of examples N into the sets 

S1(q), …, Sk(q)(q) (some sets may be empty).  

Testing different attributes incurs different costs. Turney 

(2000) distinguishes test costs depending on:  

1) the true class of the case, e.g. the (expected) cost of an 

exercise stress test conditional on whether the patient has 

heart decease; 

2) side-effects (the value of some hidden attribute), e.g. 

allergic reactions on some radiological tests; 

3) an individual case; 

4) prior tests performed, e.g. “group discounts” or 

common costs for a series of blood tests sharing the cost 

of collecting blood; 

5) prior tests results (other attributes’ values), e.g. the 

cost of blood test depending on the patient’s health 

insurance plan. 

Case-dependent test costs immediately cover the first three 

categories. The last two categories are reduced to case-

dependent test costs by adding virtual tests that combine 

related questions. Also case-dependent costs cover a 

concealed important dependence on the correct answer of the 

current question. Below only case-dependent test costs tqw, 

where q  M, and w  N, are considered.  

Different costs tq of tests are somewhat typical for the 

literature on cost-sensitive trees growing, while more 

complex dependencies require come clarification. Indeed, the 

goal of classification is to elicit a class for a certain case from 

the tests of its attributes, and if the cost is observable during 

testing, some extra information about the case (besides the 

answer itself) is obtained from the test. But if costs are 

interpreted as duration of the test, they are subject to noise 

that obscures the expected value tqw in a single experiment. 

Mentioned above virtual combined tests represent another 

situation where case-dependent costs arise naturally.  

In this paper the problem of exact classification is solved, 

thus, misclassification costs are not considered. Also, costs of 

testing the cases falling beyond the learning set are of no 

importance as only accuracy on the learning set is watched. 

A decision tree H = <V, E> is a directed tree with set of 

nodes V and set of edges E. Internal nodes are labelled with 

tests, while leaves are marked by classes. For categorical 

attributes the edges can be associated with admissible 

attribute values (or, equivalently, the clauses of the form “the 

value of attribute q is X”).  

Decision tree H classifies learning set N iff for every example 

w  N the path exists in the tree from the root to some leaf 

v  V (to generalize the tree absent edges are added and new 

leaves are labeled with the expected class of the parent node). 

There is no use to test the value of the same attribute more 

than once within a path, thus decision tree H induces a binary 

mn matrix, with element eqw being equal to one if test q 

belongs to the path in tree H for example w, and zero 

otherwise. The total cost of tests for case w is then written as 

( , ) : qw qwq M
T w H t e


 . The expected cost of classification 

for decision tree H is then obtained by averaging the costs 

over the training set N:  

( ) : ( ) ( , ) ( ) qw qww N w N q M
T H w T w H w t e 

  
     .  (1) 

Decision tree H classifies correctly learning set N iff H 

classifies N, and cases w' and w'' share the same path in tree 

H only when they belong to the same class, i.e. f(w') = f(w''). 

The problem of decision tree induction is then to find the tree 

that classifies correctly learning set N and minimizes cost (1). 

3. BRIEF LITERATURE REVIEW 

The literature on growing decision trees is huge. Below only 

lower-bound estimates of decision tree test cost are reviewed. 

Consider every test has at most k > 1 different outcomes and 

twq = 1 for all w and q. As d classes must be distinguished at 

leaf nodes of a decision tree, an obvious lower-bound 

estimate for the size of the tree is (d – 1)/(k – 1) – the number 

of internal nodes in any k-fold tree with d leaves.  



 

 

     

 

Using an analogy with the prefix coding problem, 

information theory says that the expected path length in a 

decision tree correctly classifying the whole learning set is 

bounded from below by k-ary entropy of the class variable 

(treated as a stochastic value):  

( ) : logf k f

f D

H D p p


  , where 
:
( )

: ( )f

w N
f f w

p w



  .  (2) 

In Gubko (2008) both formulae appear as special cases of a 

general lower-bound estimate of the cost of the tree for a 

family of homogenous cost functions (the first – for the zero 

degree of homogeneity, the second – for the degree of unity). 

Most of the following work on lower-bound estimates for 

decision trees also exploits the idea of entropy. Ohta and 

Kanaya (1991) deduce an entropy-based lower-bound 

estimate for the cost of an arbitrary decision tree by 

calculating the total cost of the tree as a weighted sum of 

classification costs and misclassification losses. They assume 

that N = D, all attributes have the same cardinality k, and are 

statistically independent. 

Expected Huffman prefix code length h(D) gives a slightly 

tighter lower bound of classification costs (Parkhomenko 

(2010) explains building non-binary Huffman trees).  

Biasizzo, Žužek, and Novak (1998) introduce a cost-sensitive 

version of the lower-bound estimate. They consider binary 

tests only. If each test q  M has an individual cost tq, the 

expected cost of tests is shown to be not less than the sum of 

( )h D    cheapest tests’ costs with an add-on of 

( ) ( )h D h D     fraction of the cost of the next-cheapest test 

(     stands for an integer part of a number). It is notable that 

a similar idea of a cost-sensitive lower-bound estimate first 

appeared in Martin (1971), but its reasoning was poor there. 

Although well-grounded and popular, entropy-based lower 

bounds share a common limitation. They work fine when the 

number of classes is large compared to the whole number of 

examples (N = D is the best), and become too optimistic 

otherwise: for instance, in a binary decision problem (win or 

lose, valid or broken, etc) the length h(2) of a code word is 

equal to unity irrespective of tests availability and the number 

of examples. Also attributes’ cardinality variations are not 

accounted – either binary tests are assumed, or maximum 

cardinality is spread among all attributes. The estimate of 

Biasizzo-Žužek-Novak (1998) is also sensitive to cheap tests 

with poor information gain. These tests are never found in 

near-optimal trees but tangibly force down the estimate. 

Bessiere, Hebrard, and O’Sullivan (2009) adhere to a quite 

different approach that is very similar in spirit to that adopted 

in this paper. The problem of optimal decision tree 

construction is viewed as a purely combinatorial optimization 

problem. The size of the tree is minimized. For every pair of 

examples from different classes the set of discrepancies is 

computed – the set of attributes with differing values. The 

minimal set of tests hitting the family of all discrepancies 

generated by the learning set is proved to be a lower-bound 

estimate of the size of the decision tree that correctly 

classifies this learning set (note that the minimum hitting set 

problem is equivalent to the set-covering problem that arises 

below in calculation of the lower-bound estimate). At the 

same time, authors limit attention to cost-insensitive binary 

decision problem, and use the size of the tree as an 

optimization criterion.  

Thus, the objective of this paper is to suggest the lower-

bound estimate for the cost of decision tree with case-

dependent test costs. The estimate must perform well in 

(most interesting) situations when the number of classes is 

small compared to the number of examples. Also it must be 

less sensitive to the presence of cheap “dummy” tests. 

4. LOWER-BOUND ESTIMATE 

Definition 1. A subset of tests Q  M isolates (or classifies 

correctly) case w in subset of cases S  N (w  S) iff 

sequence of tests Q assures proper decision f(w) given initial 

uncertainty S and w is the real state of the world.  

With no loss of generality suppose that w  S1(q) for all 

q  M. Then Q isolates w in S iff f(w') = f(w) for all 

'w 
1( )q Q S q S . Note that the set of all questions M 

isolates any case w in N. This property assures that at least 

one decision tree always exists. 

Definition 2. Optimal set of questions Q(w, S)  M is the 

cheapest of the sets of questions that isolate case w in set S;  

Define also the minimum cost 
( , )

( , ) : wqw Q w S
t w S t


 . 

By definition, cost t(w, S) is the minimum cost to assure 

proper classification f(w) given initial uncertainty S about the 

state of the world and w being the true state. A decision tree 

that classifies set N correctly induces some sequence of 

questions for every example w  N. Obviously, this sequence 

isolates w in N. Thus, cost t(w, N) is a lower-bound of 

classification cost of example w in any decision tree H that 

classifies set N correctly. Consequently, expected cost T(H) 

never falls below the average minimum cost 

( , )
( ) : ( ) ( , ) ( )l qww N w N q Q w N

T N w t w N w t 
  

     ,  (3) 

and Tl (N) is the lower-bound estimate of the cost of the 

optimal tree that correctly classifies set N by virtue of family 

of tests M. Set of available tests M is not included in the list 

of arguments as for any set of cases S unrecognized after a 

series of tests Q  M Tl (N, M\Q) = Tl (N, M). Only such sets 

of cases are considered below. 

This lower-bound estimate is based on substituting the 

solution of the initial problem with the solution of a simpler 

problem. The initial problem of unknown case classification 

is replaced by the problem of proving the true case to a third 

party. Imagine you know the true case w, but your colleague 

does not. You prove the true case is really w by performing 

some available tests from M. To achieve the goal at minimum 

cost you should choose the tests from Q(w, N). Expected cost 

of proof then equals exactly Tl (N). It is obviously easier to 

classify when you know the result beforehand, and this also 

proves that Tl (N) is the lower-bound estimate. 



 

 

     

 

Definition 3. Test q  M is essential for set S  N 

iff q  Q(w, S) for all w  S. 

At least one essential test is required for the lower-bound 

estimate to be reached. Moreover, if essential test q is chosen 

for the root of a decision tree, for the lower-bound to be 

reached there must exist at least one essential test for every 

set S1(q), …, Sk(q)(q), and so on up to leaves of a tree. 

Although possible, this seems to be a very rare situation. 

In some special cases the quality of the lower-bound estimate 

can be sufficiently low. The quality of the lower-bound 

estimate – the ratio Tl (N)/T(H) – is proven to be at least 

2/(n + 1) for case-insensitive tests. The value of 2/n can be 

approximated arbitrary close by the following setting. 

Consider learning set N = {1, …, n} of equally probable 

examples, set of classes D = N, and set M consisting of n + 1 

questions: questions q = 1, …, n of the cost 2 +  (where  is 

a small positive constant) taking a form “is it case w or not?” 

for each w  N, and question q = n + 1 of the cost n, which 

immediately distinguishes all cases in N. Then Q(w, N) = {w} 

for every w  N, and the lower-bound estimate Tl (N) = 2 + , 
while optimal tree H consists of the sole test n + 1, and has 

the cost T(H) = n. Thus, the ratio Tl (N)/T(H) = (2 + )/n can 

be made arbitrary close to 2/n. The reason, why this setting 

results in poor quality, is that each case w is considered 

separately while calculating the lower-bound estimate and all 

sets of tests isolating w except the cheapest one are ignored.  

At the same time, in contrast to information-theory based 

lower-bound estimates, the proposed estimate cares for the 

tests availability and is applicable in situations when the 

number of classes is small. 

The lower-bound estimate can be made tighter at the cost of 

m-fold computational complexity increase, as suggested in 

Ohta and Kanaya (1991). Every subtree of an optimal tree is 

also optimal, and any tree must have a test in its root. So, 

( )
*

1 ( )

( ) : min ( ) ( ( )) ( )
i

k q

l wq l i
q M

w N i w S q

T N w t T S q w 


  

 
   

 
    (4) 

is a lower-bound estimate for the cost of tests of the decision 

tree, and *( )lT H  is never less than ( )lT H . 

5. LOWER-BOUND ESTIMATE CALCULATION 

Calculation of the lower-bound estimate Tl (N) reduces to 

computing the optimal set of questions for all n cases. 

Consider a case w  N and suppose with no loss of generality 

that w  S1(q) for all q  M. Let F(w)  N be the set of cases 

that share the same class with case w. Then the problem of 

finding Q(w, S), and, consequently, t(w, S), for some S  N is 

equivalent to the problem of covering set S\F(w) by the 

family of sets {N\S1(q)}q  M , or an integer program:  

Choose a binary vector (xq)q  M to minimize 
wq qq M

t x
  

given ' 1qw qq M
a x


  for all w'  S\F(w), where aqw' is 

equal to zero if w'  S1(q), and unity otherwise.  (5) 

The set-covering problem is one of the most studied integer 

optimization problems (see Caprara et al (2000)). It is known 

to be NP-hard (and hard to approximate up to any constant 

factor). Nevertheless, several algorithms are tested below for 

the average computation time on the real classification 

problem. 

Data to cover different problem dimensions (n and m) were 

generated from “Chess” data set at UCI Machine Learning 

Repository (archive.ics.uci.edu/ml). The data set classifies 

chess KRKPA7 end-games (King+Rook vs King+Pawn on 

a7). 3196 cases are split in two classes (1669 “won”, and 

1527 “nowin”) by the values of one ternary and 35 binary 

attributes. 

The initial data set was restricted to randomly chosen 9, 18, 

and 24 attributes by taking the expected class label. Then 

attributes were randomly joined to form combined tests of 

different cardinality (from 2 to 768), while the number of 

questions varied from 2 to 36. Case-sensitive test costs were 

randomly picked from the uniform distribution over [0, 1]. 

Random subset S of cases was picked and the minimum cost 

t(w, S) was computed for 10 randomly selected cases w  S 

by a general-purpose branch-and-bound binary programming 

algorithm, which uses a continuous relaxation of integer 

subprograms to limit search. A group of 65000 experiments 

was run. See Table 1 for results. 

Then integer program (5) was relaxed to a linear program 

permitting all non-negative xq to fasten computation of the 

minimum cost. The solution * *( , ) ( ( , ))q q Mx w S x w S   of the 

relaxed problem gives a lower-bound estimate tL(w, S) of the 

minimum cost t(w, S). An expected value of tL(w, S) then 

serves as a relaxed lower-bound estimate of the cost of 

correct classification of learning set N: 

( ) : ( ) ( , )L Lw N
T N w t w N


  .  (6) 

An adjusted estimate *( )LT N  is defined by analogy with (4). 

Lower-bound estimate TL() obviously never exceeds Tl (), 

but experiments show a minor fall of quality (at most 26% 

and 3.8% in the mean). At the same time, the computation 

speed gain is also minor (compare columns 1 and 2 of Table 

1). The iterative active-set method is used to solve linear 

programs.  

Table 1.  Cover-set problem experiments 

Algorithm 
1. Binary 

program 

2. Linear 

relaxation 

3. Dual 

program 

Average optimal cost 3.122 3.003 3.003 

Avg. comp. time, s 0.1866 0.1713 0.0642 

95% conf. interval for 

the comp. time linear 

regression slope*, ns 

9.41- 

9.58 

8.14- 

8.17 

2.84-

2.86 

R
2
 for the linear 

regression 
0.98 0.97 0.85 

* For Intel® Core Duo™ T7200 2 GHz. 



 

 

     

 

The experiments also show that replacing a linear program 

with its dual one fastens computation approximately three-

fold (the reason is that the number of variables m is small and 

the number of conditions |S| is comparably large in an initial 

problem) – compare the slopes in Table 1. Computation time 

for all three algorithms exhibits a linear relation on the size 

m|S| of the constraints matrix A = (aqw) at high confidence 

level. In neither experiment a significant deviation of the 

computation time from the linear relation is observed. 

Thus, the average computation time of the test cost’ lower-

bound estimate for the decision tree that classifies correctly n 

examples with m available tests is proportional to n
2
m. 

Calculation is easily parallelized. 

In the next section the lower-bound estimate is also computed 

for subtrees classifying some set S  N. If S is the set of 

examples undistinguished after running a series of tests 

Q  M, these questions can be excluded to fasten the 

calculation as they add no information and are never found in 

optimal sets of questions isolating a case in set S. 

6. LOWER-BOUND ESTIMATE APPLICATIONS 

The main goal of the new lower-bound estimate is to 

overcome the shortcomings of the existing estimates. 

Evaluation of losses of a particular heuristic decision tree is 

the main application. From the practical point of view it gives 

a rationale to accept a tree or to seek for the further 

improvements of the decision tree. 

Lower-bound estimates are often used in branch-and-bound 

algorithms, but estimates (3) and (6) are too costly in 

calculation for such an application.  

In the standard greedy algorithm of top-down induction 

(TDI) of the decision tree the test is chosen for the node that 

maximizes or minimizes a split criterion. A lower-bound 

estimate can be used to build a variant of the split criterion: 

( )

1

( , ) : ( ) (
k q

wq L

w S i

P q S w t T S
 

   
( )

( )) ( )
i

i

w S S q

S q w
 

 . (7) 

The test that minimizes (7) is chosen for the node with set S 

of unclassified examples. Below this algorithm is referenced 

to as TDI+LB. Although the number of lower-bound estimate 

calculations is much fewer compared to that in a typical run 

of a branch-and-bound algorithm, TDI+LB is still too slow 

compared to simple cost-sensitive TDI heuristics (such as 

CS-ID3, IDX, and EG2), while giving doubtful gain in 

quality. At the same time, as the combinatorial nature of split 

criterion (7) crucially differs from the information-theoretic 

nature of the criteria used in CS-ID3, IDX, and EG2, it is 

interesting to compare the trees generated by these 

algorithms. Adjacency of the resulting trees is a good reason 

to believe the heuristic tree is a near-optimal one. 

Note also that calculation of lower-bound estimates during 

TDI can be fastened sufficiently by reusing the results of 

previous calculations. Consider any test q from the optimal 

set of questions Q(w, N) of some case w, or any test q for 

which * ( , ) 1qx w N  . Then it is easy to show that for all 

Si (q), i = 1, …, k(q), the equalities hold for all q'  q: 

Q(w, Si (q)) = Q(w, N)\{q}, and * *

' '( , ( )) ( , )q i qx w S q x w N . 

That is recalculation of the minimum cost of isolating a case 

is required at a child node only when a non-optimal question 

is asked at the parent node. 

A series of experiments was performed to compare TDI+LB 

algorithm with the other TDI heuristics. Another aim of the 

experiments was to check the quality of the lower-bound 

estimate (6) for real classification problems. Standard data 

sets MONK-1, MONK-2, “Cars”, and “Chess” from UCI 

Machine Learning Repository were used. The number of 

classes never exceeds four in these classification problems, so 

the quality of entropy-based lower-bound estimates is 

extremely low. Two types of test costs were used in 

experiments. Test-sensitive costs tq were picked from the 

uniform distribution over [0, 1]. Case-sensitive costs tqw were 

calculated by adding a uniformly distributed on [0, 0.5] noise 

to the test-sensitive costs tq . When calculating the split 

criterion for IDX, CS-ID3, and EG2, case-sensitive costs 

were averaged out over the set of unrecognized cases. 

The results of the experiments are depicted in Table 2. Top 

five rows describe the data sets and the experiments. Then the 

average (over experiments) value is presented for the lower-

bound estimate TL(N) (LB) and costs of decision trees 

generated by IDX, CS-ID3, and EG2 algorithms. Below the 

average cost of the tree generated by TDI+LB algorithm 

based on split criterion (7) is presented, and quality of 

TDI+LB is depicted in terms of the number of experiments 

where TDI+LB outperforms (“wins”) all other algorithms, is 

dominated by one of them (“loses”), or leads to the same tree 

as the best of the other tested algorithms (a “draw”). The split 

criterion for EG2 algorithm has a parameter  of the 

“strength of the bias towards lower cost attributes”. In every 

experiment the bias varied from zero to 10 to obtain the best 

quality of EG2. 

Table 2.  Greedy heuristics comparison 

Data set MONK-1 MONK-2 Cars Chess 

No of attr., m 6 6 6 36 

No of cases, n 122 169 1728 3196 

No of classes, d 2 2 4 2 

Cost type tq twq tq twq tq twq tq twq 

No of trials 100 100 100 100 100 100 2 - 

Avg. 

cost 
LB 1.023 1.571 1.537 2.317 1.218 1.849 1.762 - 

IDX 1.404 2.188 2.030 3,138 1.451 2.221 3.246 - 

CS-ID3 1.463 2.293 2.086 3.172 1.444 2.227 3.283 - 

EG2 1.303 2.021 1.985 3.073 1.438 2.215 3.174 - 

TDI+LB 1.258 1.943 1.941 2.998 1.468 2.255 3.318 - 

TDI+LB wins 63 55 95 96 20 28 1 - 

TDI+LB loses 29 31 5 4 72 60 1 - 

Draw 8 14 0 0 8 12 0 - 

 

Table 2 shows that TDI+LB algorithm based on the lower-

bound estimate outperforms the other algorithms on small 

data sets (MONK-1 and MONK-2) both in terms of the 

average cost and of the number of wins, while clearly losing 

on bigger data sets (Cars and Chess).  



 

 

     

 

It is interesting to note that addition of a case-sensitive noise 

to costs of tests does not benefit neither the quality of the 

lower-bound estimate, nor the quality of TDI+LB heuristic. 

The changes are immaterial compared to the setting with test-

sensitive costs. In all experiments the trees generated by all 

algorithms are notably similar, so these trees seem to be near-

optimal. Under this hypothesis, the quality of the lower-

bound estimate TL() varies from the experiment to the 

experiment in a range from 50% to 90%. 

The experiments show that “statistical” heuristics work much 

better starting from the hundreds of classified examples. It is 

expectable, as the proposed lower-bound estimate is based on 

the sort of “micro-description” of the classification problem.  

To boost both computation speed and quality of TDI+LB, it 

can be combined with some information-gain based heuristic 

(say, EG2) replacing it when inducing the lower-level 

subtrees for no more than some number of examples (the 

boundary is determined by a constant threshold). Tables 3 

and 4 below show that this sort of combination (denoted in 

the table as EG2+LB) works well for “Cars” data set and 

worse for “Chess” problem. Comparing the results for 

“Chess” with that of “Cars” shows that the lower-bound 

estimates (3) and (6) work considerably worse in the presence 

of the large number of “dummy” tests never met in near-

optimal decision trees (the same issue was noticed for the 

cost-sensitive lower-bound estimate proposed by Biasizzo, 

Žužek, and Novak (1998)). 

Table 3.  Comparison of EG2 and EG2+LB (Cars) 

Threshold 100 50 25 

Cost type tq twq tq twq tq twq 

No of trials 100 100 100 100 100 100 

Avg. 

cost 

EG2 1.412 2.186 1.492 2.219 1.482 2.247 

EG2+LB 1.425 2.192 1.489 2.217 1.481 2.246 

EG2+LB wins 45 53 67 65 24 41 

EG2 wins 43 27 13 5 0 0 

Draw 12 20 20 30 76 59 

 

Table 4.  Comparison of EG2 and EG2+LB (Chess) 

Threshold 50 25 10 5 

Cost type tq twq tq twq tq twq tq twq 

No of trials 10 10 10 10 10 10 10 10 

Avg. 

cost 

EG2 1.877 3.120 2.050 2.935 2.034 3.213 2.0501 2.9349 

EG2+LB 1.901 3.128 2.057 2.942 2.036 3.217 2.0507 2.9352 

EG2+LB wins 1 4 1 0 2 0 3 1 

EG2 wins 9 6 9 10 7 10 7 5 

Draw 0 0 0 0 1 0 0 4 

7. CONCLUSION 

In this paper the new lower-bound estimate is developed for 

the cost of the decision tree with case-dependent test costs. 

Unlike known estimates it performs well when the number of 

classes is small compared to the number of examples.  

Calculation of the estimate is NP-hard in the worst case but 

the experiments show admissible average performance in the 

order of n
2
m operations for n examples and m tests. 

The main application of the proposed estimate is evaluation 

of losses of a particular heuristic decision tree algorithm. But 

it can also be used in split criteria of greedy algorithms of 

decision tree construction. Experiments on four real data sets 

show that these algorithms give results comparable with 

popular cost-sensitive heuristics – IDX, CS-ID3, EG2, and 

perform better on small data sets with lack of tests. 
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