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ABSTRACT 
We propose an automated routine for hierarchical menu 
structure optimization. A computer advice-giving system 
founded on the mathematical model of menu navigation 
directs the designer-driven process of sequential 
enhancement, while menu designer caters for the semantic 
quality of menu labels and groupings used. The 
mathematical model employs the frequencies of functions’ 
usage and the estimates of navigation time delays to 
calculate the average search time for the current and 
optimal menu structure, to show the “bottleneck” panels of 
the current menu, and to suggest the direction of their 
improvement. The model covers the variety of menu types 
and allows choosing the best type to meet requirements of 
specific application or user category. The approach is 
illustrated by the optimization of a mobile phone command 
menu.  
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1. INTRODUCTION 
Hierarchical index was one of the earliest methods to 
arrange a large number of items for fast access. 
Contemporary examples of such hierarchies include 
complex command menus in GUI, Web catalogues like 
“Google™ directory” (see Figure 1), voice menus of 
phone-based services, menus of ubicomp devices [20], and 
many others.  
Users spend much time selecting from menus, thus the 
usability of applications is often determined by the usability 
of its menu system. This factor is particularly important for 

mobile devices, with their limited interface capabilities. The 
design of a hierarchical menu consists of building a 
hierarchy of taxonomies for the set of items and choosing a 
menu type or layout for every taxonomy (menu panel). The 
result must fit the best specific application, user, and 
hardware conditions. 
The usability of a menu is typically measured by the items’ 
average search time. There are usually a number of 
semantically feasible ways to arrange a given set of items 
into a hierarchy of categories, so the problem is to find a 
permissible hierarchy with the lowest average search time. 
We solve this discrete optimization problem along with 
some of its extensions, and suggest the human-guided 
routine for menu structure optimization. 

 
Figure 1: Google™ Directory –  

an example of a hierarchical menu (fragment) 

This paper has the following structure. First we describe the 
suggested process as it is seen by a menu designer and 
formulate the contribution. Then we review the literature to 
outline the alternative approaches. In section 4 we introduce 
the theory, illustrate it in section 5, and embed the theory 
into the design process in section 6. In section 7 we discuss 
the details of the approach, compare it with the others, and 
address some issues and possible criticism. Section 8 
concludes. 

2. THE ROUTINE 
We take the average time spent by a user in a menu as a 
main indicator of menu quality and usability. The suggested 
approach to the design of optimal (i.e. time-minimizing) 
menu bases on the four components: 
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1. Experimental or expert estimates of menu navigation 
delays and the menu items’ popularities. 

2. A theoretical model of menu structure optimization. 
The model allows calculating the shape and delays of 
the optimal hierarchy accepting all possible item 
groupings (in the absence of semantic constraints). 

3. A suite of predefined partitions of menu items that 
help to fill the normative menu panel pattern 
suggested by the theory by meaningful groups of 
items. 

4. A designer that governs the process of menu creation, 
evaluates the semantic quality, chooses and corrects 
the suggested automatic groupings to handle the 
informal factors missed by the model. 

For a designer the process of hierarchical menu de-
velopment and optimization consists of the following steps.  
1. Fix the set of menu items to be searched by users. For 

every menu item estimate its popularity – the 
probability of being searched.  

2. Prepare several meaningful taxonomies of the set of 
menu items (multi-criteria and hierarchical 
classifications are welcome). Later they will be used 
for automatic item groupings into labeled menu 
categories.  

3. Determine the expected operating conditions of a 
menu and its focus group. 

4. Pick over the set of menu panel types to consider (e.g. 
top-down list of labels, matrix of icons, etc.) or 
develop new ones.  

5. Evaluate, given the audience and conditions, the 
average selection delays of each menu alternative for 
every menu type and breadth (the number of 
alternatives on the panel). The library of predefined 
analytic and simulation models should save sufficient 
time and efforts. If the audience is diverse or menu 
usage conditions are unclear, average delays can be 
used. 

6. The theory says that mixing several menu types in one 
menu is not necessary. Thus for every menu type the 
CAD system estimates the average time of the optimal 
hierarchy built using this menu type and suggests the 
menu type with the lowest average delays. 

7. Fix the advised menu type (or choose another on the 
basis of private considerations) and start the 
optimization of the menu structure. 

8. The process of sequential structure improvement may 
start from any point. It can be a manually built 
hierarchy, or automatically generated structure based 
on the predefined taxonomies from step 2.  Different 
taxonomies are used to partition the items on different 
menu panels into meaningful categories with clear and 
comprehensible labels. 

9. For the current hierarchy its average search time is 
estimated (by simulation) and compared to the average 
search time of the optimal hierarchy (calculated from 
the optimization). For every panel of the current 
hierarchy several key performance indicators (KPI) 
are displayed: time losses in seconds compared to the 
structure of optimal panel, relative panel quality, panel 
quality compared to the quality of other panels 
(bottleneck indicator), the number of alternatives in 
the optimal panel and the optimal alternatives 
popularity ratio compared to the current panel 
alternatives’ distribution of popularities. 

10. Improve the current panel: 
a. Adjust the grouping of menu items by splitting or 

merging the categories, changing their order or 
making other local improvements. Changes 
immediately affect the values of KPIs.  

b. Change (if needed) the principle of items’ 
partition. Predefined taxonomies help to regroup 
large sets of items. Manual ad-hoc classification is 
possible for small sets.  

c. Choose another menu type for the current panel. 
11. Find and process the new bottleneck panel. 
12. Stop the improvement process when the time losses in 

comparison with the theoretically optimal structure 
become plausible, or when no improvements are seen. 

Several points of this program require extensive 
experimental and theoretical support. The experiment is 
required in step 1 to estimate the menu items popularity. 
Thorough analysis is also needed to build a reliable model 
of menu navigation delays (see step 5) for new menu types. 
The model should allow tuning to the different contexts 
(user categories, data channel or display quality, etc.).  
The theory of hierarchy optimization is used to estimate the 
optimal menu time delays in step 6, and also to calculate the 
optimal parameters (the number of menu alternatives and 
the distribution of their popularities) of menu panels, to find 
the most inefficient panel of current hierarchy, and to 
suggest the possible directions of improvement in step 9. 
Some of these process requirements force us to improve the 
existing and to develop the new theoretical results. These 
improvements constitute the main contribution of our work 
to the theory of CHI. The contribution of this paper to the 
engineering of interactive computing systems is the 
operable and implementable process of menu design and 
optimization. 

3. BRIEF LITERATURE REVIEW 
An extensive study of menu optimization methods (the 
rather aged but a comprehensive survey is found in [11]) 
started in the past two decades of the 20th century in 
response to advances in computer interfaces. Hierarchical 
menus were the part of standard GUI and then migrated to 
the Web transforming into the structure of hyperlinks. 



A number of aspects should be taken into account when 
designing a rational hierarchical menu – menu panels’ 
appearance, information processing capabilities, user 
experience, application needs, user search strategies, 
principles of items sorting, learning processes. An 
important issue is that of menu structure studied mostly in 
the context of the so called “depth vs. breadth” problem. 
The question is how many alternatives a rationally 
organized menu should offer to a user at once (this number 
is called the breadth of a menu), and, thus, how many levels 
(also called the depth) the menu will have. The more 
precise question is how should the breadth of a menu panel 
depend on its level – is it rational to give the user a richer 
choice first and then to narrow the number of alternatives or 
vice versa. 
There are different approaches to this problem. Early 
empirical recommendations “keep it simple” [15] were not 
satisfactory.  In a classic model by Lee and MacGregor [9] 
a very restrictive framework is considered of symmetric 
menu with constant breadth over a set of equally popular 
items. They supposed each alternative has equal mean time 
of being selected and studied two search strategies resulting 
in a linear relationship between the search time and the 
menu breadth. The formula was obtained for the optimal 
menu breadth (giving 6-8 alternatives for a wide range of 
parameters). This range was far from empirical 
observations, so Landauer and Nachbar [8] suggested 
another model with similar restrictions but with a 
logarithmic relationship between the search time and the 
menu breadth. Their formula allow for a wider range of 
menu breadths (see [3] for the recent revision of this 
model).  
The frequency-based model of Paap and Roske-Hofstrand 
[13] extended the one of Lee and MacGregor [9], but still 
excluded asymmetric hierarchies from consideration. 
Thimbleby [19] suggested another frequency-based model 
of user interface optimization based on Huffman coding. 
The idea of “making frequent things easy” captures the 
benefits of asymmetric menus, but menu panels in the 
model are hidden within the state-machine diagram. The 
model accounts only for button presses, not time delays. 
This makes it hard to compare with the others.  
A certain model of menu navigation forms a basis for every 
theoretical study, and a substantial body of literature 
concerns the modeling issues in different circumstances. 
Among recent publications [3, 4, 7] should be mentioned.  
Shneiderman [17] stressed the importance of experimental 
justification of theoretical conclusions, and many authors 
([3, 7, 11, 12, 16], among others) concentrated on empirical 
studies of various menu types or menu structuring 
principles to substantiate certain design guidelines.  
An advanced topic for empirical research was the study of 
menus with varying breadth. At the moment they give no 
clear understanding whether increasing or decreasing 
breadth (with a menu level) is optimal. Norman and Chin 
[12] conclude the breadth should increase at deeper levels 

of a menu, while Bernard [2] found no significant 
differences between increasing and decreasing breadth 
menus. 
Both theoretical and experimental approaches suffer from 
the lack of applicability. Theoretical results operate in a 
rather abstract framework while guidelines from 
experimental research concern particular cases. Most 
approaches do not account for the semantic quality of menu 
category labels. One of the known exceptions is the paper 
of Fisher et al. [4] where the assumptions of Lee and 
MacGregor are partially relaxed and the algorithm is 
suggested for menu optimization that takes into account 
semantic aspects. The idea is introduced there of using the 
taxonomies of menu items to automatically build 
meaningful groupings. 
Consider a design process from Section 2. Neither of the 
existing approaches addresses perfectly all its requirements. 
Yet these requirements seem to be quite natural for any 
operator-driven design process: CAD system must show 
where we are, where the goal is, where (and in what 
direction) the efforts should be exerted.  
In the next section we extend the known approaches to 
build the general model of menu navigation. We equip it 
with the methods for structure optimization that rely on the 
general theory of hierarchy optimization [5, 10, 21]. 

4. THE THEORY 
Consider a fixed set of items N – the collection of items to 
be categorized and arranged in a hierarchy. Suppose a user 
always seeks a single item. Let µ(w) be the item’s w ∈ N 
popularity – the probability of being searched. 
The set N can be partitioned into the categories forming 
different menu panels. Every category (i.e. menu panel) is 
characterized by the set s ⊆ N of items that belong to it. 
Subsequent partition of categories induces a directed tree 
with the top category N being its root and the individual 
items {w} (w ∈ N) being the leaves. 
Let us define a target category as any category that contains 
the target item. For every category s ⊆ N define its 
popularity ∑ ∈

=
sws w)(µµ . Consider a user navigating to 

some category s ⊆ N with k subcategories. If µi is the 
popularity of category si, i = 1, …, k (note that 
µ1 + … + µk = µs), the conditional probability of the i-th 
category being the target one is yi := µi/µs (hereinafter the 
vector (y1, …, yk) is referred to as the proportion since 
y1 + … + yk = 1 by definition). 
Let the menu type stand for a summary of visual and 
usability menu properties and let Ω be the set of all 
potential menu types that designer can choose from. The 
elements of the set Ω for mobile phone menu can, for 
example, be something like “Up-down list with text labels”, 
“4x3 array of animated icons”, or “high-contrast huge static 
icons with voice hints”.  



Menu navigation delays form the basis of the model. 
Besides the menu type the delays depend on the operation 
conditions of a menu and its focus group. The vector of 
relevant usage conditions (e.g. the communication channel 
speed, screen size and resolution, application type, etc.) and 
user characteristics (e.g. age, experience, vision quality, 
reading speed, etc.) may depend on the menu type but there 
is no loss of generality to consider a common 
multidimensional vector ξ ∈ Ξ. 
To describe the model of menu type θ ∈ Ω is to define the 
average time ti(k, θ, ξ) of finding and selecting the i-th 
alternative from the list of k alternatives in the menu of type 
θ given the conditions vector ξ (it is supposed that 
alternatives are indexed somehow from 1 to k). This time 
may include both cognitive and motor delays. In section 5 
we provide several illustrative menu models. 
To account for the context in menu design one must predict 
the usage conditions and the focus group of the menu. In 
general these predictions take the form of probability 
distribution over Ξ. The model we build is linear in the 
delays ti(k, θ, ξ), thus the context information can be 
averaged. Hereinafter we skip the term ξ assuming the 
delays ti(k, θ) correspond to the conditions in hand. 
If a user enters a menu panel (category) s ⊆ N with k 
elements s1, …, sk (subcategories or individual items), the 
average time he or she spends there is evaluated as a 
weighted sum of select time for each element: 

( )∑
=

=
k

i
iik yktyyt

1
1 ,),,...,( θθ .  

Before finding the best menu structure one needs to choose 
the menu type that minimizes the average search time for 
every individual menu panel: 

( ) ( )∑
=

Ω∈
=

k

i
iik yktyyt

1
1 ,min,..., θ

θ
. 

The problem in hand belongs to a broad class of problems 
of optimal hierarchy search. These problems arise in 
different areas but despite dissimilar interpretations they 
have a common mathematical setting and allow for a 
general approach to their solution. 
The average search time T is the total time user (at the 
average) spends on every category s in hierarchy H. If µs is 
the probability of category s to be the target one, and 

1sµ , …, 
)(sksµ  are the popularities of its k(s) subcategories, 

the expression for T can be written as 

( )∑
∈

⋅=
Hs

sssss sk
tT µµµµµ /,...,/

)(1
. 

Hereinafter the term µs⋅t(⋅) is referred to as the cost of a 
category (or node) s in a hierarchy H. The cost of category s 
is a homogenous (of degree one) function of the category’s 
popularity µs. The problem is to choose the tree with the 
minimum search time from the broad set of all possible 

trees over the set N (in this section we neglect semantic 
constraints). 
The general result [5] on the optimal trees for homogenous 
cost functions is the optimal tree tends to be the uniform 
one. In the uniform tree every category has the same 
number of subcategories k (also called the breadth) with 
popularities giving rise to the same proportion y1, …, yk. An 
example of a uniform tree with the breadth 2 and the 
proportion (2/3, 1/3) is depicted in Figure 2 (node labels 
represent the popularities of appropriate categories while 
arcs labels represent the components of proportion). 
A useful feature of a uniform tree is an analytic expression 
of its average search time.  
Theorem 1. For the homogenous cost function the average 
delay T(H) of the uniform tree H with the breadth k and the 
proportion y1, …, yk built over the set of items N is 

( ) ( ) ( ) ( )
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∑
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For the proof see the Appendix. 1) 
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Figure 2. An example of a uniform tree 

As shown in [5] the problem of tree optimization reduces to 
the calculation of the best uniform tree attributes by 
minimizing the average search time (1) over all breadths 
k = 2, …, n and proportions y1, …, yk with 
xi ≥ ε = min w∈N µ(w)/µ(N): 
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Due to discreteness of the set of items N the best uniform 
tree may not be constructed exactly, but its search time (2) 
can always be calculated, and (2) always gives a lower 
bound estimate of the search time of the optimal hierarchy: 
Theorem 2. The average search time of the optimal 
hierarchy over the set of items N is always not less than 
TL(N), i.e. TL(N) is the lower bound estimate for the optimal 
hierarchy average search time. 
                                                           
1 If µ(w) is interpreted as a popularity of the item w, like in 

menu optimization problem, then µN = 1, but the formula 
also holds in general (the proofs use the general case). 



For the proof see the Appendix. 
Effective computational procedures are suggested in [6] to 
build roughly uniform and almost optimal trees. One of 
them, the generalization of the well-known Shannon-Fano 
coding algorithm, is best suited for optimal menu 
construction. Let us outline its idea. Consider the menu 
items are aligned in some order. The algorithm starts 
building the tree from the top, grouping the conjoint items 
to best fit the normative breadth and proportion. Then the 
procedure is repeated for every child group formed until the 
terminal nodes.  
Let TSO(N) denote the average search time of the tree built. 
It is shown in [6] that given some technical assumptions the 
ratio TSO(N)/TL(N) tends to unity when the number of items 
in the set N grows. In other words, the tree is roughly 
optimal for large item sets. Note that a roughly optimal tree 
can be constructed for every of n! items’ orderings. So the 
algorithm allows building a great number of roughly 
optimal trees.  

5. RESULTS 
Find the shape of optimal menu for different types of user 
navigation strategies. The cost function µs⋅t(⋅) is 
homogenous by definition. Thus, an optimal hierarchical 
menu must be uniform, i.e. every category in an optimal 
menu must have, if possible, the same number of 
subcategories with the same proportion (relative 
popularities of subcategories).  
Note, that this means that it is inefficient to combine several 
menu types in one menu structure. For every menu panel 
the menu type is chosen to minimize the average time user 
spends in a panel. One can calculate the best menu type for 
every breadth and proportion. But in the optimal hierarchy 
all panels have the same breadth and proportion and, thus, 
the same optimal menu type. 
Consider a couple of examples of the best uniform tree 
attributes calculation for two classic user search strategies 
[11] – the exhaustive search and self-terminating search. 

5.1. Exhaustive Search without Repetition 
Consider the simplest type of Web-based menu where a 
user navigating to some category observes a page with a 
plain list of subcategories. “Read all” navigation strategy 
[7, 11] is adopted – a user sequentially reads the titles of all 
categories and then drills down to the target category (or 
item). The possibility of user choice mistakes is neglected. 
As a user always reads all items, the average time spent in a 
category s is 

 ( ) clickreadloadrespk tktkttyyt +++=,...,1 , (3) 

where tresp is a server’s mean response time in seconds 
(more precisely, the mean time it takes to download a page 
with an empty list of categories), tload is the mean time of a 
single category label download, tread is the mean time 
needed to read and recognize one category label, and tclick is 
the mean time spent in moving the pointer to the target 

category and clicking the link (as all these parameters enter 
linearly in the criterion we can always use averages). 
The optimal breadth r and the proportion (x1, …, xr) 
minimizes (1). Given (3) it is easy to conclude that for 
“read all” strategy symmetric hierarchy is the best choice. 
Optimal breadth r is found from the equation 

 
rt

trtt
r

read

clickloadresp ++
+= 1ln . (4) 

Take the typical parameters values for Web-based menus: 
tresp = 2 sec, tload = 0.02 sec, tread = 1 sec, tclick = 1 sec (these 
convenient values are taken just for illustration; in [9] 
tread = 1 sec corresponds to “slow readers”). The optimal 
breadth is then r = 5. This means that an optimal menu 
structure forms symmetric tree with 3 choices in each 
category. The formula (4) extends the one obtained by Lee 
and MacGregor [9] under the assumption that all items have 
the same popularities. The model proposed allows for the 
different popularity of every single item. 

5.2. Self-terminating Serial Search 
Another classic user behavior is the so called “read until” 
strategy – a user sequentially reads categories in a list until 
the target category/item and immediately drills down [9]. 
As a user reads the labels sequentially, yi is also the 
conditional probability of user reading exactly i labels until 
target. Thus, given s is one of the target categories, the 
average time spent on it is 

 ( ) click
k
i ireadloadrespk tyitkttyyt +⋅++= ∑ =11,..., . (5) 

The optimal breadth r and the proportion (x1, …, xr) 
minimizes (1). Substituting (5) into (1) yields 
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where readclickloadresp ttkttkA /)()( ++= . 

From the first-order conditions find ( ) ikA
i kay += )( , 

i = 1, …, k, where a(k) is the solution of the equation 
11

)( =∑ =
+k

i
ikAa  (or, alternatively, 1/1)()( −=− + aaa kkAkA ). 

Substitution of the optimal proportion into (6) yields the 
optimal menu breadth 

( )( )ka
r

k 1ln
1minarg= . 

For the parameter values from the previous subsection the 
optimal breadth r = 13 is then easily found by numerical 
minimization (compare it with r = 5 in the previous 
subsection!). Corresponding proportion is x1 ≈ 0.27, 
x2 ≈ 0.20, x3 ≈ 0.15, …, x13 ≈ 0.007, i.e. the chance to find 
the target item in the first category of the optimal list must 
be more than 1:4, in the second – about 1:5, and so on up to 
the last category – 1:150. 



Compare this result to the analogous one in [9]. For the 
similar navigation strategy Lee and MacGregor find an 
estimate for the optimal breadth. Their formula gives r = 7 
for the above parameter values. 
In [9] only symmetric and uniform trees are studied. Just a 
few studies in the ensuing years addressed hierarchies with 
varying breadths and they gave no clear answer on whether 
varying breadths make sense or not (Norman and Chin [12] 
found that menus with the largest breadth in the top layer 
and the terminal layer are more efficient than menus with 
the largest breadth in the middle layers while Bernard [2] 
found no significant differences in efficiency between 
various breadth profiles). The above analysis extends the 
previous results to the class of arbitrary menu structures and 
arbitrary items popularities. Note that allowing for 
asymmetric menus saves about 10% of user time on 
average. 

5.3. Navigation Mistakes Probability 
In this subsection an example is given of how simple search 
models can be improved to include advanced considerations 
like user mistakes, thus tuning the general model to the 
variety of practical situations.  
Ambiguous or inconsistent category names may lead to user 
mistakes during navigation through menus. Two types of 
mistakes and corresponding recovery techniques are 
considered: the user navigates to the wrong subcategory and 
then moves back to the parent category or user mistakenly 
navigates up from the target subcategory [11]. 
User mistakes increase the search time at the cost of wrong 
choice and recovery. For “read until” navigation strategy 
the time to choose the i-th item in the parent category by 
mistake is 

clickreadloadresp
i
mistake titkttt +++= . 

Once navigated to the subcategory the user has to view it 
through and make a choice to move back: 

clickreadloadresprecover tktkttt +++= . 

Let us introduce the probability, p, of a user making a 
mistake while browsing a category. This probability is split 
among category items proportionally to their popularity (a 
mistake is more likely to occur for popular categories). 
Thus, for the particular user in the particular category, the 
probability to choose the i-th item by mistake is p∙yi. The 
total probability to get into category s by mistake is μs∙p. 
So, the average time loss in a category s due to the user’s 
mistakes is 

∑
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+
k

i

i
mistakeisrecovers typt

1
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The optimal popularities of subcategories are calculated: 
( ) ikB

i kay += )( , i = 1, …, k, where 
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As before the optimal breadth 

( )( )ka
r

k 1ln
1minarg= . 

For the typical parameter values specified above and the 
mistake probability p = 0.2 the optimal breadth r = 8 and 
corresponding proportion is x1 ≈ 0.25, x2 ≈ 0.19, 
x3 ≈ 0.15, …, x13 ≈ 0.05. Note the possibility of user 
mistakes reduces the number of items within a category. 
The reason is that these “narrower” menus give the user an 
ability to recover faster after a mistake. 
Analogous closed-form solutions can also be found for 
alphabetically sorted items (the search time is logarithm of 
menu breadth [8]), categorized menus (see Figure 1) [13], 
and many other practical situations. 

6. ALIGNING AN OPTIMAL MENU STRUCTURE WITH 
SEMANTIC CONSTRAINTS 
The set of admissible hierarchies in a hierarchical menu 
optimization problem is restricted by semantic constraints. 
In many cases these constraints are reduced to the 
enumeration of semantically meaningful categories (items’ 
groups) that solely can be used while constructing a menu. 
Call the menu meaningful if it consists of meaningful 
categories only. Although the problem is to find a 
meaningful menu minimizing the average search time, the 
solution of unrestricted optimization problem also helps to 
design a meaningful menu structure in an automated mode.  

6.1. General Considerations 
First, the designer can compare the predicted average 
search time of the current hierarchy with the lower bound 
(1). If the difference is small, e.g. less than 5%, the current 
menu can be treated as satisfactory. 
Second, the structure of an optimal tree can be used as a 
template, the ideal that must be pursued while building a 
meaningful tree. 
The lower bound for the unrestricted problem remains the 
lower bound for the problem with semantic constraints. For 
the constrained setting branch and bound algorithms can be 
suggested that exploit the idea of TD-tree construction 
algorithm but also account for semantic constraints. They 
employ the set of predefined items’ taxonomies to group the 
items into meaningful categories with popularities close to 
optimal ones. 
Even then there is a number or informal aspects that may 
lead the designer to reject the suggested groupings. All 
these considerations are included in the suggested routine. 

6.2. An Example: Mobile Phone Menu Optimization 
Show how the suggested routine works in the case study of 
mobile phone menu optimization. 



Mobile devices give an example of systems where menu 
optimization problems are especially important. As a 
display of a mobile phone is small, a hierarchical menu is 
the only way to give a user access to a number of supported 
commands. The size of the display also prevents a user 
from running an eye over the whole menu panel, and a user 
must look through the alternatives sequentially. 
Consider the “send/receive messages” menu of a Nokia 
7510 mobile phone (see the left panel of Figure 3 for the 
truncated list). The items’ popularities depicted are taken 
from statistical research [1]. Other models of the same 
vendor have an analogous structure. 
Note the menu is strongly non-uniform – it has 14 
alternatives at the top level, and 2-5 alternatives at the 
second level (lower levels are omitted in Figure 3). General 
results of Section 4 say there is a place for optimization 
regardless of the delays values or user behavior 
assumptions. These assumptions become important when 
we try to show the direction of menu improvements. 

 
Figure 3. Mobile phone original and optimized menus 

Experiments help determine the average time delays: the 
new panel load time does not depend on the panel breadth 
and is equal tresp ≈ 1 sec, average label reading time 
tread ≈ 1 sec (including the time of scrolling), the selection 
key pressing time tclick ≈ 0.5 sec. Suppose users adhere to 
the self-terminating serial search strategy (poor control 
capabilities restrict much user behavior) and have the 
probability of mistake p = 0.05. Then one can calculate the 
average search time for the original menu structure 
(approximately 8.36 sec).  
Substituting the parameter values into the formula of 
Subsection 5.3 obtain the optimal menu breadth r = 8, and 
the optimal proportion of popularities (0.33, 0.23, 0.16, 
0.11, 0.07, 0.05, 0.03, 0.02). Note the optimal menu is 

extremely asymmetric. The lower bound for the average 
search time is approximately 6.74 sec. 
The discreteness of items set and semantic constraints 
prevent the building of a purely optimal menu. Using the 
routine described in section 2 the original structure was 
transformed into the one depicted in the right panel of 
Figure 3. Simple computations in accordance with the 
adopted model give the average search time of 7.22 sec for 
this structure. Thus aligning the menu structure to the 
optimal template fastens the access by 13.5% on average. 
The average search time for the meaningful optimized menu 
is just 6.6% higher than the lower bound (6.74 sec), which 
is adequate.  

7. DISCUSSION 
The suggested theory and the design process improve the 
existing approaches in several aspects.  
The theoretical model is akin to Thimbleby’s [19, 20] 
approach. Both approaches rest on the Zipf’s Principle of 
Least Effort. At the same time, the approach of [19] 
essentially relies on the “number of buttons pressed” 
criterion. It asserts sequential menu scanning, and does not 
distinguish between browsing single menu and drilldown. 
This fits well with the keypad input but not the richer 
interfaces. The average search time seems more flexible. It 
is adjusted to different contexts (the model of buttons 
presses has the only parameter – the probability of a user 
mistake), and brings the model close to the body of 
“breadth vs. depth” literature.  
We extend the approach of Lee and MacGregor [9] 
allowing for different item popularities and asymmetric 
hierarchies (remember the Least Effort principle!) with 
varying breadth. 
We took the approach of Fisher et al. [4] to the generation 
of meaningful items groupings, but we use hierarchical 
taxonomy in the context of a single menu panel. Several 
simple taxonomies are used to build different panels. This 
gives the designer the desired level of flexibility and eases 
the task of classification. 
There are many controversial aspects of the suggested 
approach, and we would like to address some possible 
concerns. 
The strongest assumption of the theoretical model is that 
navigation delays in a menu panel do not depend on the 
sense of the categories. In the context of the whole routine 
this means that all admissible labels (having good semantic 
quality) are supposed to require the same time to be read, 
while inadmissible labels are prohibited. This assumption is 
typical for all known formal models of menu selection. The 
main reason is that accounting for the specifics of every 
potential category label would require extensive data that 
are usually unavailable at the moment of menu design. In 
the routine that uses predefined taxonomies the length of 
the label can be used to adjust the reading delays. The 
uniform cost functions are a special case of the so-called 
sectional cost functions that depend on the menu categories 



(i.e. item groups) per se, not just on their popularities. 
Effective algorithms are developed in [21] for optimal tree 
search under the sectional cost function. Thus, our model 
can be refined to account better for the context but this will 
complicate both the math and the work of a designer. 
Structure optimization and semantic constraints are split. 
This assumption is good if one can always find a 
meaningful hierarchy with the nearly optimal structure (as 
small deviation from the optimal shape lead to small menu 
quality losses). At the end, this assumption can only be 
verified or contested by the practice of menu design. Above 
we provided an example of the real menu optimization.  
There is a concern about using item taxonomies to fill the 
suggested pattern of menu panel. Does this way give the 
flexibility of choosing the appropriate menu breadth? There 
is a solution. The taxonomies must be detailed enough – the 
number of categories should be more than the maximum 
number of menu alternatives considered. In this case several 
categories can be hidden into the “Others” category (see the 
“…” alternatives in Figure 1). Another way to adjust a 
menu breadth is to use hierarchical classifications [4], 
which allow one to easily merge the categories thus 
decreasing the breadth. 
Several authors (e.g. see [7, 18] and references there) 
consider the user goals consisting of multiple items (a user 
wants to access them all during one menu session or, 
alternatively, any item suffices). This situation is typical for 
a data store (e.g. web catalog) search. The case of the user 
returning to the top of the menu after finding each item is 
easily incorporated in our model. Direct accounting for the 
general case in the context of frequency analysis that we 
adhere requires computing at least the proximity matrix for 
the pairs of menu items (n⋅(n – 1) figures), or even the 
probability of every target set (2n figures). We believe the 
effect it has on the menu structure does not justifies the 
efforts. 
We described just one way of dealing with user mistake 
probability. The problem is that “there are infinitely many 
ways of being wrong, and a designer can only think of a 
limited number of them” [20]. New models of erroneous 
behavior may be developed on demand, but some of them 
may require the optimization framework enhancements. 
This can be the subject of prospective studies. 
The considered comprehensive model of delays still loses 
the specificity of one sort of motor delay arising in pointer-
driven systems. By Fitts’ Law [3] the pointer movement 
time depends on the amplitude of movement, thus motor 
delays in a menu panel depend both on the position of the 
alternative and on the position of the alternative selected on 
the previous panel. There are ways to address this issue but 
they complicate the model. 
A serious problem is the complexity of menu models used 
to predict the menu navigation time. To build a reliable 
model an extensive experimental work is required. 
Unfortunately, the content and scale of the experiments are 

completely dictated by the intention to minimize the 
average search time. Experimental methods are a well-
developed field of CHI research [14], and, at the end, we 
need just average selection time estimates. Once built, the 
model of the new menu type delays can be then reused. 

8. CONCLUSION 
We suggested an automated routine for menu structure 
optimization that employs the theory, experimental 
estimates and informal judgments. 
The theory says the tree structure of the optimal menu must 
be uniform. Usually the best uniform tree cannot be built 
exactly but the closer the attributes of the menu (breadth 
and proportion) to the ideal ones, the lower is the average 
search time. There is always a great number of 
approximately optimal menu structures, similar in shape but 
differing in content, for menu designer to choose from.  
The model also eases measuring the performance of new 
menu types. Comparing the performance of menu types on 
the single menu structure is not a proper way. The correct 
approach is to compare the optimal menu structures for 
every menu type (and, in fact, in varying environment!). 
Our theory allows the designer to concentrate on the 
modeling of a single menu panel, and given the model the 
performance benchmarks follow immediately. 
At the moment the prototype of the CAD system for menu 
optimization based on the described approach is under 
development. 
The prospective lines of theory improvement include 
accounting for numerous advanced aspects arising in 
practice: group targets, variable items’ popularity, screen 
capacity constraints, invalidated items, variable semantic 
constraints, fixed and dynamic menus, and others. Another 
promising direction is the consideration of less formal 
usability criteria besides the average search time.  
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APPENDIX. PROOFS OF FORMAL RESULTS 

Proof of theorem 1. 
The proof is based on induction on the number of items n. 
For the sole item (i.e. n = 1) the sole tree exists with no 
panels at all. Let us consider it uniform. Its search time 
equals to zero, so formula (1) holds. Suppose the theorem 
holds for every items number less than n. Let us prove it 
then holds for n items. 
In a (r, x)-uniform tree H top category has the popularity µ, 
and its subcategories s1, …, sr have the popularities 
µk = xkµ, k = 1, …, r. The average search time T(H) of the 
tree consists of the cost of the top menu panel and the costs 
of the subtrees H1, …, Hr, rooted by the subcategories 
s1, …, sr. As every subtree Hk is also a uniform tree for the 
set of items sk, k = 1, …, r, and all categories sk consist of 
less than n items, the search time of the uniform tree is, by 
induction: 

)(...)(),...,()( 11 rr HTHTxxtHT +++⋅= µ , 

where T(Hk), k = 1, …, r, are calculated according to (1). 
Let us denote for short ),...,(: 1 rxxtC = . Then 
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QED. 

Proof of theorem 2. 
The idea is analogous to theorem 1. Use induction on the 
number of items n. For the sole item with the measure µ1 
TL(µ1) = 0, and is equal to the search time of the only 
possible “empty tree”. Suppose the theorem holds for every 
number of items less than n. Prove that it then holds for n 
items. 
Consider some tree H where the top category s with the 
popularity µ is divided into k subcategories s1, …, sk with 
the popularities µ1, …, µk. The search time of the tree 
consists of the cost of the top menu panel and the costs of 
the trees H1, …, Hk rooted by the categories s1, …, sk (if the 
tree consists of the sole item, its search time equals to zero):  

)(...)()/,...,/()( 11 kk HTHTtHT +++⋅= µµµµµ . 

As the categories s1, …, sk consist of less than n items, the 
average search time in the corresponding subtrees by 
induction is not less than TL(si). Thus,  

)(...)()/,...,/()( 11 kLLk sTsTtHT +++⋅≥ µµµµµ . 

In the right side of the inequality we see the fixed menu 
breadth k and the fixed partition s1, …, sk of the set N. 
Consequently, the right side will not grow if we take the 
minimum for all k from 2 to n and for all possible partitions 
s1, …, sk of the set N. So, 
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Let us adopt the notation for convenience 
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Here Dk(ε) is the part of k-dimentional simplex, where 
every component of the vector is not less than ε. 
The notation allows writing (1) in a compact form: 
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Let us denote also r(n, ε) as the breadth, and  
x(n, ε) = (x1(n, ε), …, xr(n, ε)(n, ε)) as the proportion, where 
minimum in (2) is achieved. 
Let us sharpen the inequality 
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Replace ni by n, and εi by ε, thus widening the minimization 
domain: 
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Add and subtract TL(N) in the right side of the inequality: 
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The first multiplier of the minimized expression is non-
negative. The second multiplier is also non-negative as it 
achieves the minimum (that is equal to zero) at k = r(n, ε), 
y = x(n, ε). Consequently, the minimum in the right side is 
equal to zero, and T(H) ≥ TL(N).  
QED. 

 


