
An Automated Routine for Menu Structure Optimization

Mikhail Goubko
Institute of Control Sciences RAS

65, Profsoyuznaya str., Moscow, Russia
+7 495 334 9051

mgoubko@mail.ru

Alexander Danilenko
Institute of Control Sciences RAS

65, Profsoyuznaya str., Moscow, Russia
+7 495 334 9051

danilenko.alexander@gmail.com

ABSTRACT
We propose an automated routine for hierarchical menu
structure optimization. A computer advice-giving system
founded on the mathematical model of menu navigation
directs the designer-driven process of sequential
enhancement, while menu designer caters for the semantic
quality of menu labels and groupings used. The
mathematical model employs the frequencies of functions’
usage and the estimates of navigation time delays to
calculate the average search time for the current and
optimal menu structure, to show the “bottleneck” panels of
the current menu, and to suggest the direction of their
improvement. The model covers the variety of menu types
and allows choosing the best type to meet requirements of
specific application or user category. The approach is
illustrated by the optimization of a mobile phone command
menu.

Author Keywords
Menu-driven system, usability, depth vs. breadth, optimal
hierarchy, menu design automation, menu of mobile device.

ACM Classification Keywords
I.3.6. Methodology and Techniques: Interaction
Techniques; H.1.2. User/Machine Systems: Human Factors;
H.5.2. User Interfaces: Interaction Styles.

General Terms
Design, Performance, Theory

1. INTRODUCTION
Hierarchical index was one of the earliest methods to
arrange a large number of items for fast access.
Contemporary examples of such hierarchies include
complex command menus in GUI, Web catalogues like
“Google™ directory” (see Figure 1), voice menus of
phone-based services, menus of ubicomp devices [20], and
many others.
Users spend much time selecting from menus, thus the
usability of applications is often determined by the usability
of its menu system. This factor is particularly important for

mobile devices, with their limited interface capabilities. The
design of a hierarchical menu consists of building a
hierarchy of taxonomies for the set of items and choosing a
menu type or layout for every taxonomy (menu panel). The
result must fit the best specific application, user, and
hardware conditions.
The usability of a menu is typically measured by the items’
average search time. There are usually a number of
semantically feasible ways to arrange a given set of items
into a hierarchy of categories, so the problem is to find a
permissible hierarchy with the lowest average search time.
We solve this discrete optimization problem along with
some of its extensions, and suggest the human-guided
routine for menu structure optimization.

Figure 1: Google™ Directory –

an example of a hierarchical menu (fragment)

This paper has the following structure. First we describe the
suggested process as it is seen by a menu designer and
formulate the contribution. Then we review the literature to
outline the alternative approaches. In section 4 we introduce
the theory, illustrate it in section 5, and embed the theory
into the design process in section 6. In section 7 we discuss
the details of the approach, compare it with the others, and
address some issues and possible criticism. Section 8
concludes.

2. THE ROUTINE
We take the average time spent by a user in a menu as a
main indicator of menu quality and usability. The suggested
approach to the design of optimal (i.e. time-minimizing)
menu bases on the four components:

mailto:mgoubko@mail.ru
mailto:danilenko.alexander@gmail.com

1. Experimental or expert estimates of menu navigation
delays and the menu items’ popularities.

2. A theoretical model of menu structure optimization.
The model allows calculating the shape and delays of
the optimal hierarchy accepting all possible item
groupings (in the absence of semantic constraints).

3. A suite of predefined partitions of menu items that
help to fill the normative menu panel pattern
suggested by the theory by meaningful groups of
items.

4. A designer that governs the process of menu creation,
evaluates the semantic quality, chooses and corrects
the suggested automatic groupings to handle the
informal factors missed by the model.

For a designer the process of hierarchical menu de-
velopment and optimization consists of the following steps.
1. Fix the set of menu items to be searched by users. For

every menu item estimate its popularity – the
probability of being searched.

2. Prepare several meaningful taxonomies of the set of
menu items (multi-criteria and hierarchical
classifications are welcome). Later they will be used
for automatic item groupings into labeled menu
categories.

3. Determine the expected operating conditions of a
menu and its focus group.

4. Pick over the set of menu panel types to consider (e.g.
top-down list of labels, matrix of icons, etc.) or
develop new ones.

5. Evaluate, given the audience and conditions, the
average selection delays of each menu alternative for
every menu type and breadth (the number of
alternatives on the panel). The library of predefined
analytic and simulation models should save sufficient
time and efforts. If the audience is diverse or menu
usage conditions are unclear, average delays can be
used.

6. The theory says that mixing several menu types in one
menu is not necessary. Thus for every menu type the
CAD system estimates the average time of the optimal
hierarchy built using this menu type and suggests the
menu type with the lowest average delays.

7. Fix the advised menu type (or choose another on the
basis of private considerations) and start the
optimization of the menu structure.

8. The process of sequential structure improvement may
start from any point. It can be a manually built
hierarchy, or automatically generated structure based
on the predefined taxonomies from step 2. Different
taxonomies are used to partition the items on different
menu panels into meaningful categories with clear and
comprehensible labels.

9. For the current hierarchy its average search time is
estimated (by simulation) and compared to the average
search time of the optimal hierarchy (calculated from
the optimization). For every panel of the current
hierarchy several key performance indicators (KPI)
are displayed: time losses in seconds compared to the
structure of optimal panel, relative panel quality, panel
quality compared to the quality of other panels
(bottleneck indicator), the number of alternatives in
the optimal panel and the optimal alternatives
popularity ratio compared to the current panel
alternatives’ distribution of popularities.

10. Improve the current panel:
a. Adjust the grouping of menu items by splitting or

merging the categories, changing their order or
making other local improvements. Changes
immediately affect the values of KPIs.

b. Change (if needed) the principle of items’
partition. Predefined taxonomies help to regroup
large sets of items. Manual ad-hoc classification is
possible for small sets.

c. Choose another menu type for the current panel.
11. Find and process the new bottleneck panel.
12. Stop the improvement process when the time losses in

comparison with the theoretically optimal structure
become plausible, or when no improvements are seen.

Several points of this program require extensive
experimental and theoretical support. The experiment is
required in step 1 to estimate the menu items popularity.
Thorough analysis is also needed to build a reliable model
of menu navigation delays (see step 5) for new menu types.
The model should allow tuning to the different contexts
(user categories, data channel or display quality, etc.).
The theory of hierarchy optimization is used to estimate the
optimal menu time delays in step 6, and also to calculate the
optimal parameters (the number of menu alternatives and
the distribution of their popularities) of menu panels, to find
the most inefficient panel of current hierarchy, and to
suggest the possible directions of improvement in step 9.
Some of these process requirements force us to improve the
existing and to develop the new theoretical results. These
improvements constitute the main contribution of our work
to the theory of CHI. The contribution of this paper to the
engineering of interactive computing systems is the
operable and implementable process of menu design and
optimization.

3. BRIEF LITERATURE REVIEW
An extensive study of menu optimization methods (the
rather aged but a comprehensive survey is found in [11])
started in the past two decades of the 20th century in
response to advances in computer interfaces. Hierarchical
menus were the part of standard GUI and then migrated to
the Web transforming into the structure of hyperlinks.

A number of aspects should be taken into account when
designing a rational hierarchical menu – menu panels’
appearance, information processing capabilities, user
experience, application needs, user search strategies,
principles of items sorting, learning processes. An
important issue is that of menu structure studied mostly in
the context of the so called “depth vs. breadth” problem.
The question is how many alternatives a rationally
organized menu should offer to a user at once (this number
is called the breadth of a menu), and, thus, how many levels
(also called the depth) the menu will have. The more
precise question is how should the breadth of a menu panel
depend on its level – is it rational to give the user a richer
choice first and then to narrow the number of alternatives or
vice versa.
There are different approaches to this problem. Early
empirical recommendations “keep it simple” [15] were not
satisfactory. In a classic model by Lee and MacGregor [9]
a very restrictive framework is considered of symmetric
menu with constant breadth over a set of equally popular
items. They supposed each alternative has equal mean time
of being selected and studied two search strategies resulting
in a linear relationship between the search time and the
menu breadth. The formula was obtained for the optimal
menu breadth (giving 6-8 alternatives for a wide range of
parameters). This range was far from empirical
observations, so Landauer and Nachbar [8] suggested
another model with similar restrictions but with a
logarithmic relationship between the search time and the
menu breadth. Their formula allow for a wider range of
menu breadths (see [3] for the recent revision of this
model).
The frequency-based model of Paap and Roske-Hofstrand
[13] extended the one of Lee and MacGregor [9], but still
excluded asymmetric hierarchies from consideration.
Thimbleby [19] suggested another frequency-based model
of user interface optimization based on Huffman coding.
The idea of “making frequent things easy” captures the
benefits of asymmetric menus, but menu panels in the
model are hidden within the state-machine diagram. The
model accounts only for button presses, not time delays.
This makes it hard to compare with the others.
A certain model of menu navigation forms a basis for every
theoretical study, and a substantial body of literature
concerns the modeling issues in different circumstances.
Among recent publications [3, 4, 7] should be mentioned.
Shneiderman [17] stressed the importance of experimental
justification of theoretical conclusions, and many authors
([3, 7, 11, 12, 16], among others) concentrated on empirical
studies of various menu types or menu structuring
principles to substantiate certain design guidelines.
An advanced topic for empirical research was the study of
menus with varying breadth. At the moment they give no
clear understanding whether increasing or decreasing
breadth (with a menu level) is optimal. Norman and Chin
[12] conclude the breadth should increase at deeper levels

of a menu, while Bernard [2] found no significant
differences between increasing and decreasing breadth
menus.
Both theoretical and experimental approaches suffer from
the lack of applicability. Theoretical results operate in a
rather abstract framework while guidelines from
experimental research concern particular cases. Most
approaches do not account for the semantic quality of menu
category labels. One of the known exceptions is the paper
of Fisher et al. [4] where the assumptions of Lee and
MacGregor are partially relaxed and the algorithm is
suggested for menu optimization that takes into account
semantic aspects. The idea is introduced there of using the
taxonomies of menu items to automatically build
meaningful groupings.
Consider a design process from Section 2. Neither of the
existing approaches addresses perfectly all its requirements.
Yet these requirements seem to be quite natural for any
operator-driven design process: CAD system must show
where we are, where the goal is, where (and in what
direction) the efforts should be exerted.
In the next section we extend the known approaches to
build the general model of menu navigation. We equip it
with the methods for structure optimization that rely on the
general theory of hierarchy optimization [5, 10, 21].

4. THE THEORY
Consider a fixed set of items N – the collection of items to
be categorized and arranged in a hierarchy. Suppose a user
always seeks a single item. Let µ(w) be the item’s w ∈ N
popularity – the probability of being searched.
The set N can be partitioned into the categories forming
different menu panels. Every category (i.e. menu panel) is
characterized by the set s ⊆ N of items that belong to it.
Subsequent partition of categories induces a directed tree
with the top category N being its root and the individual
items {w} (w ∈ N) being the leaves.
Let us define a target category as any category that contains
the target item. For every category s ⊆ N define its
popularity ∑ ∈

=
sws w)(µµ . Consider a user navigating to

some category s ⊆ N with k subcategories. If µi is the
popularity of category si, i = 1, …, k (note that
µ1 + … + µk = µs), the conditional probability of the i-th
category being the target one is yi := µi/µs (hereinafter the
vector (y1, …, yk) is referred to as the proportion since
y1 + … + yk = 1 by definition).
Let the menu type stand for a summary of visual and
usability menu properties and let Ω be the set of all
potential menu types that designer can choose from. The
elements of the set Ω for mobile phone menu can, for
example, be something like “Up-down list with text labels”,
“4x3 array of animated icons”, or “high-contrast huge static
icons with voice hints”.

Menu navigation delays form the basis of the model.
Besides the menu type the delays depend on the operation
conditions of a menu and its focus group. The vector of
relevant usage conditions (e.g. the communication channel
speed, screen size and resolution, application type, etc.) and
user characteristics (e.g. age, experience, vision quality,
reading speed, etc.) may depend on the menu type but there
is no loss of generality to consider a common
multidimensional vector ξ ∈ Ξ.
To describe the model of menu type θ ∈ Ω is to define the
average time ti(k, θ, ξ) of finding and selecting the i-th
alternative from the list of k alternatives in the menu of type
θ given the conditions vector ξ (it is supposed that
alternatives are indexed somehow from 1 to k). This time
may include both cognitive and motor delays. In section 5
we provide several illustrative menu models.
To account for the context in menu design one must predict
the usage conditions and the focus group of the menu. In
general these predictions take the form of probability
distribution over Ξ. The model we build is linear in the
delays ti(k, θ, ξ), thus the context information can be
averaged. Hereinafter we skip the term ξ assuming the
delays ti(k, θ) correspond to the conditions in hand.
If a user enters a menu panel (category) s ⊆ N with k
elements s1, …, sk (subcategories or individual items), the
average time he or she spends there is evaluated as a
weighted sum of select time for each element:

()∑
=

=
k

i
iik yktyyt

1
1 ,),,...,(θθ .

Before finding the best menu structure one needs to choose
the menu type that minimizes the average search time for
every individual menu panel:

() ()∑
=

Ω∈
=

k

i
iik yktyyt

1
1 ,min,..., θ

θ
.

The problem in hand belongs to a broad class of problems
of optimal hierarchy search. These problems arise in
different areas but despite dissimilar interpretations they
have a common mathematical setting and allow for a
general approach to their solution.
The average search time T is the total time user (at the
average) spends on every category s in hierarchy H. If µs is
the probability of category s to be the target one, and

1sµ , …,
)(sksµ are the popularities of its k(s) subcategories,

the expression for T can be written as

()∑
∈

⋅=
Hs

sssss sk
tT µµµµµ /,...,/

)(1
.

Hereinafter the term µs⋅t(⋅) is referred to as the cost of a
category (or node) s in a hierarchy H. The cost of category s
is a homogenous (of degree one) function of the category’s
popularity µs. The problem is to choose the tree with the
minimum search time from the broad set of all possible

trees over the set N (in this section we neglect semantic
constraints).
The general result [5] on the optimal trees for homogenous
cost functions is the optimal tree tends to be the uniform
one. In the uniform tree every category has the same
number of subcategories k (also called the breadth) with
popularities giving rise to the same proportion y1, …, yk. An
example of a uniform tree with the breadth 2 and the
proportion (2/3, 1/3) is depicted in Figure 2 (node labels
represent the popularities of appropriate categories while
arcs labels represent the components of proportion).
A useful feature of a uniform tree is an analytic expression
of its average search time.
Theorem 1. For the homogenous cost function the average
delay T(H) of the uniform tree H with the breadth k and the
proportion y1, …, yk built over the set of items N is

() () () ()

∑
∑

=

∈








−= k

i i
i

k

Nw
NN

y
y

yytwwHT

1

1

1ln

,...,
lnln µµµµ . (1)

For the proof see the Appendix. 1)

2/27 4/271/3

2/9

2/3

4/9

4/27

1

8/27

1/3 2/3

1/3 2/3

1/3 2/3
1/3 2/3

Figure 2. An example of a uniform tree

As shown in [5] the problem of tree optimization reduces to
the calculation of the best uniform tree attributes by
minimizing the average search time (1) over all breadths
k = 2, …, n and proportions y1, …, yk with
xi ≥ ε = min w∈N µ(w)/µ(N):

∑

∑

=
=

=

−
×

×−=

k
i ii

k

yyk

n

j
NNL

yy
yyt

wwNT

k
1

1

,...,,...3,2

1

ln
),...,(minmin

))(ln)(ln()(

1

µµµµ

 (2)

Due to discreteness of the set of items N the best uniform
tree may not be constructed exactly, but its search time (2)
can always be calculated, and (2) always gives a lower
bound estimate of the search time of the optimal hierarchy:
Theorem 2. The average search time of the optimal
hierarchy over the set of items N is always not less than
TL(N), i.e. TL(N) is the lower bound estimate for the optimal
hierarchy average search time.

1 If µ(w) is interpreted as a popularity of the item w, like in

menu optimization problem, then µN = 1, but the formula
also holds in general (the proofs use the general case).

For the proof see the Appendix.
Effective computational procedures are suggested in [6] to
build roughly uniform and almost optimal trees. One of
them, the generalization of the well-known Shannon-Fano
coding algorithm, is best suited for optimal menu
construction. Let us outline its idea. Consider the menu
items are aligned in some order. The algorithm starts
building the tree from the top, grouping the conjoint items
to best fit the normative breadth and proportion. Then the
procedure is repeated for every child group formed until the
terminal nodes.
Let TSO(N) denote the average search time of the tree built.
It is shown in [6] that given some technical assumptions the
ratio TSO(N)/TL(N) tends to unity when the number of items
in the set N grows. In other words, the tree is roughly
optimal for large item sets. Note that a roughly optimal tree
can be constructed for every of n! items’ orderings. So the
algorithm allows building a great number of roughly
optimal trees.

5. RESULTS
Find the shape of optimal menu for different types of user
navigation strategies. The cost function µs⋅t(⋅) is
homogenous by definition. Thus, an optimal hierarchical
menu must be uniform, i.e. every category in an optimal
menu must have, if possible, the same number of
subcategories with the same proportion (relative
popularities of subcategories).
Note, that this means that it is inefficient to combine several
menu types in one menu structure. For every menu panel
the menu type is chosen to minimize the average time user
spends in a panel. One can calculate the best menu type for
every breadth and proportion. But in the optimal hierarchy
all panels have the same breadth and proportion and, thus,
the same optimal menu type.
Consider a couple of examples of the best uniform tree
attributes calculation for two classic user search strategies
[11] – the exhaustive search and self-terminating search.

5.1. Exhaustive Search without Repetition
Consider the simplest type of Web-based menu where a
user navigating to some category observes a page with a
plain list of subcategories. “Read all” navigation strategy
[7, 11] is adopted – a user sequentially reads the titles of all
categories and then drills down to the target category (or
item). The possibility of user choice mistakes is neglected.
As a user always reads all items, the average time spent in a
category s is

 () clickreadloadrespk tktkttyyt +++=,...,1 , (3)

where tresp is a server’s mean response time in seconds
(more precisely, the mean time it takes to download a page
with an empty list of categories), tload is the mean time of a
single category label download, tread is the mean time
needed to read and recognize one category label, and tclick is
the mean time spent in moving the pointer to the target

category and clicking the link (as all these parameters enter
linearly in the criterion we can always use averages).
The optimal breadth r and the proportion (x1, …, xr)
minimizes (1). Given (3) it is easy to conclude that for
“read all” strategy symmetric hierarchy is the best choice.
Optimal breadth r is found from the equation

rt

trtt
r

read

clickloadresp ++
+= 1ln . (4)

Take the typical parameters values for Web-based menus:
tresp = 2 sec, tload = 0.02 sec, tread = 1 sec, tclick = 1 sec (these
convenient values are taken just for illustration; in [9]
tread = 1 sec corresponds to “slow readers”). The optimal
breadth is then r = 5. This means that an optimal menu
structure forms symmetric tree with 3 choices in each
category. The formula (4) extends the one obtained by Lee
and MacGregor [9] under the assumption that all items have
the same popularities. The model proposed allows for the
different popularity of every single item.

5.2. Self-terminating Serial Search
Another classic user behavior is the so called “read until”
strategy – a user sequentially reads categories in a list until
the target category/item and immediately drills down [9].
As a user reads the labels sequentially, yi is also the
conditional probability of user reading exactly i labels until
target. Thus, given s is one of the target categories, the
average time spent on it is

 () click
k
i ireadloadrespk tyitkttyyt +⋅++= ∑ =11,..., . (5)

The optimal breadth r and the proportion (x1, …, xr)
minimizes (1). Substituting (5) into (1) yields

∑

∑
=

=
⋅+

= k

i ii

k

i i

yykr
yy

yikA
xxr

k
1

1

...,,1
)/1ln(

)(
minminarg))...,,(,(
1

, (6)

where readclickloadresp ttkttkA /)()(++= .

From the first-order conditions find () ikA
i kay +=)(,

i = 1, …, k, where a(k) is the solution of the equation
11

)(=∑ =
+k

i
ikAa (or, alternatively, 1/1)()(−=− + aaa kkAkA).

Substitution of the optimal proportion into (6) yields the
optimal menu breadth

()()ka
r

k 1ln
1minarg= .

For the parameter values from the previous subsection the
optimal breadth r = 13 is then easily found by numerical
minimization (compare it with r = 5 in the previous
subsection!). Corresponding proportion is x1 ≈ 0.27,
x2 ≈ 0.20, x3 ≈ 0.15, …, x13 ≈ 0.007, i.e. the chance to find
the target item in the first category of the optimal list must
be more than 1:4, in the second – about 1:5, and so on up to
the last category – 1:150.

Compare this result to the analogous one in [9]. For the
similar navigation strategy Lee and MacGregor find an
estimate for the optimal breadth. Their formula gives r = 7
for the above parameter values.
In [9] only symmetric and uniform trees are studied. Just a
few studies in the ensuing years addressed hierarchies with
varying breadths and they gave no clear answer on whether
varying breadths make sense or not (Norman and Chin [12]
found that menus with the largest breadth in the top layer
and the terminal layer are more efficient than menus with
the largest breadth in the middle layers while Bernard [2]
found no significant differences in efficiency between
various breadth profiles). The above analysis extends the
previous results to the class of arbitrary menu structures and
arbitrary items popularities. Note that allowing for
asymmetric menus saves about 10% of user time on
average.

5.3. Navigation Mistakes Probability
In this subsection an example is given of how simple search
models can be improved to include advanced considerations
like user mistakes, thus tuning the general model to the
variety of practical situations.
Ambiguous or inconsistent category names may lead to user
mistakes during navigation through menus. Two types of
mistakes and corresponding recovery techniques are
considered: the user navigates to the wrong subcategory and
then moves back to the parent category or user mistakenly
navigates up from the target subcategory [11].
User mistakes increase the search time at the cost of wrong
choice and recovery. For “read until” navigation strategy
the time to choose the i-th item in the parent category by
mistake is

clickreadloadresp
i
mistake titkttt +++= .

Once navigated to the subcategory the user has to view it
through and make a choice to move back:

clickreadloadresprecover tktkttt +++= .

Let us introduce the probability, p, of a user making a
mistake while browsing a category. This probability is split
among category items proportionally to their popularity (a
mistake is more likely to occur for popular categories).
Thus, for the particular user in the particular category, the
probability to choose the i-th item by mistake is p∙yi. The
total probability to get into category s by mistake is μs∙p.
So, the average time loss in a category s due to the user’s
mistakes is

∑
=

+
k

i

i
mistakeisrecovers typt

1

µµ .

The optimal popularities of subcategories are calculated:
() ikB

i kay +=)(, i = 1, …, k, where

() k
p

pkA
p

pkB
+

+







+

+=
1

)(
1

1)(,

a(k) is the solution of the equation 1
1

)(=∑ =
+k

i
ikBa .

As before the optimal breadth

()()ka
r

k 1ln
1minarg= .

For the typical parameter values specified above and the
mistake probability p = 0.2 the optimal breadth r = 8 and
corresponding proportion is x1 ≈ 0.25, x2 ≈ 0.19,
x3 ≈ 0.15, …, x13 ≈ 0.05. Note the possibility of user
mistakes reduces the number of items within a category.
The reason is that these “narrower” menus give the user an
ability to recover faster after a mistake.
Analogous closed-form solutions can also be found for
alphabetically sorted items (the search time is logarithm of
menu breadth [8]), categorized menus (see Figure 1) [13],
and many other practical situations.

6. ALIGNING AN OPTIMAL MENU STRUCTURE WITH
SEMANTIC CONSTRAINTS
The set of admissible hierarchies in a hierarchical menu
optimization problem is restricted by semantic constraints.
In many cases these constraints are reduced to the
enumeration of semantically meaningful categories (items’
groups) that solely can be used while constructing a menu.
Call the menu meaningful if it consists of meaningful
categories only. Although the problem is to find a
meaningful menu minimizing the average search time, the
solution of unrestricted optimization problem also helps to
design a meaningful menu structure in an automated mode.

6.1. General Considerations
First, the designer can compare the predicted average
search time of the current hierarchy with the lower bound
(1). If the difference is small, e.g. less than 5%, the current
menu can be treated as satisfactory.
Second, the structure of an optimal tree can be used as a
template, the ideal that must be pursued while building a
meaningful tree.
The lower bound for the unrestricted problem remains the
lower bound for the problem with semantic constraints. For
the constrained setting branch and bound algorithms can be
suggested that exploit the idea of TD-tree construction
algorithm but also account for semantic constraints. They
employ the set of predefined items’ taxonomies to group the
items into meaningful categories with popularities close to
optimal ones.
Even then there is a number or informal aspects that may
lead the designer to reject the suggested groupings. All
these considerations are included in the suggested routine.

6.2. An Example: Mobile Phone Menu Optimization
Show how the suggested routine works in the case study of
mobile phone menu optimization.

Mobile devices give an example of systems where menu
optimization problems are especially important. As a
display of a mobile phone is small, a hierarchical menu is
the only way to give a user access to a number of supported
commands. The size of the display also prevents a user
from running an eye over the whole menu panel, and a user
must look through the alternatives sequentially.
Consider the “send/receive messages” menu of a Nokia
7510 mobile phone (see the left panel of Figure 3 for the
truncated list). The items’ popularities depicted are taken
from statistical research [1]. Other models of the same
vendor have an analogous structure.
Note the menu is strongly non-uniform – it has 14
alternatives at the top level, and 2-5 alternatives at the
second level (lower levels are omitted in Figure 3). General
results of Section 4 say there is a place for optimization
regardless of the delays values or user behavior
assumptions. These assumptions become important when
we try to show the direction of menu improvements.

Figure 3. Mobile phone original and optimized menus

Experiments help determine the average time delays: the
new panel load time does not depend on the panel breadth
and is equal tresp ≈ 1 sec, average label reading time
tread ≈ 1 sec (including the time of scrolling), the selection
key pressing time tclick ≈ 0.5 sec. Suppose users adhere to
the self-terminating serial search strategy (poor control
capabilities restrict much user behavior) and have the
probability of mistake p = 0.05. Then one can calculate the
average search time for the original menu structure
(approximately 8.36 sec).
Substituting the parameter values into the formula of
Subsection 5.3 obtain the optimal menu breadth r = 8, and
the optimal proportion of popularities (0.33, 0.23, 0.16,
0.11, 0.07, 0.05, 0.03, 0.02). Note the optimal menu is

extremely asymmetric. The lower bound for the average
search time is approximately 6.74 sec.
The discreteness of items set and semantic constraints
prevent the building of a purely optimal menu. Using the
routine described in section 2 the original structure was
transformed into the one depicted in the right panel of
Figure 3. Simple computations in accordance with the
adopted model give the average search time of 7.22 sec for
this structure. Thus aligning the menu structure to the
optimal template fastens the access by 13.5% on average.
The average search time for the meaningful optimized menu
is just 6.6% higher than the lower bound (6.74 sec), which
is adequate.

7. DISCUSSION
The suggested theory and the design process improve the
existing approaches in several aspects.
The theoretical model is akin to Thimbleby’s [19, 20]
approach. Both approaches rest on the Zipf’s Principle of
Least Effort. At the same time, the approach of [19]
essentially relies on the “number of buttons pressed”
criterion. It asserts sequential menu scanning, and does not
distinguish between browsing single menu and drilldown.
This fits well with the keypad input but not the richer
interfaces. The average search time seems more flexible. It
is adjusted to different contexts (the model of buttons
presses has the only parameter – the probability of a user
mistake), and brings the model close to the body of
“breadth vs. depth” literature.
We extend the approach of Lee and MacGregor [9]
allowing for different item popularities and asymmetric
hierarchies (remember the Least Effort principle!) with
varying breadth.
We took the approach of Fisher et al. [4] to the generation
of meaningful items groupings, but we use hierarchical
taxonomy in the context of a single menu panel. Several
simple taxonomies are used to build different panels. This
gives the designer the desired level of flexibility and eases
the task of classification.
There are many controversial aspects of the suggested
approach, and we would like to address some possible
concerns.
The strongest assumption of the theoretical model is that
navigation delays in a menu panel do not depend on the
sense of the categories. In the context of the whole routine
this means that all admissible labels (having good semantic
quality) are supposed to require the same time to be read,
while inadmissible labels are prohibited. This assumption is
typical for all known formal models of menu selection. The
main reason is that accounting for the specifics of every
potential category label would require extensive data that
are usually unavailable at the moment of menu design. In
the routine that uses predefined taxonomies the length of
the label can be used to adjust the reading delays. The
uniform cost functions are a special case of the so-called
sectional cost functions that depend on the menu categories

(i.e. item groups) per se, not just on their popularities.
Effective algorithms are developed in [21] for optimal tree
search under the sectional cost function. Thus, our model
can be refined to account better for the context but this will
complicate both the math and the work of a designer.
Structure optimization and semantic constraints are split.
This assumption is good if one can always find a
meaningful hierarchy with the nearly optimal structure (as
small deviation from the optimal shape lead to small menu
quality losses). At the end, this assumption can only be
verified or contested by the practice of menu design. Above
we provided an example of the real menu optimization.
There is a concern about using item taxonomies to fill the
suggested pattern of menu panel. Does this way give the
flexibility of choosing the appropriate menu breadth? There
is a solution. The taxonomies must be detailed enough – the
number of categories should be more than the maximum
number of menu alternatives considered. In this case several
categories can be hidden into the “Others” category (see the
“…” alternatives in Figure 1). Another way to adjust a
menu breadth is to use hierarchical classifications [4],
which allow one to easily merge the categories thus
decreasing the breadth.
Several authors (e.g. see [7, 18] and references there)
consider the user goals consisting of multiple items (a user
wants to access them all during one menu session or,
alternatively, any item suffices). This situation is typical for
a data store (e.g. web catalog) search. The case of the user
returning to the top of the menu after finding each item is
easily incorporated in our model. Direct accounting for the
general case in the context of frequency analysis that we
adhere requires computing at least the proximity matrix for
the pairs of menu items (n⋅(n – 1) figures), or even the
probability of every target set (2n figures). We believe the
effect it has on the menu structure does not justifies the
efforts.
We described just one way of dealing with user mistake
probability. The problem is that “there are infinitely many
ways of being wrong, and a designer can only think of a
limited number of them” [20]. New models of erroneous
behavior may be developed on demand, but some of them
may require the optimization framework enhancements.
This can be the subject of prospective studies.
The considered comprehensive model of delays still loses
the specificity of one sort of motor delay arising in pointer-
driven systems. By Fitts’ Law [3] the pointer movement
time depends on the amplitude of movement, thus motor
delays in a menu panel depend both on the position of the
alternative and on the position of the alternative selected on
the previous panel. There are ways to address this issue but
they complicate the model.
A serious problem is the complexity of menu models used
to predict the menu navigation time. To build a reliable
model an extensive experimental work is required.
Unfortunately, the content and scale of the experiments are

completely dictated by the intention to minimize the
average search time. Experimental methods are a well-
developed field of CHI research [14], and, at the end, we
need just average selection time estimates. Once built, the
model of the new menu type delays can be then reused.

8. CONCLUSION
We suggested an automated routine for menu structure
optimization that employs the theory, experimental
estimates and informal judgments.
The theory says the tree structure of the optimal menu must
be uniform. Usually the best uniform tree cannot be built
exactly but the closer the attributes of the menu (breadth
and proportion) to the ideal ones, the lower is the average
search time. There is always a great number of
approximately optimal menu structures, similar in shape but
differing in content, for menu designer to choose from.
The model also eases measuring the performance of new
menu types. Comparing the performance of menu types on
the single menu structure is not a proper way. The correct
approach is to compare the optimal menu structures for
every menu type (and, in fact, in varying environment!).
Our theory allows the designer to concentrate on the
modeling of a single menu panel, and given the model the
performance benchmarks follow immediately.
At the moment the prototype of the CAD system for menu
optimization based on the described approach is under
development.
The prospective lines of theory improvement include
accounting for numerous advanced aspects arising in
practice: group targets, variable items’ popularity, screen
capacity constraints, invalidated items, variable semantic
constraints, fixed and dynamic menus, and others. Another
promising direction is the consideration of less formal
usability criteria besides the average search time.

ACKNOWLEDGMENTS
We thank Prof. A. A. Voronin and Dr. S. P. Mishin for
developing the theory of hierarchy optimization, and Prof.
D. A. Novikov for supporting our work.
The research is supported by the grant 10-07-00129 of
Russian Foundation for Basic Research.

REFERENCES
1. Andersson, E., Isaksson, I.-M. Exploring alternatives to

the hierarchical menu structure used in mobile phones.
Master’s Thesis. Umea University. Department of
Computing Science (2007).

2. Bernard, M. L. Examining a metric for predicting the
accessibility of information within hypertext structures.
Ph.D. thesis, Wichita State University, Wichita, KS,
USA, (2002).

3. Cockburn, A., Gutwin, C., and Greenberg S. A.
Predictive Model of Menu Performance. Proc ACM
CHI'07, ACM Press, (2007), 627–636.

4. Fisher, D. L., E. J. Yungkurth, and S. M. Moss. Optimal
menu hierarchy design: syntax and semantics. Human
Factors 32(6), (1990), 665–683.

5. Goubko, M. V. The search for optimal organizational
hierarchies with homogeneous manager cost functions.
Automation and Remote Control 69, 1 (2008), 89–104.

6. Goubko, M. V. Algorithms to construct suboptimal
organization hierarchies. Automation and Remote
Control 70, 1 (2009), 147–162.

7. Hollink, V., Van Someren, M., and Wielinga, B.
Navigation behavior models for link structure
optimization. User Modeling and User-Adapted
Interaction 17, 4 (2007), 339–377.

8. Landauer T. K., and Nachbar D. W. Selection from
alphabetic and numeric menu trees using a touch screen:
depth, breadth and width. Proc. of the SIGCHI conf. on
Human Factors in Computing Systems, ACM Press
(1985), 73–78.

9. Lee, E., and MacGregor, J. Minimizing user search time
in menu retrieval systems. Human Factors 27, 2 (1985),
157–162.

10. Mishin, S. P. Optimal Organizational Hierarchies in
Firms. Journal of business economics and management,
Vol. 8, No. 2 (2007), 79–99.

11. Norman, K. L. The Psychology of Menu Selection:
Designing Cognitive Control at the Human/Computer
Interface. Ablex Publishing Corporation, Norwood,
1991.

12. Norman, K. L., and Chin, J. P. The effect of tree
structure on search in a hierarchical menu selection
system. Behaviour and Information Technology 7
(1988), 51–65.

13. Paap, K. R., and Roske-Hofstrand, R. J. The Optimal
Number of Menu Options per Panel. Human Factors 28,
4 (1986), 377–385.

14. Research Methods for Human-Computer Interaction.
Edited by Cairns, P. and Cox, A. L. Cambridge
University Press, (2008).

15. Robertson, G., McCraken, D., & Newell, A. The ZOG
approach to man-machine communication. The
International Journal of Man-Machine Studies, 14,
(1981), 461–488.

16. Sears, A., and Shneiderman, B. Split menus: Effectively
using selection frequency to organize menus. ACM
ToCHI 1, 1 (2004), 27–51.

17. Shneiderman, B. Software psychology: Human factors
in computer and information systems. Cambridge, MA:
Winthrop (1980).

18. Someren, M. van, Hollink, V. Validating Navigation
Time Prediction Models for Menu Optimization.
Proceedings of the 14th Workshop on Adaptivity and
User Modeling in Interactive Systems, Hildesheim,
Germany, (2006), 47–52.

19. Thimbleby, H. Analysis and Simulation of User
Interfaces. HCI 2000, Proceedings British Computer
Society Conference on Human-Computer Interaction,
XIV, (2000), 221–237.

20. Thimbleby, H. Press On – Principles of Interaction
Programming. MIT Press, (2007).

21. Voronin, A. A., and Mishin, S. P. Algorithms to Seek
the Optimal Structure of the Organizational System.
Automation and Remote Control. V. 63, No 5, (2002),
803–814.

APPENDIX. PROOFS OF FORMAL RESULTS

Proof of theorem 1.
The proof is based on induction on the number of items n.
For the sole item (i.e. n = 1) the sole tree exists with no
panels at all. Let us consider it uniform. Its search time
equals to zero, so formula (1) holds. Suppose the theorem
holds for every items number less than n. Let us prove it
then holds for n items.
In a (r, x)-uniform tree H top category has the popularity µ,
and its subcategories s1, …, sr have the popularities
µk = xkµ, k = 1, …, r. The average search time T(H) of the
tree consists of the cost of the top menu panel and the costs
of the subtrees H1, …, Hr, rooted by the subcategories
s1, …, sr. As every subtree Hk is also a uniform tree for the
set of items sk, k = 1, …, r, and all categories sk consist of
less than n items, the search time of the uniform tree is, by
induction:

)(...)(),...,()(11 rr HTHTxxtHT +++⋅= µ ,

where T(Hk), k = 1, …, r, are calculated according to (1).
Let us denote for short),...,(: 1 rxxtC = . Then

=
−

−+= ∑
∑

∑
=

=
∈

r

k
r
i iisw

kk
xx

CwwCHT
k1

1 ln
))(ln)(ln()(µµµµµ

=
−

−+−

=
∑

∑ ∑∑

=

=
∈

=

r

i ii

r

k
sw

kk
r

i ii

xx

wwxx
C k

1

11

ln

))(ln)(ln(ln µµµµµ

=
−

−−
=

∑

∑ ∑

=

= ∈

r

i ii

r

i sw
iiii

xx

wwx
C i

1

1

ln

])(ln)(lnln[µµµµµ

=
−

−
=

∑

∑ ∑

=

= ∈

r

i
ii

r

i sw
iii

xx

wwx
C i

1

1

ln

)](ln)()/ln([µµµµ

=
−

−
=

∑

∑∑

=

==
r

i
ii

n

w

r

i
i

xx

ww
C

1

11

ln

)(ln)()ln(µµµµ

1 1

1

ln() () ln ()

ln

r n

i
i w

r

i i
i

w w
C

x x

µ µ µ µ
= =

=

−
= =

−

∑ ∑

∑
1

1

1

(,...,)(ln () ln ()) .
ln

n
r

r
w

i i
i

c x xw w
x x

µ µ µ µ
=

=

= −
−

∑
∑

QED.

Proof of theorem 2.
The idea is analogous to theorem 1. Use induction on the
number of items n. For the sole item with the measure µ1
TL(µ1) = 0, and is equal to the search time of the only
possible “empty tree”. Suppose the theorem holds for every
number of items less than n. Prove that it then holds for n
items.
Consider some tree H where the top category s with the
popularity µ is divided into k subcategories s1, …, sk with
the popularities µ1, …, µk. The search time of the tree
consists of the cost of the top menu panel and the costs of
the trees H1, …, Hk rooted by the categories s1, …, sk (if the
tree consists of the sole item, its search time equals to zero):

)(...)()/,...,/()(11 kk HTHTtHT +++⋅= µµµµµ .

As the categories s1, …, sk consist of less than n items, the
average search time in the corresponding subtrees by
induction is not less than TL(si). Thus,

)(...)()/,...,/()(11 kLLk sTsTtHT +++⋅≥ µµµµµ .

In the right side of the inequality we see the fixed menu
breadth k and the fixed partition s1, …, sk of the set N.
Consequently, the right side will not grow if we take the
minimum for all k from 2 to n and for all possible partitions
s1, …, sk of the set N. So,

})()/)(,...,/)(({minmin)(
1

1:,...,...2

1

1
∑

=
=

=
+⋅≥

=

k

i
iLk

Ns
ssnk

sTsstHT
k

i i

k

µµµµµ



.

Let us adopt the notation for convenience

∑ =
∈= −

= k
i ii

k

Dynk yy
yyt

nF
k

1

1

)(...2 ln
),...,(

minmin:),(
ε

ε .

Here Dk(ε) is the part of k-dimentional simplex, where
every component of the vector is not less than ε.
The notation allows writing (1) in a compact form:

),())(ln)(ln()(1 εµµµµ nFwwNT n
wL ∑ =

−=

Let us denote also r(n, ε) as the breadth, and
x(n, ε) = (x1(n, ε), …, xr(n, ε)(n, ε)) as the proportion, where
minimum in (2) is achieved.
Let us sharpen the inequality

}.),(])(ln)(ln[

)/)(,...,/)(({minmin)(

1

1:,...,...2

1

1

∑ ∑
= ∈

=
=

−+

+⋅≥

=

k

i
ii

sw
ii

k

Ns
ssnk

nFww

sstHT

i

k

i i

k

εµµµµ

µµµµµ



Replace ni by n, and εi by ε, thus widening the minimization
domain:

)}.)(ln)(ln)(,(

),...,({minmin)(

1

1)(...2

∑∑
∈=

∈=

−⋅

+⋅≥

Nw

k

i
ii

kDynk

wwyynF

yytHT
k

µµµµε

µ
ε

Add and subtract TL(N) in the right side of the inequality:

=+−

−−

+⋅+≥

∑

∑∑

∈

∈=

∈=

)})(ln)(ln

)(ln)(ln)(,(

),...,({minmin)()(

1

1)(...2

Nw

Nw

k

i
ii

kDynkL

ww

wwyynF

yytNTHT
k

µµµµ

µµµµε

µ
ε

=−+

++=

∑
=

∈=

)}lnln)(,(

),...,({minmin)(

1

1)(...2

µµµµε

µ
ε

k

i
ii

kDynkL

yynF

yytNT
k

}.ln),(),...,({minmin)(
1

1)(...2
∑

=∈=
++=

k

i
iikDynkL yynFyytNT

k

εµ
ε

Take the positive factor ∑
=

−
k

i
ii yy

1
ln out the brackets:

)}.,(
ln

),...,(
){ln(minmin

)()(

1

1

1)(...2
εµ

ε
nF

yy

yyt
yy

NTHT

k

i
ii

k
k

i
iiDynk

L

k

−
−

−+

+≥

∑
∑

=

=∈=

The first multiplier of the minimized expression is non-
negative. The second multiplier is also non-negative as it
achieves the minimum (that is equal to zero) at k = r(n, ε),
y = x(n, ε). Consequently, the minimum in the right side is
equal to zero, and T(H) ≥ TL(N).
QED.

